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A self-consistent Kohn-Sham (KS) method is presented that treats correlation on the basis of the
adiabatic-connection dissipation-fluctuation theorem employing the direct random phase approxi-
mation (dRPA), i.e., taking into account only the Coulomb kernel while neglecting the exchange-
correlation kernel in the calculation of the Kohn-Sham correlation energy and potential. The method,
denoted self-consistent dRPA method, furthermore treats exactly the exchange energy and the local
multiplicative KS exchange potential. It uses Gaussian basis sets, is reasonably efficient, exhibiting a
scaling of the computational effort with the forth power of the system size, and thus is generally ap-
plicable to molecules. The resulting dRPA correlation potentials in contrast to common approximate
correlation potentials are in good agreement with exact reference potentials. The negatives of the
eigenvalues of the highest occupied molecular orbitals are found to be in good agreement with ex-
perimental ionization potentials. Total energies from self-consistent dRPA calculations, as expected,
are even poorer than non-self-consistent dRPA total energies and dRPA reaction and non-covalent
binding energies do not significantly benefit from self-consistency. On the other hand, energies ob-
tained with a recently introduced adiabatic-connection dissipation-fluctuation approach (EXXRPA+,
exact-exchange random phase approximation) that takes into account, besides the Coulomb kernel,
also the exact frequency-dependent exchange kernel are significantly improved if evaluated with
orbitals obtained from a self-consistent dRPA calculation instead of an exact exchange-only cal-
culation. Total energies, reaction energies, and noncovalent binding energies obtained in this way
are of the same quality as those of high-level quantum chemistry methods, like the coupled cluster
singles doubles method which is computationally more demanding. © 2013 AIP Publishing LLC.
[http://dx.doi.org/10.1063/1.4818984]

I. INTRODUCTION

Kohn-Sham (KS) methods that treat the correlation en-
ergy on the basis of the adiabatic-connection fluctuation-
dissipation theorem (ACFD)1, 2 have raised considerable in-
terest in recent years3–46 and have proven to constitute a
highly promising new type of density-functional methods
that have the potential to overcome the shortcomings of
conventional KS methods based on the generalized gradi-
ent approximation (GGA)47–49 as well as of generalized KS
methods50 combining elements of the Hartree-Fock approach
with the KS formalism.50–53 The ACFD theorem yields an
exact expression for the KS correlation energy in terms of
frequency-dependent density-density (potential-density) re-
sponse functions, more precisely in terms of the KS re-
sponse function and response functions of interacting sys-
tems with an electron-electron interaction scaled by a cou-
pling constant. While the KS response functions are known
exactly and are easily accessible, the response functions of
interacting systems have to be determined approximately via
time-dependent density-functional theory (TDDFT), that is
via density-functional response theory of first order.54–56 The
quantity to be approximated in TDDFT in the linear response
regime is the exchange-correlation kernel, the frequency-
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dependent functional derivative of the exchange-correlation
potential.

In most KS methods based on the ACFD theorem the
exchange-correlation kernel is neglected and only the known
and frequency-independent Coulomb kernel, the functional
derivative of the Hartree potential, is taken into account. This
leads to a random phase approximation (RPA) within the
framework of the KS formalism. Methods based on the ACFD
theorem, therefore, commonly are denoted RPA methods, de-
spite the fact that some of these methods go beyond the RPA.
In order to distinguish the simple RPA methods from ACFD
methods going beyond it, shall be denoted as direct RPA
(dRPA) here. An advantage of dRPA methods is that they
are able to describe Van-der-Waals interactions. Total energies
from dRPA methods, however, are known to be poor, indeed
much less accurate than total energies from GGA or hybrid
methods, while dRPA reaction energies are of similar quality
as those from conventional KS methods, see, e.g., Ref. 42 and
results of this work. The poor dRPA total energies can be re-
lated to the fundamental flaw of the dRPA that it is not free of
self-interaction. An obvious sign of this fundamental problem
is the fact that the dRPA correlation energy of one-electron
systems is not zero.

Because of the shortcomings of the dRPA various ap-
proaches have been developed that introduce corrections
and modifications to it, e.g., by invoking perturbation

0021-9606/2013/139(8)/084113/17/$30.00 © 2013 AIP Publishing LLC139, 084113-1
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theory,14, 20, 57 augmentations by additional first-order singles
terms,39 or by devising methods employing range-separation
techniques in order to treat only parts of the correlation en-
ergy via the dRPA while other parts are treated by approxi-
mate semilocal functionals.21, 22, 29, 30, 58–60

A fundamental step beyond the dRPA is to take into
account not only the Coulomb kernel but also the ex-
act frequency-dependent exchange-kernel54, 61–63 in the con-
struction of the coupling-constant-dependent response func-
tions. Such methods were denoted EXXRPA+ methods46

and were implemented for atoms using numerical grid
procedures15, 16, 32 and for general molecular systems em-
ploying Gaussian basis sets.36–38, 46 EXXRPA+ methods are
free of self-interactions, yield total as well as binding en-
ergies that are more accurate than GGA or hybrid meth-
ods, describe Van-der-Waals interactions with high accuracy
and even are able to treat systems characterized by static
correlation.37

So far, methods based on the ACFD theorem almost ex-
clusively were applied in a post self-consistent-field (SCF)
fashion, i.e., first, a self-consistent conventional or hybrid cal-
culation is carried out and the orbitals and eigenvalues re-
sulting from this calculation then are used to exactly evalu-
ate the exchange energy and the ACFD correlation energy.
Exceptions are self-consistent dRPA and EXXRPA+ calcula-
tions for atoms based on numerical grid techniques15, 32 and
self-consistent dRPA calculations for a number of atoms and
small molecules with Gaussian basis set implementations44, 45

that exhibit an unfavorable scaling of the computational ef-
fort with the system size and, therefore, are not suitable for
most systems of interest. In this work, we introduce a self-
consistent dRPA method using Gaussian basis sets that ex-
hibits the same N4 scaling with the system size N, e.g., the
number of electrons, as methods evaluating in a post-SCF way
only the dRPA correlation energy.

By employing the dRPA in a self-consistent manner the
fundamental shortcomings of the dRPA discussed above can-
not be overcome. Indeed total energies from a self-consistent
dRPA approach have to be even worse than those from post-
SCF dRPA methods. The reason is that the dRPA correlation
energy is too large in magnitude leading to a too low total en-
ergy. Going from a post-SCF to a self-consistent dRPA eval-
uation of the correlation energy, however, has to lower the to-
tal energy further because self-consistent dRPA methods are
variational with respect to the orbitals and their eigenvalues,
or more specifically with respect to the effective KS poten-
tial determining the former. The motivation to develop a self-
consistent dRPA, therefore, is not primarily to calculate self-
consistent dRPA energies. The main motivations instead are:
(i) to have a method that yields correlation potentials that are
reasonable approximations to exact KS correlation potentials
and (ii) to do a step towards a generally applicable fully self-
consistent EXXRPA+ method. With respect to the first point
note that approximate GGA exchange-correlation potentials
are known to exhibit a completely wrong behavior compared
to the exact KS correlation potentials.64 Indeed in the test
case of small atoms, in which a construction of exact correla-
tion potentials was possible, it was shown that GGA correla-
tion potentials have no resemblance to the exact ones.64 This

highly disturbing point is well-known since long but mostly
ignored. This may be justified to some degree in calculations
aiming at total and particular reaction energies but it is cer-
tainly highly problematic whenever KS orbitals and eigenval-
ues, which are quite sensitive to the exchange-correlation po-
tential, are used in subsequent calculations, e.g., in TDDFT
calculations aiming at excitation energies or in the calculation
of quasi-particle band structures by many-body perturbation
approaches like the GW approximation.65, 66 Self-consistent
dRPA calculations for atoms15 showed that the resulting cor-
relation potentials are in fair agreement with the true ones.
Because the self-consistent dRPA method presented here also
treats the exchange potential exactly, the method enables, in
a routine way, the computationally efficient calculation of
exchange-correlation KS potentials of molecules that can be
assumed to be realistic.

Concerning the second motivation it has to be pointed
out that EXXRPA+ total energies evaluated with exact-
exchange-only (EXX) orbitals and eigenvalues are highly ac-
curate but in almost all cases are slightly too small in mag-
nitude compared to reference data and, therefore, lead to
slightly too high total energies. A self-consistent EXXRPA+
method would yield lower and, therefore, most likely even
better total energies. Because the dRPA correlation potential
can be considered to be a reasonable approximation to the full
EXXRPA+ correlation potential it can also be predicted that
the EXXRPA+ total energies will be lowered and thus get
even more accurate if the EXXRPA+ correlation energy is
evaluated with self-consistent dRPA instead of EXX orbitals
and eigenvalues.

The paper is organized as follows. In Sec. II, the un-
derlying formalism is explained and derived. First in Sub-
section II A the evaluation of the dRPA correlation energy is
reviewed, then in Subsection II B the method to construct the
dRPA correlation potential is derived, next in Subsection II C
the processing of the required auxiliary basis sets and proce-
dures to increase the numerical stability of the new method
are discussed, and the computational steps of the presented
method are summarized. Section III provides computational
details, in Sec. IV dRPA correlation potentials are discussed,
and in Sec. V dRPA and EXXRPA+ energies (total and re-
action energies as well as energies of noncovalent bonds)
based on EXX and dRPA orbitals and eigenvalues are ana-
lyzed. Furthermore, we consider ionization potentials and KS
eigenvalue gaps between the highest occupied and the low-
est unoccupied KS orbital in this section. Finally in Sec. VI
concluding remarks are made.

II. FORMALISM

A. Correlation energy in the random phase
approximation

Functionals for the KS correlation energy Ec

within the RPA are based on the adiabatic-connection
fluctuation-dissipation theorem1, 2

Ec = −1

2π

∫ ∞

0
dω

∫ 1

0
dα

∫
drdr′ 1

|r − r′|
[χα(r, r′, iω) − χ0(r, r′, iω)], (1)
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which represents an exact expression for Ec in terms of the
frequency-dependent or dynamic KS response function χ0

and the corresponding coupling-constant-dependent response
functions χα . The dynamic KS response function for a fre-
quency ν is given by

χ0(ν, r, r′)=
∑

i

∑
a

ϕi(r) ϕa(r) λia(ν) ϕa(r′) ϕi(r′), (2)

in terms of the occupied and unoccupied KS orbitals ϕi and
ϕa, respectively, and in terms of the corresponding KS eigen-
values εi and εa via

λia(ν) = −4εia

/(
ε2
ia − ν2

)
, (3)

with εia = εa − εi. Throughout this paper we consider non-
spin-polarized electronic systems with real-valued KS or-
bitals. Spin is taken into account via appropriate prefactors.
The response functions χα are frequency-dependent density-
density (potential-density) response functions of interacting
electronic systems along the adiabatic connection for a cou-
pling constant α, i.e., of hypothetical electronic systems that
have the same ground state electron density as the real fully
interacting electron system but contain electrons that interact
with an electron-electron interaction scaled by the coupling
constant 0 ≤ α ≤ 1. For α = 0 the response function χα turns
into the KS response function χ0, for α = 1 into the response
function of the fully interacting real electron system.

In contrast to the KS response function χ0 the coupling-
constant-dependent response functions χα are not exactly
known for α �= 0. Methods based on the RPA within the KS
framework determine the response functions χα by TDDFT
more precisely by density-functional response theory of first
order.54–56 Within TDDFT the response functions χα are
given by

χα(ν, r, r′)

= χ0(ν, r, r′)

+
∫

dr′′dr′′′ χ0(ν, r, r′′) f α
Hxc(ν, r′′, r′′′) χα(ν, r′′′, r′).

(4)

In Eq. (4) f α
Hxc is the sum of the Coulomb or Hartree

kernel f α
H (r, r′) = 1/|r − r′| and the exchange-correlation

kernel f α
xc the frequency-dependent functional derivative of

the exchange-correlation potential with respect to the elec-
tron density. The approximation chosen for the exchange-
correlation kernel determines the quality of the resulting ap-
proach. With the exact exchange-correlation kernel the exact
correlation energy would be obtained. The RPA is defined
by neglecting completely the exchange-correlation kernel and
keeping only the Coulomb kernel. If only the correlation con-
tribution to the exchange-correlation kernel is neglected and
the exchange contribution is treated exactly together with
the Coulomb kernel the EXXRPA+ (exact-exchange RPA)
method of Refs. 16, 32, 36–38, and 46 is obtained. The name
EXXRPA+ is somewhat misleading because the EXXRPA+
method actually goes beyond the simple RPA. In order to dis-
tinguish the RPA method considered here which is based on
the original RPA from methods like the EXXRPA+ method
we will denote it dRPA method here. With the dRPA, i.e., the

neglect of the exchange-correlation kernel, Eq. (4) for the re-
sponse function χα simplifies to

χα(ν, r, r′) = χ0(ν, r, r′)

+
∫

dr′′dr′′′ χ0(ν, r, r′′)
α

|r′′ − r′′′| χα(ν, r′′′, r′)

(5)

and contains only accessible quantities.
In order to evaluate the response function χα via

Eq. (5) we introduce an auxiliary basis set, the resolution-
of-the-identity (RI) basis set,67–71 by the unsymmetric reso-
lutions of the identity

δ(r − r′) =
∑
pq

f̃p(r)
[̃
S−1

]
pq

∫
dr′′ f̃q(r′′)

|r′ − r′′| , (6)

=
∑
pq

∫
dr′′ f̃p(r′′)

|r − r′′| [̃S−1]pq f̃q(r′), (7)

with the RI Gaussian basis functions f̃p and the overlap ma-
trix S̃ with respect to the Coulomb norm defined by its matrix
elements

S̃pq =
∫

drdr′ f̃p(r) f̃q(r′)
|r − r′| . (8)

The tilde on f̃p and S̃ indicates that the original RI basis func-
tions, e.g., from basis sets libraries like those of Refs. 72 and
73, and their overlap matrix are preliminary quantities that,
later on, will be modified to the auxiliary basis functions and
overlap matrix actually used, see Subsection II C.

By acting with the resolution of the identity (6) from the
left and with the resolution of the identity (7) from the right
in Eq. (5) and by inserting the resolution of the identity (6)
into the right hand side of Eq. (5) after the Coulomb kernel,
Eq. (5) turns into the matrix equation

S̃−1 X̃α(ν) S̃−1 = S̃−1 X̃0(ν) S̃−1

+ α S̃−1 X̃0(ν) S̃−1 X̃α(ν) S̃−1, (9)

which can be rearranged into the expression

X̃α(ν) = [1 − α X̃0(ν) S̃−1]−1 X̃0(ν) (10)

for the matrix representation X̃α(ν) of the coupling-constant-
dependent response function χα . The matrix elements of the
uncoupled KS response matrix X̃0(ν) are given by

X̃0,pq (ν) =
∫

drdr′dr′′dr′′′ f̃p(r′′′) χ0(ν, r′′, r′) f̃q(r)

|r−r′||r′′−r′′′| . (11)

In order to calculate X̃0(ν) we define the integrals

(ϕi ϕa | f̃p) =
∫

drdr′ ϕi(r) ϕa(r) f̃p(r′)
|r − r′| . (12)

The matrix elements X̃0,pq(ν) of the uncoupled KS response
function X̃0(ν) are given by

X̃0,pq (ν) =
∑
ia

(ϕi ϕa|f̃p) λia(ν) (ϕi ϕa|f̃q), (13)

with λia(ν) defined in Eq. (3).
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With Eqs. (5)–(7) and (10) the response function χα as-
sumes the form

χα(ν, r, r′)

=
∑

p

∑
q

f̃p(r)[̃S−1 X̃α(ν) S̃−1]pq f̃q(r′)

=
∑

p

∑
q

f̃p(r)[̃S−1[1−αX̃0(ν )̃S−1]−1X̃0(ν )̃S−1]pqf̃q(r′)

=
∑

p

∑
q

f̃p(r)[[̃S − αX̃0(ν)]−1X̃0(ν )̃S−1]pq f̃q(r′).

(14)

In the ACFD theorem (1) the integral

∫
drdr′ χα(ν, r, r′)

|r − r′|
=

∑
pq

[[̃S − αX̃0(ν)]−1 X̃0(ν )̃S−1]pq S̃pq

= Tr [[̃S − αX̃0(ν)]−1 X̃0(ν)] (15)

occurs. For α = 0, Eq. (14) gives the uncoupled KS response
function χ0(ν, r,r′) and Eq. (15) turns into the integral

∫
drdr′ χ0(ν, r, r′)

|r − r′| = Tr[̃S−1 X̃0(ν)]. (16)

Setting ν = iω and inserting Eqs. (15) and (16) into the
ACFD theorem (1) leads to the expression

EdRPA
c = −1

2π

∫ ∞

0
dω

×
∫ 1

0
dαTr [[̃S − αX̃0(iω)]−1X̃0(iω) − S̃−1X̃0(iω)]

(17)

for the dRPA correlation energy EdRPA
c . Equation (17) could

be used to calculate the dRPA correlation energy. However,
this would require to carry out numerically both the frequency
and the coupling-strength integration. In order to perform the
coupling-strength integration analytically and thus more effi-
ciently we switch from the original RI basis functions f̃p to
new auxiliary basis functions fp which are linear combinations
of the original ones. The linear combinations are determined
such that the corresponding overlap matrix S with respect to
the Coulomb norm, i.e., the analog of the overlap matrix S̃
of Eq. (8) in case of the new auxiliary basis functions fp, is
a unit matrix. Moreover, the linear combination of auxiliary
basis functions fp that corresponds to a constant function is
removed. (See Sec. II C for details on the construction of the
new auxiliary basis functions fp.) The matrix representation
of the KS response function with respect to the new auxiliary

basis functions shall be denoted X0(iω). Taking into account
that S = 1, Eq. (17) turns into

EdRPA
c = −1

2π

∫ ∞

0
dω

∫ 1

0
dαTr[[1−αX0(ν)]−1X0(iω)−X0(ν)]

(18)

for the new auxiliary basis functions. Next we diagonalize the
KS response matrix X0(iω) and represent it by

X0(iω) = V(iω) σ (iω) VT (iω) . (19)

In Eq. (19), the matrix V(iω) contains as columns the eigen-
vectors of the KS response matrix X0(iω) while the diagonal
matrix σ (iω) contains its eigenvalues. Inserting the represen-
tation (19) of the KS response matrix in Eq. (18) for the dRPA
correlation energy yields the final expression

EdRPA
c = −1

2π

∫ ∞

0
dω

∫ 1

0
dαTr[[1−αV(iω)σ (iω)VT (iω)]−1

× V(iω)σ (iω)VT (iω) − V(iω)σ (iω) VT (iω)]

= −1

2π

∫ ∞

0
dω

∫ 1

0
dαTr[[1−ασ (iω)]−1σ (iω)−σ (iω)]

= 1

2π

∫ ∞

0
dωTr[ln(|1 − σ (iω)|) + σ (iω)] (20)

for the latter. In the last line of Eq. (20), the coupling strength
integration has been carried out analytically. Equation (20) for
the dRPA correlation energy can be carried out exceptionally
easily. The computationally most demanding task is the con-
struction of the KS response function X0(iω) for as many fre-
quencies as are needed in the frequency integration, which is
carried out numerically, e.g., by a Gauss-Legendre74 quadra-
ture. The computational effort for the construction of X0(iω)
scales like N4 with the system size N, however, with a mod-
erate prefactor. All other steps in the calculation of the dRPA
correlation energy, including the diagonalization of X0(iω),
exhibit a more favorable scaling of the computational effort
with the system size.

B. Correlation potential in the random phase
approximation

The dRPA correlation potential vdRPA
c is defined as the

functional derivative of the dRPA correlation energy EdRPA
c

with respect to the electron density ρ(r), i.e., by

vdRPA
c (r) = δEdRPA

c

δρ(r)
. (21)

The dRPA correlation energy EdRPA
c is given in terms of KS

orbitals and eigenvalues. The KS orbitals and eigenvalues are
functionals of the ground state electron density ρ(r). How-
ever, we do not know the form of these functionals. Therefore,
we cannot evaluate the functional derivative δEdRPA

c /δρ(r) via
the chain rule by first taking the derivative of EdRPA

c with re-
spect to the KS orbitals and their eigenvalues and by subse-
quently taking the functional derivative of the KS orbitals and

Downloaded 02 Sep 2013 to 131.188.201.33. This article is copyrighted as indicated in the abstract. Reuse of AIP content is subject to the terms at: http://jcp.aip.org/about/rights_and_permissions



084113-5 Bleiziffer, Heßelmann, and Görling J. Chem. Phys. 139, 084113 (2013)

their eigenvalues with respect to the electron density. Instead,
the dRPA correlation potential vdRPA

c can be obtained via
the optimized effective potential (OEP) method,75–77 which
yields the functional derivative with respect to the electron
density of quantities that depend on KS orbitals and eigenval-
ues in form of an integral equation, the OEP equation. The
OEP equation for the dRPA correlation potential vdRPA

c as-
sumes the form∫

dr′ χ0(0, r, r′) vdRPA
c (r′) = tdRPA

c (r) (22)

with

tdRPA
c (r) = δEdRPA

c

δvs(r)

=
∑

u

[∫
dr′ δEdRPA

c

δϕu(r′)
δϕu(r′)
δvs(r)

+ δEdRPA
c

δεu

δεu

δvs(r)

]
.

(23)

In Eq. (22), vs denotes the KS potential and χ0(0, r,r′) is the
KS response function for a frequency of zero, i.e., the static
KS response function.

In order to handle the OEP equation (22) computation-
ally, we again invoke the auxiliary basis set {fq} and expand
the dRPA correlation potential vdRPA

c (r) according to

vdRPA
c (r) =

∑
ν

vdRPA
c,ν

∫
dr′ fν(r′)

|r − r′| (24)

as a linear combination of electrostatic potentials of auxiliary
basis functions fν . The corresponding linear combination

ρdRPA
c (r) =

∑
ν

vdRPA
c,ν fν(r) (25)

of the auxiliary basis functions fν itself represents a corre-
lation charge density ρdRPA

c (r), the electrostatic potential of
which is the dRPA correlation potential. By acting from the
left with the resolution of the identity (6), or more precisely
with the analog of (6) in the case of the new auxiliary ba-
sis functions fν , on the OEP equation (22) and by expressing
vdRPA

c according to Eq. (24), turns the OEP equation (22) into
the matrix equation

X0(0) vdRPA
c = tdRPA

c (26)

with

tdRPA
c,ν =

∫
drdr′ fν(r′)δEc/δvs(r)

|r − r′| . (27)

In order to calculate the elements tdRPA
c,ν of the vector tdRPA

c

of the right hand side of the OEP equation (26), we consider
an expansion of the KS potential vs in the auxiliary basis func-
tions fν , or more precisely in electrostatic potentials of the
functions fν ,

vs(r) =
∑

ν

vs,ν

∫
dr′ fν(r′)

|r − r′| . (28)

In actual KS calculations only parts of the KS potential vs ,
the exchange and correlation contributions, are expanded in

the auxiliary basis set. This, however, does not affect the fol-
lowing arguments. The crucial point is that we will consider
only changes of the KS potential vs(r) that can be expanded
according to (28) when taking functional derivatives with re-
spect to vs(r). The derivative of the dRPA correlation energy
with respect to changes of the expansion coefficients vs,ν in
Eq. (28) yields the required vector elements tdRPA

c,ν for the right
hand side of the OEP equation (26) according to

∂EdRPA
c

∂vs,ν

=
∫

dr
δEdRPA

c

δvs(r)

δvs(r)

δvs,ν

=
∫

dr
δEdRPA

c

δvs(r)

∫
dr′ fν(r′)

|r − r′|
= tdRPA

c,ν . (29)

Because standard perturbation theory gives access to the
change of KS orbitals and eigenvalues in linear order with
a change of the expansion coefficients vs,ν of the KS po-
tential and because the dRPA correlation energy depends on
KS orbitals and eigenvalues we can calculate the derivative
∂EdRPA

c /∂vs,ν and thus the required vector elements tdRPA
c,ν in

a straightforward though somewhat involved way. Below we
will, step by step, develop an expression for this derivative
that can be evaluated efficiently.

Because the correlation energy according to Eq. (20) de-
pends exclusively on the diagonal matrix σ (iω) containing
the eigenvalues σ n(iω) of the KS response matrix X0(iω) we
need the derivatives σ ′

n,ν(iω) of the eigenvalues σ n(iω) with
respect to the coefficients vs,ν in order to obtain the corre-
sponding derivative σ ′

ν(iω) of σ (iω). With σ ′
ν(iω) the first

order change tdRPA
c,ν of EdRPA

c is given by

tdRPA
c,ν = 1

2π

∫ ∞

0
dω Tr

[−σ (iω) σ ′
ν(iω)

1 + σ (iω)

]
=

∫ ∞

0
dω tc,ν(iω) (30)

with

tc,ν(iω) = 1

2π
Tr

[−σ (iω) σ ′
ν(iω)

1 + σ (iω)

]
. (31)

According to basic perturbation theory, the derivative σ ′
n,ν(iω)

is given by

σ ′
n,ν(iω) = vT

n (iω) X′
0,ν(iω) vn(iω), (32)

with X′
0,ν(iω) being the derivative of X0(iω) with respect to

the coefficients vs,ν and with vn(iω) denoting the eigenvectors
of X0(iω).

Next we define integrals

(ϕs ϕt |fp) =
∫

drdr′ ϕs(r)ϕt (r) fp(r)

|r − r′| (33)

with the indices s and t referring to arbitrary, i.e., occupied or
unoccupied, orbitals. For s = i and t = a the integrals (ϕs ϕt|fp)
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are the analog of the integrals (ϕi ϕa|f̃p) of Eq. (12) with the
difference that the latter contain the original RI functions f̃p

whereas the former contain the actually used linear combina-
tions fp, i.e., the actually used auxiliary basis functions, see
Sec. II C for details. The elements X0, pq(iω) of the dynamic
KS response function are given by

X0,pq (iω) =
∑
ia

(ϕi ϕa|fp) λia(iω) (ϕi ϕa|fq) . (34)

Equation (34) is the analog of Eq. (13) for ν = iω after switch-
ing from the original RI basis functions f̃p to the actually used
auxiliary basis functions fp.

Starting from Eqs. (32) and (34) the derivative σ ′
n,ν(iω)

can be expressed as

σ ′
n,ν(iω)

=
∑

k

∑
�

vk,n(iω) X
(1)
0,k�,ν(iω) v�,n(iω)

=
∑

k

∑
�

vk,n(iω)
∑

i

∑
a

[2(ϕ′
i,νϕa|fk)λia(ϕiϕa|f�)

+ 2 (ϕi ϕ′
a,ν | fk) λia (ϕi ϕa | f�)

+ (ϕi ϕa | fk) λ′
ia,ν (ϕi ϕa | f�)]v�,n(iω). (35)

The required derivatives ϕ′
i,ν , ϕ′

a,ν , and λ′
ia,ν of the KS orbitals

ϕi and ϕa, and the energy factor λia with respect to the coeffi-
cients vs,ν are obtained by standard perturbation theory as

(ϕ′
i,ν ϕa | fp) =

∑
s �=i

(ϕs ϕa | fp)
(ϕs ϕi | fν)

εi − εs

=
∑

s

Nsa,p Msi,ν, (36)

with

Nst,p = (ϕs ϕt | fp) (37)

and

Mst,p = Nst,p

εt−εs
for s �= t

0 for s = t .
(38)

Similarly we obtain

(ϕi ϕ
′
a,ν | fp) =

∑
s �=a

(ϕi ϕs | fp)
(ϕs ϕa | fν)

εa − εs

=
∑

s

Nsi,p Msa,ν (39)

and

λ′
ia,ν(iω) = γia(iω) [(ϕa ϕa | fν) − (ϕi ϕi | fν)]

= γia(iω) [Naa,ν − Nii,ν] (40)

with

γia(iω) = dλia

dεia

= −4

ε2
ia + ω2

+ 8ε2
ia(

ε2
ia + ω2

)2 . (41)

If we substitute Eqs. (36), (39), and (40) into
Eq. (35), then the derivative σ ′

n,ν(iω) assumes the form

σ ′
n,ν(iω) =

∑
p

∑
q

vp,n(iω)

×
∑

i

∑
a

[
2

∑
s

[Nsa,pMsi,νλia(iω)Nia,q + Nsi,p Msa,ν λia(iω) Nia,q ]

+Nai,p γia(iω) [Naa,ν − Nii,ν] Nia,q

]
vq,n(iω)

= 2
∑

i

∑
s

[∑
a

[∑
p

vp,n(iω) Nsa,p

]
λia(iω)

[∑
q

vq,n(iω) Nia,q

]]
Msi,ν

+ 2
∑

a

∑
s

[∑
i

[∑
p

vp,n(iω) Nsi,p

]
λia(iω)

[∑
q

vq,n(iω) Nia,q

]]
Msa,ν

+ 2
∑

i

∑
a

[∑
p

vp,n(iω) Nia,p

]
γia(iω) [Naa,ν − Nii,ν]

[∑
q

vq,n(iω) Nia,q

]
. (42)
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In order to evaluate Eq. (42) in a computationally effi-
cient way we now define intermediate quantities that can be
calculated with a computational effort scaling at most with N4

with the system size N. First, we define quantities Fst,n(iω) by

Fst,n(iω) =
∑

p

vp,n(iω) Nst,p (43)

and substitute them into Eq. (42) to obtain

σ ′
n,ν(iω)=2

∑
i

∑
s

[∑
a

Fsa,n(iω)λia(iω)Fia,n(iω)

]
Msi,ν

+2
∑

a

∑
s

[∑
i

Fsi,n(iω)λia(iω)Fia,n(iω)

]
Msa,ν

+
∑

i

∑
a

Fia,n(iω)γia(iω)[Naa,ν −Nii,ν]Fia,n(iω).

(44)

Next we define quantities Tsi,n(iω) and Tsa,n(iω) by

Tsi,n(iω) =
∑

a

Fsa,n(iω) λia(iω) Fia,n(iω) (45)

and

Tsa,n(iω) =
∑

i

Fsi,n(iω) λia(iω) Fia,n(iω) (46)

and substitute them into Eq. (44) to obtain

σ ′
n,ν(iω)=2

∑
i

∑
s

Tsi,n(iω) Msi,ν

+2
∑

a

∑
s

Tsa,n(iω)Msa,ν

+
∑

i

∑
a

Fia,n(iω)γia(iω)Fia,n(iω)[Naa,ν −Nii,ν].

(47)

Equation (47) could be used to calculate the deriva-
tives σ ′

n,ν(iω). Then in a second step the trace of
[−σ (iω) σ ′

ν(iω)]/[1 + σ (iω)] that occurs in the expression
of Eq. (30) for the elements tdRPA

c,ν of the right hand side of the
OEP equation had to be taken. However, it is computation-
ally more efficient to interchange the order of these steps. We,
therefore, define the quantities

Rsi(iω) =
∑

n

−σn(iω) Tsi,n(iω)

1 + σn(iω)
, (48)

Rsa(iω) =
∑

n

−σn(iω) Tsa,n(iω)

1 + σn(iω)
, (49)

and

Yia(iω) =
∑

n

−σn(iω)Fia,n(iω)γia(iω)Fia,n(iω)

1 + σn(iω)
, (50)

and then directly calculate the integrand tc,ν(iω), Eq. (31), of
the frequency integration (30) for the elements tdRPA

c,ν of the
right hand side tdRPA

c of the OEP equation (26) for the dRPA

correlation potential

tc,ν(iω) = 1

2π
Tr

[−σ (iω) σ (1)
ν (iω)

1 + σ (iω)

]

= 1

2π

[
2
∑

i

∑
s

Rsi(iω) Msi,ν

+ 2
∑

a

∑
s

Rsa(iω)Msa,ν

+
∑

i

∑
a

Yia(iω)[Naa,ν − Nii,ν]

]
. (51)

The calculation of the right hand side of the OEP equa-
tion (26) is the most demanding task in the construction of the
dRPA correlation potential. The KS response matrix X0(0)
is readily constructed according to Eq. (34). The solution
vector vdRPA

c of the OEP matrix equation then contains as
elements the expansion coefficients vdRPA

c,ν of the dRPA cor-
relation potential in terms of electrostatic potentials of the
auxiliary basis functions fν , Eq. (24), and thus determines the
dRPA correlation potential. The dRPA correlation potential
is then transformed back to an expansion with respect to the
original RI basis set {f̃p} which then finally is used to calcu-
late the contribution of the dRPA correlation potential to the
KS Hamiltonian matrix. These steps are discussed in detail in
Sec. II C.

C. Processing of auxiliary basis sets
and regularization of the OEP equation

As discussed in Secs. II A and II B, the actually used
auxiliary basis functions fp are linear combinations of stan-
dard RI basis functions f̃p. The construction of the em-
ployed auxiliary basis functions fp from the original RI
basis sets {f̃p} is carried out as described in Ref. 46.
In Ref. 46, in several steps, a rectangular transformation ma-
trix W is constructed that contains in its columns the coeffi-
cients of linear combinations of the original basis functions
f̃p that define the new basis functions fp. The transformation
matrix W is constructed in such a way that the overlap matrix
S with respect to the Coulomb norm in the new auxiliary basis
set is a unit matrix, i.e.,

WT S̃ W = S = 1. (52)

In the process of orthonormalizing the original overlap ma-
trix S̃ eigenvectors with eigenvalues below a threshold tS can
be removed. In this way it can be guaranteed that the actual
used auxiliary basis set {fp} is sufficiently linearly indepen-
dent. Moreover, the linear combination of original auxiliary
basis functions that corresponds to the representation of a con-
stant function is removed. As a result the actually used basis
functions fp are all orthogonal to a constant function. This is
important because a constant function is an eigenfunction of
the KS response function with eigenvalue zero which would
make the OEP equation (26) for the correlation potential
singular.

The input data for the calculation of the dRPA correlation
energy and potential are the KS eigenvalues and the integrals
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Nst,p = (ϕs ϕt | fp) of Eq. (37). These are obtained from inte-
grals Ñst,q = (ϕs ϕt | f̃q) by

Nst,p =
∑

q

Wqp Ñst,q . (53)

The integrals Ñst,q = (ϕs ϕt | f̃q) are calculated from stan-
dard three-center integrals with respect to the orbital and RI
basis sets by a transformation from orbital basis functions to
molecular orbitals (AO-MO transformation).

A crucial point to consider in OEP methods is their
numerical accuracy. For Gaussian basis set methods this is
known to be quite critical and a lot of work has been devoted
to this point.77–87 It turned out that the auxiliary basis set and
the orbital basis set have to be balanced such that the orbital
basis set is sufficiently converged for a given auxiliary basis
set. If the auxiliary basis set is increased for a given orbital
basis set then OEP methods become numerically unstable.
In Ref. 85, balanced auxiliary and orbital basis set are pre-
sented. The orbital basis sets, however, are large uncontracted
basis set, which would lead to considerable computational ef-
fort if employed in RPA methods. In order to be able to use
standard orbitals basis sets of Dunning type with core polar-
ization functions88 together with the corresponding standard
RI basis sets,72, 73 we invoke regularization techniques when
solving the OEP equation.81 The interplay of these regular-
ization techniques with the above described processing of the
original RI basis set to construct the actually used auxiliary
basis functions shall be discussed in detail elsewhere. Here,
we will only briefly discuss how the OEP equation is actually
solved.

With the spectral representation of the KS response ma-
trix X0(0) given in Eq. (19) the solution vdRPA

c of the OEP
equation (26) is given by

vdRPA
c = V(0) σ−1(0) VT (0) tdRPA

c . (54)

As regularization we modify the inverse eigenvalues σ−1
n (0)

of the static KS response matrix in Eq. (54). That is we either
replace them by

σ−1
n (0) = σ−1

n (0) for σn(0) > tOEP
SV D ,

(55)
σ−1

n (0) = 0 for σn(0) ≤ tOEP
SV D ,

which corresponds to a singular value decomposition or by

σ−1
n (0) = 1

β + σn(0)
, (56)

which corresponds to a Tikhonov regularization, with the reg-
ularization factor β. Note that the regularization is exclusively
carried out for the static KS response matrix in the OEP equa-
tion, the dynamic response matrices required for the dRPA
energy and the right hand side of the OEP equation remain
unchanged.

Finally, we have to calculate the contribution HdRPA
c of

the dRPA correlation potential to the KS Hamiltonian ma-
trix. To that end we first transform the solution vdRPA

c of the
OEP equation which refers to the auxiliary basis functions fp
back to a vector ṽdRPA

c which contains the expansion coeffi-
cients ṽdRPA

c,ν of the dRPA correlation potential with respect
to the original RI basis functions f̃p or more precisely their

electrostatic potential, compare with Eq. (24) for the expan-
sion of the dRPA correlation potential with respect to the new
auxiliary basis functions fp. This backtransformation is given
by

ṽdRPA
c = W vdRPA

c (57)

and the elements H dRPA
c,mn of the contribution HdRPA

c of the
dRPA correlation to the KS Hamiltonian matrix is given by

H dRPA
c,mn =

∑
ν

ṽdRPA
c,ν (χmχn|f̃ν) (58)

with the integrals (χm χn | f̃ν) = ∫
drdr′ χm(r) χn(r) f̃ν(r′)/

|r − r′| containing orbitals basis functions χm and χn.

III. COMPUTATIONAL DETAILS

The method was implemented in the development ver-
sion of the Molpro quantum chemistry package,89 with which
all calculations of this work were performed. Core electrons
were fully taken into account in all calculations. The set of
21 organic molecules for which total energies as well as se-
lected reaction energies were calculated is the same as in
Ref. 46. The geometries of the S22 benchmark database were
taken from Hobza et al.,90 we chose the CCSD(T) values of
Takatani et al.91 as complete-basis-set (CBS) reference.

All OEP equations in this work were solved invoking the
Tikhonov regularization, Eq. (56), with β = 10−3 for aug-cc-
pCVDZ and aug-cc-pCVTZ and β = 8 × 10−4 for the aug-
cc-pCVQZ basis sets,88 if not stated otherwise. The cutoff pa-
rameter tS defined in Ref. 46, which regulates the removal of
auxiliary basis functions was set to zero in all self-consistent
EXX and dRPA calculations, i.e., no functions were removed
beforehand, unless stated otherwise. As auxiliary basis sets
(for representing the exchange and correlation potentials, the
static and the frequency-dependent KS response functions,
and the right hand side of the OEP equation for the poten-
tial for the evaluation of the RPA correlation energy) we did
not choose aug-cc-pwCVXZ MP2fit basis sets73 (X = D,T,Q),
which could be considered as natural choice to match the em-
ployed aug-cc-pCVXZ (X = D,T,Q) orbital basis sets. We
found, however, that the steep functions in these RI basis sets
render the OEP calculations numerically unstable, which is al-
ways the case if the auxiliary basis is too large.77–83, 85–87 The
smaller aug-cc-pVXZ MP2fit basis sets72 turned out to be bet-
ter balanced with the employed aug-cc-pCVXZ orbital basis
sets than their larger counterparts with more core functions.

For the calculations of the reference potentials in Sec. IV
we employed large even-tempered orbital basis sets accom-
panied by an even tempered RI basis set in the case of the
neon atom and a modified aug-cc-pV5Z MP2fit basis sets in
the case of CO and C2H2.92

In case of a subsequent calculation of the EXXRPA+
correlation energy with EXX or dRPA orbitals and eigen-
values the values for the cutoffs tS and tSV D determining
the removal of linear dependencies in the auxiliary basis
set and the threshold in the singular values decomposition
of the frequency-dependent response functions, respectively,
were adopted from Ref. 46, i.e., tS = 10−6 and tSV D = 10−4.
Note that the choices for the two cutoffs exclusively influence
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the response functions required in the calculation of the
EXXRPA+ correlation energy but not any response functions
occurring in the preceding self-consistent dRPA or EXX cal-
culations, see above the technical details of these calculations.

In the self-consistent EXX and dRPA calculations
Hartree Fock orbitals were used as starting point and the
DIIS93 method was employed to converge the calculations.
The maximum number of 15–20 iterations to converge the
self-consistency process was required for the largest com-
plexes of the S22 set, other molecules exhibited a faster con-
vergence. Preliminary tests indicate that the convergence of
dRPA calculations could be further accelerated by starting
them from EXX orbitals and eigenvalues. A numerical in-
tegration over the imaginary frequencies ω is necessary in
the self-consistent dRPA calculation, as well as in the possi-
bly following EXXRPA+ calculations. In both cases we used
a Gauss-Legendre quadrature scheme,74 employing 30 grid
points.

When calculating the EXXRPA+ energies of the S22
set, which contains a number of somewhat large dimer sys-
tems, we invoked an additional RI in the treatment of the two-
electron integrals required in the evaluation of the EXXRPA+
correlation energy, see Eqs. (11) and (12) of Ref. 46. That
is, the two-electron integrals were evaluated according to
(ai|jb) = ∑

pq(ai|p)(p|q)−1(p|jb). For this evaluation of the
integrals (ab|ji) to be sufficiently accurate, we had to use
aug-cc-pV5Z MP2fit basis-sets supplemented by some ad-
ditional s-functions, which are listed in the supplementary
material.92 These RI basis sets were used in all calculations
of EXXRPA+ energies independently of the choice of the or-
bital basis set. For the latter always the same basis set as in
the preceding self-consistent EXX or dRPA calculations was
chosen. In this way the accuracy of the EXXRPA+ energies
only varies with the quality of the orbital basis set and the RI
basis set of the preceding self-consistent EXX or dRPA cal-
culations but not with the RI set employed in the EXXRPA+
energy calculation because the latter was fixed to the large
supplemented aug-cc-pV5Z MP2fit basis set.

IV. EXEMPLATORY CORRELATION POTENTIALS IN
THE RANDOM PHASE APPROXIMATION AND TESTS
OF THE NUMERICAL STABILITY

In order to test our implementation, we compare the cor-
relation potential and energy as well as the ionization poten-
tial of the neon atom to data from the numerical grid approach
of Ref. 32. For this purpose we employed large even-tempered
orbital and RI basis sets. By using a large orbital basis a
smaller number of unphysically small eigenvalues σ n(0) of
the static response matrix was obtained such that we could re-
duce the factor β of the Tikhonov regularization to a value of
β = 10−4 in the solution of the OEP equation. Our correlation
energy of 0.591 hartree and the ionization potential (IP) of
0.795 hartree deviate by only 5 mhartree and 1 mhartree, re-
spectively, from the values of Ref. 32, i.e., are in good agree-
ment. In Fig. 1, the dRPA correlation potential is compared to
the exact KS correlation potential of Ref. 64 and the Perdew,
Burke, and Ernzerhof (PBE) and the Perdew-Wang 92 local-
density approximation (PW92 LDA) correlation functionals.
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FIG. 1. Self-consistent dRPA, LDA (PW92), and PBE correlation potentials
for the neon atom compared to the exact one of Ref. 64. The self-consistent
dRPA potential was obtained with even-tempered orbital and RI basis sets.
Thresholds of tS = 10−6 in the removal of linear dependencies of the auxil-
iary basis set and of β = 10−4 in the Tikhonov regularization applied in the
construction of exact exchange potential and the dRPA correlation potential
were used.

As evident in Fig. 1 the latter two conventional correlation
potentials have little in common with the exact correlation
potential. This is in line with earlier findings on the quality
of LDA and GGA correlation potentials.64 The dRPA correla-
tion potential of Ne, on the other hand, represents a reasonable
approximation to the true correlation potential and thus can be
considered as physically meaningful.44, 45 In Figs. 2 and 3, we
show exchange and dRPA correlation potentials for CO and
the acetylene molecule. In order to provide converged bench-
mark results we employed large even-tempered orbital basis
sets as well as modified aug-cc-pV5Z MP2fit basis sets as RI
basis sets and a threshold of ts = 10−6 in the removal of linear
dependent functions of the auxiliary basis set in conjunction
with a factor of β = 3 × 10−3 in the Tikhonov regularization
of the OEP equation. For the case of CO we also show poten-
tials obtained with factors of β = 10−5 and β = 3 × 10−2 in
the Tikhonov regularization that either lead to oscillations or
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FIG. 2. Exchange and correlation potential for CO. An even tempered or-
bital basis set in conjunction with a modified aug-cc-pV5Z MP2fit basis set
employed as auxiliary basis set was used. The factor β in the Tikhonov reg-
ularization applied in the construction of exact exchange potential and the
dRPA correlation potential was set to β = 3 × 10−3 and the cutoff parameter
tS to remove linear dependencies of the RI basis set was set to 10−6.
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FIG. 3. Exchange and correlation potential for C2H2. An even tempered or-
bital basis set in conjunction with a modified aug-cc-pV5Z MP2fit basis set
employed as RI basis set was used. The factor β in the Tikhonov regular-
ization applied in the construction of exact exchange potential and the dRPA
correlation potential was set to β = 3 × 10−3 and the cutoff parameter tS to
remove linear dependencies of the RI basis set was set to 10−6.

damp the correlation potential, see Fig. 4. We note that the se-
tups described in Sec. III which are more suitable for practical
applications and which are used later on lead to potentials (not
displayed here) that do not perfectly match the converged po-
tentials of Fig. 2 obtained with the large even-tempered basis
sets. On the one hand, this indicates a basis-set dependence

FIG. 4. Dependence of the correlation potential of CO on the factor β in
the Tikhonov regularization applied in the construction of exact exchange
potential and the dRPA correlation potential. An even tempered orbital basis
set in conjunction with a modified aug-cc-pV5Z MP2fit basis set employed
as auxiliary basis set were used. The cutoff parameter tS to remove linear
dependencies of the RI basis set was set to 10−6.

of the correlation potential and on the other hand this might
be due to the balancing of orbital and auxiliary basis sets. The
balancing of orbital and auxiliary basis sets is a long standing
problem in OEP methods for the exchange potential77–83, 85–87

and may be similar or even more critical for the correlation
potential. The correlation potential is smaller by an order of
magnitude compared to the exchange potential but exhibits
oscillations in the core region64, 94 in contrast to the latter.

The question is now, how the technical quality of the ex-
change and correlation potential affects quantities like the to-
tal energy or orbital energies. In Table I, we show total en-
ergies and IPs for the CO molecule corresponding to eight
different values of the Tikhonov regularization factor β.
Table I shows that the total energy is very stable for a region of
10−5 ≥ β ≥ 3 × 10−4 with changes below 0.1 mhartree. The
ionization energy calculated as the negative of the eigenvalue
of the highest occupied molecular orbital (HOMO) is distinc-
tively less stable. This demonstrates that the eigenvalues are
quite sensitive to details of the correlation potential. For three
representative values of β (10−5, 3 × 10−3, 3 × 10−2) the
corresponding dRPA correlation potentials are displayed in
Fig. 4. The three factors were chosen such that three different
types of potentials were obtained. The largest value of β = 3
× 10−2 corresponds to a potential, which is smooth but too
much damped and, therefore, exhibits a correlation potential
with less pronounced features. Whereas the smallest value of
β = 10−5 leads to an oscillatory potential. The intermediate
value of β = 3 × 10−3 yields a potential with pronounced
features but no unphysical oscillations, see Fig. 4.

The self-consistent dRPA method considered here is a
variational method that determines the exchange-correlation
potential within the OEP framework. This means, within
the self-consistency process, that effective KS potential is
searched for that leads to orbitals and eigenvalues minimiz-
ing the dRPA total energy expression. In other words in the
self-consistency process those orbitals and eigenvalues are de-
termined that minimize the dRPA total energy expression but
obey the constraint to be eigenfunctions and eigenenergies of
a one-electron Hamiltonian operator with a local multiplica-
tive effective potential, the optimized effective potential con-
stituting the effective KS potential. In accordance with the

TABLE I. Dependence of the self-consistent dRPA total energy and of the
ionization potential (a.u.) calculated as the negative of the HOMO eigenvalue
on the choice of the parameter β of the Tikhonov regularization employed
in the construction of the exact exchange potential and the dRPA correlation
potential for the CO molecule. Even tempered orbital and modified aug-cc-
pV5Z MP2fit basis sets were used. The cutoff parameter tS in the removal of
linear dependencies in the RI basis set was set to 10−6.

β Etotal IP

10−5 −113.606 546 −0.531 225
3 × 10−5 −113.606 543 −0.533 234
10−4 −113.606 529 −0.535 784
3 × 10−4 −113.606 455 −0.538 745
10−3 −113.606 012 −0.540 738
3 × 10−3 −113.604 036 −0.542 625
10−2 −113.593 570 −0.545 301
3 × 10−2 −113.561 124 −0.549 859
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FIG. 5. EXXRPA+@dRPA and EXXRPA+@EXX total energies in comparison to standard quantum chemistry methods: Displayed are deviations
�E = EMethod − ECCSD(T) of total energies EMethod to CCSD(T) total energies ECCSD(T). Aug-cc-pCVQZ orbital basis sets were used. The exchange and
correlation potentials were expanded in aug-cc-pVQZ MP2fit basis sets. For the calculation of the RI-EXXRPA+ correlation energy the aug-cc-pCVQZ orbital
basis sets were used in conjunction with supplemented aug-cc-pV5Z MP2fit basis sets employed as RI basis sets (see Sec. III for further technical details).

variational principle, the total energy rises as one increases the
threshold in the Tikhonov regularization of the OEP equation,
see Eq. (56), since the variational freedom of the exchange-
correlation potential and thus of the effective KS potential,
which is optimized, is reduced more and more. The energy
belonging to the oscillatory potential of the lowest Tikhonov
factor deviates less from the converged value than the smooth
potential, whereas the IP differs more. This is a behavior
known from exact-exchange-only OEP methods. In this case
the total energy depends only on the occupied orbitals and
with larger auxiliary basis set the total energy always be-
comes smaller and eventually approaches a lower limit at the
expense of an unphysical potential accompanied by an un-
physical eigenvalue spectrum. This means, the price for tiny,
in the end insignificant changes of the total energy are highly
oscillatory unphysical exchange potentials.83, 86, 87 To a lesser
extent this seems also to happen in the case of dRPA total en-
ergy in which the energy not only depends on the occupied
orbitals but also on the virtual orbitals and their eigenvalues.
The fact that the too small and too large values for the factor β

of the Tikhonov regularization lead to only moderate changes
of the total energy indicates that the presented self-consistent
dRPA method is numerically reasonably stable.

V. SELF-CONSISTENT DIRECT RPA ENERGIES,
IONIZATION POTENTIALS, AND HOMO LUMO
GAPS AND EXXRPA ENERGIES BASED
ON DIRECT RPA ORBITALS

In Figs. 5 and 6, we compare dRPA and EXXRPA + total
energies based on EXX and dRPA orbitals to standard quan-
tum chemistry methods using data from CCSD(T) (coupled
cluster singles doubles with perturbative triples) as refer-

ence. The four combinations are denoted dRPA@EXX,
dRPA@dRPA, EXXRPA+@EXX, and EXXRPA+@dRPA.
Both EXXRPA methods, EXXRPA+@EXX and
EXXRPA+@dRPA, perform better than all other con-
sidered methods. The use of dRPA orbitals and eigenvalues
as input reduces the error of EXXRPA+ total energies with
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FIG. 6. Total energies: Performance of different RPA methods compared
to standard quantum chemistry methods: Root-mean-squared errors (RMS)
of deviations of total energies from various methods (EXXRPA+@EXX,
dRPA@EXX, EXXRPA+@dRPA, dRPA@dRPA, B3LYP, MP2, and CCSD)
to the corresponding CCSD(T) total energies. Aug-cc-pCVTZ and aug-cc-
pCVQZ orbital basis sets were used. The exchange and correlation potentials
were expanded in aug-cc-pVXZ MP2fit and basis sets, where X corresponds
to the employed orbital basis set. For the calculation of RI-EXXRPA+ corre-
lation energy the aug-cc-pCVQZ and aug-cc-pCVTZ orbital basis sets were
used in conjunction with supplemented aug-cc-pV5Z MP2fit basis sets em-
ployed as RI basis sets (see Sec. III for further technical details).
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FIG. 7. Reaction energies: Performance of different RPA methods com-
pared to standard quantum chemistry methods: Root-mean-squared errors
(RMS) of deviations of 15 reaction energies (see Table II for consid-
ered reactions) from various methods (EXXRPA+@EXX, dRPA@EXX,
EXXRPA+@dRPA, dRPA@dRPA, B3LYP, MP2, and CCSD) to the corre-
sponding CCSD(T) reaction energies. Aug-cc-pCVTZ and aug-cc-pCVQZ
orbital basis sets were used. The exchange and correlation potentials were
expanded in aug-cc-pVXZ MP2fit and basis sets, where X corresponds to the
employed orbital basis set. For the calculation of RI-EXXRPA+ correlation
energy the aug-cc-pCVQZ and aug-cc-pCVTZ orbital basis sets were used in
conjunction with supplemented aug-cc-pV5Z MP2fit basis sets employed as
RI basis sets (see Sec. III for further technical details).

respect to the CCSD(T) reference by almost a factor of two
compared to EXX input orbitals and eigenvalues for the
aug-cc-pCVQZ orbital basis set, see Fig. 6. As a consequence
of the self-consistency, the dRPA@dRPA as well as the
EXXRPA+@dRPA energies are lowered, which constitutes a
worsening in the first case, since dRPA methods overestimate
the magnitude of the correlation energy drastically. Com-
paring the error bars in Fig. 6, one can see that all methods
except B3LYP and the dRPA methods benefit from a larger
orbital basis. The finding that dRPA results worsen with
larger basis sets could be expected since the overestimation
of the correlation energy grows with the size of the basis set.

In Fig. 7, selected reaction energies calculated with the
same methods are compared to CCSD(T) reference values
(see Table II for a list of the reactions). It can be seen that
the use of dRPA instead of EXX orbitals improves the reac-
tion energies for the EXXRPA+ method, leading to an ac-
curacy lying in the range of that of the CCSD method. The
latter seems to benefit the most from error cancellations in the
calculation of reaction energies as compared to total energies.

TABLE II. Considered reactions.

C2H2 + H2 → C2H4 HCOOH + NH3

→ HCONH2 + H2O
C2H6 + H2 → 2CH4 CO + H2 → HCHO
H2CO + H2 → CH3OH H2O2 + H2 → 2H2O
C2H2 + H2O → CH3CHO C2H4 + H2O → C2H5OH
CH3CHO + H2 → C2H5OH CO + NH3 → HCONH2

CO + H2O → CO2 + H2 HNCO + NH3 → NH2CONH2

CH3OH + CO → HCOOCH3 CO + H2O2 → CO2 + H2O
H2CCO + HCHO → C2H4O + CO C2H4 + H2 → C2H6

TABLE III. Ionization potentials (eV) of 24 molecules from the GW27 set.
The G0W0, PBE, and experimental values were taken from Ref. 98. PBE,
dRPA@dRPA, and EXX ionization potentials were calculated as negatives
of the HOMO eigenvalues. Aug-cc-pCVTZ orbital basis sets in conjunction
with aug-cc-pVTZ MP2fit basis sets were used for the dRPA@dRPA and
EXX calculations (see Sec. III for further technical details).

System Exp IP PBE G0W098 dRPA@dRPA EXX

H2 15.42 10.25 15.73 16.51 15.96
Li2 5.11 3.21 4.90 6.03 4.88
Na2 4.89 3.13 4.74 4.42 4.50
F2 15.70 8.97 14.44 15.21 17.6
N2 15.58 10.20 14.51 15.83 17.18
BF 11.00 6.80 10.50 11.09 11.06
LiH 7.90 4.36 6.644 7.99 8.17
CO2 13.78 9.02 12.79 13.64 14.77
H2O 12.62 7.02 11.76 12.91 13.89
NH3 10.85 6.02 10.10 10.90 11.71
SiH4 12.30 8.47 12.23 13.14 13.09
SF4 12.30 8.09 11.79 12.58 13.83
Methane 13.60 9.44 13.84 14.57 14.7
Ethane 12.00 8.13 12.27 12.86 13.16
Propane 11.51 7.67 11.60 12.23 12.51
Butane 11.09 7.58 11.16 12.03 12.44
Isobutane 11.13 7.60 11.19 12.03 12.37
Ethylene 10.68 6.78 10.22 10.49 10.35
Acetone 9.70 5.59 8.58 10.00 11.15
Acrolein 10.11 5.96 8.91 10.60 11.42
Benzene 9.24 6.39 8.65 9.27 9.20
Naphthalen 8.09 5.50 7.49 7.83 7.91
Anthracene 7.40 4.96 6.65 6.82 6.95
Naphthacene 6.97 4.65 6.12 6.19 6.36
MAE 3.88 0.59 0.50 0.87

Regarding the influence of the orbital basis set, all methods,
except CCSD, which remains virtually unchanged, improve
with the larger orbital basis set, see Fig. 7. The reaction ener-
gies of the self-consistent dRPA method are comparable to the
ones of the MP2 method and better than the ones of B3LYP,
but slightly inferior to the non-self-consistent dRPA results.

It is known that in KS-DFT the negative of the eigen-
value of the HOMO equals the IP.95, 96 This indicates that
there is a relationship between the quality of the exchange-
correlation-potential and the accuracy of corresponding IPs.
In Table III, we compare IPs obtained with our self-consistent
dRPA method to IPs from the G0W0 method (an approxi-
mate method to calculate the Green’s function) of Ref. 97,
the PBE method, and our EXX method with experimental
values. The geometries, the G0W0 results, and the PBE re-
sults were taken from Ref. 97. We had to neglect systems
like Cs2, Au2, and Au4 containing heavy elements for tech-
nical reasons, e.g., the non-availability of suitable basis sets.
Both, EXX as well as SC-dRPA perform significantly better
than the PBE functional, which is not surprising. It is known
that local-, or semi-local exchange-correlation-functionals are
plagued by spurious self-interactions leading to eigenvalue
spectra of little physical meaning.47, 48 Compared to the G0W0
method, the SC-dRPA performs remarkably well, exhibiting
a slightly smaller mean absolute error (MAE) than G0W0.
This confirms that our exchange-correlation potentials should
resemble the exact ones quite well as already illustrated in
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TABLE IV. HOMO-LUMO gaps (eV) of 24 molecules from the GW27-
set. Aug-cc-pCVTZ orbital basis sets were used. The EXX exchange and the
dRPA correlation potentials were expanded in aug-cc-pVTZ MP2fit basis sets
(see Sec. III for further technical details).

System EXX dRPA@dRPA PBE

H2 11.51 11.59 10.45
Li2 1.46 1.23 1.36
Na2 1.35 1.18 1.30
F2 6.70 4.00 4.77
N2 9.18 8.05 8.13
BF 5.03 4.37 4.61
LiH 3.73 2.94 2.73
CO2 9.65 8.56 8.14
H2O 8.49 7.48 6.39
NH3 7.03 6.38 5.48
SiH4 8.88 8.78 7.97
SF4 6.64 5.68 5.37
Methane 10.41 10.20 9.07
Ethane 8.97 8.70 7.72
Propane 8.39 8.13 7.19
Butane 8.39 8.06 7.13
Isobutane 8.30 8.00 7.07
Ethylene 6.12 5.86 5.77
Acetone 5.58 4.34 4.11
Acrolein 4.97 3.72 3.54
Benzene 5.31 5.19 5.16
Naphthalen 3.70 3.52 3.48
Anthracene 2.48 2.30 2.27
Naphthacene 1.77 1.61 1.59

Fig. 1. The connection between physically correct exchange-
correlation potentials and accurate IPs also shows by com-
paring EXX IPs with SC-dRPA IPs, i.e., by comparing IPs
obtained exclusively with the exact-exchange-only potential
with results obtained with the exact exchange potential plus
the dRPA correlation potential. The MAE is more than 50%
smaller for the approach including the dRPA correlation po-
tential, which indicates that this approach yields a KS poten-
tial closer to the true one.

In Table IV, HOMO-LUMO (lowest unoccupied molec-
ular orbital) gaps of a number of molecules obtained by the
EXX, the self-consistent dRPA and the PBE method are com-
pared. In solid state physics there is a longstanding discussion
of how large the true KS bandgap is Ref. 98–108. Table IV
shows the well known fact that EXX HOMO-LUMO gaps
are always larger than GGA HOMO-LUMO gaps, here PBE
HOMO-LUMO gaps. Comparing EXX and dRPA HOMO-
LUMO gaps, Table IV shows that the latter are always smaller
than the former except for H2. The amount of the reduction
of the HOMO-LUMO gap when going from EXX to dRPA,
however, varies strongly with the system. Sometimes dRPA
HOMO-LUMO gaps are closer to EXX sometimes closer to
PBE gaps, in a number of cases the dRPA HOMO-LUMO
gaps are even smaller than the PBE ones.

The S22 database of Hobza et al.90 is established
as a standard benchmark set for describing noncovalent
intermolecular interaction energies. It represents a well-
balanced test set, including various types of interaction
like hydrogen-bonded, dispersion-dominated, and mixed-type

dimers. In Table V, we compare dRPA@dRPA, dRPA@EXX,
EXXRPA+@dRPA, EXXRPA+@EXX, and MP2 nonco-
valent dimer binding energies of the S22 data set to the
complete-basis set extrapolated (CBS) reference CCSD(T)
values. The MP2 and CCSD(T) values were taken from
Ref. 91. To estimate the basis set limit in our calculations we
used the two point extrapolation formula of Ref. 109. Note
that the original purpose of this formula was the extrapola-
tion of energies of wave-function based methods and results
from an application of this formula to dRPA and EXXRPA+
energies, therefore, have to be treated with caution.110 More-
over, we employ in our approach an auxiliary basis set which
is not taken into account by the extrapolation formula. Since
the S22 set also contains rather large molecules like the
adenine-thymine (AT) complex we extrapolated from an aug-
cc-pCVDZ to an aug-cc-pCVTZ basis for the larger systems.
In the remaining cases the extrapolation was performed from
aug-cc-pCVTZ to aug-cc-pCVQZ. The basis set superposi-
tion error (BSSE) was removed using the Boys-Bernadi coun-
terpoise correction.111

In Table V, we show the extrapolated CBS results, as well
as the results with the largest orbital basis we used. In some
cases the extrapolated binding energies are smaller than those
obtained with the largest basis set, which is uncommon for
dimer binding energies. The reason may be the above men-
tioned problems with using the two point extrapolation for-
mula. As a consequence the MAE for EXXRPA+@dRPA
is larger in the CBS limit than for the corresponding largest
basis set, whereas all other methods improve or remain un-
changed upon extrapolation. All dRPA methods underesti-
mate the binding energy for all complexes. This is also true for
the EXXRPA+ methods except for the H-bonded complexes
in the EXXRPA+@dRPA approach. All in all the EXXRPA+
methods clearly outperform the dRPA methods, dRPA@EXX
and dRPA@dRPA, which are both of similar accuracy. These
results are also in line with the literature, according to which
going beyond dRPA improves the accuracy significantly.43, 112

VI. CONCLUDING REMARKS

The presented self-consistent dRPA method makes it
possible to routinely and efficiently calculate correlation po-
tentials for molecules that, concluding from comparison with
exact reference potentials, can be assumed to be in fair agree-
ment with the exact correlation potential. Indeed, we find
that the negatives of the self-consistent dRPA eigenvalues
of the highest occupied molecular orbitals of a set of test
molecules are in as close an agreement with experimental ion-
ization potentials as those from GW calculations, which indi-
cates that self-consistent dRPA exchange-correlation poten-
tials are quite accurate. Considering that the commonly em-
ployed GGA correlation potentials are known to be qualita-
tively wrong, the good quality of dRPA correlation potentials
is a clear strength of the new method that could be benefi-
cial if the orbitals and eigenvalues are used as input for sub-
sequent calculations, e.g., TDDFT calculations for excitation
energies. Indeed, first results from TDDFT calculations em-
ploying dRPA orbitals and eigenvalues that will be published
elsewhere are encouraging.113
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TABLE V. Interaction energies (kcal/mol) of the S22 set of noncovalently bound dimers. Depending on the system size calculations with aug-cc-pCVDZ and
aug-cc-pCVTZ orbital basis sets or with aug-cc-pCVTZ and aug-cc-pCVQZ basis sets were carried out and used for the extrapolation to the complete basis set
limit, which is listed together results from the largest orbital basis set for each system. The last two lines contain the MAE of the respective largest basis set and
the complete basis set limit (CBS).

dRPA EXXRPA+

Complex Basis Reference @dRPA @EXX @dRPA @EXX MP2

NH3 (C2h) 4 . . . 2.56 2.52 2.96 2.83
CBS 3.15 2.65 2.63 2.97 2.83 3.16

(H2O)2(Cs) 4 . . . 4.33 4.25 5.07 4.92
CBS 5.07 4.47 4.42 5.10 4.97 4.96

(HCOOH)2 (C2h) 4 . . . 16.96 16.45 19.33 18.78
CBS 18.81 17.50 17.03 19.63 18.67 18.52

(CHONH2)2 4 . . . 14.68 14.38 16.40 16.01
CBS 16.11 15.09 14.82 16.66 15.46 15.79

Uracil-Uracil (C2h) 3 . . . 18.10 17.75 21.11 20.60
CBS 20.69 17.69 18.48 21.95 21.33 20.37

2-Pyridoxine-2-Aminopyridine 3 . . . 14.89 14.37 17.08 16.63
CBS 17.00 14.72 15.06 17.83 17.22 17.34

AT (WC) 3 . . . 14.57 13.90 16.69 16.08
CBS 16.74 14.21 14.63 17.23 16.82 16.52

(CH4)2 (D3d) 4 . . . 0.32 0.35 0.37 0.43
CBS 0.53 0.36 0.36 0.33 0.42 0.49

(C2H4)2 (D2d) 4 . . . 1.06 1.09 1.42 1.40
CBS 1.48 1.07 1.16 1.45 1.42 1.58

Bz-CH4 (C3) 4 . . . 1.04 1.11 1.01 1.04
CBS 1.45 1.02 1.17 1.04 1.11 1.81

Bz-Bz (C2h) 3 . . . 1.74 1.91 1.97 2.11
CBS 2.62 1.79 2.20 2.12 2.07 4.96

Pyrazine-Pyrazine (Cs) 3 . . . 3.06 3.24 3.22 3.33
CBS 4.20 3.09 3.48 3.32 3.47 6.91

Uracil-Uracil (C2) 3 . . . 8.18 7.67 7.92 8.64
CBS 9.74 8.29 8.13 7.91 9.07 11.11

Indole-Bz (stacked) 3 . . . 3.23 3.36 3.52 3.64
CBS 4.59 3.22 3.73 3.63 3.96 8.08

AT (stacked) 3 . . . 9.57 8.98 10.67 10.17
CBS 11.66 9.33 10.73 10.90 10.71 14.86

C2H4· · ·C2H2 (C2v) 4 . . . 1.22 1.32 1.54 1.54
CBS 1.50 1.23 1.38 1.55 1.62 1.66

Bz-H2O (Cs) 4 . . . 2.71 2.71 3.05 3.00
CBS 3.29 2.73 2.80 2.98 3.06 3.54

Bz-NH3 (Cs) 4 . . . 1.85 1.89 2.32 2.04
CBS 2.32 1.88 1.97 2.33 2.06 2.66

Bz-HCN (Cs) 4 . . . 3.82 3.92 4.34 4.39
CBS 4.55 3.87 3.83 4.36 4.47 5.17

Bz-Bz (C2v) 3 . . . 2.56 2.61 2.87 2.96
CBS 2.71 2.38 2.29 2.82 2.82 3.63

Indole-Bz (T-shaped) 3 . . . 4.68 4.66 5.29 5.31
CBS 5.62 4.64 4.99 5.50 5.62 6.98

Phenole-Phenole 3 . . . 5.99 5.79 7.05 6.84
CBS 7.09 5.88 6.04 7.39 7.21 7.74

MAE 3/4 . . . 1.08 1.21 0.40 0.40
MAE CBS . . . 1.08 0.89 0.49 0.32 0.88

Another area in which dRPA orbitals and eigenvalues
can be used as input quantities is the evaluation of orbital-
dependent exchange-correlation functionals. Here, we inves-
tigated the evaluation of the EXXRPA+ correlation energy
with orbitals from the self-consistent dRPA method pre-
sented here. This leads to a KS approach, abbreviated as
EXXRPA@dRPA approach, that is complementary to con-

ventional GGA or hybrid methods. While the latter are com-
putationally highly efficient but of quite limited accuracy and
plagued by systematic shortcomings, the EXXRPA@dRPA
approach is free of these deficiencies and can compete
with high-level quantum chemistry methods like the CCSD
method as far as accuracy is concerned. Considering com-
putational effort the self-consistent dRPA method and the
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EXXRPA@dRPA approach with a computational effort scal-
ing of N4 and N5, respectively, with the system size N are
more demanding than conventional GGA and hybrid methods
but more efficient than high-level quantum chemistry methods
like CCSD. This qualifies the EXXRPA@dRPA approach as
alternative to the latter.

The natural next step to be made after devising a self-
consistent dRPA method is to develop a complete self-
consistent EXXRPA+ method. Work to that end is under way.
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APPENDIX: COMPUTATIONAL STEPS IN A
SELF-CONSISTENT dRPA CALCULATION

In this Appendix, the computational steps required to
carry out a self-consistent dRPA calculation are listed. More
precisely, we consider the additional steps required to sup-
plement an exact exchange-only KS method, e.g., the imple-
mentation of Ref. 85 by the dRPA correlation energy and
potential. We assume that integrals (χm χn | f̃p) between an
auxiliary basis function from a RI basis set and two orbitals
basis functions χm and χn, see end of Sec. II, and overlap
integrals S̃pq between RI basis functions with respect of the
Coulomb norm, see Eq. (8), are available. The latter are re-
quired in a first step that can be carried out before the self-
consistency process of the KS calculation:

(1) Preprocessing of the auxiliary basis functions
Calculate the transformation matrix W to transform
from the original RI basis functions f̃ν to the actually
used auxiliary basis functions fν as described in Ref. 46.

These integrals (χm χn | f̃ν) and the transformation ma-
trix W together with the coefficient vectors of the KS
orbitals and the KS orbital eigenvalues are the input data
for a dRPA module that has to be called in each self-
consistency cycle of a KS calculation and that carries
out the following steps:

(2) AO-MO transformation of three-index integrals
Calculate integrals Ñst,q = (ϕs ϕt |f̃q) by an AO-MO
transformation from the basic three-index-integrals
(χm χn | f̃q)

(3) Transformation of three-index integrals to auxiliary ba-
sis functions fp
Calculate integrals Nst,p = (ϕs ϕt|fp) containing the actu-
ally used auxiliary basis functions fp from the integrals
Ñst,q = (χm χn | f̃q) containing of the original RI basis
functions f̃p with the help of the transformation matrix
W according to Eq. (53).

1. The following steps 4–12 have to be carried out
in a loop over the frequencies ω

(4) Energy factors λia(ν) with ν = iω

Calculate the energy factors λia(ν) with ν = iω accord-
ing to Eq. (3) for the current frequency ω.

(5) Dynamic KS response matrix X0(iω)
Calculate the elements X0,pq(iω) of the dynamic KS re-
sponse matrix X0(iω) according to Eq. (34) using the
integrals Nia,p = (ϕi ϕa|fp) and the energy factors λia(ν)
with ν = iω.

(6) Diagonalization of the dynamic KS response matrix
X0(iω)
Diagonalize the dynamic KS response matrix X0(iω) in
order to obtain its eigenvalues σ n(iω) and eigenvectors
vn(iω), see Eq. (19).

(7) Contribution to frequency integration of dRPA correla-
tion energy
Calculate according to Eq. (20) the contribution
Tr [ ln(|1 − σ (iω)|) + σ (iω) ] to the frequency inte-
gral of the dRPA correlation energy for the current fre-
quency ω.

(8) Matrix elements Mst,p and energy factorsγ ia(iω)
Calculate matrix elements Mst,p and energy factors
γ ia(iω) according to Eqs. (38) and (41), respectively.

(9) Intermediate quantities Fst,n(iω)
Calculate the intermediate quantities Fst,n(iω) accord-
ing to Eq. (43) from the integrals Nst,p and the eigen-
vectors vp,n(iω) of the dynamic KS response matrix.

(10) Intermediate quantities Tsi,n(iω) and Tsa,n(iω)
Calculate according Eqs. (45) and (46) the intermedi-
ate quantities Tsi,n(iω) and Tsa,n(iω) from the quanti-
ties Fst,n(iω) of the previous step and the energy factors
λia(iω).

(11) Intermediate quantities Rsi(iω), Rsa(iω), and Yia(iω)
Calculate according to Eqs. (48)–(50) the intermediate
quantities Rsi(iω), Rsa(iω), and Yia(iω) from the quan-
tities Tsi,n(iω) and Tsa,n(iω) of the previous step and the
matrix elements Mst,p and energy factors γ ia(iω).

(12) Integrand tc, ν(iω) of the frequency integration for the
elements of right hand side of OEP equation for the
dRPA correlation potential
For the current frequency ω, calculate according to
Eq. (51) the integrand tc, ν(iω) of the frequency inte-
gration (30) for the elements tdRPA

c,ν of the right hand
side tdRPA

c of the OEP equation (26) for the dRPA cor-
relation potential.

2. End of loop over frequencies

(13) dRPA correlation energy EdRPA
c

Carry out the frequency integration of the contributions
Tr [ ln(|1 − σ (iω)|) + σ (iω) ] to obtain the correla-
tion energy EdRPA

c according to Eq. (20).
(14) Right hand side tdRPA

c of OEP equation for correlation
potential
Carry out the frequency integration (30) of the inte-
grand tc, ν(iω) to obtain the elements tdRPA

c,ν of the right
hand side tdRPA

c of the OEP equation (26) for the corre-
lation potential.

(15) Static KS response matrix X0(0)
Calculate the elements X0,pq(0) of the static KS re-
sponse matrix X0(0) according to Eq. (34) using the
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integrals Nia,p = (ϕi ϕa|fp) and the energy factors λia(ν)
of Eq. (3) with ν = 0.

(16) Solution of the OEP equation for the correlation po-
tential
Solve the OEP equation (26) with the help of the reg-
ularizations (55) or (56) in order to obtain the vector
vdRPA

c containing the coefficients vdRPA
c,ν of the ex-

pansion (24) of the dRPA correlation potential in
terms of electrostatic potentials of the auxiliary basis
functions fν .

(17) Backtransformation to original RI basis functions
Carry out the backtransformation (57) to obtain the co-
efficients ṽdRPA

c,ν of the expansion of the dRPA correla-
tion potential in terms of electrostatic potentials of the
original RI basis functions f̃ν .

(18) Contribution HdRPA
c of the dRPA correlation potential

to the KS Hamiltonian matrix
Calculate the elements H dRPA

c,mn of the contribution
HdRPA

c of the dRPA correlation potential to the KS
Hamiltonian matrix according to Eq. (58).

The integrals Ñst,q = (ϕm ϕn | f̃q) can be distributed in
batches over the index s among several computation nodes via
the Message Passing Interface (MPI). On each node the re-
maining batches can again be distributed among several Open
MP processes. Therefore, steps 2, 3, and 8–11 can be paral-
lelized over the index s via a mixed MPI/Open MP scheme.
The batches over the index s can be further distributed in sub-
batches that are treated consecutive in order to further the re-
duce the storage requirements for the integrals (ϕm ϕn | f̃q).
The storage requirements of the present dRPA implementa-
tion are determined by the integrals (ϕi ϕa | f̃p) needed for
the intermediate quantities Fia,n(iω), which have to be kept
in memory on each node, with i referring to occupied, a to
unoccupied orbitals, and p to auxiliary basis functions.
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