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Econometrica, Vol. 75, No. 1 (January, 2007), 259-276 

EFFICIENT SEMIPARAMETRIC ESTIMATION OF 
QUANTILE TREATMENT EFFECTS 

BY SERGIO FIRPO' 
This paper develops estimators for quantile treatment effects under the identifying 

restriction that selection to treatment is based on observable characteristics. Identifi- 
cation is achieved without requiring computation of the conditional quantiles of the 
potential outcomes. Instead, the identification results for the marginal quantiles lead 
to an estimation procedure for the quantile treatment effect parameters that has two 
steps: nonparametric estimation of the propensity score and computation of the dif- 
ference between the solutions of two separate minimization problems. Root-N consis- 
tency, asymptotic normality, and achievement of the semiparametric efficiency bound 
are shown for that estimator. A consistent estimation procedure for the variance is also 
presented. Finally, the method developed here is applied to evaluation of a job training 
program and to a Monte Carlo exercise. Results from the empirical application indicate 
that the method works relatively well even for a data set with limited overlap between 
treated and controls in the support of covariates. The Monte Carlo study shows that, 
for a relatively small sample size, the method produces estimates with good precision 
and low bias, especially for middle quantiles. 

KEYWORDS: Quantile treatment effects, propensity score, semiparametric efficiency 
bounds, efficient estimation, semiparametric estimation. 

1. INTRODUCTION 

IN PROGRAM EVALUATION STUDIES, it is often important to learn about dis- 
tributional impacts beyond the average effects of the program. For example, 
a policy-maker might be interested in the effect of a treatment on the disper- 
sion of an outcome or its effect on the lower tail of the outcome distribution. 

One way to capture this effect in a setting with binary treatment and scalar 
outcomes is to compute the quantiles of the distribution of treated and control 
outcomes. Using quantiles, discretized versions of the distribution functions 
of treated and control can be calculated. Quantiles can also be used to ob- 
tain many inequality measurements, for instance, quantile ratios, interquantile 
ranges, concentration functions, and the Gini coefficient. Finally, differences 

'This paper is based on the second chapter of my Ph.D. dissertation at UC-Berkeley, writ- 
ten under the supervision of Guido Imbens and Jim Powell. I am indebted to them for their 
advice, support, and many suggestions. I am grateful for helpful comments from two anony- 
mous referees and the co-editor on earlier drafts. I have also benefited from comments from 
Marcelo Fernandes, Fernando Ferreira, Carlos Flores, Gustavo Gonzaga, Jinyong Hahn, Michael 
Jansson, Shakeeb Khan, David Lee, Thomas Lemieux, Thierry Magnac, Rosa Matzkin, Dan Mc- 
Fadden, Jodo Pinho de Mello, Deb Nolan, David Reinstein, James Robins, Paul Ruud, Jeffrey 
Wooldridge, and participants of seminars at EPGE-FGV, Georgetown, MSU, PUC-Rio, UBC, 
UC-Berkeley, UC-Davis, University of Miami, University of Toronto, University of Washing- 
ton, CESG-2004, and USP-RP. Special thanks go to Geert Ridder for many detailed suggestions. 
Financial support from CAPES-Brazil is acknowledged. All errors are mine. 
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in quantiles are important because the effects of a treatment may be heteroge- 
neous, varying along the outcome distribution. 

A parameter of interest in the presence of heterogeneous treatment effects 
is the quantile treatment effect (QTE). As originally defined by Doksum (1974) 
and Lehmann (1974), the QTE corresponds, for any fixed percentile, to the 
horizontal distance between two cumulative distribution functions. In defin- 
ing QTE as the treatment effect at the individual level, both Doksum and 
Lehmann implicitly argued that an observed individual would maintain his 
rank in the distribution regardless of his treatment status. This paper will refer 
to this type of assumption as a rank preservation assumption. 

Rank preservation is a strong assumption because it requires the relative 
value (rank) of the potential outcome for a given individual to be the same 
regardless of whether that individual is in the treatment or in the control 
groups. There are two ways to deal with cases in which rank preservation 
is an unreasonable assumption. First, as suggested by Heckman, Smith, and 
Clements (1997), one could compute bounds for the distribution of treatment 
effects, allowing for several possibilities of reordering of the ranks. Second, 
even when rank preservation is violated, a meaningful parameter for policy 
purposes might be the simple difference in parameters of two marginal distri- 
butions: the distribution of outcome under treatment and the distribution of 
outcome under nontreatment. 

Consider the latter case, in which all the policy-maker is interested in learn- 
ing about the marginal distributions of the potential outcomes. A convenient 
way to summarize interesting aspects of these distributions is by computing 
their quantiles. In this case, quantile treatment effects are simple differences 
between quantiles of the marginal distributions of potential outcomes.2 How- 
ever, if rank preservation holds, then the simple differences in quantiles turn 
out to be the quantiles of the treatment effect.3 

This definition of quantile treatment effects, together with the selection on 
observables assumption, allows identification of various QTE parameters that 
differ by the subpopulation to which they refer. Following the approach of 
Heckman and Robb (1986), Hahn (1998), Hirano, Imbens, and Ridder (2003; 
henceforth HIR), and Imbens (2004), two QTE parameters will be the primary 
object of study in this paper. They are labeled the overall quantile treatment 
effect (QTE) and the quantile treatment effect on the treated (QTT); the former 
is the QTE parameter for the whole population under consideration and the 
latter is the parameter for those individuals subject to treatment. Before we 
formally define those parameters, let us introduce some useful notation. 

Define T as the indicator variable of treatment. For an individual i, if Ti = 1, 
we observe Yi(1); otherwise, if Ti = 0, we observe Yi(0). Here Yi(1) and Yi(0) 

2Note that conditional quantiles, which are the objects of interest in quantile regression meth- 
ods, are not approached in this paper. 

3There is no similar problem in estimation of the average treatment effect, because differences 
in means always coincide with means of differences. 
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are, respectively, the potential outcomes of receiving and not receiving the 
treatment. Whereas a given individual i is either treated or not, we define the 
observed outcome as Yi = Yi(1) - Ti + Yi(O) - (1 - Ti). Assume that we also 
observe a random vector Xi of covariates with support X c R'. 

Let r be a real in (0, 1). The QTE and QTT parameters can then be ex- 
pressed as follows: 
* The QTE is written as A, = q1,, - q0,7, where qj,, - infqPr[Y(j) < q] > 7, 

j = 0, 1. 

* The QTT is written as 
AT=1 

= 
q1,7iT=1 

- qo,71T=1, where 
qj,7lT=l 

infqPr[Y(j) < qIT = 1] > 7, j= 0, 1. 
As is the case for any treatment effect parameter, identification restrictions 

are necessary for consistent estimation. In this paper, the relevant restriction is 
the assumption that selection to treatment is based on observable variables (ex- 
ogeneity assumption). In other words, it is assumed that given a set of observed 
covariates, individuals are randomly assigned either to the treatment group or 
to the control group. That assumption was termed by Rubin (1977) the uncon- 
foundedness assumption and it characterizes the selection on observables branch 
of the program evaluation literature. Barnow, Cain, and Goldberger (1980), 
Heckman, Ichimura, Smith, and Todd (1998), Dehejia and Wahba (1999), and 
HIR are important examples. Further discussion of these identifying assump- 
tions will be provided in a later section. 

Estimation of average treatment effects (ATE) under this exogeneity as- 
sumption is often performed by first computing a conditional average treat- 
ment effect and then integrating over the distribution of covariates to recover 
the unconditional average treatment effect. However, because the mean of the 
quantiles is not equal to the quantile of the mean, integrating a first-stage com- 
putation of the conditional quantiles (of the treated and the control outcomes) 
will not yield the marginal quantiles. Instead, this paper demonstrates how to 
use the selection on observables assumption to calculate the marginal quan- 
tiles for the treated and for the control outcomes without computing the cor- 
responding conditional quantiles. The role that the observable covariates play 
in identifying both ATE and QTE is made clearer in the QTE case, because 
for the latter, the covariates serve only to remove the selection bias. 

Despite the relevance of QTE, the program evaluation literature on this 
topic is not as vast as that of its main competitor, ATE. Traditionally, ex- 
pectations have received more attention in the literature than quantiles. Pi- 
oneering papers on quantile estimation, such as those by Koenker and Bassett 
(1978) and, in an instrumental variables setting, by Amemiya (1982) and Powell 
(1983), have helped to bridge this gap. In the treatment effects literature, some 
recent contributions have also been made to the study of the distributional ef- 
fects of the treatment. Among them, Abadie, Angrist, and Imbens (2002) and 
Chernozhukov and Hansen (2005) explicitly deal with the fact that treatment 
effects may be nonmonotonic along the outcome distribution and they propose 
methods to estimate QTE parameters. 
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There are two important differences between the approaches of Abadie, 
Angrist, and Imbens (2002) and Chernozhukov and Hansen (2005), and our 
approach. The first difference is that they consider a conditional on covari- 
ates version of QTE. As stated before, conditional quantiles are not directly 
useful if we are interested in quantiles of the marginal distribution; there- 
fore, it is not clear how to recover the unconditional QTE from their settings. 
The second difference involves the choice of the identifying set of assump- 
tions. In this paper we show how to identify QTE parameters under uncon- 
foundedness, whereas Abadie, Angrist, and Imbens (2002) and Chernozhukov 
and Hansen (2005) show how instrumental variables can be used to identify 
QTE when selection to treatment is based on unobservable variables. How- 
ever, there is one important similarity between Abadie, Angrist, and Imbens 
(2002) and our method. Both methods use Koenker and Bassett's (1978) rep- 
resentation for quantiles as minimizers of expectations of check functions and 
both show how to identify QTE by introducing proper weighting functions to 
those expectations. Because the QTE parameters identified in our work are 
essentially different from those in Abadie, Angrist, and Imbens (2002), the 
weighting functions will reflect this difference. 

Recently, an extension to identification and estimation of a class of parame- 
ters more general than QTE, termed structural quantile functions, was pro- 
posed by Imbens and Newey (2003) and applied to the case of continuous 
treatments. Unlike Abadie, Angrist, and Imbens (2002) and Chernozhukov 
and Hansen (2005), who use instrumental variables, Imbens and Newey's 
(2003) identification strategy is based on control functions. For a general con- 
trol variable, the key identifying requirement is that observable and unobserv- 
able factors that explain the response variable are independent, given that 
control variable. With an additional common support assumption, they show 
how to identify the conditional cumulative distribution function (c.d.f.) of the 
response variable, given covariates, and to obtain quantiles of its marginal dis- 
tribution, which results from integrating the conditional c.d.f. and inverting it. 
Unlike Imbens and Newey (2003), our identification results are applied directly 
to the quantiles of the marginal distribution and, therefore, we do not need to 
work with c.d.f.'s as a first step. 

Imbens and Rubin (1997) and Abadie (2002) proposed methods to esti- 
mate some distributional features for a subset of the treated units. Their 
proposal also was used in an instrumental variables setting and looked at 
c.d.f.'s, not quantiles. Athey and Imbens (2006) focused on the effects at 
quantiles in the situation in which repeated cross sections or longitudinal 
data are available. Distributional effects have also been studied empirically in 
Card (1996), DiNardo, Fortin, and Lemieux (1996), and Bitler, Gelbach, and 
Hoynes (2006). Particularly in the paper by DiNardo, Fortin, and Lemieux, 
quantile treatment effects have been indirectly computed as an estimation by- 
product of nonparametric potential outcomes densities for the treated subpop- 
ulation. 
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Herein, a semiparametric method of estimating each QTE parameter is pre- 
sented. This estimation technique requires a nonparametric first step in which 
the propensity score is estimated. The final estimators will be equal to the dif- 
ferences between two quantiles, which can be expressed as solutions of mini- 
mization problems, where the minimands are sums of check functions, which 
are convex empirical processes. Using the empirical process literature, consis- 
tency and asymptotic normality results are derived. The semiparametric effi- 
ciency bound is computed using the techniques suggested in Newey (1990) and 
Bickel, Klaassen, Ritov, and Wellner (1993), and it is shown that the asymptotic 
variance of the QTE estimator equals that bound. 

2. IDENTIFICATION OF QTE PARAMETERS 

Let the propensity score, Pr[T = 1IX = x], be written as p(x) and let the 
marginal probability of being treated, Pr[T = 1] = E[p(X)], be written as p. 
The following identifying assumption is used here. 

ASSUMPTION 1-Strong Ignorability (Rosenbaum and Rubin (1983)): Let 
(Y(1), Y(0), T, X) have a joint distribution. Then, for all x in X, the support 
of X, the following conditions hold: 

(i) Unconfoundedness: Given X, (Y(1), Y(0)) is jointly independent 
from T. 

(ii) Common support: For some c > 0, c < p(x) < 1 - c. 

Although part (i) of Assumption 1 is a strong assumption, it has been used 
in several studies on the effect of treatments or programs. Prominent exam- 
ples are Heckman, Ichimura, Smith, and Todd (1998) and Dehejia and Wahba 
(1999). Part (ii) states that for almost all values of X, both treatment assign- 
ment levels have a positive probability of occurrence. 

Now consider each one of the four types of quantiles defined previously: 
q1,7, q0,T, 

q1,-IT=1, 
and qo,7Tr=1. We will assume that for some values of 7 E (0, 1), 

these quantiles are well defined and that the respective quantiles are unique. 
We do so by assuming that the distribution functions of the potential outcomes 
are continuous and not flat at the T-percentile. These conditions are stated in 
the following assumption: 

ASSUMPTION 2-Uniqueness of Quantiles: For j = 0, 1, Y(j) is a contin- 
uous random variable with support in R and where the following statements 
apply: 

(i) There are nonempty sets Y, and Y0o, such that Yj = {r e (0, 1); 
Pr[Y(j) < qj,r - c] < Pr[Y(j) < qj,I + c], V c E R, c > 0}. 

(ii) There are nonempty sets Yr7l=l and 
Y0or=l, such that 

Yjlr=l 
= {7 E (0, 1); 

Pr[Y(j) < qj,, 7=a 
- cIT = 1] < Pr[Y(j) < qj,71T=l + clT = 1], Vce R, c > 0}. 
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Under Assumptions 1 and 2, both QTE and QTT become estimable from the 
data on (Y, T, X). To show this, we first prove that the quantiles of the poten- 
tial outcome distributions can be written as implicit functions of the observed 
data.4 

LEMMA 1-Identification of Quantiles: UnderAssumptions 1 and 2, ql,r, qo,,, 
ql,71T=l, and qo,,lT=1 can be written as implicit functions of observed data: (i) 7 = 
E[ TQ) -ff{Y < q1,7] T E Y; (ii) E = 1T 1{Y < qo,7, E E Y0; (iii) 7 = 

E[ 1{Y < ql,,1T=11], Vr E Y1T=1;and (iv)7= r E[1-T p(X) . < qo,IT=11 P p (1-p(X)) 1{ q 
V7 E Y01T=1 

Note that Assumption 1 plays no role in the identification of ql,71T=1. 
Heckman, Ichimura, and Todd (1997) have already shown an analogous re- 
sult in the search for identification conditions for the average treatment effects 
on the treated. Finally, identification of quantile treatment effects is a straight- 
forward consequence of Lemma 1, as stated in the next corollary. 

COROLLARY 1-Identification of Quantile Treatment Effect Parameters: 
Under Assumptions 1 and 2, the following parameters are identified from data 
on (Y, T, X): (i) the overall quantile treatment effect A, for 7 E Yj n Y0; (ii) the 
quantile treatment effect on the treated A,7T=1 for r e Y1IT= n Yo0T=..5 

Estimation of the QTT parameter based on the results of Lemma 1 has 
been used in the applied literature. DiNardo, Fortin, and Lemieux (1996) pro- 
posed estimating the counterfactual density of Y(0)|IT = 1 using a reweighting 
method that has a population counterpart that is similar to the result for the 
identification of qo,I7T=1. They argued that once the counterfactual density is 
estimated, it is possible to recover the counterfactual quantiles and, therefore, 
the difference between the quantiles of the treated group and the counterfac- 
tual quantiles of the control group. However, as is made clear by Lemma 1 
there is no need to compute densities first if the ultimate goal is the estimation 
of quantiles. 

3. ESTIMATION 

In this section, we use the sample analogy principle (Manski (1988)) to mo- 
tivate estimators for A, and Ad7T=1 that are differences in solutions of mini- 
mization problems. We present their large sample properties and show how to 
estimate their asymptotic variances consistently. 

4All proofs of the results can be found in the supplement to this article (Firpo (2007)). The 
supplement also includes details about a Monte Carlo study, which we briefly report in Section 5 
of this article. 

5Throughout the rest of the paper, we implicitly assume that when we consider A,, the possible 
values of 7 will be such that r E Y n Y0; analogously, for 

Ar7T=1, 
7 E Yir=1 YoIrT=. 
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The estimation technique proposed here is semiparametric in the sense that 
it does not impose any restriction on the joint distribution of (Y, T, X). It ex- 
tends to quantile treatment effects the characteristics previously proposed for 
average treatment effects. Examples of semiparametric estimation for ATE 
can be found in Hahn (1998), Heckman, Ichimura, Smith, and Todd (1998), 
and HIR. 

3.1. Two-Step Approach 

Using the identification expression from Lemma 1, we present here an es- 
timation method that is a reweighed version of the procedure proposed by 
Koenker and Bassett (1978) for the quantile estimation problem. Let the es- 
timators of functionals of (Y, T, X) be denoted by a "hat." For example, the 
nonparametric estimator of the propensity score is p(x). The estimator for the 
QTE parameter A, is A , - 1,r 

- q0,,, where, for j = 0, 1, 

N 

(1) j,, 
- arg min 

,i (Yi 
- 

q), 
i=1 

where the check function p,(.) evaluated at a real number a is p,(a) = a - (7 - 
?1{a < 0}) and, finally, where the weights W2,ji and w0,j are 

Ti 
(2) ) 1,i 

=- N. p(Xi) 
and 

1- T 
UOO,i = 

The definition of the estimator in Equation (1) relies on the fact that sample 
quantiles can be found by minimizing a sum of check functions, as pointed out 
by Koenker and Bassett (1978). In our particular case, we have a weighted sum 
of check functions, which reflects the fact that the distribution of the covariates 
differs in the two groups. 

We focus on the sample quantile of the Y(1) distribution q1,,. This ob- 
ject is defined as the minimizer of a weighted sum, where the weight of 
each unit is given by W"1,;. To get some intuition on why q1,, is consistent 
for ql,,, note that an approximate first derivative of Equation (1) using the 
weight defined in the first part of Equation (2) and evaluated at q1,, is equal 
to (1/N) ii,(Ti/(p(Xi)))) (1{Yi, < ,,I}- 7). Whereas q1,, is the mini- 
mizer of the convex function expressed in Equation (1) using the weight &2^, 
(1/N) 

iN(Ti/(p(Xi))). 
(1{Yi < i1,,} 

- 7) will converge in probability to zero 
as N increases. 

The same line of reasoning can be applied to estimation of AIT=l. The 
proposed estimator is defined as the difference between the solutions of 
two minimizations of sums of weighted check functions: A,IT=l 1,TIT=l - 

qo,71T=1, where 
q1,T=l 

argminq LN j 1,ilr=1 PT-(Yi 
- q) and 

q0,7T=1 
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argminq EZiN (O,ilT=1 P(Yi - q). The weights used in those definitions are 
given by 

Ti (3) 
(-1,i(T=I E= 

I / 

and 

p(Xi) 1- Ti 
OO,ilT= 1 

- 
ENT 1-p(X;) 1=, Ti 

For the remainder of the paper, we restrict the discussion to the estimator 
ql,, of qa,, 

because extensions for qo0,, q1,TIT=1, and q0,Tir=l follow immediately. 
Also note that for the derivation of the asymptotic properties, it is enough to 
concentrate on 

q1,,, 
because the differences A, and ArT=1 involve independent 

terms and, therefore, the covariance term will be zero.6 Focusing thus on the 
estimator 1,,, we see that it is a two-step estimator. In the first step, we esti- 
mate the propensity score nonparametrically. In the second stage, we minimize 

1 T 
(4) G,N(q; p)'= y 

Ti- 
(Yi - q) - (7 - 1{Yi < q}), 

Si=l (Xi) 

which is a weighted sum of check functions whose weights are introduced here 
to correct for the selection (on observables) problem. 

Let us now turn our attention to computation of the weights used in this 
subsection. In particular, let us concentrate on the calculation of 

^,&i. 

3.2. First Step 

Following the propensity score estimation strategy employed by HIR, we use 
a logistic power series approximation, i.e., a series of functions of X is used 
to approximate the log-odds ratio of the propensity score. The log-odds ratio 
of p(x) is equal to log(p(x)/(1 - p(x))). These functions are chosen to be 
polynomials of x and the coefficients that correspond to those functions are 
estimated by a pseudo-maximum likelihood method. 

Start by defining HK(x) = [HK,j(x)] (j = 1, ..., K), a vector of length K of 
polynomial functions of x e X that satisfy the following properties: (i) HK : 
X --+ RK, (ii) HK,1(x) = 1, and (iii) if K > (n + 1)', then HK(x) includes all 
polynomials up to order n.7 In what follows, we assume that K is a function of 
the sample size N such that K(N) -- oo as N -- o. 

6Because the weights W&I and (o are independent, the same situation occurs with 
(llT-1T 

and 
(01T=1* 

7Further details regarding the choice of HK(x) and its asymptotic properties can be found in 
the supplement and in HIR. 
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Next, the propensity score is estimated. Let p(x) = L(HK(X)'rK), where 
L:R -+ 1R, L(z) = (1 + exp(-z))-l, and 

1 N 

(5) rK = arg max N (Ti" -log(L (HK(Xi)'Fr)) 
i=1 

+ (1 - Ti) log(1 - L(HK(Xi)'%r))). 

After estimating the propensity score, we minimize G,,N(q; ^) with respect 
to q, obtaining 

q1,,. 

3.3. Large Sample Properties 
In this subsection we show the main asymptotic result of the paper: A, is 

(i) root-N consistent for A, and (ii) asymptotically normal. This result is shown 
by concentrating on the case of q1,, and by arguing that the same type of result 
holds, by analogy, for qo,,. Before stating the result as a theorem, let us define 
some important quantities. For i = 1, ..., N, 

t t - p(x) 
(6) l,r(y, t, x) = - 

gl 
1(y) - p E[gl,,(Y)|x, T = 1], 

p(x) p(x) 
1- t t- p(x) 

(7) qjo,C(y, t, x) = * go0,(y) + 
t 

E[go,-(Y)|x, T = 0], 1- p(x) 1 - p(x) 
1 { y < qj,, } - 7 

(8) g,(yY) y < qjG- (j = 0, 1) fj (qj,, ) 
where functions gj,,(.) would be the influence functions of the sample quantiles 
of the potential outcomes Y(j), j = 0, 1, if they were fully observable. 

There are two reasons for 
gi,7 

and go,, to be, respectively, different from 

q/1,, and 
qf0o,. 

The first reason is related to the partial unobservability of the 
potential outcomes. Because we cannot observe two potential outcomes for 
the same unit, the moment conditions associated with ql,, and qo0,, as seen 
from Lemma 1, are, respectively, 

t 
(9) 

p,,7(y, 
t, x) p= g~,,(y) 

p(x) 
and 

1-t 
?o,,(y, t, x) = p go,,(y) 1- p(x) 

because 
E[(Ip,,(Y, 

T, X)] = 
E[0po,,(Y, 

T, X)] = 0.8 The second difference is 
related to the fact that, in addition to not fully observing the potential out- 

8If we could observe the potential outcomes, the moment conditions associated with the quan- 
tiles of the potential outcomes would simply be E[1I{Y(1) < ql,,} - 7] = E[1{Y(O) < qo,,7 - 
7] = 0. 
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comes, we also do not know the true propensity score. The effect of es- 
timating p(.) on the influence functions of the sample quantiles is given 
by the conditional expectation of the derivatives of pj,, and o0, with re- 
spect to p(.), which correspond to al,,(t, x) = -E[gl,,(Y)lx, T = 1] - (t - 
p(x))/p(x) and ao,7(t, x) = E[go,,(Y)lx, T = 0] (t - p(x))/(1 - p(x)). De- 
fine now qfi,(y, t, x) = 1,7(y, t, x) - qfo, (y, t, x), p,(y, t, x) = ~i,,7(y, t, x) - 

0o,O(Y, t, x), and a,(t, x) = al,,(t, x) - ao,,(t, x). Finally, define 9 

V, = E[(qi~(Y, T, X))2] = E[( o,(Y, T, X) + a,(T, X))2] 

=E[Vl[g17,(Y)IX, 
T= 

11 + 
V[go,(Y)IX, T = 01 

p(X) 1 - p(X) 

+ (E[gl,,(Y)IX, T = 1] - E[go,7(Y)IX, T = 0]) 

We now state the main asymptotic result: 

THEOREM 1--Asymptotic Properties of A,: Under Assumptions 1 and 2 
herein and Assumptions A.1 and A.2 in supplements, 

(a, - A,) = C (Yi, TT, X1) + o,(1) - N(0, V,). 
i=1 

We show a sketch of the proof of Theorem 1. For the complete proof, see 
the supplement. 

We start with the results derived in HIR, in turn based on Newey (1995), for 
the asymptotic properties of the nonparametric estimation of the propensity 
score in the first step by means of a power series approximation. Their ap- 
proach to estimating the propensity score guarantees, under certain regularity 
conditions, that 3(x), the estimator of the propensity score, is uniformly con- 
sistent for the true p(x). That set of regularity conditions is listed in the sup- 
plement as Assumption A.1 and the uniform convergence result is presented 
there as Lemma A.1. 

We then focus on the case of q1,, The next step in the proof is to define 

Q,,N(u; 3) 
= N - (G,,N(q; p) - G,,N(qi,,; 3)), where q = 

q,, 
+ u//N and 

u is some real number. Therefore, at u, = I/NV(q1,, - ql,,), Q,,N('; P) 
reaches 

its minimum value. We thus show that Q,,N(u; P) - Q7,N(U) is Op(1) for any 
fixed u, where Q7,N(u), which does not depend on k(x), is a quadratic random 
function. For that result to be true, we impose the technical requirement that 
Pr[Y(1)< ql,,lX = x] is continuously differentiable in x (Assumption A.2). 

9In what follows, V[-] is the variance operator. 
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This is analogous to imposing continuity of the first derivative of the condi- 
tional expectation of Y(1) given X, as HIR do for ATE. The result that shows 
that Qr,N(U; p) - QT,N(U) = Op(1) appears in Lemma A.2. 

Let i, be the argument that minimizes Q,,N('). We show in Lemma A.3 that D 
ii, = Op(1) 

and i, - N(0, VI,A), 
and we derive an expression for V1,,. To get 

results about u, and, consequently, about q^,, we use a result in Hj6rt and 
Pollard (1993) on the nearness of minimizers of convex random functions. In 
particular, we apply Hj6rt and Pollard's Lemma 2 directly to our case, show- 
ing in Lemma A.4 that i^, - ii, = op(l). This concludes the proof that q1,, is 
(i) root-N consistent for ql,T and (ii) asymptotically normal, which are shown 
in Lemma A.5. Extending this result to qO,T, Theorem 1 is easily shown to hold. 

Finally, note that estimation of the QTT parameter, AIT=1, will yield a simi- 
lar result, which could have been obtained using steps analogous to those used 
for the QTE parameter A, to get results similar to Theorem 1. For the sake of 
completeness, we present now the normalized asymptotic variance of the QTT 
estimator, ATIT=1: 

(10) VrT = E[P(X) V[gl,,rlT=(Y)IX, T= 1] p p 
p(X) V[go,7ITr=(Y)IX, T =0] 

p 1 - p(X) 

(E[gl,7,rT=(Y)fX, T = 1] - E[go,,1rT=(Y)IX, 
T = 0])2 

p 

1{Y Y < qj,71T=l } - 7 
gj,, r= (Y) = - (j = 0, 1), 

fjlT=l(qj,rlr=l) 

and fliT=l(') and flTr=l(') are the densities of Y(1)IT = 1 and Y(0)IT = 1, 
respectively. 

3.4. Variance Estimation 
In this section we present an estimator for V,, the normalized asymptotic 

variance A,. We then state some sufficient conditions for that estimator to be 
consistent, which is proved in the supplement. Note that the same argument 
we subsequently show could be easily extended to the estimation of 

VIDT=,, 
the 

normalized asymptotic variance A,7T=1. 
The normalized asymptotic variance of A, is V, 

= E[(p,(Y, T, X) + 
a,(Y, T, X))2]. A natural procedure to estimate that variance term is by us- 
ing VT = 

-i=(&, 
a + 7,iw)2, where 

Ti 1- Ti 
p(Xi) 1- P(Xi) 



270 SERGIO FIRPO 

1 { y < j,,l} - r gj,T(y) - (j , 1), 

and fj(.) is an estimator of the density of the potential outcome Y(j). Note 
that a simple application of iterated expectations to the definition of a,(t, x) 
yields 

FT . g 1, 7( 
Y ) ( 1 - T ) 

. 
g o, 

7( 
Y ) 

1 a(t, x) = -E X =p(X))2 (1 -((t- p(x)), 
(p(X))2 -p(X))21I- 

which leads to its estimation through 

Bi--[ 

T -1,T(Y) 
) - (1- T) -9 o,(Y)X= ] (X)) a7j = -Ei-+i= X=X;i(Tp - P(Xi)). 

- (P"j(X))2 G (X))2I 

Further details of the estimation procedure of such conditional expectation can 
be found in the supplement. 

Finally, we show that under the same assumptions used to prove the main as- 
ymptotic result plus a set of regularity conditions presented in the supplement 
as Assumption A.3, V, will be consistent for V,: 

THEOREM 2-Consistent Estimation of the Asymptotic Variance of A,: Un- 
derAssumptions 1, 2, A.1, A.2, and A.3, V, - V, = op(l). 

4. SEMIPARAMETRIC EFFICIENCY BOUNDS 

We now show that the respective estimators A, and AIT=1 of QTE and QTT 
are indeed efficient in the class of semiparametric estimators. To show this, we 
calculate the semiparametric efficiency bounds for QTE and QTT parameters 
under unconfoundedness of the treatment and unknown propensity score. 

Efficiency bounds for semiparametric models were first introduced by Stein 
(1956), but have become more popular in the econometric literature only 
recently after the systematic presentations by Bickel, Klaassen, Ritov, and 
Wellner (1993), and Newey (1990, 1994). For semiparametric models with 
missing data under the "missing at random" assumption, Robins, Rotnitzky, 
and Zhao (1994), Robins and Rotnitzky (1995), and Rotnitzky and Robins 
(1995) have shown how to compute the efficiency bounds by deriving the ef- 
ficient score of that model from the efficient score under random sampling. 
Under unconfoundedness, Hahn (1998) and HIR have computed the bounds 
for the average treatment effect (ATE) and for average treatment effects for 
given subpopulations, with particular emphasis on the bounds for the average 
treatment effect on the treated ATT. 

For the quantile treatment effects setting, we computed bounds for two para- 
meters, namely, A, and Ad1T=1. With Assumptions 1 and 2, the semiparametric 
efficiency bounds for A, and 

A,7=1 
can be calculated: 



QUANTILE TREATMENT EFFECTS 271 

THEOREM 3-Bounds for A, and A,71T1: Under Assumptions 1 and 2, the 
semiparametric efficiency bounds for A, and A7 T=1 are, respectively, equal to 
V, and V7IT=1. 

Note that the bounds V, and V71T= are similar to the bounds computed by 
Hahn (1998) for the mean case. There are two reasons for the similarities. 
First, both QTE and ATE are parameters from the same statistical model 
and, therefore, can be expressed as functionals of the same distribution of 
the data. Second, both can be written as differences in solutions to moment 
conditions (implicitly for the QTE case) over the same density. The latter 
can be seen from the definitions of gj,,(.) and gj,r1= 1(') (j = 0, 1) as the in- 
fluence functions of the sample quantiles of Y(1) and Y(0) under full ob- 
servability of potential outcomes. Because, for example, E[gj,,(Y(j))] = 0, we 
know that A, = arg zeroqE[1{Y(1) < q} - 7] - arg zeroqE[I { Y(0) < q} - 7]. 
Also, by defining P1 = E[Y(1)], 8o = E[Y(0)], and 3 = 31 - 3o, then / = 
arg zerobE[Y(1) - b] - arg zerob E[Y(0) - b].10 

5. SUMMARY OF RESULTS 

We have considered two applications for the method developed here: the 
first is the evaluation of a well studied job training program; the second is a 
Monte Carlo study. Further details of both applications, as well as all figures 
and tables can be found in the supplement" (Firpo (2007)). 

5.1. Empirical Application 
The empirical exercise used the job training program data set first ana- 

lyzed by LaLonde (1986) and later by many others, including Heckman and 
Hotz (1989), Dehejia and Wahba (1999), Smith and Todd (2001, 2005), and 
Imbens (2003). The interest is to identify the causal effects of job training on 
future earnings. For our application, we have used one of the many data sub- 
sets LaLonde constructed based on the original sample. We have both the ex- 
perimental and the observational data sets, the latter using information from 
the Panel Study of Income Dynamics (PSID) and the former using informa- 
tion from the National Supported Work Program (NSW). Following Dehejia 
and Wahba (1999), we restricted the analysis to a subset of 185 treated units, 
260 control units, and 2,490 comparison units from the PSID.12 Some summary 
statistics are presented in Table I in the supplement. 

10Note that this argument could very well be applied to the comparison between the "on the 
treated" parameters A,IT1=l and E[Y(1)IT = 1] - E[Y(O)IT = 1]. 

"1The Matlab program used in the empirical application and in the Monte Carlo study is avail- 
able on the Econometrica Supplementary Materials web site (Firpo (2007)). 

12This corresponds to the control sample labeled by LaLonde (1986) and Dehejia and Wahba 
(1999) as PSID-1. 
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Using that data set, we generated estimates of the QTT. We also performed 
an experimental QTE estimation, by simply taking the difference between the 
quantiles of the treated and the experimental controls, without any reweighing. 
Our results are presented in Table II and Figures 1-5 in the supplement. 

Figures 1-3 (in the supplement) show that when experimental controls are 
used, treatment effects tend to be more homogeneous than in the observa- 
tional setting. With a nonexperimental comparison group, treatment effects 
seem to increase along the distribution, starting around the median until al- 
most the upper end of the distribution. Also, although nonexperimental ATT is 
not statistically significantly different from zero (point estimate of $1,163 with 
a standard error of $1,736), as shown in Table II, QTT estimates are positive 
and significant from the median to the 85th percentile. 

Despite the fact that observational treatment effects seem to be more het- 
erogeneous along the distribution than the experimental effects, confidence 
bands the size of 2 standard errors around the difference between the QTT es- 
timates include the zero for almost all quantiles, as shown by Figure 4. Table II 
reveals the same pattern for the mean. The difference between the experimen- 
tal ATT ($1,794) and nonexperimental ATT ($1,163) estimates is $631, which 
is relatively small given the magnitude its standard errors ($1,860). 

We also checked the common support assumption. As Table I reveals, com- 
parison and treated groups are largely different for most of the covariates. The 
estimated propensity score is, however, bounded away from 0 and 1, which 
allows us to proceed with the analysis and to compute weights that are well 
defined for all observations in the sample.'3 A closer inspection of the data re- 
veals that the distributions of the estimated propensity scores for treated and 
comparison groups are importantly different. Figure 5 shows the histograms 
of these two distributions. Most of the data in the comparison group present 
values for the estimated propensity score below 0.1. In fact, there are only 
132 out of 2,490 comparison observations that have an estimated propensity 
score above 0.1. This means that although we are using all 2,490 comparison 
units, only a few of them will effectively be important for comparisons with 
the treated group, because the weights j01T=1 used to estimate the quantiles 
of that counterfactual distribution are proportional to p(x)/(1 - p(x)) and, 
therefore, we will weigh down observations in the comparison group with esti- 
mated propensity scores close to zero. We should expect that because we are 
effectively using just few observations from PSID, the standard errors of QTT 
estimates should be affected. Our findings do indicate that this is exactly what 
happens: there are some QTT estimates in the middle of the distribution that 
have larger standard errors than those QTT estimates at the upper end of the 
distribution. As we show in more detail in the supplement, this is due to the 

13As we are considering the quantile treatment effect on the treated, a sufficient common 
support assumption is that p(x) < 1. 
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presence of some comparison units that have large values of the estimated 
propensity score in the middle of the empirical distribution of earnings. 

The main findings of the empirical application are that observational QTT 
point estimates are relatively close to the experimental ones, but that they are 
imprecisely estimated at some parts of the earnings distribution. The large 
standard errors we report for the observational QTT can be attributed to the 
limited overlap in the covariates distribution between treated and comparison 
groups. Limited overlap in the support of the empirical distribution of covari- 
ates does not mean, however, that the proposed method is inadequate for eval- 
uation of this program. In fact, as discussed in Imbens (2004), the reweighting 
method applied to ATT estimation is well designed to cope with limited over- 
lap because point estimates are not substantially affected by the inclusion of 
controls that have propensity score close to 0, but standard errors would in- 
crease with the inclusion of controls that have propensity score close to 1. The 
same is true for the QTT estimation method presented in this paper. 

5.2. Monte Carlo 

In the Monte Carlo study, 1,000 replications with sample sizes of 500 
and 5,000 were considered. The data design implied that assignment to the 
treatment was not completely random, but satisfied the ignorability assump- 
tion. Hence, estimation of treatment effects that do not take the selection 
into account would inevitably produce inconsistent estimates. We have actu- 
ally performed such calculations without any correction for the selection prob- 
lem: they are called the "naive" estimators. Because Y(1) and Y(0) are known 
for each observation i, we can also compute "unfeasible" estimators of para- 
meters of the marginal distributions of Y(1) and Y(0). Finally, we compared 
the naive and the unfeasible estimators with the one proposed in this article 
in terms of bias, root mean squared error (RMSE), median absolute error 
(MAE), and coverage rate (CR) of 90% confidence intervals. As we expected, 
the unfeasible estimator had the best performance, but it was closely followed 
by the reweighting estimator in all those measures. The asymptotic variance 
was estimated using the analytical expression provided in this paper and it was 
compared to the variance estimate generated through the 1,000 experiment 
replications. 

The results indicate that the reweighting estimator performs well according 
to RMSE and MAE criteria. Coverage rates of the reweighting estimator were 
close to those from the unfeasible estimator and to 90%. The naive estimator 
had, as expected, the worst performance in all those measures. Also, looking 
separately at bias and variance terms, it is clear that the bias vanishes rela- 
tively fast as the sample increases for all of the quantiles being estimated by 
the reweighting method; the same situation does not occur with the naive esti- 
mator. Analytical standard errors tend to be (either looking at the average or 
at the median) close to the Monte Carlo standard errors for all sample sizes 
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and quantiles. This indicates that bootstrapping may be a good alternative to 
analytical standard errors estimation. 

6. CONCLUSION 

For applications in which the exogeneity assumption is likely to hold, this pa- 
per has shown how to estimate the quantile treatment effects using a two-step 
procedure. The estimator is shown to be root-N consistent and asymptotically 
normal. We also calculated the semiparametric efficiency bound and proved 
that this quantile treatment effects estimator achieves it. 

We investigated identification, estimation, and inference for QTE and QTT 
parameters, which are differences in solutions of minimization problems. Un- 
der the assumptions used in this article, the method developed here could be 
extended to quantities that are solutions to the general problem 

(11) 51 - o 
= argminE[m(Y(1); )] -argminE[m(Y(O); [)] 

= argminE 
p(X) .m(Y; )] 

- arg minE1- p(X m(Y) S1- p(X) 
for some known real-valued function m. There are several examples of func- 
tions m, but two of the most important ones are m(Y; ?) = (Y - )2, which 
allows us to use the identification result of Equation (11) to compute average 
treatment effects, and m(Y; ?) = p,(Y - ?), the check function, which was 
used in this paper to compute quantile treatment effects. Finally, note that if a 
random sample of (Y, T, X) were available, estimation of (1 and ?o would fol- 
low by replacing population moments by their sums and replacing the weights 
by W& and o, respectively. 

Whereas there are many inequality measures that are functions of quantiles, 
an obvious extension of the method presented here would involve estimation 
of inequality measures for the potential outcomes. Several relevant inequality 
measures are of interest in the applied literature. The framework developed 
here could be extended to estimate and infer the response of such inequality 
measures to a treatment. 

Another extension would deal with the fact that under the current assump- 
tions, the quantiles of the treatment effects distribution are not point identified 
and, therefore, a strategy to compute bounds, in the spirit of Manski (2003), 
could be an alternative. Thus, a natural extension is to provide conditions for 
interval identification for those quantiles and to provide estimates of those in- 
tervals. A comparison between the two methods would be useful in the sense of 
establishing how close differences in quantiles of potential outcomes are to the 
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quantiles of the treatment effects even when no rank preservation assumptions 
are invoked. 
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