
IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS—PART B: CYBERNETICS, VOL. 40, NO. 3, JUNE 2010 719

Efficient Sensor Selection for
Active Information Fusion

Yongmian Zhang, Member, IEEE, and Qiang Ji, Senior Member, IEEE

Abstract—In our previous paper, we formalized an active infor-
mation fusion framework based on dynamic Bayesian networks to
provide active information fusion. This paper focuses on a central
issue of active information fusion, i.e., the efficient identification of
a subset of sensors that are most decision relevant and cost effec-
tive. Determining the most informative and cost-effective sensors
requires an evaluation of all the possible subsets of sensors, which
is computationally intractable, particularly when information-
theoretic criterion such as mutual information is used. To over-
come this challenge, we propose a new quantitative measure
for sensor synergy based on which a sensor synergy graph is
constructed. Using the sensor synergy graph, we first introduce
an alternative measure to multisensor mutual information for
characterizing the sensor information gain. We then propose an
approximated nonmyopic sensor selection method that can effi-
ciently and near-optimally select a subset of sensors for active
fusion. The simulation study demonstrates both the performance
and the efficiency of the proposed sensor selection method.

Index Terms—Active information fusion, Bayesian networks
(BNs), sensor selection, situation awareness.

I. INTRODUCTION

INFORMATION fusion is playing an increasingly important

role in improving the performance of sensory systems for

various applications, including situation assessment, enemy

intent understanding and prediction, and threat assessment.

As sensors become ubiquitous, persistent, and pervasive, and

coupled with the ever increasing demand for less time and fewer

resources, it becomes critically important to perform selective

fusion so that decision can be made in a timely and efficient

manner. The need for sensor selection is further demonstrated

by the availability of an increasingly large volume of sensory

data and by the variability of sensor reliability over time and

over location. It is important to select the sensors not only to

reduce the amount of data to integrate but also to improve fusion

accuracy by selecting the most reliable sensors for a certain

location at a certain time, by selecting complementary sensors,

and by reducing sensor redundancy. Active fusion serves these

purposes well. Active fusion extends the paradigm of informa-
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Fig. 1. BN is used for active information fusion, where Θ and Si are hypoth-
esis and sensors, respectively. Xi and Yi are the intermediate variables, and
they are needed to model the relationships among sensors and the hypothesis.
Sensor fusion is accomplished through probabilistic inference given the sensory
measurements.

tion fusion by being not only concerned with the methodology

of how to combine information but also concerned with the

fusion efficiency, timeliness, and accuracy. Active fusion can

be defined as the process of combining data with a control

mechanism that dynamically selects a subset of sensors to

minimize uncertainty in situation assessment and to maximize

the overall expected utility in decision making.

In our previous work [1], we formalized an information fu-

sion framework based on Bayesian networks (BNs) to provide

active and sufficing information fusion. BNs are used to model

a number of uncertain events, their spatial relationships, and

the sensor measurements. Given the sensory measurements,

information fusion is performed through probabilistic inference

using the BN. This can be accomplished through bottom-up

belief propagation, as illustrated in Fig. 1. Our previous work,

however, did not address the core issue in active fusion, i.e.,

efficient sensor selection. This is the focus of this paper.

Based on information theory [2], the more sensors1 we

use, the more information we can obtain. However, every

act of information gathering incurs cost. Sensor costs may

include physical costs, computational costs, maintenance costs,

and human costs (e.g., risk). Many applications are often

constrained by limited time and resources. An essential issue

for active information fusion is to select a subset of the most

1For generality, sensors could refer to any devices/means of acquiring
information. For example, they may be electromagnetic or acoustic devices or
they could also be direct observations of the world through reconnaissance and
intelligence gathering activities.

1083-4419/$26.00 © 2009 IEEE



720 IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS—PART B: CYBERNETICS, VOL. 40, NO. 3, JUNE 2010

synergetic sensors, which can maximally reduce the uncertainty

about the events of interest with minimum costs. Dynamically

determining the best set of sensors, given the uncertainty about

the state of the world, requires to enumerate all the possible

subsets of sensors, which is computationally intractable and

practically infeasible. This computational difficulty is twofold.

First, the computation of a sensor selection criterion such as

mutual information is exponential with respect to the number

of sensors. Second, searching for an optimal subset of sensors

is also NP-hard, since the sensor space exponentially increases

with the number of sensors. To address this computational

difficulty, a common practice is to use myopic analysis,

which assumes that only one observation will be available at

a time, even when there is an opportunity to make a set of

observations [3]–[6]. There is a vast literature on the problem

of single optimal sensor selection [7]–[9]. However, the myopic

approach cannot guarantee to obtain the best evidences that

most effectively reduce uncertainty and cost. To effectively

reduce uncertainty and cost, one should use nonmyopic

selection, which simultaneously considers several observations

before making a decision. The most common nonmyopic

method is the greedy approach. While efficient, it cannot

guarantee optimality with the selected sensors. Other works

try to overcome the limitations with the greedy approach, yet

with their own strong assumptions. In [10], Heckerman et al.

presented an approximate nonmyopic approach based on the

central-limit theorem in an influence diagram (ID) for effi-

ciently computing the value of information. Their method, how-

ever, assumes that the sensors are conditionally independent

of each other, given the decision variable, and that the decision

variable is binary. Krause and Guestrin [11], [12] presented

a randomized approximation algorithm for selecting a near-

optimal subset of observations for graphical models. Under

the assumptions that the sensors are conditionally independent

given the decision variables, the information gain is then

guaranteed to be a submodular function, and the theory of

submodular functions can then be applied to achieve a near-

optimal solution in selecting a subset of observations using a

greedy approach. Recently, Liao and Ji [13] have presented an

approximation algorithm for the nonmyopic computation of

the value of information in an ID. Their method extends the ap-

proach in [10] without requiring the sensors being conditionally

independent of each other and the decision node being binary.

This paper takes another avenue of approach to efficiently

select a subset of near-optimal sensors without the strong sensor

independence assumptions, as made in [10] and [12]. Specifi-

cally, we first introduce a new quantitative measure of sensor

synergy based on mutual information. Based on the synergy

measure, we then introduce a method to efficiently compute

the least upper bound (LUB) of mutual information for a set of

sensors. Experiments show that the LUB closely approximates

the mutual information in value, as shown in Figs. 5 and 6.

Hence, the computational difficulty with computing the exact

nonmyopic mutual information can, therefore, be circumvented

by computing its LUB instead. In addition, the synergy measure

can also be used to prune the sensor space, which, therefore,

reduces the search time for the best sensor set. A summary of

the mentioned work may be found in [14].

II. PROBLEM FORMULATION

The problem of sensor selection for active fusion can be

stated as follows: Assume that there are m sensors Si, i =
1, . . . , m, available that provide measurements of the world. Let

Θ be a set of hypothesis θk of the world situation k = 1, . . . , K.

Let S = {S1, . . . , Sn} be a subset of n sensors selected at time

t, where n ∈ {1, . . . , m}. Let C(S) be the cost to use the set of

sensors S. The objective of sensor selection at time t + 1 is to

select a subset of sensor S
∗ to achieve the maximal utility, i.e.,

S
∗ = arg max

S∈S
U(u1, u2) (1)

where u1 and u2 denote information gain (i.e., the mutual

information) and the sensor usage cost saving, respectively, S
represents all the possible subsets of sensors, and U(u1, u2)
is a utility function. Here, we use u2 = 1 − C(S) to convert

the sensor usage cost to the corresponding cost saving, which

makes u1 and u2 qualitatively equivalent. For simplicity, in

this paper, we assume that the cost is the same for all sensors.

Hence, we can ignore u2.

The major difficulty of using (1) for sensor selection is to

efficiently compute the information gain u1. From information

theory, the entropy of hypothesis Θ given a sensor Si measures

how much uncertainty exists in Θ given Si, i.e.,

H(Θ |Si) = −
∑

si

∑

Θ

P (θ, si) log P (θ | si) (2)

where si denotes a reading of sensor Si.
2 Subtracting H(Θ |Si)

from the original uncertainty in Θ without Si, i.e., H(Θ), yields

the expected amount of information about Θ that Si is capable

of providing

I(Θ;Si) = H(Θ) − H(Θ |Si)

= −
∑

Θ

P (θ) log P (θ)

+
∑

Si

{

P (si)
∑

Θ

P (θ | si) log P (θ | si)

}

=
∑

Θ

∑

Si

P (θ, si) log
P (θ | si)

P (θ)
(3)

where I(Θ;Si) is referred to as the mutual information, which

characterizes the expected total uncertainty-reducing potential

of Θ due to Si. The mutual information for a sensor set S =
{S1, . . . , Sn} can be obtained by

I(Θ;S)

= H(Θ) − H(Θ |S)

= −
∑

Θ

P (θ) log P (θ)

+
∑

Θ

∑

S1

· · ·
∑

Sn

{P (θ, s1, . . . , sn) log P (θ | s1, . . . , sn)}

=
∑

Θ

∑

S1

· · ·
∑

Sn

{

P (θ, s1, . . . , sn) log
P (θ | s1, . . . , sn)

P (θ)

}

(4)

2Without loss of generality, here we assume discrete sensor measure-
ment. The theories can be straightforwardly extended to continuous sensor
measurements.
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where P (θ, s1, . . . , sn) and P (θ | s1, . . . , sn) at time t can

directly be obtained through BN inference. The mutual infor-

mation in (4) provides a sensor selection criterion in terms of

the uncertainty reduction potential, i.e., mutual information.

It is clear from (4) that when the number of sensors in S is

large or when the number of states for each sensor is large, it

becomes computationally impractical to simply implement this

information-theoretic criterion, because it generally requires

time exponential in the number of summations to exactly

compute the mutual information. The remainder of this paper

addresses this computational difficulty.

III. APPROXIMATION ALGORITHM

In this section, we give a graph-theoretic definition of sensor

synergy. We then present the theorems on which our algorithm

is based.

A. Sensor Synergy in Information Gain

Throughout this section, it is assumed that we have obtained

I(Θ;Si, Sj) and I(Θ;Si), i.e., the mutual information of all

pairs of sensors and individual sensors with respect to Θ,

respectively. We will introduce an efficient method to obtain

all I(Θ;Si, Sj) in Section III-C. We first define a synergy

coefficient to characterize the synergy between two sensors, and

then extend this definition to multiple sensors.

Definition 1 (Synergy Coefficient): A measure of the ex-

pected synergetic potential between two sensors Si and Sj in

reducing the uncertainty of hypothesis Θ is defined as

rij =
I(Θ;Si, Sj) − max(I (Θ;Si), I(Θ;Sj))

H(Θ)
. (5)

The denominator H(Θ) in (5) is to restrict rij to the interval

[0, 1]. It can easily be proved that rij ≥ 0 based on the “infor-

mation never hurts” principle [2], i.e., I(Θ;Si, Sj) ≥ I(Θ;Si),
and I(Θ;Si, Sj) ≥ I(Θ;Sj). This follows that Si and Sj taken

together are always more informative than when they are taken

alone. The larger rij is, the more synergetic the sensors Si

and Sj are. Obviously, r(·, ·) is symmetrical in Si and Sj , and

rij = 0 if i = j.

Definition 2 (Synergy Matrix): Let a sensor set be S =
{S1, . . . , Sn}. The sensor synergy matrix is an n × n matrix

defined as

R =

⎡

⎢

⎣

0 r12 · · · r1n

r21 0 · · · r2n

· · · · · · · · · · · ·
rn1 rn2 · · · 0

⎤

⎥

⎦
. (6)

R is an information measure of synergy among sensors that

is based on pairwise sensor synergy. With a synergy matrix, we

naturally define its graphical representation.

Definition 3 (Synergy Graph): Given a sensor synergy ma-

trix, a graph G = (S,E), where S’s are the nodes representing

the set of available sensors, and E’s are the links representing

the set of pairwise synergetic links weighted by synergy coeffi-

cients rij , is a sensor synergy graph.

Fig. 2. Example of synergy graph with five sensors.

Fig. 3. (a) Synergy chain {S1, S2, S3, S4} (highlighted) on a pruned synergy
graph. (b) Corresponding MSC.

We use the synergy graph to graphically represent the syn-

ergy among multiple sensors. By definition of the synergy, G is

a complete graph, i.e., there is a link between any two nodes in

the graph. Fig. 2 gives an example synergy graph consisting of

five sensors.

Definition 4 (Pruned Synergy Graph): A pruned synergy

graph is created from a synergy graph after removing some

links. A pruned synergy is, therefore, not a complete graph.

Fig. 3 shows an example of a pruned synergy graph. To

further exploit the theoretical properties of mutual information

I(Θ;S) for a set of sensors, we give the following definitions.

Definition 5 (Synergy Chain): Given a pruned synergy graph

G, if all the sensors in a subset on G are serially linked, then

this subset of sensors is referred to as a sensor synergy chain.

Note that while the sensors in a set S are generally order

independent, the sensors in a synergy chain are order dependent

and sequentially ordered.

Definition 6 (MSC): Given a synergy chain with n sen-

sors, for all i = 1, . . . , n − 1, if p(Si+1 |S1, S2, . . . , Si) =
p(Si+1 |Si), then the chain that describes the synergetic re-

lationship among {S1, . . . , Sn} is a Markov synergy chain

(MSC). An MSC is also ordered.

Fig. 3 graphically shows the above definitions about the

synergy chain in a pruned synergy graph. The MSC represents

an ideal synergetic relationship among sensors. The MSC rarely

exists in practice, but this does not prevent us from using it as a

basis for the graph-theoretic analysis of synergy among sensors.

In fact, as to be shown later, the concept of MSC is used to

define the upper bound for the mutual information of a set of

sensors. With the above definitions, we give the following two

theorems.
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Fig. 4. Illustration of a set of possible MSCs for a set unordered four sensors
in a pruned synergy graph.

Theorem 1 (MSC Rule): Given an MSC with a set of ordered

sensors S = {S1, . . . , Sn}, for any n, the joint mutual informa-

tion with respect to Θ for sensors on an MSC is

IM (Θ;S1, . . . , Sn)

= I(Θ;S1) +

n−1
∑

i=1

(I(Θ;Si, Si+1) − I(Θ;Si)) . (7)

The proof of this theorem can be found in Appendix A. We

want to make note that the mutual information for an MSC is

sensor-order dependent due to the pairwise synergy definition.

The significance of Theorem 1 is that it allows us to efficiently

compute the joint mutual information for n (n > 2) ordered

sensors as a sum of mutual information of only singleton and

pairwise sensors if the set of sensors forms an MSC. In contrast

to (4), the computational cost of (7) is dramatically reduced.

Although (7) is particularly for an MSC, the theorem above has

some useful properties that can be used for the solution of our

sensor selection problem.

Theorem 2 (Synergy Upper Bound): For a set of unordered

sensors S = {S1, . . . , Sn}, its mutual information is upper

bounded by the mutual information of the corresponding

MSC, i.e.,

I(Θ;S1, . . . , Sn) ≤ IM (Θ;S1, . . . , Sn). (8)

The proof of this theorem is provided in Appendix B. Please

note that while I(Θ;S1, . . . , Sn) is sensor-order independent,

IM (Θ;S1, . . . , Sn) is sensor-order dependent. As a result, de-

pending on the order of sensors in S, different MSCs may be

produced. Let

IM
min = arg min

S

(

IM (Θ;S)
)

IM
max = arg max

S

(

IM (Θ;S)
)

(9)

where S denotes all the possible orders of a sensor

set {S1, . . . , Sn}. IM
min is referred to as the LUB of

I(Θ;S1, . . . , Sn), and IM
max is referred to as the greatest upper

bound (GUB) of I(Θ;S1, . . . , Sn). For example, in Fig. 4, the

sensor set S = {S1, S2, S3, S4} has multiple MSCs, as given in

this figure, and there exist a LUB and a GUB of I(Θ;S).
We are particularly interested in the LUB of I(Θ;S) due

to two reasons. First, it can be seen from Figs. 5 and 6 that

the LUBs of I(Θ;S) closely follow the trend of I(Θ;S) in

the entire space of sensor subsets. Second, the exact value of

I(Θ;S) and its LUB are quantitatively very close in value.

Thus, IM
min(Θ;S) provides a substitute measure for I(Θ;S)

Fig. 5. Bound of mutual information I(Θ, S) and its exact value from a six-
sensor BN model. The X-axis represents the indexes of 41 sensor subsets.
Labels 1–20 are the indexes of the three-sensor subsets; Labels 21–35 are the
indexes of the four-sensor subsets; and Labels 36–41 are the indexes of the
five-sensor subsets.

Fig. 6. Bound of mutual information I(Θ, S) and its exact value from a
ten-sensor BN model. The X-axis represents the indexes of sensor subsets.
For clarity, the figure only shows 66 subsets out of 627. Labels 1–18 are the
indexes of the five-sensor subsets; Labels 19–34 are the indexes of the six-
sensor subsets; Labels 35–51 are the indexes of the seven-sensor subsets; and
Labels 52–66 are the indexes of the eight-sensor subsets.

that can be used to evaluate an optimal sensor subset. Im-

portantly, the LUBs of I(Θ;S) can simply be written as the

sum of the mutual information of only pairwise sensors and

singleton sensors, as shown in (7), hence, with relatively very

low computational cost. Therefore, the computational difficulty

in exactly computing the higher-order mutual information can

be circumvented by only computing the LUBs of the mutual

information. This is the central strategy of our approach.

B. Pruning Synergy Graph

The synergy graph is a completely connected network due to

the weights of synergy graph rij ≥ 0. Some sensors are highly

synergetic, whereas others are not. Intuitively, sensors that
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TABLE I
EXAMPLE OF SYNERGY COEFFICIENT WITHOUT PRUNING

cause a very small reduction in uncertainty of hypotheses are

those that give us the least additional information beyond what

we would obtain from other sensors. In such cases, rij is very

small. We prune the sensor synergy graph so that many weak

sensor combinations are eliminated while preserving the most

promising ones. This can significantly reduce the search space

in identifying the optimal sensor subset. We prune the synergy

matrix (the weights of the synergy graph) in (6) by using

rij =

{

1, rij > τ
0, otherwise

(10)

where τ is a pruning threshold. The selection of an appropriate

threshold τ is problem dependent. We want to note that

although there is no theoretical basis to determine a good

pruning threshold, our empirical tests, however, show that

using the arithmetic average of rij as the pruning threshold can

preserve most of the strong synergetic connections in the graph

while eliminating weak links. After pruning, a fully connected

synergy graph then becomes a sparse graph. Table I and

R =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0

0 1 1 0 0 0 1 0
0 1 0 0 0 1 1

0 1 0 0 1 1
0 0 0 1 1

0 0 0 0
0 0 0

0 1
0

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

(11)

are examples of the synergy coefficient before and after prun-

ing. Fig. 7 illustrates their corresponding synergy graph from a

completely connected network to a sparse graph after pruning.

C. Computing Pairwise Mutual Information

In the above sections, we assumed that we have known the

mutual information of the pairwise sensors I(Θ;Si, Sj). For

n sensors, there are (n(n − 1)/2) pairs of sensors. To obtain

the mutual information for one pair of sensors, it requires

four repetitions of inferences if the sensor state is binary.

Therefore, 2n(n − 1) repetitions of inference are needed for

Fig. 7. (a) Completely connected synergy graph and the links are weighted by
rij , as shown in Table I. (b) Pruned synergy graph and its corresponding matrix
as shown in (11). The pruning threshold is the average of rij , and it is 0.0161.

all pairs of sensors. Although this computation is manageable,

it still severely limits the performance as n becomes large.

Fortunately, there is an efficient way to compute the mutual

information for all pairs of sensors [15], [16].

Referring to Fig. 1, the joint probability of hypothesis Θ and

pairwise sensors {Si, Sj} may be written as in (12), shown

at the bottom of the next page, where π(x) represents the

parental nodes of node x. From (12), it can be observed that the

first factor P (Θ)
∏K

k=1 P (Xk |π(Xk))
∏M

m=1 P (Ym |π(Ym))
is related to the part of the BN structure that does not include

the sensors. The structure is, therefore, fixed, and so are its

probabilities. Hence, this term is constant, independent of the

pair of sensors used. On the other hand, the second factor

{
∑

S1,Sl,...,SN ,l �=i l �=j

∏N
n=1 P (Sn |π(Sn))} varies, depending

on the pair of sensors selected. Therefore, we do not need to

recalculate the unchanged part (the first factor) of (12) at each

time. Instead, we only need to compute it once for all pairs of

sensors, but use it over time so that the computation of pair-

wise mutual information can significantly be curtailed. Given

P (Θ, Si, Sj), it can then be substituted into (4) to compute

I(Θ;Si, Sj). Details of this method can be found in [15] and

[16]. Fig. 8 illustrates the comparative result of time saving in

computing (12) for all pairs of sensors by using our method

and by directly using two inference algorithms, namely, clique

tree propagation (CTP) [17], [18] and variable elimination (VE)

[19]. The evaluation is performed on a six-layer BN model with

10, 15, and 20 sensors.



724 IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS—PART B: CYBERNETICS, VOL. 40, NO. 3, JUNE 2010

Fig. 8. Comparison of time saving among CTP, VE, and our method in
computing (12) for all pairs of sensors. It can be seen that our method can
significantly save time.

D. Approximation Algorithm

We are now ready to provide the complete algorithm. Let

S denote the current set of selected sensors, and let lub(Θ;S)
be the LUB of I(Θ;S). The approximation sensor selection

algorithm is given in Table II. Guided by the pruned synergy

graph, the algorithm starts with the best pair of sensors iden-

tified through an exhaustive search and then searches for the

next best sensor. The next best sensor is the one, when added

to the current sensor ensemble, that yields the highest utility,

which is computed from lub(Θ;S). This process repeats, with

one sensor added to the current sensor ensemble at a time, until

the newly added sensor does not yield an improvement in sensor

utility. Although the algorithm is greedy, the searching process

is guided by a synergy graph so that the selected sensor subset

is serially connected. This, therefore, ensures both the quality

and the speed of sensor selection.

IV. ALGORITHM EVALUATION

Since the main contribution of this paper is the introduction

of an alternative measure to mutual information for efficient

sensor selection, the experimental evaluation should focus on

the effectiveness of this measure for both sensor selection accu-

racy and efficiency. We want to emphasize that the alternative

measure, i.e., the LUB of mutual information, is an approxima-

tion of the mutual information only for the purpose of sensor

selection. As a result, the quality of this approximation should

TABLE II
PSEUDOCODE OF THE APPROXIMATION ALGORITHM

TO SELECT A SUBSET OF SENSORS

be evaluated against its performance in sensor selection. For

this, we propose to measure how close the sensor selection

results using the alternative measure are to those based on

mutual information. The closeness between a sensor subset

selected using the alternative measure and a sensor subset

selected based on mutual information is quantified by the rela-

tive difference in mutual information. Based on this criterion,

we will experimentally evaluate the proposed method under

different BN topologies, different BN model complexities, and

different number of sensors.

Given two different criteria (mutual information and its

LUB) for measuring sensor gain, sensor selection can be car-

ried out by using different methods. We will perform sensor

selection using the following methods: 1) brute-force method;

2) random method, which randomly chooses one sensor at a

time to form a sensor ensemble; and 3) the proposed method.

These experiments try to demonstrate the following: 1) The

proposed LUB criterion suboptimally works for different meth-

ods. 2) Given the same sensor selection criterion, the proposed

greedy approach outperforms the random sensor selection

method.

P (Θ, Si, Sj) =
∑

S1,Sl,...,Sn,l �=i l �=j

{

P (Θ)

K
∏

k=1

P (Xk |π(Xk))

M
∏

m=1

P (Ym |π(Ym))

N
∏

n=1

P (Sn |π(Sn))

}

=P (Θ)

K
∏

k=1

P (Xk |π(Xk))

M
∏

m=1

P (Ym |π(Ym))

⎧

⎨

⎩

∑

S1,Sl,...,Sn,l �=i l �=j

N
∏

n=1

P (Sn |π(Sn))

⎫

⎬

⎭

(12)
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Fig. 9. Generic example of the BN network used for evaluation, where the
top layer is for the hypothesis, and the bottom layer is for the sensors. The
intermediate layers are arbitrarily and randomly connected.

We first compare the performance of the proposed sensor

selection method in Table II with the brute-force method.

The brute-force method exhaustively identifies the best sensor

subset by the exact mutual information. The study is done by

using different numbers of sensors and different BN topologies.

Fig. 9 shows a generic example of a BN used for the evaluation.

Due to the exponential time with the brute-force approach,

we limit our test models to up to five layers and up to ten

sensors or less. The exact number of layers, the connections

among nodes in the intermediate layers, and the number of

sensors are randomly generated so that ten different BNs with

different topologies are generated. For each randomly generated

BN topology, its parameters are randomly parameterized ten

times to produce ten differently parameterized BNs for each

selected topology. This yields a total of 100 test models. Fig. 10

shows two examples of BNs used for this paper.

The results averaged among 100 trials are shown in Table III,

where the closeness is defined as the relative difference in

mutual information between the solution from our approach and

the solution from the brute-force approach. It can be seen that

the solution with our method is close to the sensor selection

results using the brute-force method. For further comparison,

the run time of the two methods is measured on a 2.0-GHz com-

puter, and the run time averaged among ten trials is summarized

in Table III. Compared with the brute-force method, our method

significantly reduces the computation time with minimum loss

in sensor selection accuracy.

To demonstrate the improvement of the proposed method

over random sensor selection, the results of random sensor

selection are also included in Table III. For a fair comparison,

we first use our method to select a best subset and then use the

random method to select a subset of the same size using the

same criterion. To account for the random nature of random se-

lection, the results are averaged, and the averaged result is used

to compare against the result from our method. Compared with

the random sensor selection, our method shows a significant

improvement in sensor selection accuracy.

Finally, we want to note that the randomly generated BN

topologies (for example, the BNs in Figs. 9 and 10) may not

necessarily satisfy the assumption needed for Theorem 1 to

hold. Despite this, the selected sensors remain close (in mutual

information) to those selected by the brute-force method, as

demonstrated in Table III. We also repeat the above experiments

by using naive BNs. The parameters of BNs are randomly

generated. We selected k sensors from n sensors (k < n)
without considering sensor costs. The sensors selected by the

brute-force method and by our approach have no difference.

V. CONCLUSION

It is computationally difficult to identify an optimal sen-

sor subset with the information-theoretic criterion. To address

problem, we have presented an approximation method to find

a near-optimal sensor subset by utilizing the sensor pairwise

information to infer the synergy among sensors. Specifically,

this paper includes the following aspects: First, we propose to

use a BN to represent sensors, their dependencies, and their

relationships to other latent variables. In addition, the built-

in conditional independence assumptions with the BNs allow

factorizing the joint probabilities so that fusion can efficiently

be performed. Second, we introduce a statistical measure to

quantify the pairwise synergy among sensors. Based on the

synergy measure, a synergy graph is constructed, which is used

to infer synergy among multiple sensors, based on which we

can then eliminate many unpromising sensor combinations.

Finally, for the remaining sensor combinations, a greedy ap-

proach is introduced to identify the optimal sensor combination

based on the LUB of the joint mutual information. The use of

the LUB of the joint mutual information instead of the joint

mutual information itself significantly reduces the computation

time with minimum loss in accuracy. We demonstrate both the

optimality and the efficiency of the proposed method through

many random simulations under different numbers of sensors

and different relationships among sensors.

A major assumption of this paper is that the two sensors are

conditionally independent of each other, given another sensor

between the two sensors and the fusion result. This assumption

could limit the utility of this paper. As part of the future

research, we will study ways to overcome this assumption.

Another assumption we made in this paper is that all the

sensors have the same cost. Such an assumption is not realistic

for many applications. Overcoming this assumption, however,

requires incorporating the sensor cost into the proposed synergy

function, which is a nontrivial task. We will study this issue in

the future as well.

APPENDIX

In the following, we introduce our proof for Theorems 1 and 2.

A. Proof of Theorem 1

Before proving Theorem 1, we give the following lemma.

Lemma 1 (Chain Rule of Mutual Information): Letting X ,

Y1, . . . , Ym be random variables, then

I(X;Y1, . . . , Ym) = I(X;Y1) +

M
∑

i=2

I(X;Yi |Y1, . . . , Yi−1).

(13)
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Fig. 10. Two specific examples of BN structures with different numbers of sensors used for the evaluation.

TABLE III
COMPARISON OF THE PROPOSED METHOD AND THE BRUTE-FORCE METHOD

The proof of Lemma 1 is straightforward [2]. We now turn to

proving Theorem 1.

Proof: Based on Lemma 1, we have

I(Θ;S1, . . . , Sm)

= I(Θ;S1)+I(Θ;S2 |S1)+I(Θ;S3 |S1, S2)

+ I(Θ;S4 |S1, S2, S3)+· · ·+I(Θ;Sm |S1, . . . , Sm−1).

(14)

We start with an MSC containing four random variables

{Θ, S1, S2, S3}, then extend it to five variables, and finally

to a finite number of arbitrary random variables forming an

MSC. Notice that Θ is the hypothesis, and S1, S2, S3 are the

sensors.

Based on Definition 6 of MSC, S1 and S3 are conditionally

independent given S2, i.e., P (S3 |S1, S2) = P (S3 |S2). First,

we prove that the following equation holds when S1 and S3 are

conditionally independent given S2:

I(Θ;S3 |S2) = I(Θ;S3 |S1, S2) (15)

I(Θ;S3 |S1, S2)

=
∑

Θ,S1,S2,S3

p(θ, s1, s2, s3)

{

lg
p(θ, s3 | s1, s2)

p(θ | s1, s2)p(s3 | s1, s2)

}

=
∑

Θ,S1,S2,S3

p(θ, s1, s2, s3)

{

lg
p(θ, s3, s1, s2)

p(θ, s1, s2)p(s3 | s2)

}

=
∑

Θ,S1,S2,S3

p(θ, s1, s2, s3)

{

lg
p(s3 | θ, s1, s2)

p(s3 | s2)

}

=
∑

Θ,S1,S2,S3

p(θ, s1, s2, s3)

{

lg
p(s3 | θ, s2)

p(s3 | s2)

}

=
∑

Θ,S2,S3

p(θ, s2, s3)

{

lg
p(s3 | θ, s2)

p(s3 | s2)

}

=
∑

Θ,S2,S3

p(θ, s2, s3)

{

lg
p(s3, θ | s2)

p(θ | s2)p(s3 | s2)

}

= I(Θ;S3 |S2). (16)

Please note that for the derivations in (16), we assume that

p(S3 |Θ, S1, S2) = p(S3 |Θ, S2), i.e., S3 and S1 are condition-

ally independent given both Θ and S2, where Θ is a random

variable representing the fusion result, and Si is a sensor. The

typical relationships between Θ and Si are illustrated in Fig. 1,

where Θ is typically the root node, and Si’s are the leaf nodes in

the BN. Given this understanding, if the BN is such that the path

(undirected path) between two sensor nodes (e.g., S1 and S3)

goes through Θ node (e.g., the BN in Fig. 1), then following the

D-separation principle for BN, p(S3|Θ, S1, S2) = p(S3|Θ, S2)
holds. Please note that this assumption only holds for some

BNs, such as the one in Fig. 1 and the naive BN. It may not

hold for an arbitrary BN.

From the chain rule of mutual information, we have

I(Θ;S3, S2) = I(Θ;S2) + I(Θ;S3 |S2). (17)

Hence, combining (16) and (17) yields

I(Θ;S3 |S1, S2) = I(Θ;S2, S3) − I(Θ;S2). (18)
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Now, we want to apply the similar algebraic process to prove

I(Θ;S4 |S1, S2, S3) = I(Θ;S4 |S3) in (19), shown at the

bottom of the page, given the Markov conditions that P (S4 |S2,
S3) = P (S4 |S3), P (S1 |S3, S2) = P (S1 |S2), P (S4 |S1,
S2) = P (S4 |S2), and P (S4 |S1, S3) = P (S4 |S3). By mutual

information chain rule, we have I(Θ;S3, S4) = I(Θ;S3) +
I(Θ;S4 |S3), i.e.,

I(Θ;S4 |S3) = I(Θ;S3, S4) − I(Θ;S3). (20)

Combining (19) and (20) produces

I(Θ;S4 |S1, S2, S3) = I(Θ;S4 |S3)

= I(Θ;S3, S4) − I(Θ;S3). (21)

Finally, we can generalize the above process to prove

I(Θ, Sm |S1, S2, . . . , Sm−1)

= I(Θ;Sm−1, Sm) − I(Θ;Sm−1). (22)

Substituting the results in (18), (21), and (22) into (14) yields

I(Θ;S1, S2, . . . , Sm)

= I(Θ;S1) + I(Θ;S2 |S1) + I(Θ;S3, S2)

− I(Θ;S2) + I(Θ;S3, S4) − I(Θ;S3) + · · ·

+ I(Θ;Sm−1, Sm) − I(Θ;Sm−1)

= I(Θ;S1) + I(Θ;S2, S1) − I(Θ;S1) + I(Θ;S3, S2)

− I(Θ;S2) + I(Θ;S3, S4) − I(Θ;S3) + · · ·

+ I(Θ;Sm−1, Sm) − I(Θ;Sm−1)

= I(Θ;S1) +

M
∑

i=2

I(Θ;Sm−1, Sm) − I(Θ;Sm−1). (23)

This completes the proof for Theorem 1. �

B. Proof of Theorem 2

Proof: We want to prove

I(Θ;S1, . . . , Sm) ≤ IM (Θ;S1, . . . , Sm). (24)

From the mutual information chain rule, we have

I(Θ;S1, S2, . . . , Sm)

= I(Θ;S1) + I(Θ;S2 |S1)

+ I(Θ;S3 |S1, S2) + I(Θ;S4 |S1, S2, S3) + · · ·

+ I(Θ;Sm |S1, S2, . . . , Sm−1). (25)

By Theorem 1, we have

IM (Θ;S1, . . . , Sm)

= I(Θ;S1) + I(Θ;S2 |S1) + I(Θ;S3 |S2)

+ I(Θ;S4 |S3) + · · · + I(Θ, Sm |Sm−1). (26)

By the definition of mutual information, we have

I(Θ;S3;S2;S1) = I(Θ;S3;S2) − I(Θ;S3;S2 |S1) (27)

which readily leads to

I(Θ;S3;S2 |S1) = I(Θ;S3 |S2) − I(Θ;S3 |S2, S1). (28)

Hence

I(Θ;S3 |S2, S1) = I(Θ;S3 |S2) − I(Θ;S3;S2 |S1). (29)

Therefore

I(Θ;S3 |S2) ≥ I(Θ;S3 |S1, S2).

Please note that we assume here that I(Θ;S3;S2 |S1) > 0,

which is correct since for our application Θ (the hypothesis)

I(Θ;S4 |S1, S2, S3)

=
∑

Θ,S1,S2,S3,S4

p(θ, s1, s2, s3, s4)

{

lg
p(θ, s4|s1, s2, s3)

p(θ | s1, s2, s3)p(s4|s1, s2, s3)

}

=
∑

Θ,S1,S2,S3,S4

p(θ, s1, s2, s3, s4)

{

lg
p(θ, s4, s1, s2, s3)

p(θ, s1, s2, s3)p(s4|s3)

}

=
∑

Θ,S1,S2,S3,S4

p(θ, s1, s2, s3, s4)

{

lg
p(s4|θ, s1, s2, s3)

p(s4|s3)

}

=
∑

Θ,S1,S2,S3,S4

p(θ, s1, s2, s3, s4)

{

lg
p(s4|θ, s3)

p(s4|s3)

}

=
∑

Θ,S3,S4

p(θ, s3, s4)

{

lg
p(s4|θ, s3)

p(s4|s3)

}

=
∑

Θ,S2,S3

p(θ, s3, s4)

{

lg
p(s4, θ | s3)

p(θ | s3)p(s4|s3)

}

= I(S4; Θ |S3) = I(Θ;S4 |S3) (19)
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and the other variables (sensors) are not independent of each

other.

Similarly, we have I(Θ;S4 |S3) ≥ I(Θ;S4 |S1, S2, S3) and

I(Θ;Sm |Sm−1) ≥ I(Sm |S1, S2, . . . , Sm−1).
Hence, (26) ≥ (25). The equality sign holds when the

Markov property between neighbor sensors is true.

Hence, this completes the proof for Theorem 2. �
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Abstract—As sensors become more complex and prevalent, they
present their own issues of cost effectiveness and timeliness. It
becomes increasingly important to select sensor sets that provide
the most information at the least cost and in the most timely and
efficient manner. Two typical sensor selection problems appear
in a wide range of applications. The first type involves selecting
a sensor set that provides the maximum information gain within
a budget limit. The other type involves selecting a sensor set
that optimizes the tradeoff between information gain and cost.
Unfortunately, both require extensive computations due to the
exponential search space of sensor subsets. This paper proposes
efficient sensor selection algorithms for solving both of these
sensor selection problems. The relationships between the sensors
and the hypotheses that the sensors aim to assess are modeled
with Bayesian networks, and the information gain (benefit) of
the sensors with respect to the hypotheses is evaluated by mutual
information. We first prove that mutual information is a submod-
ular function in a relaxed condition, which provides theoretical
support for the proposed algorithms. For the budget-limit case,
we introduce a greedy algorithm that has a constant factor of
(1 − 1/e) guarantee to the optimal performance. A partitioning
procedure is proposed to improve the computational efficiency
of the algorithms by efficiently computing mutual information
as well as reducing the search space. For the optimal-tradeoff
case, a submodular–supermodular procedure is exploited in the
proposed algorithm to choose the sensor set that achieves the
optimal tradeoff between the benefit and cost in a polynomial-time
complexity.

Index Terms—Active fusion, Bayesian networks (BNs), sensor
selection, submodular function.

I. INTRODUCTION

MANY real-world applications use sensors to obtain in-

formation that will help them improve their activities.

Here, sensor is a general term; it could refer to a test, a

feature, an observation, an evidence, etc. Rarely is only one

sensor needed, however. Most applications use several sensors

of different kinds, which we refer to as sensor sets. As sensors

become more prevalent and ubiquitous, they present their own

issues of cost effectiveness and timeliness. It becomes critically
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important to select sensor sets that provide the most information

at the least cost in a timely and efficient manner. For example, in

fault diagnosis problems (medical diagnosis, computer system

troubleshooting, etc.) [8], [49], a set of informative tests needs

to be selected to provide an optimal tradeoff between the cost

of performing the tests and the accuracy of diagnoses. In sensor

networks [11], [26], [27], a subset of sensors needs to be

selected to achieve a suboptimal tradeoff between the energy

consumption of operating the sensors and the information gain.

In pattern recognition [21], [33], [42], good features need to be

selected to guarantee the performance of the classifiers.

Purposely choosing an optimal subset from multiple sens-

ing sources can save computational time and physical costs,

avoid unnecessary or unproductive sensor actions, reduce re-

dundancy, and increase the chance of making correct and timely

decisions. Because of these benefits, sensor selection plays

a particularly important role for time-critical and resource-

limited applications, including computer vision, control sys-

tems, sensor networks, diagnosis systems, and many military

applications.

Basically, sensor selection problems can be divided into

two types. The first type, called a budget-limit case, involves

choosing a sensor set with maximum information gain given a

budget limit. The other type, called an optimal tradeoff case,

involves deciding a sensor set that achieves an optimal tradeoff

between the information gain and the cost. Unfortunately, both

of them are NP-hard, since the number of sensor subsets grows

exponentially with the total number of sensors.

Most work formulates sensor selection as an optimization

problem based on information-theory or decision-theoretic cri-

teria. However, solving the optimization problem efficiently

is difficult since the search space usually is large. To be

practical, some methods [11], [26], [45] select the best sensor

myopically or select the first m sensors greedily. However,

the selected sensors could lead to poor performance, since the

selection methods cannot provide performance guarantees. Re-

cently, some sensor selection algorithms have been proposed to

achieve a balance between performance and efficiency. Isler and

Bajcsy [18] present an approximation algorithm for sensor se-

lection that aims to minimize the error in estimating the position

of a target within a sensor network. They prove that at least one

of the sensor subsets whose sizes are less or equal to six can

guarantee that the resulting estimation error is within a factor of

two of the least possible error under certain assumptions. Thus,

the algorithm is to enumerate all l-subsets (l ≤ 6) of sensors

and choose the best one. Zheng et al. [49] use a greedy test-

selection strategy to find an optimal subset of tests in a fault

diagnosis system. Similarly, this paper provides a theoretical

1083-4427/$25.00 © 2009 IEEE
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justification for the greedy test-selection approach, along with

some performance guarantees (the expected number of tests

produced by the greedy strategy is within an O(logN) factor

from the optimal solution). Krause and Guestrin [27] present

an efficient greedy approach to select the most informative

subset of variables in a graphical model for sensor networks.

The algorithm provides a constant factor (1 − 1/e − ǫ) approx-

imation guarantee for any ǫ with high confidence. However,

both algorithms of Zheng and Krause assume that the sensors

are conditionally independent given the hypotheses (i.e., the

event/situation that sensor fusion aims to assess).

We seek to achieve a balance between the performance and

the efficiency of the proposed sensor selection algorithms by

fully utilizing the properties of submodular functions and the

probabilistic relationships among sensors. The probabilistic re-

lationships between the sensors and the hypotheses are modeled

by a Bayesian network (BN). In addition, the informativeness

of the sensors with respect to the hypotheses is measured by

mutual information. We then prove that mutual information is

a submodular function under several conditions. Based on the

theory of submodular functions, in the budget-limit case, the

proposed sensor selection algorithms provide a constant factor

of (1 − 1/e) guarantee to the optimal performance. Further-

more, we propose a partitioning procedure by exploiting sensor

dependence embedded in the BN model to compute mutual

information efficiently as well as to reduce the search space, so

that the efficiency of the algorithms is further improved. In the

optimal tradeoff case, a submodular–supermodular procedure

is embedded within the proposed sensor selection algorithm to

decide the optimal or near-optimal sensor set that maximizes

the difference between benefit and cost with polynomial-time

complexity.

The following sections are organized as follows. Section II

gives a brief overview of a related work. Section III presents

the BN model for sensor selection and fusion. Section IV

introduces the sensor selection criteria. The sensor selec-

tion algorithms for the budget-limit case and the optimal-

tradeoff case are described in Sections V and VI, respectively.

Section VII discusses the experimental results based on syn-

thetic data, and Section VIII provides an illustrative application.

This paper ends in Section IX with a summary and some

suggestions for future work.

II. RELATED WORK

Sensor selection usually consists of two problems: selec-

tion criterion definition and sensor set selection based on the

defined sensor selection criterion. In general, sensor selection

can be treated as an optimization problem: finding an optimal

sensor set that maximizes the objective function defined by

the selection criterion. Most existing work can be divided into

two groups based on the sensor selection criterion they used:

information-theoretic methods and decision-theoretic methods.

A. Sensor Selection Criteria

Information-theoretic methods apply information theory to

define the objective function for sensor selection. The common

functions include Shannon’s entropy, mutual information, en-

tropy difference, and Kullback–Leibler’s (KL) cross-entropy.

Hintz [17] uses the expected change in Shannon entropy when

tracking a single target moving in one dimension with Kalman

filters. Zhang et al. [48] apply mutual information to select

an optimal sensor set based on a dynamic BN. Denzler and

Brown [9] use mutual information to determine the optimal ac-

tion (set of camera parameters, including focal length, pan, and

tilt angles) that will maximally decrease the uncertainty of the

object-state estimation process. Guo and Nixon [16] use mu-

tual information to select feature subsets for gait recognition.

Wang et al. [45] propose an entropy-based sensor selection

heuristic for target localization. Instead of using mutual infor-

mation, they use maximal entropy difference as the criterion to

choose one sensor at each step until the required uncertainty

level of the target state is achieved. The method is computa-

tionally simpler than the mutual-information-based approaches,

and their experiments demonstrate that the method can sort

candidate sensors into exactly the same order as the mutual-

information method does in most cases.

An active sensing approach, based on an entropy measure

called the Rényi divergence, is proposed by Kreucher et al. [28]

to schedule sensors for multiple-target tracking applications. At

each time step, only one sensor action is chosen to provide

measurement and thus update the probability density of the

target states. KL’s cross-entropy is used for optimal multisensor

allocation [35] and sensor management [24]. Ertin et al. [11]

employ expected posterior entropy to choose the next mea-

surement node (sensor) in a distributed Bayesian sequential

estimation framework. They show that minimizing the expected

posterior uncertainty is equivalent to maximizing the mutual

information between the sensor output and the target state.

Although information-based criteria (entropy, mutual infor-

mation, etc.) are the most commonly used functions for ranking

information sources in terms of uncertainty reduction, these cri-

teria require intensive computations, particularly when comput-

ing for multiple sensors. Therefore, the research reported in the

aforementioned papers often selects only one sensor at one time

with the information-theoretic criteria. We propose an efficient

procedure in this paper to efficiently compute mutual informa-

tion by exploiting the statistical independences among sensors.

For decision-theoretic approaches, the objective function

is defined based on decision theory, where the goal is to

choose the optimal sensory action by maximizing an over-

all utility function (e.g., tradeoff between cost and benefit).

Wu and Cameron [47] describe a mathematical framework

using Bayesian decision theory to select optimal sensing actions

for achieving a given goal, for example, for object recognition

in robot vision applications where one optimal action is de-

cided at each time step. Rimey and Brown [41], [40] build a

task-oriented computer vision system that uses BN and a

maximum-expected-utility decision rule to choose a sequence

of task-dependent and opportunistic visual operations on the

basis of their utilities.

van der Gaag and Wessels [44] build a decision tree for

selective gathering of evidence for diagnostic belief networks.

Lindner et al. [32] estimate the expected utility of each sensor

to predict the minimum cost subset of sensors for a mobile robot

application. Kristensen [29] develops a Bayesian decision tree
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to solve the problem of choosing proper sensing actions from a

family of candidates. Each sensing action is evaluated by its ex-

pected interest from sample information (EISI). The Bayesian

decision rule simply selects the one with the maximum EISI

value as the sensing action to be performed one at a time.

The most common decision-theoretic criterion is the value of

information (VOI). The VOI of a sensor set is defined as the

difference in the maximum expected utilities with and without

the information collected from the sensor set. It evaluates the

utility of the sensor set by considering both the benefit and cost

of using the sensors. The cost of operating the sensor for evi-

dence collection includes the computational cost, physical cost,

etc., while the benefits include financial benefits, performance

improvements, reduced loss, etc. Oliver and Horvitz [37], [38]

apply an expected-value-of-information (EVI)-based policy to

selective perception in SEER, a multimodal system of recog-

nizing office activity that relies on a layered hidden Markov

model (LHMM) representation. Although the system uses a

dynamic programming strategy to compute the EVI of each

feature combination based on the LHMM, it needs to enumerate

all the feature combinations and then selects the best one. The

process is therefore time-consuming.

A special group in the decision-theoretic methods is based on

Markov decision process (MDP). Bayer-Zubek [2] formalizes

the diagnosis process as an MDP to find an optimal diagnostic

policy that achieves optimal tradeoffs between the costs of tests

and the costs of misdiagnoses. Cassandra et al. [3] model the

problem of deciding optimal actions for mobile-robot naviga-

tion as a POMDP. Castanon [4] formulates the problem of dy-

namic scheduling of multimode sensor resources for classifying

a large number of stationary objects as a POMDP.

The decision-theoretic methods provide a precise formula-

tion for sensor selection problems. These measures are usu-

ally different from the information-theoretic measures such as

mutual information since they directly relate sensor/resource

allocation to decision making, while information theoretic

criterion relates sensor management to situation/event assess-

ment. On the other hand, like the information-theoretic criteria,

decision-theoretic criteria also require significant computation

for multiple sensors. As a result, like the information-theoretic

criteria, most of the aforementioned methods adopt the myopic

approach, i.e., choose only one sensing action at each step. For

example, MDP-based approaches suffer from combinatorial

explosion when solving practical problems of even moderate

size. Another problem of the decision-theoretic methods is

the subjective definition of utility functions. The utilities are

usually problem dependent and may vary as their environment

changes. In addition, for some applications, it may not be

possible to derive appropriate utilities.

B. Optimization Methods for Sensor Selection

For both the information-theoretic and decision-theoretic

criteria, optimization methods are needed to identify the opti-

mal sensor set. Methods for solving the optimization include

search methods and mathematical programming (e.g., approxi-

mate dynamic programming, integer programming, and greedy

selection strategies). One option is to use heuristic searches.

Heuristic searches use some function that estimates the cost

from the current state to the goal, presuming that such a

function is efficient. Heuristic search techniques incorporate

domain knowledge to improve efficiency over blind search.

Some heuristic searches can guarantee an optimal solution, but

they could be very slow. Thus, another search strategy is to give

up completeness and risk losing optimal subsets in exchange for

efficiency, such as sequential forward selection [46], floating

search selection [39], and simulated annealing.

However, due to the high computational cost of search al-

gorithms, in most applications involved with sensor selection,

the greedy strategy is used. This strategy can be regarded

as the simplest form of sequential search, where, at each iter-

ation, the best sensor is incorporated into the candidate sensor

set until there is no improvement in the value of the objective

function. A more complex sequential search approach, called

entropy adaptative aggregation algorithm, is proposed in [12]. It

includes an aggregative phase to heuristically choose the initial

subset and an adaptative phase to iteratively aggregate and dis-

aggregate the current subset until it converges. Kalandros et al.

[23] explore the use of randomization and superheuristics

search [31] for sensor selections in target-tracking applications.

The search begins with a base sensor set and then generates

more alternative solutions via a probabilistic assignment rule.

The best solution is decided only from the generated solutions,

and so, it may not be optimal. Kundakcioglu and Unluyurt [30]

integrate concepts from one-step look-ahead heuristic algo-

rithms and basic idea of Huffman coding to construct a

minimum-cost AND/OR decision tree bottom-up for sequential

fault diagnosis. In [1], Amari and Pham develop a method to

provide lower and upper bounds on the optimal number of

spares for each subsystem of complex repairable systems. In

this way, the search space is reduced dramatically and a near-

optimal solution can be found efficiently.

Our work differs from the foregoing work in that it explicitly

exploits the theory of submodular functions with respect to the

sensor selection criterion, and the probabilistic relationships

among sensors to achieve both efficient and accurate sensor

selections in two typical scenarios: the budget-limit case and

the optimal-tradeoff case. Hence, the proposed algorithms are

not only efficient but also they provide performance guarantees.

III. SENSOR SELECTION AND FUSION MODEL

We use dynamic BNs, as shown in Fig. 1, to model the

relationships between sensors and the hypotheses the sensors

aim to assess. Given the dynamic Bayesian network (DBN),

sensor fusion is performed through probabilistic inference. A

BN is a directed acyclic graph that represents a joint proba-

bility distribution among a set of variables [5], [22]. In a BN,

nodes denote variables and the links between nodes denote the

conditional dependences among the variables. The dependence

for each node is characterized by a conditional probability

table. A DBN additionally models the temporal relationships

of the variables. Such a model is capable of representing the

relationships among different sensors in a coherent and unified

hierarchical structure, accounting for sensor uncertainties and

dependences, modeling the dynamics in situation development
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Fig. 1. (a) Dynamic BN for active sensor selection and fusion, where Θ, X , I , and S denote hypothesis variables, intermediate variables, information variables,
and sensors, respectively. (b) All the hypotheses shares the same sensors (the naive BN). (c) Each hypothesis has its own individual sensor set. (d) Each hypothesis
has individual sensors and/or shares sensors with other hypotheses. The BN in (a) is more appropriate for high-level sensor fusion, while (b), (c), and (d) can be
regarded as special cases of the BN in (a) and are more appropriate for low-level sensor fusion.

with temporal links, and providing principled inference and

learning techniques to systematically combine the domain in-

formation and statistical information extracted from the sen-

sors. These capabilities make DBN a good choice to model

sensor selection and fusion.

As shown in Fig. 1(a), the root node Θ of such a net-

work, named as the hypothesis node, represents a mutually

exclusive and exhaustive set of possible hypotheses about the

events/situations we want to assess. For example, Θ could be

the system states in a fault diagnosis system, class labels for a

classification problem, enemy intents in a battlefield situation-

assessment scenario, etc. Sensors occupy the lowest level nodes

without any children. Evidence is gathered through sensors.

To model the integrity/reliability with sensory readings, an

information node Ii is introduced for each sensor Si. Ii contains

the information that sensor Si measures. The conditional prob-

abilities between the information node Ii and the corresponding

sensor node Si quantify the reliability of sensor measurements,

and the sensor reliability may change over time. The interme-

diate nodes X’s model the probabilistic relations between the

hypothesis and information nodes at different abstraction levels.

The DBN in Fig. 1(a) represents a typical structure for active

sensor selection and fusion using BN. However, the BN struc-

ture could be more flexible. For example, Θ is not necessarily a

root node, and there may be multiple Θ’s. In addition, Si is not

necessarily a leaf node either, and the intermediate nodes X’s

are not needed for some applications. Fig. 1 (b)–(d) shows the

different BN configurations for sensor fusion.

IV. INFORMATION GAIN AND SENSOR COST

The goal of sensor selection is to select a group of sensors

that achieves a good balance between the information gain

(benefit) and the cost of the sensors. In recent years, a com-

monly used method to measure information gain is mutual

information. With respect to Fig. 1(a), let S be a sensor set, S =
{S1, S2, . . . , Sn}; the mutual information of S with respect to

Θ, I(Θ;S), is defined as follows: I(Θ;S) = H(Θ) − H(Θ|S),
where H indicates the entropy function. I(Θ;S) measures the

uncertainty reduction of Θ given the sensors in S.

Mutual information may have a very interesting property,

called submodularity. Before we prove it, we first give the

background information about submodular functions.

Let V be a finite set, and let f be a set function: 2V �→ ℜ. A

function f is submodular if the inequality

f(A) + f(B) ≥ f(A ∩ B) + f(A ∪ B)

holds for every pair of sets A, B ⊆ V [34]. Equivalently

f(A ∪ X) − f(A) ≥ f(B ∪ X) − f(B)

for ∀A ⊂ B ⊂ V , X ∈ V . It means that the marginal value of

X with respect to A is larger than the marginal value of X with

respect to a larger set such as B. In other words, for submodular

functions, adding X into a smaller set helps more than adding

it into a larger set. For example, entropy functions, cut capacity

functions, and matroid rank functions are submodular.

The negative of a submodular function is called a supermod-

ular function. In other words, a function f is supermodular if

the inequality

f(A) + f(B) ≤ f(A ∩ B) + f(A ∪ B)

holds for every pair of sets A, B ⊆ V . In addition, a function

that is both submodular and supermodular is called a modular

function.

In general, mutual information is not a submodular function

[27]. However, we show that it is submodular under several

conditions.

Proposition 1: Let A be any subset on S and f(A) =
I(Θ;A). If any sensor in S is conditionally independent of each

other given Θ, then f is submodular.

Proof: See Appendix.

Although people usually make the assumption of conditional

independence in their frameworks such as in [27] and [49], it is

still a strong assumption for most applications. Proposition 2

shows that f is still a submodular function under a relaxed

assumption.

Proposition 2: Let A, B be any subset on S and f(A) =
I(Θ;A). If I(Θ;B \ A|A ∩ B) ≥ I(Θ;B \ A|A) or I(Θ;A \
B|A ∩ B) ≥ I(Θ;A \ B|B), then f is a submodular function.

Proof: See Appendix.

I(Θ;B \ A|A ∩ B) ≥ I(Θ;B \ A|A) shows that the mutual

information between Θ and the sensors in B \ A is related

to how much information is already known. It is reasonable
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Fig. 2. Graph illustration of Proposition 2: I(Θ; B \ A|A ∩ B) ≥ I(Θ; B \
A|A) ⇔ I(Θ; A \ B|A ∩ B) ≥ I(Θ; A \ B|B). The “\” sign means set
subtraction.

to assume that observing the sensors in B \ A reduces the

uncertainty of Θ less if more sensors have already been ob-

served. Thus, the mutual information between Θ and the sen-

sors in B \ A given A is less than that when a smaller set A ∩ B
is observed. Fig. 2 shows such a concept.

In addition, the following proposition shows that f is a

nondecreasing function.

Proposition 3: Let A be any subset on S. If f(A) =
I(Θ;A), then f is nondecreasing and f(∅) = 0.

Proof: See Appendix. We will show that the submodular-

ity and nondecreasing of the information gain function help

to provide a performance guarantee to our sensor selection

algorithms.

The cost function for each sensor or sensor set can be

simple or complex. The sensor cost could be computational

cost, operational cost, cost of energy consumption, and others.

The cost could be constant and the same for different sensors,

or the cost could vary with the sensors. How to define the

cost is application dependent. In order to simplify the sensor

selection problems, most applications assume that each sen-

sor Si has a constant cost c(Si), and the cost of a sensor

set Ai is
∑

Si∈Ai
c(Si). However, it is often the case that

the cost of operating a collection of sensors (jointly) is less

than the combined cost of operating each sensor individually.

In that case, it is reasonable to model c as a submodular

function.

No matter how the benefit and cost are defined, the sensor

selection problems can be divided into two categories. One

involves finding a best sensor set with maximum information

gain when the cost is within a budget limit. Another involves

finding a best sensor set that achieves the best tradeoff between

the information gain and the cost. Since both of these categories

play an important role in the vast majority of applications, we

propose efficient sensor selection algorithms for both of them.

V. SENSOR SELECTION WITH A BUDGET LIMIT

In this section, we present the sensor selection algorithms

for the budget-limit case. In the next section, we will present

the selection algorithms for the optimal-tradeoff case. Let S =
{S1, S2, . . . , Sn} indicate the available sensors, and let A =
{A1, . . . , Am} be a collection of sets over S. The cost of each

Ai is defined as c(Ai) =
∑

Si∈Ai
c(Si), and the benefit of each

Ai is f(Ai) = I(Θ;Ai). Given a budget-bound L, the optimal

sensor set A∗ is

A∗ = arg max
Ai∈A

{f(Ai) : c(Ai) ≤ L} . (1)

TABLE I
PSEUDOCODE OF ALGORITHM 1: GREEDY–BRUTE FORCE

A. Initial Greedy Algorithm

Based on the aforementioned definition, the sensor selection

problem can be regarded as a budgeted maximum coverage

problem [43]. Although, in general, such a problem is NP-hard,

an approximate solution is available, which is near optimal and

computable in polynomial time. We modified the algorithm

from [27] as shown hereinafter. Similar algorithms can also be

found in [25] and [43].

Table I illustrates the pseudocode of Algorithm 1. In the first

phase, Algorithm 1 arrives at a solution A∗
1 by enumerating

all possible l-element (l < k) subsets that satisfy the budget

constraint. In the second phase, Algorithm 1 starts from all

possible k-element subsets for some constant k and then uses

a greedy approach to supplement these sets in order to produce

a solution A∗
2. Finally, the algorithm outputs A∗

1 if f(A∗
1) >

f(A∗
2) and A∗

2 otherwise. The time complexity of the algorithm

is O(nk+1γ log n)̇, where n is the size of the whole sensor set

and γ is the time required to compute the function value of f .

Theorem 1: The worst case performance guarantee of

Algorithm 1 for solving the problem (1) is equal to (1 − 1/e),
if k ≥ 3 and f is a submodular and nondecreasing function.

Theorem 1 shows that the information gain of any sensor set

selected by Algorithm 1 will not be less than (1 − 1/e) of the

information gain of the optimal sensor set. The theorem has

been proven by the studies in [13], [27], and [43].

Since f is a submodular and nondecreasing function as we

proved in the previous section, Algorithm 1 can be used to find

a near-optimal solution for problem (1) in polynomial time with

a performance guarantee.

B. Algorithm Speedup With Partitioning

In Algorithm 1, for each updated Ai, we need to compute

f(Ai ∪ Si) for each possible candidate sensor Si at each loop.

As the size of Ai increases, the computation could be time-

consuming. Therefore, it is important to speed up Algorithm 1.

We propose a partitioning procedure to compute f efficiently

by exploiting the probabilistic dependence among the sensors.
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Assume that the target is to compute f(S) =
I(Θ;S1, . . . , Sn). The partitioning procedure is to divide S
into several groups, where the sensors in one group are

conditionally independent of the nodes in other groups given Θ.

The partitioning procedure consists of three steps.

1) Decide whether two sensors Si and Sj are conditionally

independent given Θ by exploring the BN structure based

on four rules: i) if there is a path between Si and Sj

without passing Θ, Si and Sj are dependent; ii) if both Si

and Sj are the ancestors of Θ, Si and Sj are dependent

given Θ; iii) after removing the links to and from Θ from

the original BN, if Si and Sj have common ancestors,

or Si is Sj’s ancestor, or vice versa, then Si and Sj are

dependent; and iv) in all the other cases, Si and Sj are

conditionally independent given Θ (time complexity for

step 1): O(h), where h is the longest path in a BN).

2) Build an undirected graph to model the relationships

among the sensors. In such a graph, each vertex repre-

sents a sensor Si, and each edge between two vertices in-

dicates that the two corresponding sensors are dependent

according to the rules in Step 1).

3) Partition the graph into disjoint connected subgraphs.

A depth first search algorithm [6] is used to partition

the graph into several connected components (disjoint

connected subgraphs) so that each component is discon-

nected from other components. The sensors in each con-

nected component are conditionally independent of the

sensors in any other connected components. Therefore,

each connected component corresponds to one group

[time complexity for step 3: O(|V | + |E|), where V is

the set of vertices and E is the set of edges in the graph].

Based on the time complexity, we can see that the partition-

ing procedure is quite efficient. In addition, we only need to

perform the partitioning procedure once for the whole sensor

set. To divide the sensors in any subset into several groups,

we need only look at the subgraph related with the targeted

sensors. Thus, the whole procedure is efficient. The partitioning

procedure returns several independent groups A1
c , A

2
c , . . . , A

m
c .

Then, the following lemmas stand.

Lemma 1: H(Θ, S1, . . . , Sn) =
∑m

i=1 H(Ai
c|Θ) + H(Θ).

Proof: See Appendix.

Lemma 2: The mutual information I(Θ;S1, S2, . . . , Sn) =
H(A1

c , . . . , A
m
c ) −

∑m
i=1 H(Ai

c|Θ).
Proof: See Appendix.

Based on Lemma 2, computing I(Θ;S1, . . . , Sn) is equal to

computing H(A1
c , . . . , A

m
c ) and each H(Ai

c|Θ), i = 1, . . . , m.

To compute H(A1
c , . . . , A

m
c ) efficiently, one key issue is to

compute p(A1
c , . . . , A

m
c ). We notice that

p(S1, . . . , Sm) =
∑

Θ

{

p
(

A1
c , . . . , A

m−1
c , Am

c |Θ
)

p(Θ)
}

=
∑

Θ

{

m−1
∏

i

p
(

Ai
c|Θ

)

· p (Am
c |Θ) · p(Θ)

}

.

Since Algorithm 1 always starts from a smaller sensor set

to a larger set, each p(Ai
c|Θ), i = 1, . . . , m − 1, is usually

already computed before computing p(A1
c , . . . , A

m−1
c , Am

c ).

TABLE II
PSEUDOCODE TO COMPUTE I(Θ; S1, . . . , Sn)

Then, p(Am
c |Θ) is the only new factor that must be com-

puted. This factor can be easily computed with a BN in-

ference algorithm. Thus, p(A1
c , . . . , A

m−1
c ) can be computed

much more easily. Similarly, for the second term in Lemma 2,
∑m

i=1 H(Ai
c|Θ), each H(Ai

c|Θ), i = 1, . . . ,m − 1, is usually

already computed, so H(Am
c |Θ) is the only term that needs to

be computed. Overall, the partitioning procedure allows com-

putation sharing between different sensor sets. In particular, the

f function of each large sensor set becomes easy to compute

because of sharing computations with its subsets. Therefore, the

partitioning procedure is able to speed up Algorithm 1 signifi-

cantly as shown in the experiments. The pseudocode to compute

mutual information I(Θ;S1, . . . , Sn) is shown in Table II.

C. New Algorithm With Partitioning

The partitioning procedure helps only with computing mu-

tual information and does not affect the selection proce-

dure in Algorithm 1. However, in order to further speed up

Algorithm 1, we can also apply the partitioning procedure to

sensor selection and thus get a new selection algorithm. This

algorithm exploits both the submodularity property and the

sensor dependence embedded in the BN model through the

partitioning procedure. The pseudocode is shown in Table III.

Algorithm 2 consists of three phases. In the first phase, it

uses the partitioning procedure to divide all the sensors into

several groups, A1
c , A

2
c , . . . , A

m
c . Then, in the second phase,

for each group Ai
c, a subfunction, Algorithm 1 or a brute-force

algorithm, is called to select a local optimal sensor set subject

to the local budget L′
i. If the size of the group is small (≤ l),

the brute-force algorithm is used to find the local optimal set.

Otherwise, Algorithm 1 is applied to decide the local optimal

set. In the third phase, a new sensor set A∗′ is constructed by

combining all the local optimal sets. For this set, Algorithm 1

or the brute-force method is applied again to decide the global

optimal sensor set.

There are two dynamic parameters, l and L′
i, in the algorithm.

l decides which algorithm is applied to each group to obtain

the local optimal set: the brute-force method or Algorithm 1.

If l is too large, the brute-force algorithm will slow down the

speed. Empirically, l is set as 6. Another parameter L′
i decides
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TABLE III
PSEUDOCODE OF ALGORITHM 2: OPTIMAL

SELECTION WITH PARTITIONING

the budget for each group. It is dynamically decided by two

factors: 1) (1/|Ai
c|)

∑

Si∈Ai
c

f(Si)/c(Si), the average ratio of

f(Si)/c(Si) in each group Ai
c, and 2) |Ai

c|, the size of Ai
c.

Obviously, the time complexity of Algorithm 2 depends on

the two subfunctions: Algorithm 1 and the brute-force method.

For the brute-force method, since the size of the input group

is always less than l (l ≤ 6), it is time efficient. Since the

input is a subset when calling Algorithm 1, it costs much less

time than when the input is the whole sensor set. Therefore,

Algorithm 2 is more efficient than Algorithm 1 in general. If

all the sensors are conditionally independent of one another,

Algorithm 2 degenerates to Algorithm 1.

In addition, the performance of Algorithm 2 can be justified

by two factors: 1) algorithm 2 performs sensor selection on

each sensor subset, instead of starting from the whole sensor

set; thus, it is more efficient; and 2) the sensor subsets are

conditionally independent from each other through partitioning;

thus, the sensors selected from each subset are more likely to

be included in the optimal sensor set, compared to dependent

sensor subsets. Therefore, Algorithm 2 significantly improves

the speed of Algorithm 1, yet with comparable accuracy.

VI. SENSOR SELECTION WITH OPTIMAL TRADEOFF

The algorithms in Section V maximize the benefit of a set of

sensors as long as the cost is within a budget. A further goal is to

find a sensor set with the best tradeoff between the cost of the

sensors and the potential gain (benefit) obtained by using the

sensors. In certain applications, it is more reasonable to achieve

the optimal sensor set A∗ such that

A∗ = arg max
Ai

{f(Ai) − c(Ai)} . (2)

Taking sensor networks for example, c could be sensor power

usage. It is desirable to have sensors that maximize the gain

while consuming as little power as possible in sensor networks.

This is an NP-hard problem too. Based on the previous analysis,

f is a nondecreasing submodular function. If c is a modular

function as assumed by most researchers, f(Ai) − c(Ai) would

still be a submodular function but not necessarily a nonde-

creasing one. Therefore, problem (2) becomes a submodular

function maximization problem, which can be solved with

global solutions by some well-known polynomial algorithms

such as the combinatorial strongly polynomial algorithm Iwata,

Fleischer, and Fujishige (IFF) developed by Iwata et al. [20], a

faster scaling algorithm in [19], etc. However, in some cases,

it is not reasonable to define c as a modular function. For

example, usually, the cost of operating a collection of sensors

(jointly) is less than the combined cost of operating each sensor

individually. Thus, assuming that the cost of a sensor set is

the sum of the cost of each individual sensor may not be

appropriate. In that case, it is more practical to model c as a

submodular function.

Unfortunately, if c is also a submodular function, the dif-

ference between two submodular functions like f and c is

not necessarily a submodular function. However, if we could

transfer f(Ai) − c(Ai) into a submodular function, the optimal

sensor set A∗ can be obtained efficiently with one of these well-

known algorithms. One solution is to seek a modular function

h that closely approximates the cost function c. Since h is a

modular function, f(Ai) − h(Ai) will still be a submodular

function. Proposition 4 shows how to find such a function h,

which is referred from the studies in [10] and [36].

Proposition 4: Let π be a random permutation of the sen-

sor set S = {Si, . . . , Sn}. Let Wi = {π(1), π(2), . . . , π(i)}. A

function h : S → ℜ is defined as follows:

h (π(i)) =

{

c(W1), if i = 1
c(Wi) − c(Wi−1), otherwise.

In addition

h(Ai) =
∑

Si∈Ai

h(Si) ∀Ai ⊆ S.

Then, the following are defined.

1) h(Ai) ≤ c(Ai) for ∀Ai ⊆ S.

2) h(Wm) = c(Wm), for 1 ≤ m ≤ n.

Proof: See [15].

With this procedure, the generated function h is modular and

bounded above by c. Furthermore, this modular approximation

is the tightest possible approximation to c in the following

sense [36].

Proposition 5: Every h obtained in Proposition 4 is a vertex

in the extended base polymatroid of c, and every vertex in the

extended base polymatroid of c can be obtained by picking an

appropriate permutation.

Proof: See [15].

Now, we can use Algorithm 3, as depicted in Table IV, to de-

cide the optimal or near-optimal solution for the problem (2) by
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TABLE IV
PSEUDOCODE OF ALGORITHM 3: SELECTION

WITH MODULAR APPROXIMATION

using Proposition 4 and the submodular function maximization

algorithm.

As shown in the pseudocode, it repeats generating new

permutation of the sensor set S based on the selected sensor

set A∗ at the previous step until no obvious improvement is

achieved, which is controlled by the parameter δ. Correspond-

ing to each new permutation, a modular function h is generated

to approximate c, and A∗ ← arg maxAi⊆S(f − h)(Ai) can be

decided with the IFF algorithm by Iwata et al. [20]. The time

complexity of IFF algorithm is O(n7γ log(n)), where γ is the

time required for computing the function value of (f − h).
If the cost function c is a modular function, no modular

approximation is necessary, and Algorithm 3 actually returns

the global optimal solution. When the cost function c is a

submodular function, because of introducing h to approximate

c, local optimum can be returned. However, since h is very close

to c (as shown in Proposition 5) and we also use δ to control

the precision effects, the returned solution is usually optimal or

near optimal (as will be shown in the experiments).

VII. EXPERIMENTS

In the experiments, we analyze the performance of the pro-

posed sensor selection algorithms in terms of both accuracy

and speed. To demonstrate the robustness of the algorithms to

different BN structures and parameters, we generate BNs with

random structures and parameters, whose maximal number of

nodes is 50. In each BN, 12 nodes are randomly selected as the

sensor nodes and 1 node is selected as the hypothesis node. For

the budget-limit case, the cost of each sensor is randomly set

at each testing case and the budget-limit L is set as a constant

for all the cases. For the optimal-tradeoff case, the sensor cost

Fig. 3. (a) Example BN where all the sensors are conditionally independent
of one another given Θ. (b) Example BN where the sensors can be dependent
of one another given Θ.

TABLE V
PERFORMANCE OF THE SENSOR SELECTION ALGORITHMS WHEN

SENSORS ARE CONDITIONALLY INDEPENDENT IN 500 TESTING CASES

TABLE VI
PERFORMANCE OF THE SENSOR SELECTION ALGORITHMS WHEN

SENSORS ARE DEPENDENT IN 500 TESTING CASES

is defined as a submodular function. The ground truth of the

optimal sensor subset is obtained by a brute-force approach.

A. Sensor Selection With a Budget Limit

To demonstrate the performance of the proposed algorithms,

we compare Algorithm 1, Algorithm 2, a greedy approach, and

the brute-force method. For Algorithm 1, k is set as 3. The

greedy approach is similar to Algorithm 1 with k = 1.

In order to demonstrate whether the performances of the

algorithms are affected by the relationships among the sensors,

we designed two sets of testing cases. The first set consists of

500 BNs where all the sensors are conditionally independent

of one another; and the second set consists of 500 BNs where

the sensors can be dependent of one another. Fig. 3 shows two

example BNs.

Tables V and VI demonstrate the experimental results, where

Alg. 1a represents Algorithm 1 without using the partitioning

procedure to compute mutual information, while Alg. 1b rep-

resents Algorithm 1 with the partitioning procedure. Table V

does not list the performance of Alg. 2 because it has the same

performance as Alg.1 when all the sensors are conditionally

independent. The error ratio is the ratio between the number

of misselection cases and the overall number of cases, where a

misselection case is defined as the case that the selected sensor
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TABLE VII
PERFORMANCE OF ALGORITHM 3 VERSUS GREEDY

APPROACHES IN 500 TESTING CASES

set has more than one sensor different from the optimal selec-

tion. The mutual information ratio is the mutual information

between the selected sensors and Θ, divided by the mutual

information between the optimal sensor set and Θ. The running

time ratio is the ratio between the computational time of the

algorithm in each column and that of the brute-force method.

Both the mutual information ratio and the running time ratio

are averaged over the 500 testing cases.

As shown in the tables, the performance of each algorithm

is rarely affected by the relationships among the sensors. Com-

pared to the greedy approach, Alg. 1a, Alg. 1b, and Alg. 2 have

much lower error ratio, which means that they are able to return

the near-optimal solutions for most testing cases. In addition,

Alg. 2 is faster than Alg. 1a and Alg. 1b because the partitioning

procedure is applied to both mutual information computation

and selection procedure. Alg. 1b is faster than Alg. 1a because

of the savings in mutual information computation. Greedy ap-

proach, on the other hand, is faster than both algorithms 1 and 2

for both types of networks, but with much worse error ratios.

B. Sensor Selection With Optimal Tradeoff

To test Algorithm 3, 500 BNs are randomly generated. How-

ever, the cost of sensors is defined as a submodular function.

We compare Algorithm 3 to a greedy method, which is very

similar to Algorithm 1 except that the budget limit is removed.

The overall performance is shown in Table VII. The DIC rate is

the ratio between the DIC (difference of mutual information and

cost) of the selected sensor set and that of the optimal sensor set.

Both the DIC and error ratio are averaged over the 500 testing

cases.

Table VII shows that the error ratio of Algorithm 3 is zero.

It demonstrates that Algorithm 3 always returns an optimal or

near-optimal solution. For the greedy approach, although it has

good performance for the budget-limit case since the objective

function is submodular and nondecreasing, it performs worse in

the optimal tradeoff case. Since (f − c) is neither a submodular

function nor nondecreasing, there is no performance guarantee

for the greedy approach even with k ≥ 3 in the optimal tradeoff

case. Fig. 4 shows the performance of Algorithm 3 versus

greedy approaches in 50 cases. In the majority of the cases, the

DIC is 1, which means that the proposed algorithm returns the

optimal sensor sets, while the greedy approaches rarely return

the optimal sensor sets.

When n is small, Algorithm 3 is not much faster than the

brute-force method, although the time complexity of the former

is polynomial and the latter is exponential. However, when n
is large (e.g., n ≥ 25), it is much faster than the brute-force

Fig. 4. Performance of Algorithm 3 versus greedy approaches. The
x-coordinate is the test case index, and the y-coordinate is the DIC rate.

method, in addition to its capability of providing optimal or

near-optimal solutions.

VIII. ILLUSTRATIVE APPLICATION

We apply the proposed sensor selection algorithms to an

application of multistage battlefield situation assessment. The

scenario here is inspired from the study in [7]. In this applica-

tion, dynamic BN is used to model the sensors and hypothesis.

Although we focus on static BNs in the previous sections, our

algorithms can also apply to dynamic BNs one frame at a time,

as shown in this application.

The scenario develops during a period of growing hostility

between the Blue force and the Red force who poses a threat.

The goal of this scenario is for the Blue force to selectively use

its surveillance assets to quickly and efficiently infer the intent

of the Red force. More detail is given in [7]. The Blue force

surveillance facilities include a number of offshore sensors,

unmanned aerial vehicles, surveillance helicopters (RAH66

Comanche), etc. The Blue forces on duty in the restricted zone

consist of the following: 1) a Fremantle Class Patrol Boat

(FCPB); 2) a Maritime Patrol Aircraft (MPA); 3) a Night Hawk

Helicopter; and 4) one F111 (Maritime Strike Aircraft). The

Red forces include the following: 1) a major fleet unit; a Guided

Missile Frigate (FFG); 2) one FCPB; and 3) a communication

ship. In addition, the Red force has two surface units armed

with an M386 Rocket Launcher and a 110 SF Rocket Launcher

that are ready to move to the locations where the Blue force is

within their fire range.

A dynamic BN, as shown in Fig. 5, is constructed to assess

the situations for the scenario above. A set of hypotheses

representing possible Red force intents includes the following:

1) Passive—monitor the Blue forces in the restricted zone and

assume that the Blue forces will not interfere with the fuel sup-

ply; 2) Defensive—conduct active reconnaissance and maintain

a defensive presence to guard the supply routes against the

Blue force interference; and 3) Offensive—mount a naval attack

or infantry artillery engagement (surface-to-air or surface-to-

surface attack) on the Blue forces with the intent of destroying

the Blue forces as well as their offshore surveillance facilities.
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Fig. 5. BN model for the battlefield scenario. S1−S10 are information sources.

We assume that there are external modules that receive

sensor data and make the data available as input evidence to

the network. The model in Fig. 5 shows that there are ten

sensors available to supply information. The conditional prob-

abilities and sensor costs are given subjectively. A Blue force

commander needs to select appropriate sensors over time in

order to assess the hypothesis of the Red force intent (Passive,

Defensive, or Offensive in a timely and efficient manner).

In order to further demonstrate how the sensor selection

algorithms help predict enemy intents, a simulation system is

developed to generate synthetic data. The simulator consists of

two independent but related models: a source model simulating

the intents of the Red force to produce evidence reflecting them,

and a working model simulating the Blue force that estimates

enemy (Red force) intents and determines appropriate sensory

actions by selectively collecting the evidence. We assume

that the enemy intents are passive in the beginning, gradually

change to offensive, and finally become defensive.

Fig. 6 shows the estimation results when different sensor

selection algorithms are used. The dotted line represents the

ground-truth enemy intent P(Offensive), and the other three

curves represent the inferred enemy intent by collecting evi-

dence from the selected sensors with the corresponding three

sensor selection algorithms: Alg. 1b, Alg. 2, and the greedy

approach. As shown in the figure, the enemy intent estimated

by Alg. 1b and Alg. 2 is quite close to the true enemy intent

after 5 time steps, while the enemy intent estimated by the

greedy algorithm is not close to the truth until after more than

20 time steps. After about 30 time steps, as P(offensive) de-

creases, Alg. 1b and Alg. 2 are able to follow enemy intent

more closely than the greedy algorithm as well. In other words,

Alg. 1b and Alg. 2 are able to select optimal sensors in time

and thus track the enemy intent better. In addition, Alg. 2 is

Fig. 6. Sensor selection results of the military example.

TABLE VIII
CASE STUDY OF SENSOR SELECTION WITH ALG. 1b

40% faster than Alg. 1b. Table VIII shows the specific sensors

used in certain time slices.

IX. CONCLUSION

In this paper, we propose several algorithms to per-

form efficient and accurate sensor selection in two typical
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scenarios: the budget-limit case in which the best sensor set is

the one with maximum information gain under a budget limit,

and the optimal-tradeoff case in which the best sensor set is the

one that achieves the optimal tradeoff between the information

gain and the cost. Although finding an optimal solution is NP-

hard for both of them, we introduce efficient and near-optimal

solutions by fully utilizing the properties of the sensor selection

criterion and the probabilistic dependences among sensors.

Specifically, for the budget-limit case, to ensure performance

of the proposed algorithms, we first prove that mutual informa-

tion is a submodular function under a relaxed condition. Based

on this property, we introduce an efficient greedy approach with

a constant factor of (1 − 1/e) performance guarantee to the

optimal performance. Furthermore, to improve the efficiency

of the algorithms, we propose a partitioning procedure for

both efficient sensor selection and efficient mutual information

computation. For the optimal tradeoff case, if the cost function

is a modular function, the proposed algorithm can provide

the global optimal solution in polynomial time; if the cost

function is a submodular function, a submodular–supermodular

procedure is embedded with the proposed sensor selection

algorithm to choose the optimal or near-optimal sensor set in

polynomial time. The experimental results with both synthetic

and real data demonstrate the performance and efficiency of our

algorithms.

This paper focuses only on sensor selection. Our future goal

is to model sensor selection, sensor fusion, and decision making

in a unified framework. More issues will be addressed, e.g., how

to fuse the information collected from the sensors efficiently,

how to decide the optimal action based on the fused results, and

how to learn the parameters of the BN framework. In addition,

we will apply the framework as well as the algorithms to more

real-world applications.

APPENDIX

Proof of Proposition 1:

f(A) =H(Θ) − H(Θ|A)

=H(Θ) − [H(A,Θ) − H(A)]

=H(Θ) − (H(Θ) + H(A|Θ)) + H(A)

=H(A) − H(A|Θ).

Thus, ∀A, B ⊆ S

f(A) + f(B) =H(A) + H(B) − H(A|Θ)

− H(B|Θ)f(A ∩ B) + f(A ∪ B)

=H(A ∩ B) + H(A ∪ B)

− H(A ∩ B|Θ) − H(A ∪ B|Θ).

From the fact that Entropy is a submodular function [14],

thus H(A) + H(B) ≥ H(A ∩ B) + H(A ∪ B). In addition,

since the sensors are conditionally independent given Θ

H(A|Θ)+H(B|Θ)=
∑

Si∈A

H(Si|Θ)+
∑

Si∈B

H(Si|Θ)

=
∑

Si∈A∩B

H(Si|Θ)+
∑

Si∈A∪B

H(Si|Θ)

=H(A ∩ B|Θ)+H(A ∪ B|Θ).

Therefore, f(A) + f(B) ≥ f(A ∩ B) + f(A ∪ B); in other

words, f is a submodular function.

Proof of Proposition 2: Based on the chain rule of mutual

information, we find the following:

I(Θ;B \ A|A ∩ B) =H(Θ|A ∩ B)

− H (Θ|(B \ A) ∪ (A ∩ B))

=H(Θ|A ∩ B) − H(Θ|B)

I(Θ;B \ A|A) = H(Θ|A) − H (Θ|(B \ A) ∪ (A))

=H(Θ|A) − H(Θ|(A ∪ B).

Thus

I(Θ;B \ A|A ∩ B) ≥ I(Θ;B \ A|A)

⇒H(Θ|A ∩ B) − H(Θ|B) ≥ H(Θ|A) − H(Θ|A ∪ B)

⇒H(Θ) − H(Θ|A) + H(Θ) − H(Θ|B)

≥ H(Θ) − H(Θ|A ∩ B) + H(Θ) − H(Θ|A ∪ B)

⇒ f(A) + f(B) ≥ f(A ∩ B) + f(A ∪ B).

If I(Θ;A \ B|A ∩ B) ≥ I(Θ;A \ B|B) is true, the proof

is similar. We thus skip the details. In fact, I(Θ;B \
A|A ∩ B) ≥ I(Θ;B \ A|A) is equivalent to I(Θ;A \ B|A ∩
B) ≥ I(Θ;A \ B|B). We skip the proof since it is very

straightforward.

Proof of Proposition 3: Let X be any sensor belonging to S,

but not in A

f(A ∪ X) − f(A) = H(Θ) − H(Θ|A ∪ X)

− (H(Θ) − H(Θ|A))

= H(Θ, A) − H(A) + H(A,X)

− H(Θ, A,X).

Since entropy is a submodular function [14]⇒
H(Θ, A) + H(A,X) ≥ H(A) + H(Θ, A,X) [because

(Θ, A) ∩ (A,X) = A and (Θ, A) ∪ (A,X) = (Θ, A,X)].
Thus, f(A ∪ X) − F (A) ≥ 0; in other words, f is nonde-

creasing. It is also obvious that f(∅) = 0.
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Proof of Lemma 1:

H(Θ, S1, S2, . . . , Sn)

= H
(

Θ, A1
c , A

2
c , . . . , A

m
c

)

= −
∑

Θ,A1
c
,...,Am

c

{

p
(

Θ, A1
c , . . . , A

m
c

)

× log p
(

Θ, A1
c , . . . , A

m
c

)}

= −
∑

Θ,A1
c
,...,Am

c

{

p
(

Θ, A1
c , . . . , A

m
c

)

× log

[

p(Θ)

m
∏

i=1

p
(

Ai
c|Θ

)

]}

= −
∑

Θ,A1
c
,...,Am

c

{

p
(

Θ, A1
c , . . . , A

m
c

)

×

[

m
∑

i=1

log p
(

Ai
c|Θ

)

+ log p(Θ)

] }

= −
m

∑

i=1

∑

Θ,A1
c
,...,Am

c

{

p
(

Θ, A1
c , . . . , A

m
c

)

· log p
(

Ai
c|Θ

)}

−
∑

Θ

p(Θ) log p(Θ)

=

m
∑

i=1

H
(

Ai
c|Θ

)

+ H(Θ).

Proof of Lemma 2:

I(Θ;S1, S2, . . . , Sm)

= H(Θ) − H
(

Θ|A1
c , . . . , A

m
c

)

= H(Θ) −
[

H
(

Θ, A1
c , . . . , A

m
c

)

− H
(

A1
c , . . . , A

m
c

)]

= H
(

A1
c , . . . , A

m
c

)

−
m

∑

i=1

H
(

Ai
c|Θ

)

(from Lemma 1).

REFERENCES

[1] S. V. Amari and H. Pham, “A novel approach for optimal cost-effective
design of complex repairable systems,” IEEE Trans. Syst., Man, Cybern.

A, Syst., Humans, vol. 37, no. 3, pp. 406–415, May 2007.
[2] V. Bayer-Zubek, “Learning diagnostic policies from examples by system-

atic search,” in Proc. UAI, 2004, pp. 27–34.
[3] A. R. Cassandra, L. P. Kaelbling, and J. A. Kurien, “Acting under uncer-

tainty: Discrete Bayesian models for mobile robot navigation,” in Proc.

IEEE/RSJ Int. Conf. IROS, 1996, pp. 963–972.
[4] D. A. Castanon, “Approximate dynamic programming for sensor

management,” in Proc. 36th IEEE Conf. Decision Control, 1997, vol. 2,
pp. 1202–1207.

[5] E. Charniak, “Bayesian networks without tears,” AI Mag., vol. 12, no. 4,
pp. 50–63, 1991.

[6] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein, Introduction to

Algorithms. Cambridge, MA: MIT Press, 2002.
[7] B. Das, “Representing uncertainties using Bayesian networks,” DSTO

Electron. Surveillance Res. Lab., Salisbury South, Australia, Tech. Rep.
DSTO-TR-0918, 1999.

[8] R. Debouk, S. Lafortune, and D. Teneketzis, “On an optimization prob-
lem in sensor selection for failure diagnosis,” in Proc. 38th IEEE Conf.

Decision Control, 1999, vol. 5, pp. 4990–4995.
[9] J. Denzler and C. M. Brown, “Information theoretic sensor data selection

for active object recognition and state estimation,” IEEE Trans. Pattern

Anal. Mach. Intell., vol. 24, no. 2, pp. 145–157, Feb. 2002.
[10] J. Edmonds, “Submodular functions, matroids and certain polyhedra,” in

Proc. Calgary Int. Conf. Combinatorial Struct. Appl., 1970, pp. 69–87.
[11] E. Ertin, J. Fisher, and L. Potter, “Maximum mutual information principle

for dynamic sensor query problems,” in Proc. 3rd Int. Symp. IPSN, 2004,
pp. 405–416.

[12] B. Fassinut-Mombot and J. Choquel, “A new probabilistic and entropy
fusion approach for management of information sources,” Inf. Fusion,
vol. 5, no. 1, pp. 35–47, Mar. 2004.

[13] U. Feige, “A threshold of ln n for approximating set cover,” J. ACM,
vol. 45, no. 4, pp. 634–652, Jul. 1998.

[14] S. Fujishige, “Polymatroidal dependence structure of a set of random
variables,” Inf. Control, vol. 39, no. 1, pp. 55–72, 1978.

[15] M. Grötschel, L. Lovász, and A. Schrijver, “The ellipsoid method and
its consequences in combinatorial optimization,” Combinatorica, vol. 1,
no. 2, pp. 169–197, Jun. 1981.

[16] B. Guo and M. S. Nixon, “Gait feature subset selection by mutual infor-
mation,” IEEE Trans. Syst., Man, Cybern. A, Syst., Humans, vol. 39, no. 1,
pp. 36–46, Jan. 2009.

[17] K. J. Hintz, “A measure of the information gain attributable to cue-
ing,” IEEE Trans. Syst., Man, Cybern., vol. 21, no. 2, pp. 434–442,
Mar./Apr. 1991.

[18] V. Isler and R. Bajcsy, “The sensor selection problem for bounded uncer-
tainty sensing models,” in Proc. 4th Int. Symp. IPSN, 2005, pp. 151–158.

[19] S. Iwata, “A faster scaling algorithm for minimizing submodular func-
tions,” SIAM J. Comput., vol. 32, no. 4, pp. 833–840, 2003.

[20] S. Iwata, L. Fleischer, and S. Fujishige, “A combinatorial, strongly
polynomial-time algorithm for minimizing submodular functions,”
J. ACM, vol. 48, no. 4, pp. 761–777, 2001.

[21] A. Jain and D. Zongker, “Feature selection: Evaluation, application, and
small sample performance,” IEEE Trans. Pattern Anal. Mach. Intell.,
vol. 19, no. 2, pp. 153–158, Feb. 1997.

[22] F. V. Jensen, Bayesian Networks and Decision Graphs. New York:
Springer-Verlag, 2001.

[23] M. Kalandros, L. Y. Pao, and Y.-C. Ho, “Randomization and super-
heuristics in choosing sensor sets for target tracking applications,” in Proc.

38th IEEE Conf. Decision Control, 1999, vol. 2, pp. 1803–1808.
[24] K. Kastella, “Discrimination gain to optimize classification,” IEEE Trans.

Syst., Man, Cybern. A, Syst., Humans, vol. 27, no. 1, pp. 112–116,
Jan. 1997.

[25] S. Khuller, A. Moss, and J. Naor, “The budgeted maximum coverage
problem,” Inf. Process. Lett., vol. 70, no. 1, pp. 39–45, Apr. 1999.

[26] F. Kobayashi, T. Fukui, F. Arai, T. Fukuda, F. Kojima, M. Onoda, and
Y. Hotta, “Sensor selected fusion with sensor selection based gating neural
network,” in Proc. IEEE Int. Conf. Fuzzy Syst., 2002, pp. 1482–1487.

[27] A. Krause and C. Guestrin, “Near-optimal nonmyopic value of informa-
tion in graphical models,” in Proc. 21st Conf. UAI, 2005, pp. 324–333.

[28] C. Kreucher, K. Kastella, and A. O. Hero, III, “Sensor management using
an active sensing approach,” Signal Process., vol. 85, no. 3, pp. 607–624,
Mar. 2005.

[29] S. Kristensen, “Sensor planning with Bayesian decision theory,” Robot.

Auton. Syst., vol. 19, no. 3, pp. 273–286, Mar. 1997.
[30] O. E. Kundakcioglu and T. Unluyurt, “Bottom-up construction of

minimum-cost and/or trees for sequential fault diagnosis,” IEEE Trans.

Syst., Man, Cybern. A, Syst., Humans, vol. 37, no. 5, pp. 621–629,
Sep. 2007.

[31] T. W. E. Lau and Y. Ho, “Super-heuristics and their applications to com-
binatorial problems,” Asian J. Control, vol. 1, no. 1, pp. 1–13, 1999.

[32] J. Lindner, R. R. Murphy, and E. Nitz, “Learning the expected utility
of sensors and algorithms,” in Proc. IEEE Int. Conf. Multisensor Fus.

Integration Intell. Syst., 1994, pp. 583–590.
[33] H. Liu and L. Yu, “Toward integrating feature selection algorithms for

classification and clustering,” IEEE Trans. Knowl. Data Eng., vol. 17,
no. 4, pp. 491–502, Apr. 2005.

[34] L. Lovasz, “Submodular functions and convexity,” in Mathematical

Programming—The State of the Art, A. Bachem, M. Grotchel, and B.
Korte, Eds. New York: Springer-Verlag, 1983, pp. 235–257.

[35] R. Mahler, “A unified foundation for data fusion,” in Proc. SPIE—Select.

Papers Sensor Data Fusion, 1996, vol. 124, pp. 325–345.
[36] M. Narasimhan and J. Bilmes, “A supermodular-submodular procedure

with applications to discriminative structure learning,” in Proc. 21st Conf.

UAI, 2005, pp. 404–412.

Authorized licensed use limited to: IEEE Transactions on SMC Associate Editors. Downloaded on November 22, 2009 at 09:48 from IEEE Xplore.  Restrictions apply. 



794 IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS—PART A: SYSTEMS AND HUMANS, VOL. 39, NO. 4, JULY 2009

[37] N. Oliver and E. Horvitz, “Selective perception policies for guiding sens-
ing and computation in multimodal systems: A comparative analysis,” in
Proc. 5th Int. Conf. Multimodal Interaction, 2003, pp. 36–43.

[38] N. Oliver and E. Horvitz, “S-seer: Selective perception in a multimodal
office activity recognition system,” in Proc. 1st Int. Workshop MLMI,
2004, pp. 122–135.

[39] P. Pudil, J. Novovi, and J. Kittler, “Floating search methods in fea-
ture selection,” Pattern Recognit. Lett., vol. 15, no. 11, pp. 1119–1125,
Nov. 1994.

[40] R. Rimey and C. Brown, “Control of selective perception using Bayes nets
and decision theory,” Int. J. Comput. Vis., vol. 12, no. 2/3, pp. 173–207,
Apr. 1994.

[41] R. D. Rimey and C. M. Brown, “Task-specific utility in a general Bayes
net vision system,” in Proc. IEEE Conf. Comput. Vis. Pattern Recog.,
1992, pp. 142–147.

[42] P. Somol, P. Pudil, and J. Kittler, “Fast branch & bound algorithms for op-
timal feature selection,” IEEE Trans. Pattern Anal. Mach. Intell., vol. 26,
no. 7, pp. 900–912, Jul. 2004.

[43] M. Sviridenko, “A note on maximizing a submodular set function sub-
ject to knapsack constraint,” Oper. Res. Lett., vol. 32, no. 1, pp. 41–43,
Jan. 2004.

[44] L. van der Gaag and M. Wessels, “Selective evidence gathering for diag-
nostic belief networks,” AISB Q., vol. 86, pp. 23–34, 1993.

[45] H. Wang, K. Yao, G. Pottie, and D. Estrin, “Entropy-based sensor selec-
tion heuristic for target localization,” in Proc. 3rd Int. Symp. IPSN, 2004,
pp. 36–45.

[46] A. Whitney, “A direct method of non parametric measurement selection,”
IEEE Trans. Comput., vol. C-20, no. 9, pp. 1100–1103, Sep. 1971.

[47] H. Wu and A. Cameron, “A Bayesian decision theoretic approach for
adaptive goal-directed sensing,” in Proc. ICCV, 1990, pp. 563–567.

[48] Y. Zhang, Q. Ji, and C. Looney, “Active information fusion for decision
making under uncertainty,” in Proc. Int. Conf. Inf. Fusion, 2002, vol. 1,
pp. 643–650.

[49] A. X. Zheng, I. Rish, and A. Beygelzimer, “Efficient test selection in
active diagnosis via entropy approximation,” in Proc. UAI, 2005, p. 675.

Wenhui Liao received the Ph.D. degree from the
Rensselaer Polytechnic Institute, Troy, NY, in 2006.

She is currently a Research Scientist with the
R&D of Thomson-Reuters Corporation, Eagan, MN.
Her areas of research include probabilistic graphical
models, information fusion, computer vision, and
natural language processing.

Qiang Ji (S’92–M’98–SM’04) received the Ph.D.
degree in electrical engineering from the University
of Washington, Seattle.

He is currently an Associate Professor with the
Department of Electrical, Computer, and Systems
Engineering, Rensselaer Polytechnic Institute (RPI),
Troy, NY. He currently also serves as a program
director at the National Science Foundation. Prior
to joining RPI in 2001, he was an Assistant Pro-
fessor with the Department of Computer Science,
University of Nevada, Reno. He also held research

and visiting positions with the Beckman Institute, University of Illinois
at Urbana–Champaign; the Robotics Institute, Carnegie Mellon University,
Pittsburgh, PA; and the U.S. Air Force Research Laboratory. He currently
serves as the Director of the Intelligent Systems Laboratory, RPI. His research
interests include computer vision, pattern recognition, and probabilistic graph-
ical models. He has published over 100 papers in peer-reviewed journals and
conferences. His research has been supported by major governmental agencies
including NSF, NIH, DARPA, ONR, ARO, and AFOSR as well as by major
companies including Honda and Boeing.

Prof. Ji is an Editor of several computer vision and pattern recognition
journals. He has served as a Program Committee Member, Area Chair, and
Program Chair in numerous international conferences/workshops.

William A. Wallace (M’90–SM’96–F’02) received
the B.Ch.E. degree from the Illinois Institute of Tech-
nology, Chicago, in 1956, and the M.S. and Ph.D.
degrees in management science from the Rensselaer
Polytechnic Institute, Troy, NY, in 1961 and 1965,
respectively.

He is currently a Professor with the Depart-
ment of Decision Sciences and Engineering Systems,
Rensselaer Polytechnic Institute, with joint appoint-
ments with the Department of Civil and Environ-
mental Engineering and the Department of Cognitive

Science, Rensselaer Polytechnic Institute, where he is also currently the Direc-
tor of the Center for Infrastructure and Transportation Studies.

Prof. Wallace was the recipient of the International Emergency Management
and Engineering Conference Award for Outstanding Long-Term Dedication to
the Field of Emergency Management, The Institute of Electrical and Electronics
Engineers Third Millennium Medal, and the 2004 INFORMS President’s
Award for a work that advances the welfare of society.

Authorized licensed use limited to: IEEE Transactions on SMC Associate Editors. Downloaded on November 22, 2009 at 09:48 from IEEE Xplore.  Restrictions apply. 



Efficient non-myopic value-of-information computation

for influence diagrams

Wenhui Liao a,*, Qiang Ji b

aResearch & Development, Thomson-Reuters Corporation, 610 Opperman Drive, Eagan, MN 55123, USA
bDepartment of Electrical, Computer and Systems Engineering, Rensselaer Polytechnic Institute, Troy, NY 12180-3590, USA

a r t i c l e i n f o

Article history:

Received 4 January 2007

Received in revised form 17 April 2008

Accepted 21 April 2008

Available online 29 April 2008

Keywords:

Value-of-information

Influence diagrams

Decision making

Central-limit theorem

Stress modeling

a b s t r a c t

In an influence diagram (ID), value-of-information (VOI) is defined as the difference

between the maximum expected utilities with and without knowing the outcome of an

uncertainty variable prior to making a decision. It is widely used as a sensitivity analysis

technique to rate the usefulness of various information sources, and to decide whether

pieces of evidence are worth acquisition before actually using them. However, due to the

exponential time complexity of exactly computing VOI of multiple information sources,

decision analysts and expert-system designers focus on the myopic VOI, which assumes

observing only one information source, even though several information sources are avail-

able. In this paper, we present an approximate algorithm to compute non-myopic VOI effi-

ciently by utilizing the central-limit theorem. The proposed method overcomes several

limitations in the existing work. In addition, a partitioning procedure based on the d-sep-

aration concept is proposed to further improve the computational complexity of the pro-

posed algorithm. Both the experiments with synthetic data and the experiments with

real data from a real-world application demonstrate that the proposed algorithm can

approximate the true non-myopic VOI well even with a small number of observations.

The accuracy and efficiency of the algorithm makes it feasible in various applications

where efficiently evaluating a large amount of information sources is necessary.

� 2008 Elsevier Inc. All rights reserved.

1. Introduction

In a wide range of decision-making problems, a common scenario is that a decision maker must decide whether some

information is worth collecting, and what information should be acquired first given several information sources available.

Each set of information sources is usually evaluated by value-of-information (VOI). VOI is a quantitative measure of the value

of knowing the outcome of the information source(s) prior to making a decision. In other words, it is quantified as the dif-

ference in value achievable with or without knowing the information sources in a decision-making problem.

Generally, VOI analysis is one of the most useful sensitivity analysis techniques for decision analysis [23,25]. VOI analysis

evaluates the benefit of collecting additional information in a specific decision-making context [27]. General VOI analyses

usually require three key elements: (1) A set of available actions and information collection strategies; (2) A model connect-

ing the actions and the related uncertainty variables within the context of the decision; and (3) values for the decision out-

comes. The methods of VOI analysis could be quite different when different models are used.

In this paper, we consider VOI analysis in decision problems modeled by influence diagrams. Influence diagrams were

introduced by Howard and Matheson in 1981 [13] and have been widely used as a knowledge representation framework
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to facilitate decision making and probability inference under uncertainty. An ID uses a graphical representation to capture

the three diverse sources of knowledge in decision making: conditional relationships about how events influence each other

in the decision domain; informational relationships about what action sequences are feasible in any given set of circum-

stances; and functional relationships about how desirable the consequences are [21]. An ID can systematically model all

the relevant random variables and decision variables in a compact graphical model.

In the past several years, a few methods have been proposed to compute VOI in IDs. Ezawa [8] introduces some basic con-

cepts about VOI and evidence propagation in IDs. Dittmer and Jensen [7] present a method for calculating myopic VOI in IDs

based on the strong junction tree framework [15]. Shachter [25] further improves this method by enhancing the strong junc-

tion tree as well as developing methods for reusing the original tree in order to perform multiple VOI calculations. Zhang

et al. [28] present an algorithm to speed up the VOI computation by making use of the intermediate computation results,

which are obtained when computing the optimal expected value of the original ID without the observations from the infor-

mation sources. Instead of computing VOI directly, [22] describe a procedure to identify a partial order over variables in

terms of their VOIs based on the topological relationships among variables in the ID. However, all these papers only focus

on computing myopic VOI, which is based on two assumptions: (1) ‘‘No competition:” each information source is evaluated

in isolation, as if it were the only source available for the entire decision; (2) ‘‘One-step horizon:” the decision maker will act

immediately after consulting the source [21]. These assumptions result in a myopic policy: every time, the decision maker

evaluates the VOI of each information source one by one, and chooses the one with the largest VOI. Then the observations are

collected from the selected information sources, the probabilities are updated, and all the remaining information sources are

to be reevaluated again, and a similar procedure repeats.

Obviously, the assumptions are not always reasonable in some decision circumstances. Usually, the decision maker will

not act after acquiring only one information source. Also, although a single information source may have low VOI and is not

worth acquisition compared to its cost, several information sources used together may have high VOI compared to their

combined cost. In this case, by only evaluating myopic VOI, the conclusion will be not to collect such information, which

is not optimal since its usage together with other information sources can lead to high value for the decision maker. There-

fore, given these limitations in myopic VOI, it is necessary to compute non-myopic VOI.

Non-myopic VOI respects the fact that the decision maker may observe more than one piece of information before acting,

thus requires the consideration of any possible ordered sequence of observations given a set of information sources. Unfor-

tunately, the number of the sequences grows exponentially as the number of available information sources increases, and

thus it is usually too cumbersome to compute non-myopic VOI for any practical use, and this is why the before mentioned

work only focuses on myopic VOI. Given these facts, an approximate computation of non-myopic VOI is necessary to make it

feasible in practical applications. To the best of our knowledge, [11] are the only ones who proposed a solution to this prob-

lem. In their approach, the central-limit theorem is applied to approximately compute non-myopic VOI in a special type of ID

for the diagnosis problem, where only one decision node exists. Certain assumptions are required in their method: (1) all the

random nodes and decision nodes in the ID are required to be binary; (2) the information sources are conditionally indepen-

dent from each other given the hypothesis node, which is the node associated with the decision node and utility node.

Motivated by the method of Heckerman et al., we extend this method to more general cases1: (1) all the random nodes can

have multiple states and the decision node can have multiple rules (alternatives); (2) the information sources can be dependent

given the hypothesis node; and (3) the ID can have a more general structure. But same as Heckerman et al.’s method, we only

discuss the VOI computation in terms of IDs that have only one decision node. This decision node shares only one utility node

with another chance node. With the proposed algorithm, non-myopic VOI can be efficiently approximated. In order to validate

the performance of the proposed algorithm, we not only perform the experiments based on the synthetic data for various types

of IDs, but also provide a real-world application with real data.

Because of the efficiency and accuracy of the proposed method, we believe that it can be widely used to choose the opti-

mal set of available information sources for a wide range of applications. No matter what selection strategies people use to

choose an optimal set, such as greedy approaches, heuristic searching algorithms, or brute-force methods, the proposed

method can be utilized to evaluate any information set efficiently in order to speed up the selection procedure.

The following sections are organized as follows. Section 2 presents a brief introduction to influence diagrams. The detail of

the algorithm is described in Section 3. Section 4 discusses the experimental results based on synthetic data. And a real appli-

cation is demonstrated in Section 5. Finally, Section 6 gives the conclusion and some suggestions for future work.

2. Influence diagrams

An influence diagram (ID) is a graphical representation of a decision-making problem under uncertainty. Its knowledge

representation can be viewed through three hierarchical levels, namely, relational, functional, and numerical. At the rela-

tional level, an ID represents the relationships between different variables through an acyclic directed graph consisting of

various node types and directed arcs. The functional level specifies the interrelationships between various node types and

defines the corresponding conditional probability distributions. Finally, the numerical level specifies the actual numbers

associated with the probability distributions and utility values [6].

1 A brief version of this extension can be found in [18].
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Specifically, an ID includes three types of nodes: decision, chance (random), and value (utility) nodes. Decision nodes,

usually drawn as rectangles, indicate the decisions to be made and their set of possible alternative values. Chance nodes,

usually drawn as circles/ellipses, represent uncertain variables that are relevant to the decision problem. They are similar

to the nodes in Bayesian networks [14], and are associated with conditional probability tables (CPTs). Value nodes, usually

drawn as diamonds, are associated with utility functions to represent the utility of each possible combination of the out-

comes of the parent node. The arcs connecting different types of nodes have different meanings. An arc between two chance

nodes represents probabilistic dependence, while an arc from a decision node to a chance node represents functional depen-

dence, which means the actions associated with the decision node affect the outcome of the chance node. An arc between

two decision nodes implies time precedence, while an arc from a chance node to a decision node is informational, i.e., it

shows which variable will be known to the decision maker before a decision is made [21]. An arc pointing to a utility node

represents value influence, which indicates that the parents of the utility node are those that directly affect its utility. Fig. 1

illustrates these arcs and gives corresponding interpretations.

Most IDs assume a precedence ordering of the decision nodes. A regular ID assumes that there is a directed path contain-

ing all decision nodes; a no-forgetting ID assumes that each decision node and its parents are also parents of the successive

decision nodes; and a stepwise decomposable ID assumes that the parents of each decision node divide the ID into two sep-

arate fractions. In this paper, we consider IDs that have only one decision node, i.e., ignoring all previous decisions. The goal

of ID modeling is to choose an optimal policy that maximizes the overall expected utility. A policy is a sequence of decision

rules where each rule corresponds to one decision node. Mathematically, if there is only one decision node in an ID and

assuming additive decomposition of the utility functions, the expected utility under a decision rule d given any available evi-

dence e, denoted by EUðdjeÞ, can be defined as follows:

EUðdjeÞ ¼
X

n

i¼1

X

Xi

pðXije; dÞuiðXi; dÞ; ð1Þ

where ui is the utility function over the domain Xi [ fDg. For example, Xi could be the parents of the utility node that ui is

associated with. To evaluate an ID is to find an optimal policy as well as to compute its optimal expected utility [24,26]. More

detail about IDs can be found in [17,14].

Generally, the advantages of an ID can be summarized by its compact and intuitive formulation, its easy numerical assess-

ment, and its effective graphical representation of dependence between variables for modeling decision making under

uncertainty. These benefits make ID a widely used tool to model and solve complex decision problems in recent years.

3. Approximate VOI computation

3.1. Value of information

The VOI of a set of information sources is defined as the difference between the maximum expected utilities with and

without the information sources [17]. VOI can be used to rate the usefulness of various information sources and to decide

whether pieces of evidence are worth acquisition before actually using the information sources [21].

We discuss the VOI computation in terms of IDs that have only one decision node. This decision node shares only one

utility node with another chance node, as shown in Fig. 2. And the decision node and the chance node are assumed to be

independent. In the ID, the chance node H, named as hypothesis node, represents a mutually exclusive and exhaustive

set of possible hypotheses h1; h2; . . . ; hh; the decision node D represents a set of possible alternatives d1; d2; . . . ; dq; the utility

node U represents the utility of the decision maker, which depends on the outcome of H and D; and the chance nodes

O1; . . . ;On represent possible observations from all kinds of information sources about the true state of H. And each Oi

may have multiple states. Let O ¼ fO1; . . . ;Ong, the VOI of O, VOIðOÞ, w.r.t. the decision node D, can be defined as follows:

VOIðOÞ ¼ EUðOÞ � EUðOÞ; ð2Þ
EUðOÞ ¼

X

o2O
pðoÞmax

dj2D

X

hi2H
pðhijoÞuðhi; djÞ; ð3Þ

EUðOÞ ¼ max
dj2D

X

hi2H
pðhiÞuðhi; djÞ; ð4Þ

Probabilistic

Dependence

Time

Precedence

Functional

Dependence

Informational

Value

Influence

Fig. 1. Interpretations of arcs in an ID, where circles represent chance (random) nodes, rectangles for decision nodes, and diamonds for value (utility) nodes.
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where uðÞ denotes the utility function associated with the utility node U, EUðOÞ denotes the expected utility to the decision

maker if Owere observed, while EUðOÞ denotes the expected utility to the decision maker without observing O. Here the cost

of collecting information from the information sources is not included; thus, the VOI can also be called perfect VOI [11]. The

net VOI is the difference between the perfect VOI and the cost of collecting information [12]. Since after calculating the per-

fect VOI, the computation of the net VOI is just a subtraction of cost, we focus on the perfect VOI in the subsequent sections.

As shown in Eq. (2), to compute VOIðOÞ, it is necessary to compute EUðOÞ and EUðOÞ respectively. Obviously, EUðOÞ is eas-
ier to compute, whereas directly computing EUðOÞ could be cumbersome. If the decision maker has the option to observe a

subset of observations fO1; . . . ;Ong and each Oi has m possible values, then there are mn possible instantiations of the obser-

vations in this set. Thus, to compute EUðOÞ, there are mn inferences to be performed. In other words, the time complexity of

computing VOI is exponential. It becomes infeasible to compute VOI(O) when n is not small.

The key to computing VOIðOÞ efficiently is to compute EUðOÞ, which can be rewritten as follows:

EUðOÞ ¼
X

o2O
pðoÞmax

dj2D

X

hi2H
pðhijoÞuðhi; djÞ ¼

X

o2O
max
dj2D

X

hi2H
pðoÞpðhijoÞuðhi; djÞ ¼

X

o2O
max
dj2D

X

hi2H
pðhiÞpðojhiÞuðhi; djÞ: ð5Þ

It is noticed that each instantiation of O corresponds to a specific optimal action for the decision node D. We define the deci-

sion function d : O ! D, which maps an instantiation of O into a decision in D. For example, dðoÞ ¼ dk indicates when the

observation is o, the corresponding optimal decision is dk, dk ¼ argmaxdj2D
P

hi2HpðhijoÞuðhi; djÞ. Therefore we can divide all

the instantiations of O into several subsets, where the optimal action is the same for those instantiations in the same subset.

Specifically, if D has q decision rules, fd1; . . . ; dqg, all the instantiations of O can be divided into q subsets, od1 ; od2 ; . . . ; odq ,

where odk ¼ fo 2 OjdðoÞ ¼ dkg. Fig. 3 illustrates the relationships between each instantiation and the q subsets. Thus, from

Eq. (5), EU(O) can be further derived as follows:

EUðOÞ ¼
X

hi2H
pðhiÞ

X

q

k¼1

X

o2odk

pðojhiÞuðhi; dkÞ: ð6Þ

In the next several sections, we show how to compute EUðOÞ efficiently.

3.2. Decision boundaries

In Eq. (6), the difficult part is to compute
P

o2odk
pðojhiÞ because the size of the set odk

could be very large based on the

previous analysis. In order to compute it efficiently, it is necessary to know how to divide all the instantiations of O into

the q subsets. We first focus on the case that H has only two states, h1, h2, and then extend it to the general case in Section

3.4.

Based on the definition, the expected utility of taking the action dk is EUðdkÞ ¼ pðh1Þ � u1k þ pðh2Þ � u2k, where

u1k ¼ uðh1; dkÞ, and u2k ¼ uðh2; dkÞ. We can sort the index of all the decision rules based on the utility functions, such

that u1k > u1j and u2k < u2j for k < j. Fig. 4 gives an example of the utility function uðH;DÞ. As shown in the figure, as k

increases, u1k decreases and u2k increases. If there is an action di that cannot be sorted according to this criterion, it is either

D

U

On-1

O1

O i

O j

...

...

O2 On

θ

Fig. 2. An ID example for non-myopic VOI computation. H is the hypothesis node, D is the decision node, and U is the utility node. Oi represents possible

observations from an information source. There could be hidden nodes between H and Oi .

o
1

o
2

... o
i

... o
x

o
d1

o
d2

... o
dq

a b

Fig. 3. (a) Each oi corresponds to an instantiation; (b) all the instantiations can be divided into q subsets, where each instantiation in the set odi corresponds

to the optimal decision di .
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dominated by another action, or it dominates another action. (If uðdi;HÞ is always larger than uðdj;HÞ, no matter what state

of H is, we say di dominates dj). Then the dominated action can be removed from the set of possible actions, without chang-

ing the optimal policy.

Proposition 1. Let rjk ¼
u2j�u2k

u1k�u1jþu2j�u2k
, p�kl ¼ maxk<j6qrjk, and p�ku ¼ min16j<krjk, then dk is the optimal action if and only if

p�kl 6 pðh1Þ 6 p�ku. In addition, p�ql ¼ 0 and p�1u ¼ 1. (Here k is the index of an action.)

Proof. see Appendix. h

Proposition 1 presents that if the probability ofH being h1 is between p�
kl and p�

ku, dk is the optimal decision. From this, we

can further derive Proposition 2.

Proposition 2
X

o2odk

pðoÞ ¼ pðp�
kl 6 pðh1joÞ 6 p�

kuÞ: ð7Þ

Proof. see Appendix. h

The Proof of Proposition 2 establishes Eq. (7) by showing that both sides of this equation express the probability that dk is

the optimal decision for h1. Based on Proposition 2, we can get the following corollary.

Corollary 1
X

o2odk

pðojh1Þ ¼ pðp�
kl 6 pðh1joÞ 6 p�

kujh1Þ; ð8Þ

X

o2odk

pðojh2Þ ¼ pðp�
kl 6 pðh1joÞ 6 p�

kujh2Þ: ð9Þ

The equations in Corollary 1 indicate the probability that the decision maker will take the optimal decision dk after

observing new evidence, given the situation that the state of H is hi before collecting the evidence.

Based on Corollary 1, the problem of computing
P

o2odk
pðojhiÞ; i ¼ 1;2; (from Eq. (6)) transfers to the problem of comput-

ing pðp�
kl 6 pðh1joÞ 6 p�

kujhiÞ, which is the topic of the next section. We will focus on pðp�
kl 6 pðh1joÞ 6 p�

kujh1Þ only because the

procedure of computing pðp�
kl 6 pðh1joÞ 6 p�

kujh2Þ is similar.

3.3. Approximation with central-limit theorem

3.3.1. A partitioning procedure

To compute pðp�
kl 6 pðh1joÞ 6 p�

kujh1Þ, one way is to treat pðh1joÞ as a random variable. If the probability density function of

this variable is known, it will be easy to compute pðp�
kl 6 pðh1joÞ 6 p�

kujh1Þ. However, it is hard to get such a probability den-

sity function directly. But we notice that pðp�
kl 6 pðh1joÞ 6 p�

kujh1Þ ¼ p
p�
kl

1�p�
kl

6
pðh1 joÞ
pðh2 joÞ

6
p�
ku

1�p�
ku

jh1
� �

. Based on the transformation

property between a random variable and its function [2], it is straightforward that pðp�
kl 6 pðh1joÞ 6 p�

kujh1Þ
¼ p

p�
kl

1�p�
kl

6
pðh1 joÞ
pðh2 joÞ 6

p�
ku

1�p�
ku

jh1
� �

.

Let us take a closer look at pðh1 joÞ
pðh2 joÞ because it is critical in the approximate algorithm.
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Fig. 4. An example of the utility function UðH;DÞ.
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If all the Oi nodes are conditionally independent from each other given H, based on the chain rule:

pðh1jOÞ
pðh2jOÞ

¼ pðO1jh1Þ
pðO1jh2Þ

� � � pðOnjh1Þ
pðOnjh2Þ

pðh1Þ
pðh2Þ

: ð10Þ

Usually some Ois may not be conditionally independent given H. We will show that pðh1 joÞ
pðh2 joÞ

is approximately distributed as a

log-normal random variable. However, in order to prove it, it is necessary to obtain a format similar to Eq. (10) even when Ois

are not conditionally independent. We thus propose a partitioning procedure to partition O into several groups based on the

principle of d-separation [21], where the nodes in one group are conditionally independent from the nodes in other groups.

This procedure consists of three steps.

(1) Decide whether two nodes, Oi, Oj, are conditionally independent given H by exploring the ID structure based on four

rules: (i) if there is a directed path between Oi and Oj without passingH, Oi and Oj are dependent; (ii) if both Oi and Oj

are the ancestors of H, Oi and Oj are dependent given H; (iii) after removing the links to and from H from the original

ID, if Oi and Oj have common ancestors, or Oi is Oj’s ancestor, or vice versa, then Oi and Oj are dependent; and (iv) in all

the other cases, Oi and Oj are conditionally independent given H.

(2) Build an undirected graph to model the relationships between the nodes. In such a graph, each vertex represents an Oi

node, and each edge between two vertices indicates that the two corresponding nodes are dependent according to the

rules in Step 1.

(3) Partition the graph into disjoint connected subgraphs. A depth first search (DFS) algorithm [4] is used to partition the

graph into several connected components (disjoint connected subgraphs) so that each component is disconnected from

other components. The nodes in each connected component are conditionally independent from the nodes in any

other connected components. Therefore, each connected component corresponds to one group.

For example, for the ID in Fig. 5a, with the partitioning procedure, the Oi nodes can be divided into five groups, fO1;O2g,
fO3;O4;O5g, fO6g, fO7g, and fO8;O9g. Fig. 5b shows the graph built by the partitioning procedure.

3.3.2. Central-limit theorem

Generally, with the partition procedure presented in the previous subsection, O can be automatically divided into several

sets, named Os1 ;Os2 ; . . . ;Osg , where g is the overall number of the groups. Thus, Eq. (10) can be modified as follows:

pðh1jOÞ
pðh2jOÞ

¼ pðOs1 jh1Þ
pðOs1 jh2Þ

� � � pðO
sg jh1Þ

pðOsg jh2Þ
pðh1Þ
pðh2Þ

) ln
pðh1jOÞ
pðh2jOÞ

¼
X

g

i¼1

ln
pðOsi jh1Þ
pðOsi jh2Þ

þ ln
pðh1Þ
pðh2Þ

) ln/ ¼
X

g

i¼1

wi þ c;

where / ¼ pðh1jOÞ
pðh2jOÞ

; wi ¼ ln
pðOsi jh1Þ
pðOsi jh2Þ

; c ¼ ln
pðh1Þ
pðh2Þ

: ð11Þ

In the above equation, c can be regarded as a constant reflecting the state of H before any new observation is obtained and

any new decision is taken. Here, we assume pðh2jOÞ, pðOsi jh2Þ, and pðh2Þ are not equal to 0.

Let W ¼
Pg

i¼1wi be the sum of wi. Following [11], we use the cental-limit theorem to approximate W. The central-limit

theorem [9] states that the sum of independent variables approaches a Gaussian distribution when the number of variables

becomes large. Also, the expectation and variance of the sum is the sum of the expectation and variance of each individual

random variable. Thus, regarding each wi as an independent variable,W then follows a Gaussian distribution. Then, based on

Eq. (11), / will be a log-normal distribution. For a random variable X, if lnðXÞ has a Gaussian distribution, we say X has a log-

normal distribution. The probability density function is: pðxÞ ¼ 1
S
ffiffiffiffi

2p
p

x
e�ðln x�MÞ2=ð2S2Þ, denoted as X � LogNðM; S2Þ [5], where M

and S are the mean and standard deviation of the variable’s logarithm [1]. In order to assess the parameters (mean and var-
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Fig. 5. (a) An ID example; (b) the graph built by the partitioning procedure.
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iance) of the log-normal distribution, we need to compute the mean and the variance of each wi. The computational process

is shown as follows.

Assume Osi has ri instantiations, fosi1 ; . . . ; o
si
ri
g, where ri is the product of the number of the states for each node in the group

Osi , e.g., if Osi ¼ fO1;O2g, and both O1 and O2 have three states, then ri ¼ 3 � 3 ¼ 9. Table 1 gives the value and the probability

distribution for each wi:

Based on the table, the expected value l, and the variance r2 for each wi can be computed as follows:

lðwijh1Þ ¼
X

ri

j¼1

pðosij jh1Þln
pðosij jh1Þ
pðosij jh2Þ

; ð12Þ

r2ðwijh1Þ ¼
X

ri

j¼1

pðosi
j jh1Þln

2 pðo
si
j jh1Þ

pðosij jh2Þ
� l2ðwijh1Þ: ð13Þ

By the central-limit theorem, the expected value and the variance of W can be obtained by the following equations:

lðWjh1Þ ¼
X

g

i¼1

lðwijh1Þ; ð14Þ

r2ðWjh1Þ ¼
X

g

i¼1

r2ðwijh1Þ: ð15Þ

Therefore, based on Eq. (11), for W � NðlðWjh1Þ;r2ðWjh1ÞÞ, we have / � LogNðlðWjh1Þ þ c;r2ðWjh1ÞÞ, where LogN denotes

the log-normal distribution. After getting the probability distribution function and the function parameters for / in Eq. (11),

we are ready to assess the non-myopic VOI.

Before we go to the next section, we first analyze the computational steps involved in computing the parameters for the

log-normal distribution, which is the most time-consuming part in the algorithm. Based on Eqs. (12) and (14), the overall

number of the computational steps is 4
Pg

i¼1ri þ 2g. We will show that this number is much smaller than the overall number

of the computational steps in the exact computational method during the algorithm analysis in Section 3.5.

3.3.3. Approximate non-myopic value-of-information

Based on Proposition 1 in Section 3.2, we know that dk is the optimal action with the probability pðp�
kl 6 pðh1joÞ 6 p�

kuÞ,
which is equivalent to p

p�
kl

1�p�
kl

6 / 6
p�
ku

1�p�
ku

� �

as shown in Section 3.3.1. Let /�
kl ¼

p�
kl

1�p�
kl

, and /�
ku ¼ p�

ku

1�p�
ku

, thus, dk is the optimal deci-

sion if and only if /�
kl 6 / 6 /�

ku. Then, based on Corollary 1 in Section 3.2, the following equation stands:
X

o2odk

pðojh1Þ ¼ pð/�
kl 6 / 6 /�

kujh1Þ: ð16Þ

Furthermore, from Section 3.3.2, we know that / � LogNðlðWjh1Þ þ c;r2ðWjh1ÞÞ, thus,

pð/�
kl 6 / 6 /�

kujh1Þ ¼
1

rðWjh1Þ
ffiffiffiffiffiffiffi

2p
p

x

Z /�
ku

/�
kl

e
�ðln x�lðW jh1 Þ�cÞ2

2r2 ðW jh1 Þ dx; ð17Þ

pð/�
kl 6 / 6 /�

kujh2Þ can be computed in the same way by replacing h1 with h2 in the previous equations.

Therefore, VOI can be approximated by combining Eqs. (2), (6), (16), and (17). Fig. 6 shows the key equations of the algo-

rithm when H has only two states. In summary, to approximate VOIðOÞ efficiently, the key is to compute EUðOÞ, which leads

to an approximation of
P

o2odk
pðojh1Þ with the log-normal distribution by exploiting the central-limit theorem and the deci-

sion boundaries.

3.4. Generalization

In the previous algorithm, the nodeH only allows two states, although the other random nodes and the decision node can

be multiple states. However, in real-world applications, H may have more than two states. In this section, we extend the

algorithm to the case that H can have several states too. Assume H has h states, h1; . . . ; hh, and still, d has q rules,

d1; . . . ; dq, similarly to Eq. (11), we have the following equations:

Table 1

The probability distribution of wi

wi pðwijh1Þ pðwijh2Þ

ln
pðosi

1
jh1Þ

pðosi
1
jh2Þ

pðosi1 jh1Þ pðosi1 jh2Þ
. . . . . . . . .

ln
pðosiri jh1Þ
pðosiri jh2Þ

pðosiri jh1Þ pðosiri jh2Þ
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pðhijOÞ
pðhhjOÞ

¼ pðOs1 jhiÞ
pðOs1 jhhÞ

� � � pðO
sg jhiÞ

pðOsg jhhÞ
pðhiÞ
pðhhÞ

; i 6¼ h ) ln
pðhijOÞ
pðhhjOÞ

¼
X

g

k¼1

ln
pðOsk jhiÞ
pðOsk jhhÞ

þ ln
pðhiÞ
pðhhÞ

) ln/i

¼
X

g

k¼1

wi
k þ ci; where /i ¼

pðhijOÞ
pðhhjOÞ

; wi
k ¼ ln

pðOsk jhiÞ
pðOsk jhhÞ

; ci ¼ ln
pðhiÞ
pðhhÞ

: ð18Þ

Let W i ¼
Pg

k¼1w
i
k, i 6¼ h, W i still has a Gaussian distribution. Here, we assume pðhhjOÞ, pðOsk jhhÞ, and pðhhÞ are not equal to 0.

The similar method in Section 3.3 can be used to compute the variance and the mean. Specifically, for the new defined wi
k in

the above equation, Table 1 can be modified as follows (see Table 2).

Thus, we get the following equations:

lðwi
kjhjÞ ¼

X

rk

l¼1

pðosk
l jhjÞ ln

pðosk
l
jhiÞ

pðosk
l jhhÞ

; 1 6 i < h; 1 6 j 6 h; 1 6 k 6 g; ð19Þ

r2ðwi
kjhjÞ ¼

X

rk

l¼1

pðosk
l
jhjÞln2 pðosk

l jhiÞ
pðosk

l
jhhÞ

� l2ðwi
kjhjÞ: ð20Þ

Similar to Eq. (14), the expected value and the variance of W i can be obtained as we see here:

lðW ijhjÞ ¼
X

g

k¼1

lðwi
kjhjÞ; 1 6 i < h; 1 6 j 6 h; ð21Þ

r2ðW ijhjÞ ¼
X

g

k¼1

r2ðwi
kjhjÞ: ð22Þ

Accordingly, /i follows the log-normal distribution with Sij ¼ rðW ijhjÞ and Mij ¼ lðW ijhjÞ þ ci. We denote the probability

density function of /i given hj as fhj ð/iÞ. Eqs. (19) and (21) show that the overall number of the computational steps to assess

the parameters for the log-normal distributions is 4h
Pg

k¼1rk þ 2hðh� 1Þg when h > 2.

Even though fhj ð/iÞ can be easily obtained, it is still necessary to get the decision boundaries for each optimal decision in

order to efficiently compute
P

o2odk
pðojhjÞ. Therefore, a set of linear inequality functions need to be solved when H has more

than two states. For example, if dk is the optimal action, EUðdkÞ must be larger than the expected utility of taking any other

action. Based on this, a set of linear inequality functions can be obtained:

Fig. 6. The key equations to approximate VOI when H has only two states, D has multiple rules, and the other nodes have multiple states.

Table 2

The probability distribution of wi
k

wi
k pðwi

kjh1Þ . . . pðwi
kjhhÞ

ln
pðosk

1
jhiÞ

pðosk
1
jhhÞ

pðosk1 jh1Þ . . . pðosk1 jhhÞ
. . . . . . . . . . . .

ln
pðoskrk jhiÞ
pðoskrk jhhÞ

pðoskrk jh1Þ . . . pðoskrk jhhÞ
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pðh1Þu1k þ pðh2Þu2k þ � � � þ pðhhÞuhk P pðh1Þu1j þ � � � þ pðhhÞuhj

) u1k � u1j þ uhj � uhk

uhj � uhk

� pðh1Þ þ � � � þ uðh�1Þk � uðh�1Þj þ uhj � uhk

uhj � uhk

� pðhh�1ÞP 1

) u1k � u1j

uhj � uhk

� pðh1Þ
pðhhÞ

þ � � � þ uðh�1Þk � uðh�1Þj

uhj � uhk

� pðhh�1Þ
pðhhÞ

P 1: ð23Þ

We assume uhj � uhk > 0; otherwise, ‘‘P” is changed to ‘‘6” in the last inequality.

Let Ak be the solution region of the above linear inequalities, then

X

o2odk

pðojhjÞ ¼
Z

Ak

fhj ð/1Þ � � � fhj ð/h�1ÞdAk; 1 6 j 6 h; 1 6 k 6 q: ð24Þ

The right side of Eq. (24) is an integral over the solution region Ak decided by the linear inequalities. We first demonstrate

how to solve the integral when H has three states, and then introduce the method for the case that H has more than three

states.

When H has three states, Eq. (23) can be simplified as follows:

pðh1Þu1k þ pðh2Þu2k þ pðh3Þu3k P pðh1Þu1j þ pðh2Þu2j þ pðh3Þu3j ) a1kj �
pðh1Þ
pðh3Þ

þ a2kj �
pðh2Þ
pðh3Þ

P 1;

where a1kj ¼
u1k � u1j

u3j � u3k

and a2kj ¼
u2k � u2j

u3j � u3k

: ð25Þ

In the above, it is assumed that u3j > u3k; if u3j < u3k, then ‘‘P” is changed to ‘‘6” in the last inequality.

And Eq. (24) can be simplified as follows:

X

o2odk

pðojhjÞ ¼
Z

Ak

fhj ð/1Þfhj ð/2ÞdAk; 1 6 k 6 q; 1 6 j 6 3; ð26Þ

Ak is decided by ðq� 1Þ linear inequalities and each inequality has two variables /1 and /2 as defined in Eq. (25). We use the

following steps to solve this integral when Ak is a finite region.

1. Identify all the lines that define the inequalities and find all the intersection points between any two lines as well as the

intersection points between any line and the x (or y) axis.

2. Choose the intersection points that satisfy all the linear inequalities, and use them as vertices to form a polygon.

3. Divide the polygon into several simple regions:Specifically, for each vertex, we generate a line crossing this vertex and

parallel to the y-axis. The lines then divide the polygon into several simple regions.

4. Evaluate the integral in each simple region and sum the values together.

An example of the solution region is shown in Fig. 7. In this example, if a1kj > a1kjði 6¼ jÞ, then a2kj > a2kj too. Therefore, the

solution region can be decided by the intersection points of the lines that are defined by the linear inequalities and the axes.

For example, in Fig. 7, Ak is decided by a–d, which are selected from the intersection points fð1=a1kj;0Þ;
ð0;1=a2kjÞ; j ¼ 1; . . . ; q; j 6¼ kg. Based on [3], the time complexity of solving m linear inequalities with n variables (each

inequality only has two variables) is Oðmn logmþmn2log
2
nÞ. In this case, n is 2 and m is q� 1.

Fig. 7. A solution region of a group of linear inequalities.
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When H has more than three states, the integral needs to be performed in a high-dimension space (dimension is larger

than 2). Therefore, we solve it with Quasi-Monte Carlo integration [10,16], which is a popular method to handle multiple

integral. Quasi-Monte Carlo integration picks points based on sequences of quasirandom numbers over some simple domain

A0
k which is a superset of Ak, checks whether each point is within Ak, and estimates the area (n-dimensional content) of Ak as

the area of A0
k multiplied by the fraction of points falling within Ak. Such a method is implemented by Mathematica [20],

which can automatically handle a multiple integral with a region implicitly defined by multiple inequality functions.

Fig. 8 shows the key equations of the algorithm when H has multiple states. The main equations are similar to those in

Fig. 6. However, since H has multiple states, it becomes more complex to obtain the parameters of the log-normal distribu-

tion and perform the integration.

3.5. Algorithm analysis

Now, we analyze the computational complexity of the proposed approximation algorithm compared to the exact compu-

tational method. For simplicity, assume that the number of the state of each Oi node is m, and there are n nodes in the set O.

Assume we only count the time used for computing expected utilities. Then the computational complexity of the exact VOI

computational method is approximately hm
n
, where h is the number of the state of the H node. With the approximation

algorithm, the computational complexity is reduced to hm
k
, where h is the number of the state of the H node, and k is

the number of Oi nodes in the maximum group among fOs1 ; . . . ;Osgg. In the best case, if all the Oi nodes are conditionally

independent given H, the time complexity is about linear with respect to m. In the worst case, if all the Oi nodes are depen-

dent, the time complexity is approximately mn. However, usually, in most real-world applications, k is less than n, thus, the

approximate algorithm is expected to be more efficient than the exact computational method, as will be shown in the exper-

iments. For example, for the ID in Fig. 5, n ¼ 9, m ¼ 4, h ¼ 3, and q ¼ 3. Then, for the exact computation, the number of com-

putations is around 3 � 49 ¼ 786432, while using the approximate algorithm, the number of computations is only around

3 � 43 ¼ 192.

However, in addition to the cost of computing expected utilities, the approximation algorithm also includes some extra

costs: sorting the utility functions (Section 3.2), partitioning the O set (Section 3.3.1), and deciding the decision boundaries

(Section 3.2) when H has two states, or performing the integral when H has more than two states (Section 3.4). These costs

are not included in the above analysis. In general, the extra time in these steps is much less than the time used for computing

expected utilities. For example, the time complexity of sorting is Oðq logðqÞÞ, the time complexity of the partition procedure

is OðjV j þ jEjÞ (V is the set of vertex, and E is the set of edges in an ID), and the time complexity in deciding the decision

boundaries when h has two states is Oðq2Þ. When h has more than two states, deciding the decision boundaries needs addi-

tional time. Empirically, it does not affect the overall speed, as will be shown in the experiments. In addition, most steps in

computing expected utilities involve performing inferences in an ID, which is usually NP-hard and thus consumes much

more time than a step in the procedures of sorting, partitioning, and integrating.

Fig. 8. The key equations to compute VOI when H has multiple states.
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4. Experiments

The experiments are designed to demonstrate the performance of the proposed algorithm compared to the exact VOI

computation. We limit the ID test model with at most 5 layers2 and up to 11 information sources due to the exponential com-

putational time behind the exact computation. Ten different ID models are constructed, where in one of the IDs the O nodes are

conditionally independent given the H node. Table 3 describes the structures of these IDs. The IDs are parameterized with 150

sets of different conditional probability tables and utility functions, a process which yields 1500 test cases. In each the one-third

of them,H node has 2, 3, and 4 states, respectively. Without loss of generality, all the other random nodes and the decision node

have four states.

For each test case, the VOIs for different O subsets with the size from 3 to 11 are computed. The results from the approx-

imation algorithm are compared to the exact computation implemented with the brute-forth method. Let VOIt be the

ground-truth, and VOI be the value computed with the proposed algorithm. Assuming VOIt 6¼ 0, the error rate is defined

as follows:

Err ¼ jVOIt� VOIj
VOIt

:

The 1500 test cases described previously are divided into six groups, named as ID_indep: 2-state, ID_indep:3-state, ID_indep:4-

state, ID_dep:2-state, ID_dep: 3-state, and ID_dep:4-state. Table 4 describes the six groups.

Fig. 9 illustrates the results from the six groups of 1500 test cases. Chart (a) shows the average errors for each group, while

Chart (b) shows the VOIs for one specific case, which is randomly chosen from the test cases from ID_dep: 3-state. As the set

size of the Oi nodes increases, the error rate decreases. When the state number ofH is the same, the error rates of the depen-

dent cases are larger than the error rates of the conditional independent cases. This can be explained by the reason that the

IDs in the dependent cases have fewer independent O subsets than the ID in the independent groups. Since the central-limit

theorem is the basis of our algorithm, it works better when the number of wi increases, which corresponds to the number of

independent O subsets. Even when the size of O set is as small as 6, the average error is less than or around 0.1 for all the

cases. We could run several larger IDs with much more Oi nodes, and the error curve would be progressively decreasing.

Here, we intend to show the trend and the capability of this algorithm.

Charts (c) and (d) show the average computational time with the exact computation and the approximation computation.

When the set size of the Oi nodes is small, the computational time is similar. However, as the size becomes larger, the com-

putational time of the exact computation increases exponentially, while the computational time of the approximation algo-

rithm increases much slower. Thus, the larger the O set size is, the more time the approximation algorithm can save.

Likewise, as the number of the state of each Oi node further increases, the computational saving would be more significant.

As the number of states of H increase, the computational time also slightly increases.

5. An illustrative application

We use a real-world application in human computer interaction to demonstrate the advantages of the proposed algo-

rithm. Fig. 10 shows an ID for user stress recognition and user assistance. The diagram consists of two portions. The upper

portion, from the top to the ‘‘stress” node, depicts the elements that can alter human stress. These elements include the

workload, the environmental context, specific character of the user such as his/her trait, and importance of the goal that

Table 3

ID structures

k 5 4 3 2 1

Number of IDs 2 3 3 1 1

k is the size of the biggest group after partitioning.

2 The length of the longest path starting from (or ending at) the hypothesis node is 5.

Table 4

Testing cases

ID_indep: 2-state 50 test cases, where Oi nodes are conditionally independent given H whose state is binary

ID_indep: 3-state 50 test cases, where Oi nodes are conditionally independent given H who has three states

ID_indep: 4-state 50 test cases, where Oi nodes are conditionally independent given H who has four states

ID_dep: 2-state 450 test cases, where Oi nodes are conditionally dependent given H whose state is binary

ID_dep: 3-state 450 test cases, where Oi nodes are conditionally dependent given H who has three states

ID_dep: 4-state 450 test cases, where Oi nodes are conditionally dependent given H who has four states
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he/she is pursuing. This portion is called predictive portion. On the other hand, the lower portion of the diagram, from the

‘‘stress” node to the leaf nodes, depicts the observable features that reveal stress. These features include the quantifiable

measures on the user physical appearance, physiology, behaviors, and performance. This portion is called diagnostic portion.
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Fig. 9. Results from the four groups of 1500 test cases: (a) average error rates with the approximation algorithm; (b) VOIt vs. VOI for one test case from

ID_dep: 3-state; (c) computational time (log(t), unit is second) for the groups of ID_indep:n-state, n ¼ 2;3;4; and (d) computational time (log(t), unit is

second) for the groups of ID_dep:n-state, n ¼ 2;3;4.
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The hybrid structure enables the ID to combine the predictive factors and observable evidence in user stress inference. For

more detail please refer to [19].

To provide timely and appropriate assistance to relieve stress, two types of decision nodes are embedded in the model to

achieve this goal. The first type is the assistance node associated with the stress node, which includes three types of assis-

tance that have different degrees of impact and intrusiveness to a user. Another type of decision nodes is the sensing action

node (Si node in Fig. 10). It decides whether to activate a sensor for collecting evidence or not. Through the ID, we decide the

sensing actions and the assistance action sequentially. In order to first determine the sensing actions (which sensors should

be turned on), VOI is computed for a set S consisting of Si. Using the notations defined before, we have

VOIðSÞ ¼ VOIðEÞ �P

Si2SuiðSiÞ, where E is the set of observations corresponding to S and VOIðEÞ ¼ EUðEÞ � EUðEÞ.
Fig. 11 shows the experimental results for the stress model. We enumerate all the possible combinations of sensors and

then compute the value-of-information for each combination. Chart (a) illustrates the average VOI errors for different sensor

sets with the same size. And Chart (b) displays the Euclidean distance between the true and estimated probabilities
P

o2odk
pðojhiÞ (Eq. (26)). Similarly to the simulation experiments, the error decreases as the size of O set increases, and the

computational time increases almost linearly in the approximation algorithm.

6. Conclusions and future work

As a concept commonly used in influence diagrams, VOI is widely used as a criterion to rate the usefulness of various

information sources, and to decide whether pieces of evidence are worth acquiring before actually using the information

sources. Due to the exponential time complexity of computing non-myopic VOI for multiple information sources, most

researchers focus on the myopic VOI, which requires the assumptions (‘‘No competition” and ‘‘One-step horizon”) that

may not meet the requirements of real-world applications.

We thus proposed an algorithm to approximately compute non-myopic VOI efficiently by utilizing the central-limit the-

orem. Although it is motivated by the method of [11], it overcomes the limitations of their method, and works for more gen-

eral cases, specifically, no binary-state assumption for all the nodes and no conditional-independence assumption for the
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information sources. Table 5 compares our method with the method in [11]. Due to the benefits of our method, it can be

applied to a much broader field. The experiments demonstrate that the proposed algorithm can approximate the true

non-myopic VOI well, even with a small number of observations. The efficiency of the algorithm makes it a feasible solution

in various applications when efficiently evaluating a lot of information sources is necessary.

Nevertheless, the proposed algorithm focuses on the influence diagrams with one decision node under certain assump-

tions. For example, currently, we assume the hypothesis node H and the decision node d are independent. If D and H are

dependent, but conditionally independent given the observation set O, Eqs. (5) and (6) will not be affected, so our algorithm

can still apply. However, if D and H are dependent given O, it may be difficult to directly apply our algorithm. Another sce-

nario is that when there are more than one hypothesis node and/or utility nodes. One possible solution is to group all these

hypotheses nodes into one. We would like to study these issues in the future.

Appendix

Proposition 1. Let rjk ¼
u2j�u2k

u1k�u1jþu2j�u2k
, p�kl ¼ maxk<j6qrjk, and p�ku ¼ min16j<krjk, then dk is the optimal action if and only if

p�kl 6 pðh1Þ 6 p�ku.

Proof of Proposition 1. ) In this direction, we prove that if dk is the optimal action, pðh1ÞPmaxk<j6qrjk and

pðh1Þ 6 min16j<krjk.

If dk is the optimal action, EUðdkÞ must be larger than or equal to the expected utility of any other action. Based on the

definition, the expected utility of taking the action dk is EUðdkÞ ¼ pðh1Þ � u1k þ pðh2Þ � u2k, where u1k ¼ uðh1; dkÞ, and

u2k ¼ uðh2; dkÞ. Therefore, we get the equations as follows:

EUðdkÞP EUðdjÞ 8j; j 6¼ k; ð27Þ
) pðh1Þ � u1k þ pðh2Þ � u2k P pðh1Þ � u1j þ pðh2Þ � u2j; ð28Þ

) pðh1ÞP
u2j � u2k

u1k � u1j þ u2j � u2k

¼ rjk if j > k; ð29Þ

pðh1Þ 6
u2j � u2k

u1k � u1j þ u2j � u2k

¼ rjk if j < k: ð30Þ

Thus, based on the above equations, pðh1ÞPmaxk<j6qrjk and pðh1Þ 6min16j<krjk.

( In this direction, we prove that if pðh1ÞP maxk<j6qrjk and pðh1Þ 6 min16j<krjk, then dk is the optimal action.

If pðh1ÞPmaxk<j6qrjk 8j; k < j 6 q, we get

pðh1ÞP rjk ¼
u2j � u2k

u1k � u1j þ u2j � u2k

; ð31Þ

) pðh1Þðu1k � u1j þ u2j � u2kÞP u2j � u2k; ð32Þ
) pðh1Þ � u1k þ ð1� pðh1ÞÞ � u2k P pðh1Þ � u1j þ ð1� pðh1ÞÞ � u2j; ð33Þ
) EUðdkÞP EUðdjÞ: ð34Þ

Similarly, for 8j;1 6 j < k, we can get EUðdkÞP EUðdjÞ. Therefore, dk has the maximal expected utility and thus is the optimal

decision.

Proposition 2.
P

o2odk
pðoÞ ¼ pðp�

kl 6 pðh1joÞ 6 p�
kuÞ.

Proof of Proposition 2. Based on Proposition 1, dk is the optimal decision if and only if the value of pðh1Þ is between p�
kl and

p�
ku. Therefore, given an instantiation o, the probability that dk is the optimal decision is equal to the probability that pðh1joÞ is

between p�
kl and p�

ku, i.e., pðp�
kl 6 pðh1joÞ 6 p�

kuÞ.
On the other hand, we know that odk is a subset of instantiations, each of which corresponds to the optimal action dk.

Therefore, as long as o belongs to the set of odk , dk will be the optimal decision. In other words, the probability of dk being the

optimal decision is the sum of the probability of each o 2 odk , which is
P

o2odk
pðoÞ. Therefore,

P

o2odk
pðoÞ ¼

pðp�kl 6 pðh1joÞ 6 p�kuÞ.

Table 5

The proposed algorithm vs. the algorithm in [11]

Our algorithm Heckerman’s algorithm

Hypothesis node (H) can be multiple states H has to be binary

Decision node (D) can have multiple rules D has to be binary

Information sources nodes (Os) can be dependent from each other Os have to be conditionally independent from each other
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Active and Dynamic Information Fusion for Multisensor

Systems With Dynamic Bayesian Networks

Yongmian Zhang and Qiang Ji

Abstract—Many information fusion applications are often characterized

by a high degree of complexity because: 1) data are often acquired from
sensors of different modalities and with different degrees of uncertainty; 2)

decisions must be made efficiently; and 3) the world situation evolves over
time. To address these issues, we propose an information fusion framework
based on dynamic Bayesian networks to provide active, dynamic, purposive

and sufficing information fusion in order to arrive at a reliable conclusion
with reasonable time and limited resources. The proposed framework is

suited to applications where the decision must be made efficiently from dy-
namically available information of diverse and disparate sources.

Index Terms—Active sensing, Bayesian networks, information fusion.

I. INTRODUCTION

There has been a great deal of interest in the development of sys-

tems capable of using many different sources of sensory information

[1], [2]. Whatever the application may be, there is a need to systemati-

cally and efficiently interpret the large volume of information acquired

from sensors of different modalities and with different degrees of un-

certainty. Typically, many applications contain a large number of un-

certain events interrelated by causes and effects. The question is how to

systematically and efficiently represent and fuse uncertain information

at different levels of abstraction.

The world situation is often dynamic and uncertain in nature and un-

folds over time. To correctly assess and interpret the dynamic environ-

ment, a fusion system is needed that not only can systematically handle

uncertain sensory data of different modalities but, more importantly,

can reason over time. The inability of current sensor fusion systems to

correlate and reason about a vast amount of information over time is an

impediment to providing a coherent overview of the unfolding events.

The question is, therefore, how to account for the temporal changes in

sensory information.

Moreover, many applications are often constrained by limited

time and resources. The usage of more sensors incurs more cost

in acquiring information. It is important to avoid unnecessary or

unproductive sensor actions and computations. Thus, we must select a

subset of sensors that are the most decision-relevant. Now the question

is how to determine a set of most informative information sources for

the current goal with minimal cost at particular stage of information

gathering to achieve an efficient and timely decision.

To address above issues, a fusion system therefore requires the capa-

bility which can not only represent the temporal changes of uncertain

sensory information, but dynamically select the most relevant sensory

data for a given goal at a given time as well. To achieve this, we propose

to cast information fusion into a framework of dynamic Bayesian net-

works (DBNs) to account for the temporal aspect of decision making

and uncertainty of knowledge, and to integrate and infer dynamic sen-

sory information of different modalities. The fusion system is able to
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actively select a subset of sensors to produce the most decision-rele-

vant information with limited resources and in reasonable time. Addi-

tionally, DBNs enable sensor selection to dynamically adapt to varying

situations.

Research in information fusion is getting wider and deeper nowa-

days. There are a number of methods available for sensor fusion in-

cluding evidential reasoning [3], fuzzy theories [4]–[6], and neural net-

works [7], [8]. However, these methods lack the sufficient expressive

power to handle uncertainties, dependencies and dynamics exhibited

by sensory data in many applications. Bayesian networks (BNs), since

their inception, have shown great promise in performing multisensor

data fusion [1]. Recently, DBNs extend BNs for modeling dynamic

events [9]–[13]. In the existing works, BNs and DBNs are primarily

used for knowledge and uncertainty representation. DBNs were pro-

posed as a generalization of hidden Markov models (HMMs) [14], but

they allow much more general graph structures than an HMM does. It is

therefore natural to consider a DBN as a basis of the general spatio-tem-

poral sensor data analysis and interpretation.

Active sensing involves actively controlling sensors to optimize in-

formation gathering in a knowledge-based manner with an identifiable

selection criterion rather than randomly selecting sensor parameters. A

significant amount of research has been directed to the area of com-

puter vision and robotics [15]–[19]. More recently, Oliver et al. [20]

studied selective perception policies to purposively guide sensing and

visual information processing to circumvent the computational burden

associated with perceptual analysis. Pinz et al. [21] is the first to intro-

duce active fusion in remote sensing image understanding. Paletta and

Pinz proposed an active recognition system [22], where mutual infor-

mation is used to quantify the ambiguity and to determine which view

to select. Denzler and Brown [23] applied mutual information theory

in the state estimation process for active camera parameter selection.

Using HMMs and evidential reasoning to combine instantaneous and

temporal visual information is recently studied in [24]. The notion of

dynamically combining information provides useful hint to this work.

A central problem of active information fusion is the sensor selection

problem. There have been several attempts in sensor selection for target

localization [25]–[28]. In theses works, they assumed that the system

model is either a linear system or a standard stochastic model. Other

works of interest for sensor selection can be found in the control liter-

ature. The work presented in [29] considers an Hidden Markov model

with a number of sensors. The sensor sequence is determined via sto-

chastic dynamic programming. The problem of optimal sensor selec-

tion for discrete-event systems under partial observation was studied

in [30]. Since we use a DBN as an information fusion method, the

above approaches of sensor selection can not directly be applied to our

problem.

This paper aims to formalize a framework based on DBNs for ac-

tive and dynamic information fusion, which is particularly suited to

the applications where the decision must be made efficiently from dy-

namically available information of diverse and disparate sources. The

remainder of this paper is organized as follows. We start with infor-

mation fusion using DBNs in the next section. An active and dynamic

information fusion framework is proposed in Section III. Section IV

presents an example for a proof-of-concept. The final section is the

conclusion.

II. INFORMATION FUSION WITH BAYESIAN NETWORKS

Information fusion is a process dealing with the association, correla-

tion, and combination of information collected from various disparate

sources into one coherent structure that can be used by a computer

system to make a better decision than from single source only. In order

1083-4419/$20.00 © 2006 IEEE
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Fig. 1. Overview of a dynamic information fusion process in sequential
decision-making for situation understanding. The figure shows that, if the
certainty about the world situation is not sufficiently high, the additional
information is requested by selecting a set of information sources. When
knowing enough about the world situation, the decision-maker may make a
decision about which course of action corresponding to that type of situation
needs to be taken.

to accomplish this task, a fusion function F must be used to combine

these multiple sensor readings to a single output. Regardless of the fu-

sion structure, the fusion process can be generally expressed as

� = F (S1; S2; � � � ; Sn) (1)

where Si denotes an individual sensor that gives a measurement; � is

the output on which the decision-making is based. The choice of the

fusion function F depends on the chosen fusion methods. A review

of information combination methods can be found in [31]. The fusion

method in this effort is a dynamic probabilistic network; while the prob-

abilistic inference is analogous to the fusion function F . The output �
is the posterior probability of hypotheses that we want to infer. Fig. 1

outlines an active fusion process in sequential decision-making for sit-

uation understanding.

In terms of probabilistic networks, chain graphs have been explored

to incorporate probabilistic reasoning for data analysis tools [32]–[34].

A chain graph is a probabilistic network model that mixes undirected

and directed graphs to give a probabilistic representation. However, in

order to represent the causality between random variables as well as

time-series data, it is natural to use directed graphical models, which

can capture the fact that one causes another as well as time flows for-

ward. BNs or DBNs are ideal for representing directed graphs.

A Bayesian network is a graphical model representing probabilistic

relationships among a set of variables to reflect an expert’s under-

standing of the domain. A rigorous definition of Bayesian networks

can be found in [35]. Here we develop the concept with just enough

rigor and detail that will enable us to apply them to information

fusion problems. A general definition of a BN, as shown in Fig. 2(a),

is given as follows. Let (E ; P ) be a joint probability space with

E = E1 � � � � � En, and joint probability P . Given a directed acyclic

graph (DAG) of G = (X;E) with X = fX1; � � � ; Xng and arcs E,

where Xi is the projection onto Ei. Let �(Xi) be the parents of Xi and

A(Xi) be the nondescendant of �(Xi). Then (G; P ) is a Bayesian

network if, for all Xi 2 X , Xi and A(Xi) are independent given

�(Xi). The resulting joint probability over the random variables in the

network can be expressed as

P (X) =

n

i=1

P (Xij�(Xi)) : (2)

Bayesian networks are valuable for several reasons. First, they en-

able to model the dependencies and uncertainties of the events and to

handle incomplete data sets without difficulty because they discover de-

pendencies among all variables. Second, domain knowledge can be de-

scribed in a hierarchical graphical structure to represent different levels

Fig. 2. (a) Static Bayesian network (a directed acyclic graph), whereX �X

are random variables. (b) A DBN is defined by “unrolling” the two-slice BN.
Assume that the model is first-order Markov. The figure shows that X , X
and X at current time t are connected to their corresponding variables which
determine the system at previous moment of time t � 1.

of abstraction. Third, they provide a mathematically rigorous founda-

tion for consistent, coherent and efficient reasoning.

BNs were initially not suited to modeling dynamic events. To cir-

cumvent this limitation, a new statistical approach from the perspective

of BNs was proposed as a generalization of Kalman filtering models

(KFMs) [36] and HMMs [37], namely, DBNs [14]. A DBN model is

made up of interconnected two time slices of a static BN, and the tran-

sition of BN between the two consecutive time t and t+1 satisfies the

Markov process. Conventionally, it is assumed that a DBN is first-order

Markov, and that temporal nodes1 at the current time t are connected

only to the corresponding nodes at the next time slice t+1. DBNs, how-

ever, can be extended by connecting a node at t to any nodes at t + 1
it may affect. However, such connections not only greatly complicate

the network topology but also have limited utility since the impact of a

node at t on any nodes other than itself at t + 1 are usually accounted

for through the propagation of its influence on the corresponding node

to the other nodes. Therefore, DBNs can be implemented by keeping

in memory two slices at any one time, representing previous time slice

and current time slice, respectively. The nodes in the first time slice

do not have any parameters associated with them and they only de-

termine the system at the previous moment of time; while each node

from the second time slice has an associated conditional probability

distribution. The two slices are such rotated that old slices are dropped

and new slices are used as time progresses. The arcs between slices are

from left to right, reflecting the temporal causality and they are param-

eterized by transitional probabilities. We only consider discrete-time

stochastic processes, so we increase the index t by one every time a

new observation arrives. Fig. 2(b) shows an example of DBNs as given

by the definition above. The joint distribution from the initial moment

of time (t = 1) until the time boundary (t = T ) is then given by

P (X1:T ) =

T

t=1

n

i=1

P X
t

i j� X
t

i (3)

where Xt

i is the i0th node at time t; �(Xt

i ) stands for the parents of a

nodeXi at time t, and they can either be in the same time slice or in the

previous time slice. The difference between a DBN and an HMM is that

a DBN represents the hidden state in terms of a set of random variables.

By contrast, in an HMM, the state space consists of a single random

variable. The difference between a DBN and a KFM is that a KFM

requires all the conditional probability densities (CPDs) to be linear-

Gaussian, whereas a DBN allows general hybrid, nonlinear CPDs. In

addition, HMMs and KFMs have a restricted topology, whereas a DBN

allows much more general graph structures. Therefore, it is natural to

consider a DBN as a basis of the general spatio-temporal sensor data

1Temporal nodes represent variables that evolve over time.
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Fig. 3. Sensors are viewed as random variables and incorporated into
a Bayesian network to form a coherent information fusion structure. For
representing sensor uncertainties, a layer of information variables fI ; � � � ; I g
is added into dynamic Bayesian networks to interface sensors and intermediate
variables.

analysis and interpretation. A thorough work on DBN representation,

inference and learning can be found in [13].

With the hypothesis and sensors, we can construct a coherent fusion

structure with a Bayesian network as shown in Fig. 3. The root node of

such a network would contain the hypothesis variable whose states cor-

responds to multiple hypotheses. The sensors occupy the lowest level

nodes without any children. Sensors are the only observable variables

in the model and evidences are gathered through sensors. In general

a network will have a number of intermediate nodes that are interre-

lated by cause and effect. The hypothesis node is causally linked to

the sensor nodes through these intermediate variables. The nodes and

the links should reflect the causal structure and context independencies

pertaining to the problem we are modeling.

In the real world, however, a fusion system may receive incorrect

information from sensors for various reasons such as sensor noise, im-

precise acquisition devices, and limitations of numerical reconstruction

algorithms. If information is expert knowledge, experts also differ in

their level of expertise. Therefore, sensor readings include uncertain-

ties, which may diminish the reliability of a fusion system. There are

a number of ways to represent uncertainty in sensory data [38]. Nev-

ertheless, a probabilistic metric provides us with some consistency for

information throughout the probabilistic graphical model. The uncer-

tainty of sensor readings measures the degree of belief that the infor-

mation provided by a sensor reflects the actual value. To be able to

handle the uncertainty of sensor readings in the fusion structure with

a probabilistic network, we may add an additional layer of variables

which connects sensors to intermediate variables, namely information

variables, as shown in Fig. 3. Conditional probabilities between infor-

mation variables and sensors quantify the uncertainty of sensor mea-

surements. Consequently, the uncertainty of sensor readings is incorpo-

rated into the fusion system to update the probability distribution over

the hypothesis variable. Evidences regarding information variables are

gathered through sensors and are fused through DBN inference. Tem-

poral link between two consecutive time slices reflects the temporal

causality. The time t increases by one every time new sensor informa-

tion arrives.

III. ACTIVE AND DYNAMIC INFORMATION FUSION

The objective of active information fusion is to selectively choose

the most decision-relevant information while minimizing the cost as-

sociated with using the sensors for acquiring information. Overall ef-

ficiency can be achieved by aggregating only a subset of the most rel-

evant sensor data to address the current goal. In other words, active

fusion focuses on what is optimal rather than what is available.

Fig. 4. Functional view of active information fusion, in which the fusion
structure is a Bayesian network consisting of hypotheses �, intermediate
variables X , information variables I , and sensors S. The closed arrows
represent the causality relations and the open arrows represent sensor activation
control.

The problem of active fusion can be stated mathematically as fol-

lows. Assume that there are m sensors Si, i = 1; � � � ;m available that

can be used to give measurements of the environment. Let � be a set

of hypothesis �k , k = 1; � � � ; K . Let the sensors S = fS1; � � � ; Sng
be a subset of sensors selected at time t, where n 2 f1; . . . ;mg. The

measurement of a sensor Si at time t is denoted as ot(Si), and ot(Si)

of the i0th sensor belongs to a known finite set of states e
(i)
1 ; . . . ; e

(i)
L

.

That is, the i0th sensor can yield one of L possible measurements at a

given time instant t. Let Ot = fot(S1); . . . ; ot(Sn)g represent the in-

formation available at current time t upon which the sensor selection is

based at time t + 1. The active information fusion generally proceeds

in four stages at each time instant.

(1) Sensor Selection: based on the system state after receiving Ot,

select an optimal subset of sensors S� to be activated at the next

time step t + 1.

(2) Observation: get observation ot+1(Si), i = 1; � � � ; n, to obtain

new sensory information Ot+1, where Si 2 S
�.

(3) State Estimation: compute the posterior probability

p(�t+1jOt+1) by using DBN inference algorithms.

(4) Decision-making: make a decision if the certainty in the current

solution is sufficiently high. Otherwise, start over and select sen-

sors for further observations.

To determine a set of sensors to activate, it can only consider the

probable outcomes of sensors. The actual outcomes of sensors can only

be determined once the sensors are instantiated. Fig. 4 provides an ar-

chitectural concept for the framework of active and dynamic informa-

tion fusion. On the basis of this figure, the active control is to select a

subset of sensors to be activated for the next time instant by only consid-

ering the probable outcomes of sensors (not physically invoked). The

selected sensors have the greatest expected contribution to the uncer-

tainty reduction (compared to their costs). The observed system is to

physically invoke the selected sensors at time t, and generates sensory

information Ot, the set of actual outcomes of selected sensors.

Acquiring information incurs cost such as operational cost, compu-

tational cost, etc. In a military context, the cost also includes the risk

involved in information gathering. It is apparent that any quantitative

analysis of information gain must account for the conflicting objective

of sensor activation. Therefore, optimal sensor selection is to maximize

a utility. In general, the utility function consists of two components: in-

formation gain u1 and the cost C(S) to activate sensors S. We use

u2 = 1�C(S) to convert the cost to the cost saving, which makes u1
and u2 in qualitative equivalence (both represents the benefit). Since
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u1 and u2 are mutually utility independent [39], we can design a mul-

tilinear utility function as

U(u1; u2) = (k1u1 + 1)(k2u2 + 1) (4)

where k1 and k2 are the preference parameters and k1 + k2 = 1. u1
and u2 need to be normalized in quantitative equivalence.

From the viewpoint of information theory, mutual information in-

deed measures the gain of an average amount of information before

and after instantiating the selected sensors. Follow the notations in

Fig. 4 and consider the process at certain time instant t. Notice that

t is dropped for notational clarity in the following equations. To ob-

tain the mutual information, we shall start with the expected entropy

of information. The expected entropy of hypothesis � with respect to

all possible outcomes of a sensor Si measures how much uncertainty

exists in � given Si, is

H(�jSi) = �
S �

P (�; si) logP (�jsi) (5)

where si denotes the value taken by sensor Si. If subtracting H(�jSi)
from the original uncertainty in� prior to instantiatingSi,H(�), yield

the amount of information about � that Si is capable of providing

I(�;Si) =H(�)�H(�jSi)

= �
�

P (�) logP (�)

+
S

P (si)
�

P (�jsi) logP (�jsi)

=
� S

P (�; si) log
P (�jsi)

P (�)
(6)

where I(�;Si) also quantifies the total uncertainty-reducing potential

of Si regarding �. Then mutual information I(�;S) for a sensor set

S = fS1; � � � ; Sng may be written as

I(�;S)

=H(�)�H(�jS)

=
� S ���S

P (�; s1; � � � ; sn)log
P (�js1; � � � ; sn)

P (�)
(7)

where P (�; s1; � � � ; sn) and P (�js1; � � � ; sn) at time t can be directly

obtained through DBN inference algorithms by considering the state

of temporal variables at time t � 1 and current sensor observations at

time t.

Equation (7) provides a selection criterion in identifying the uncer-

tainty reduction capability given a sensor set S. Unfortunately, it is im-

practical to simply implement this criterion due to two difficulties when

n is large: 1) it requires time exponential in the number of summations

to compute mutual information exactly and 2) it is infeasible to iden-

tify an optimal subset from a large number of information sources. This

computational problem is beyond the scope of this present work as we

focus on the principle and issues of active and dynamic information fu-

sion. Now let S be entire space of sensor subsets and S� be an optimal

sensor subset. We then summarize a sequential decision process with

the proposed framework as follows.

SEQUENTIAL-DECISION-PROCESS

1

2

3 while

4 Activate for each and get

Fig. 5. DBN model for a conceptual IFF system to assist in the identification
of aircraft. The transition between two neighboring time slices is modeled by
first-order HMM. Assume that only the hypothesis nodes between two time
slices are connected.

5 Perform DBN inference and obtain

6 if confidence is sufficiently high

7 make decision

8 else

9

A strategy of sensor selection needs to be implemented for lines 2

and 8 in the above procedure. Using the brute-force approach or greedy

approach for sensor selection, we need to evaluate (7) when informa-

tion theoretic criterion is used; this is feasible only for the problems

with a small number of sensors and with a limited number of sensors

being instantiated. To avoid the intractability of exact information com-

putations, myopic is often used under the assumption that the decision

maker will act after observing only one sensor. To correctly identify

the cost-effective sensors, we should take into account the fact that the

decision maker may instantiate more than one sensor before acting.

One often used method for selecting multiple sensors at a time is the

greedy approach, which greedily selects an ensemble of sensors itera-

tively until either the combined utility of the selected sensors peaks or

when the maximum number of sensors is reached. While efficient, the

greedy approach can not guarantee the optimality of the solution. A the-

oretic approach to the optimal and efficient sensor selection behind this

framework is the focus of our current research. Our initial solution to

efficiently compute (7) can be seen in [40]. Below, we use a brute-force

approach to compute I(�;S) and U(�) with a limited number of sen-

sors being instantiated at each time.

IV. EXAMPLE

To clarify the basic notions, we first experiment with a very simple

example for a proof-of-concept. Suppose that a system of identification

friend or foe (IFF) employs sensors including imaging sensors (e.g.,

FLIR, SAR), acoustic sensor, and radar sensor, etc., to identify char-

acteristics of all known aircrafts. Fig. 5 presents a BN model for such

a system. The most important identification features that best charac-

terize a particular aircraft include length, span, wing and tail shape,

speed, and engine sound, and they are provided by diverse sensors. For

examples, to obtain the aircraft shape, we may activate the imaging sen-

sors to determine the shape parameters of the aircraft; while we may
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Fig. 6. (a) Comparison of entropy reduction between passive fusion and active
fusion. Relative entropy = (H �H )=H , where H and H represent the
entropy by active fusion and passive fusion, respectively. The error bar shows
the lower and upper error ranges. (b) Comparison of utility between passive
fusion and active fusion. The preference parameters k and k take 0.5 in (4).
Relative utility = (U � U )=U , where U and U represent the utility by
active fusion and passive fusion, respectively. The error bar shows the lower and
upper error ranges.

TABLE I
EXAMPLES OF SENSOR ACTION SEQUENCE WHERE SENSOR(S)

ARE ACTIVELY SELECTED AT EACH TIME INSTANT

utilize Sonar to obtain the aircraft speed. We assume that there are ex-

ternal modules which receive sensor data and make the data available

as input evidence to the network. We shall select the most decision-rel-

evant sensors in order to make a timely engagement decision.

We now specify the cost of individual sensors as

[0.1667,0.2667,0.2000,0.1333,0.2333] for FLIR, SAR, Sonar,

Radar, and Acoustic sensor, respectively. Fig. 6(b) shows the

comparison result regarding the expected utility between active and

passive fusion. For the convenience of comparison, we give the same

sensors and sensor outcomes at the fist time slice for both active

fusion and passive fusion. Fig. 6(b) is the average relative utility of

20 sensor action sequences. As we initially expect, it shows that, on

average, the sensors by active selection achieve greater utility than

the sensors by passive selection.

Table I gives examples of different courses of sensor actions. In fact,

we can see from Table I that the change of situation (here different

sensor outcomes) results in different sensor action sequences. At each

time instant, the number of sensors and which subset of sensors to be

integrated are determined according to the state at that time as well as

the evidence at previous time instant. Note that the certainty in Tables I

and II is the information gain I(�;S). The larger the information gain,

the more certainty there is.

The uncertainty of sensor readings also directly influences the sensor

selection. To clarify this matter, we now change the uncertainty of

sensor readings (probability distributions between information vari-

ables and sensors). Although, at the first time instant, the same sensor

and sensor outcome in Table I are given, Table II shows that the course

of sensor actions differs with that in Table I due to the change of the

uncertainty of sensor readings.

TABLE II
THE SENSOR ACTION SEQUENCE CHANGES DUE TO THE

CHANGE OF SENSOR UNCERTAINTY

In a dynamic environment, a decision is required across a fairly

narrow space of time, and tasks are dependent on an ongoing, up-to-

date analysis of the environment. If the same evidence is acquired se-

quentially, the evidence acquired at current time can reinforce the hy-

pothesis made by the same information received at previous time. Al-

though a static BN model can integrate all evidences available so far

by sequentially propagating the impact of each evidence, the impact

of previous evidence on subsequent integration can not be adjusted,

and previous evidence can not be integrated into the same evidence

currently received. DBNs, on the other hand, enable to correlate and

associate the continual arriving evidences through temporal dependen-

cies to perform reasoning over time. The information from previous

time serves as prior information for current evidences, and they are

combined with Bayesian statistics. Dempster-Shafer evidence theory

[3] can also represent the uncertainty of information, but it lacks the

ability to handle prior knowledge and temporal dependency.

V. CONCLUSIONS

There are three important issues for a fusion system: 1) modeling un-

certainties of sensory data; 2) modeling temporal change; and 3) active

control and management of the fusion process. In this paper, we pro-

posed a framework to simultaneously address the above three issues.

Toward the first and the second issue, we adopt a dynamic Bayesian

network as a fusion structure to provide a coherent and fully unified hi-

erarchical probabilistic framework for representation, integration, and

inference of uncertain sensory information of different modalities at

different levels of abstraction, and to account for the temporal aspect

of decision making. Toward the last issue, we need an efficient sensor

selection method that allows a fusion system to actively select and in-

voke a subset of sensors that is the most decision-relevant.

It is impractical to simply implement information-theoretic criterion

in (7) to identify an optimal sensor subset because (7) generally requires

time exponential in the number of summations to compute mutual in-

formation exactly. In this paper, we mainly focus on the architectural

concept and issues for active and dynamic information fusion rather

than the efficient sensor selection methodology behind this framework.

In many fusion applications, the relationships among the events are

mostly unknown and they may vary as the world situation evolves.

Therefore, a fusion system needs to incorporate a situation oriented

learning mechanism. This is another issue that we will focus on in our

future work.
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Abstract

This paper addresses exact learning of
Bayesian network structure from data and
expert’s knowledge based on score functions
that are decomposable. First, it describes
useful properties that strongly reduce the
time and memory costs of many known meth-
ods such as hill-climbing, dynamic program-
ming and sampling variable orderings. Sec-
ondly, a branch and bound algorithm is pre-
sented that integrates parameter and struc-
tural constraints with data in a way to guar-
antee global optimality with respect to the
score function. It is an any-time procedure
because, if stopped, it provides the best cur-
rent solution and an estimation about how
far it is from the global solution. We show
empirically the advantages of the properties
and the constraints, and the applicability of
the algorithm to large data sets (up to one
hundred variables) that cannot be handled
by other current methods (limited to around
30 variables).

1. Introduction

A Bayesian network (BN) is a probabilistic graphical
model that relies on a structured dependency among
random variables to represent a joint probability dis-
tribution in a compact and efficient manner. It is
composed by a directed acyclic graph (DAG) where
nodes are associated to random variables and condi-
tional probability distributions are defined for vari-
ables given their parents in the graph. Learning the
graph (or structure) of a BN from data is one of the

Appearing in Proceedings of the 26 th International Confer-
ence on Machine Learning, Montreal, Canada, 2009. Copy-
right 2009 by the author(s)/owner(s).

most challenging problems in such models. Best exact
known methods take exponential time on the num-
ber of variables and are applicable to small settings
(around 30 variables). Approximate procedures can
handle larger networks, but usually they get stuck in
local maxima. Nevertheless, the quality of the struc-
ture plays a crucial role in the accuracy of the model.
If the dependency among variables is not properly
learned, the estimated distribution may be far from
the correct one. In general terms, the problem is to
find the best structure (DAG) according to some score
function that depends on the data (Heckerman et al.,
1995). There are other approaches to learn a struc-
ture that are not based on scoring (for example taking
some statistical similarity among variables), but we
do not discuss them in this paper. The research on
this topic is active, e.g. (Chickering, 2002; Teyssier &
Koller, 2005; Tsamardinos et al., 2006). Best exact
ideas (where it is guaranteed to find the global best
scoring structure) are based on dynamic programming
(Koivisto et al., 2004; Singh & Moore, 2005; Koivisto,
2006; Silander & Myllymaki, 2006), and they spend
time and memory proportional to n · 2n, where n is
the number of variables. Such complexity forbids the
use of those methods to a couple of tens of variables,
mostly because of memory consumption.

In the first part of this paper, we present some proper-
ties of the problem that bring a considerable improve-
ment on many known methods. We perform the anal-
ysis over some well known criteria: Akaike Informa-

tion Criterion (AIC), and the Minimum Description

Length (MDL), which is equivalent to the Bayesian In-

formation Criterion (BIC). However, results extrapo-
late to the Bayesian Dirichlet (BD) scoring (Cooper &
Herskovits, 1992) and some derivations under a few as-
sumptions. We show that the search space of possible
structures can be reduced drastically without losing
the global optimality guarantee and that the memory
requirements are very small in many practical cases
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(we show empirically that only a few thousand scores
are stored for a problem with 50 variables and one
thousand instances).

As data sets with many variables cannot be efficiently
handled (unless P=NP, as the problem is known to be
NP-hard (Chickering et al., 2003)), a desired property
of a method is to produce an any-time solution, that
is, the procedure, if stopped at any moment, provides
an approximate solution, while if run until it finishes, a
global optimum solution is found. However, the most
efficient exact methods are not any-time. We propose
a new any-time exact algorithm using a branch-and-
bound (B&B) approach with caches. Scores are com-
puted during the initialization and a poll is built. Then
we perform the search over the possible graphs iter-
ating over arcs. Although iterating over orderings is
probably faster, iterating over arcs allows us to work
with constraints in a straightforward way. Because of
the B&B properties, the algorithm can be stopped at
any-time with a best current solution found so far and
an upper bound to the global optimum, which gives a
kind of certificate to the answer and allows the user
to stop the computation when she believes that the
current solution is good enough. (Suzuki, 1996) has
proposed a B&B method, but it is not a global exact
algorithm, instead the search is conducted after a node
ordering is fixed. Our method does not rely on a pre-
defined ordering and finds a global optimum structure
considering all possible orderings.

2. Bayesian networks

A BN represents a single joint probability density over
a collection of random variables. It can be defined
as a triple (G,X ,P), where G = (VG , EG) is a DAG
with VG a collection of n nodes associated to random
variables X (a node per variable), and EG a collec-
tion of arcs; P is a collection of conditional proba-
bility densities p(Xi|PAi) where PAi denotes the par-
ents of Xi in the graph (PAi may be empty), respect-
ing the relations of EG . We assume throughout that
variables are categorical. In a BN every variable is
conditionally independent of its non-descendants given
its parents (Markov condition). This structure in-
duces a joint probability distribution by the expression
p(X1, . . . , Xn) =

∏

i p(Xi|PAi). Before proceeding, we
define some notations. Let ri ≥ 2 be the number of
discrete categories of Xi, qi the number of elements
in ΩPAi

(the number of configurations of the parent
set, that is, qi =

∏

Xt∈PAi
rt) and θ be the entire

vector of parameters such as θijk = p(xk
i |pa

j
i ), where

i ∈ {1, . . . , n}, j ∈ {1, ..., qi}, k ∈ {1, ..., ri} (hence
xk

i ∈ ΩXi
and pa

j
i ∈ ΩPAi

).

Given a complete data set D = {D1, . . . , DN} of with
N instances, with Dt = {xk1

1,t, . . . , x
kn

n,t} a instance of
all variables, the goal of structure learning is to find
a G that maximizes a score function such as MDL or
AIC.

max
G

sD(G) = max
θ

(LD(θ) − t · W ),

where θ represents all parameters of the model (and
thus depends on the graph G), t =

∑n

i=1(qi ·(ri−1)) is
the number of free parameters, W is criterion-specific
(W = log N

2
in MDL and W = 1 in AIC), and LD is

the log-likelihood function:

LD(θ) = log

n
∏

i=1

qi
∏

j=1

ri
∏

k=1

θ
nijk

ijk , (1)

where nijk indicates how many elements of D con-

tain both xk
i and pa

j
i . This function can be writ-

ten as LD(θ) =
∑n

i=1 LD,i(θi), where LD,i(θi) =
∑qi

j=1

∑ri

k=1 nijk log θijk. From now on, the subscript
D is omitted for simplicity.

An important property of such criteria is that they
are decomposable, that is, they can be applied to each
node Xi separately: maxG s(G) = maxG

∑n

i=1 si(PAi),
where si(PAi) = Li(PAi)−ti(PAi)·W , with Li(PAi) =
maxθi

Li(θi) (θi is the parameter vector related to Xi,
so it depends on the choice of PAi), and ti(PAi) =
qi ·(ri−1). Because of this property and to avoid com-
puting such functions several times, we create a cache
that contains si(PAi) for each Xi and each parent set
PAi. Note that this cache may have an exponential size
on n, as there are 2n−1 subsets of {X1, . . . , Xn}\{Xi}
to be considered as parent sets. This gives a total
space and time of O(n · 2n) to build the cache. In-
stead, the following results show that this number is
much smaller in many practical cases.

Lemma 1 Let Xi be a node of G′, a DAG for a BN

where PAi = J ′. Suppose J ⊂ J ′ is such that si(J) >
si(J

′). Then J ′ is not the parent set of Xi in the

optimal DAG.

Proof. Take a graph G that differs from G′ only
on PAi = J , which is also a DAG (as the removal
of some arcs does not create cycles) and s(G) =
∑

j 6=i sj(PAj)+si(J) >
∑

j 6=i sj(PAj)+si(J
′) = s(G′).

Hence any DAG G′ such that PAi = J ′ has a subgraph
G with a better score than G′, and thus J ′ is not the
optimal parent configuration for Xi. �

Lemma 1 is quite simple but very useful to discard
elements from the cache of Xi. However, it does not
tell anything about supersets of J ′, that is, we still
need to compute all the possible parent configurations
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and later verify which of them can be removed. Next
theorems handle this issue.

Theorem 1 Using MDL or AIC as score function

and assuming N ≥ 4, take G and G′ DAGs such that G
is a subgraph of G′. If G is such that

∏

j∈PAi
rj ≥ N ,

for some Xi, and Xi has a proper superset of parents

in G′ w.r.t. G, then G′ is not an optimal structure.

Proof.1 Take a DAG G such that J = PAi for a node
Xi, and take G′ equal to G except that it contains
an extra node in Jnew = PAi, that is, in G′ we have
Jnew = J∪{Xe}. Note that the difference in the scores
of the two graphs are restricted to si(·). In the graph
G′, Li(J

new) will certainly not decrease and ti(J
new)

will increase, both with respect to the values for G.
The difference in the scores will be si(J

new) − si(J),
which equals to

Li(J
new) − ti(J

new) − (Li(J) − ti(J)) ≤

−

qi
∑

j=1

ri
∑

i=1

nijk log θijk − ti(J
new) + ti(J) ≤

qi
∑

j=1

nij

(

−

ri
∑

i=1

nijk

nij

log
nijk

nij

)

− ti(J
new) + ti(J) ≤

qi
∑

j=1

nijH(θij) − ti(J
new) + ti(J) ≤

qi
∑

j=1

nij log ri − qi · (re − 1) · (ri − 1) · W

The first step uses the fact that Li(J
new) is negative,

the second step uses that fact that θ̂ijk =
nijk

nij
, with

nij =
∑ri

i=1 nijk, is the value that maximizes Li(·),
and the last step uses the fact that the entropy of a
discrete distribution is less than the log of its number
of categories. Finally, G is a better graph than G′

if the last equation is negative, which happens if qi ·
(re − 1) · (ri − 1) · W ≥ N log ri. Because ri ≥ 2 ⇒
ri − 1 ≥ log ri, and N ≥ 4 ⇒ log N

2
≥ 1 (the W of the

MDL case), we have that qi =
∏

j∈J rj ≥ N ensures
that si(J

new) < si(J), which implies that the graph
G′ cannot be optimal. �

Corollary 1 In the optimal structure G, each node

has at most O(log N) parents.

Proof. It follows directly from Theorem 1 and the
fact that ri ≥ 2, for all Xi. �

Theorem 1 and Corollary 1 ensures that the cache
stores at most O(

(

n−1

log N

)

) elements for each variable

1Another similar proof appears in (Bouckaert, 1994),
but it leads directly to the conclusion of Corollary 1. The
intermediate result is algorithmically important.

(all combinations up to log N parents). Although it
does not help us to improve the theoretical size bound,
Lemma 2 gives us even less elements.

Lemma 2 Let Xi be a node with J ⊂ J ′ two possible

parent sets such that ti(J
′) + si(J) > 0. Then J ′ and

all supersets J ′′ ⊃ J ′ are not optimal parent configu-

rations for Xi.

Proof. Because Li(·) is a negative function, ti(J
′) +

si(J) > 0 ⇒ −ti(J
′)− si(J) < 0 ⇒ (Li(J

′)− ti(J
′))−

si(J) < 0 ⇒ si(J
′) < si(J). Using Lemma 1, we

have that J ′ is not the optimal parent set for Xi. The
result also follows for any J ′′ ⊃ J , as we know that
ti(J

′′) > ti(J
′). �

Thus, the idea is to check the validity of Lemma 2 ev-
ery time the score of a parent set J ′ of Xi is about
to be computed, discarding J ′ and all supersets when-
ever possible. This result allows us to stop computing
scores for J ′ and all its supersets. Lemma 1 is stronger,
but regards a comparison between exactly two parent
configuration. Nevertheless, Lemma 1 can be applied
to the final cache to remove all certainly useless parent
configurations. As we see in Section 5, the practical
size of the cache after these properties is small even
for large networks. Lemma 1 is also valid for other de-
composable functions, including BD and derivations
(e.g. BDe, BDeu), so the benefits shall apply to those
scores too, and the memory requirements will be re-
duced. The other theorems need assumptions about
the initial N and the choice of priors. Further discus-
sion is left for future work because of lack of space.

3. Constraints

An additional way to reduce the space of possible
DAGs is to consider some constraints provided by ex-
perts. We work with two main types of constraints:
constraints on parameters that define rules about the
probability values inside the local distributions of the
network, and structural constraints that specify where
arcs may or may not be included.

3.1. Parameter Constraints

We work with a general definition of parameter con-
straint, where any convex constraint is allowed. If
θi,PAi

is the parameter vector of the node Xi with
parent set PAi, then a convex constraint is defined as
h(θi,PAi

) ≤ 0, where h : Ωθi,PAi
→ R is a convex func-

tion over θi,PAi
. This definition includes many well

known constraints, for example from Qualitative Prob-
abilistic Networks (QPN) (Wellman, 1990): qualitative

influences define some knowledge about the state of



Structure Learning of Bayesian Networks using Constraints

a variable given the state of another, which roughly
means that observing a greater state for a parent Xa of
a variable Xb makes more likely to have greater states
in Xb (for any parent configuration except for Xa). For
example, θbj22 ≥ θbj12, where jk

.
= {xk

a, paj∗
b } and j∗ is

an index ranging over all parent configurations except
for Xa. In this case, observing x2

a makes more likely to
have x2

b . A negative influence is obtained by replacing
the inequality operator ≥ by ≤, and a zero influence is
obtained by changing inequality to an equality. Other
constraints such as synergies (Wellman, 1990) are also
linear and local to a single node.

Although we allow the parameter constraints that are
general, we have the following restriction about them:
if a constraint is specified for a node Xi and a set
of parents J , then the actual parent set PAi has to
be a superset of J . Furthermore, we have a pecu-
liar interpretation for each constraint C as follows: if
J ⊂ PAi (proper subset), then the parameter con-
straint must hold for all configurations of the parents
of Xi that do not belong to J . For example, sup-
pose X1 has X2 and X3 as parents (all of them bi-
nary), and the following constraint h was defined on
X1: p(x2

1|x
2
2x

2
3) + 2 · p(x2

1|x
2
2x

1
3) ≤ 1. If a new node X4

is included as parent of X1, the constraint h becomes
the two following constraints:

p(x2
1|x

2
2x

2
3x

1
4) + 2 · p(x2

1|x
2
2x

1
3x

1
4) ≤ 1,

p(x2
1|x

2
2x

2
3x

2
4) + 2 · p(x2

1|x
2
2x

1
3x

2
4) ≤ 1,

that is, h holds for each state of X4. For example
if another parent X5 is included, then four constraints
would be enforced with all possible combinations. This
interpretation for constraints is in line with the defi-
nition of qualitative constraints of QPNs, and most
importantly, it allows us to treat the constraints in a
principled way for each set of parents. It means that
the constraint must hold for all configurations of par-
ents not involved in the constraint, which can be also
interpreted as other parents are not relevant and the

constraint is valid for each one of their configurations.

3.2. Structural constraints

Besides probabilistic constraints, we work with struc-
tural constraints on the possible graphs. These con-
straints help to reduce the search space and are avail-
able in many situations. We work with the following
rules:

• indegree(Xj , k, op), where op ∈ {lt, eq} and k an
integer, means that the node Xj must have less

than (when op = lt) or equal to (when op = eq) k
parents.

• arc(Xi, Xj) indicates that the node Xi must be a
parent of Xj .

• Operators or (∨) and not (¬) are used to form the
rules. The and operator is not explicitly used as
we assume that each constraint is in disjunctive
normal form.

For example, the constraints ∀i 6=c,j 6=c ¬arc(Xi, Xj)
and indegree(Xc, 0, eq) impose that only arcs from
node Xc to the others are possible, and that Xc is
a root node, that is, a Naive Bayes structure will be
learned. The procedure will also act as a feature se-
lection procedure by letting some variables unlinked.
Note that the symbol ∀ just employed is not part of
the language but is used for easy of expose (in fact
it is necessary to write down every constraint defined
by such construction). As another example, the con-
straints ∀j 6=c indegree(Xj , 3, lt), indegree(Xc, 0, eq),
and ∀j 6=c indegree(Xj , 0, eq)∨arc(Xc, Xj) ensure that
all nodes have Xc as parent, or no parent at all. Be-
sides Xc, each node may have at most one other par-
ent, and Xc is a root node. This learns the structure
of a Tree-augmented Naive (TAN) classifier, also per-
forming a kind of feature selection (some variables may
end up unlinked). In fact, it learns a forest of trees, as
we have not imposed that all variables must be linked.

3.3. Dealing with constraints

All constraints in previous examples can be imposed
during the construction of the cache, because they in-
volve just a single node each. In essence, parent sets
of a node Xi that do violate some constraint are not
stored in the cache, and this can be checked during the
cache construction. On the other hand, constraints
such as arc(X1, X2)∨ arc(X2, X3) cannot be imposed
in that stage, as they impose a non-local condition (the
arcs go to distinct variables, namely X2 and X3), be-
cause the cache construction is essentially a local pro-
cedure with respect to each variable. Such constraints
that involve distinct nodes can be verified during the
B&B phase, so they are addressed later.

Regarding parameter constraints, we compute the
scores using a constrained optimization problem, i.e.
maximize the score function subject to simplex equal-
ity constraints and all parameter constraints defined
by the user.

max
θi

Li(θi) − ti(PAi)

subject to ∀j=1...qi
gij(θij) = 0, (2)

∀z=1...mhi
hiz(θi) ≤ 0,

where gij(θij) = −1+
∑ri

k=1 θijk imposes that distribu-
tions defined for each variable given a parent configura-
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tion sum one over all variable states, and the mhi con-
vex constraints hiz define the space of feasible param-
eters for the node Xi. This is possible because: (1) we
have assumed that a constraint over p(xk

i |x
k1

i1
, . . . , xkt

it
)

forces Xi1 , . . . , Xit
⊆ PAi, that is, when a parame-

ter constraint is imposed, the parent set of the node
must contain at least the variables involved in the con-
straint; (2) the optimization is computed for every pos-
sible parent set, that is, PAi is known in the moment to
write down the optimization problem, which is solved
for each Xi and each set PAi. We use the optimization
package of (Birgin et al., 2000).

Theorem 2 Using MDL or AIC as score function

and assuming N ≥ 4, take G and G′ as DAGs such

that G is a subgraph of G′. Suppose that both G and G′

respect the same set of parameter and structural con-

straints. If G is such that
∏

j∈PAi
rj ≥ N , for some

Xi, and Xi has a proper superset of parents in G′ w.r.t.

G, then G′ is not an optimal structure.

Proof. Just note that all derivations in Theorem 1
are also valid in the case of constraints. The only dif-
ference that deserves a comment is θ̂ijk =

nijk

nij
, which

may be an unfeasible point for the optimization (2),
because the latter contains parameter constraints that
might reduce the parameter space (besides the normal
constraints of the maximum log-likelihood problem).

As θ̂ijk is just used as an upper value for the log-
likelihood function, and the constrained version can
just obtain smaller objective values than the uncon-
strained version,

nijk

nij
is an upper bound also for the

constrained case. Thus, the derivation of Theorem 1
is valid even with constraints. �

Corollary 1 and Lemmas 1 and 2 are also valid in this
setting. The proof of Corollary 1 is straightforward, as
it only depends on Theorem 1, while for Lemmas 1 and
2 we need just to ensure that all the parent configura-
tions that are discussed there respect the constraints.

4. Constrained B&B algorithm

In this section we describe the B&B algorithm used
to find the best structure of the BN and comment on
its complexity, correctness, and some extensions and
particular cases. The notation (and initialization of
the algorithm) is as follows: C : (Xi,PAi) → R is the
cache with the scores for all the variables and their
possible parent configurations (using Theorem 1 and
Lemmas 1 and 2 to have a reduced size); G is the
graph created taking the best parent configuration for
each node without checking for acyclicity (so it is not
necessarily a DAG), and s is the score of G; H is an
initially empty matrix containing, for each possible arc

between nodes, a mark stating that the arc must be
present, or is prohibited, or is free (may be present or
not); Q is a priority queue of triples (G,H, s), ordered
by s (initially it contains a single triple with G, H and
s just mentioned; and finally (Gbest, sbest) is the best
DAG and score found so far (sbest is initialized with
−∞). The main loop is as follows:

While Q is not empty, do

1. Remove the peek (Gcur,Hcur, scur) of Q. If s ≤
sbest (worst than an already known solution), then
start the loop again. If Gcur is a DAG and satis-
fies all structural constraints, update (Gbest, sbest)
with (Gcur, scur) and start the loop again.

2. Take v = (Xa1
→ Xa2

→ . . . → Xaq+1
), with

a1 = aq+1, is a directed cycle of Gcur.

3. For y = 1, . . . , q, do

• Mark on Hcur that the arc Xay
→ Xay+1

is
prohibited.

• Recompute (G, s) from (Gcur, scur) such that
the parents of Xay+1

in G comply with
this restriction and with Hcur. Further-
more, the subgraph of G formed by arcs
that are demanded by Hcur (those that have
a mark must exist) must comply with the
structural constraints (it might be impossi-
ble to get such graph. In such case, go
to the last bullet). Use the values in the
cache C(Xay+1

,PAay+1
) to avoid recomput-

ing scores.

• Include the triple (G,Hcur, s) into Q.

• Mark on Hcur that the arc Xay
→ Xay+1

must be present and that the sibling arc
Xay+1

→ Xay
is prohibited, and continue.

The algorithm uses a B&B search where each case to
be solved is a relaxation of a DAG, that is, they may
contain cycles. At each step, a graph is picked up from
a priority queue, and it is verified if it is a DAG. In such
case, it is a feasible structure for the network and we
compare its score against the best score so far (which
is updated if needed). Otherwise, there must be a
directed cycle in the graph, which is then broken into
subcases by forcing some arcs to be absent/present.
Each subcase is put in the queue to be processed. The
procedure stops when the queue is empty. Note that
every time we break a cycle, the subcases that are
created are independent, that is, the sets of graphs
that respect H for each subcase are disjoint. We obtain
this fact by properly breaking the cycles: when v =
(Xa1

→ Xa2
→ . . . → Xaq+1

) is detected, we create q
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subcases such that the first does not contain Xa1
→

Xa2
(but may contain the other arcs of that cycle),

the second case certainly contains Xa1
→ Xa2

, but
Xa2

→ Xa3
is prohibited (so they are disjoint because

of the difference in the presence of the first arc), and so
on such that the y-th case certainly contains Xay′

→
Xay′+1

for all y′ < y and prohibits Xay
→ Xay+1

.
This idea ensures that we never process the same graph
twice. So the algorithm runs at most

∏

i |C(Xi)| steps,
where |C(Xi)| is the size of the cache for Xi.

B&B can be stopped at any time and the current best
solution as well as an upper bound for the global best
score are available. This stopping criterion might be
based on the number of steps, time and/or memory
consumption. Moreover, the algorithm can be easily
parallelized. We can split the content of the priority
queue into many different tasks. No shared memory
needs to exist among tasks if each one has its own ver-
sion of the cache. The only data structure that needs
consideration is the queue, which from time to time
must be balanced between tasks. With a message-
passing idea that avoids using process locks, the gain
of parallelization is linear in the number of tasks. As
far as we know, best known exact methods are not
easily parallelized, they do not deal with constraints,
and they do not provide lower and upper estimates of
the best structure if stopped early. If run until it ends,
the proposed method gives a global optimum solution
for the structure learning problem.

Some particular cases of the algorithm are worth men-
tioning. If we fix an ordering for the variables such
that all the arcs must link a node towards another
non-precedent in the ordering (this is a common idea in
many approximate methods), the proposed algorithm
does not perform any branch, as the ordering implies
acyclicity, and so the initial solution is already the
best. The performance would be proportional to the
time to create the cache. On the other hand, bounding
the maximum number of parents of a node is relevant
only for hardest inputs, as it would imply a bound on
the cache size, which is already empirically small.

5. Experiments

We perform experiments to show the benefits of the
reduced cache and search space and the gains of con-
straints.2 First, we use data sets available at the UCI
repository (Asuncion & Newman, 2007). Lines with
missing data are removed and continuous variables are
discretized over the mean into binary variables. The

2The software is available online through the web ad-
dress http://www.ecse.rpi.edu/∼cvrl/structlearning.html

data sets are: adult (15 variables and 30162 instances),
car (7 variables and 1728 instances) letter (17 variables
and 20000 instances), lung (57 variables and 27 in-
stances), mushroom (23 variables and 1868 instances),
nursery (9 variables and 12960 instances), Wisconsin
Diagnostic Breast Cancer or wdbc (31 variables and
569 instances), zoo (17 variables and 101 instances).
No constraints are employed in this phase as we intend
to show the benefits of the properties earlier discussed.

Table 1 presents the cache construction results, ap-
plying Theorem 1 and Lemmas 1 and 2. Its columns
show the data set name, the number of steps the proce-
dure spends to build the cache (a step equals to a call
to the score function for a single variable and a par-
ent configuration), the time in seconds, the size of the
generated cache (number of scores stored, the mem-
ory consumption is actually O(n) times that number),
and finally the size of the cache if all scores were com-
puted. Note that the reduction is huge. Although in
the next we are going to discuss three distinct algo-
rithms, the benefits of the application of these results
imply in performance gain for other algorithms in the
literature to learn BN structures. It is also possible
to analyze the search space reduction implied by these
results by looking columns 2 and 3 of Table 2.

Table 1. Cache sizes (number of stored scores) and time (in
seconds) to build them for many networks and data sizes.
Steps represent the number of local (single node given a
parent set) score evaluations.

name steps time(s) size n2n

adult 30058 182.09 672 217.9

car 335 0.09 24 28.8

letter 534230 2321.46 41562 220.1

lung 43592 1.33 3753 261.8

mushroom 140694 72.13 8217 226.5

nursery 1905 3.94 49 211.2

wdbc 1692158 351.04 7482 235

zoo 9118 0.31 1875 220.1

In Table 2, we show results of three distinct algorithms:
the B&B described in Section 4, the dynamic program-
ming (DP) idea of (Silander & Myllymaki, 2006), and
an algorithm that picks variable orderings randomly
and then find the best structure such that all arcs link
a node towards another that is not precedent in the or-
dering. This last algorithm (named OS) is similar to
K2 algorithm with random orderings, but it is always
better because a global optimum is found for each or-
dering.3 The scores obtained by each algorithm (in
percentage against the value obtained by B&B) and

3We have run a hill-climbing approach (which is also
benefited by ideas presented in this paper), but its accuracy
was worse than OS. We omit it because of lack of space.
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Table 2. Comparison of MDL scores among B&B, dynamic programming (DP), and ordering sampling (one thousand
times). Fail means that it could not solve the problem within 10 million steps. DP and OS scores are in percentage w.r.t.
the score of B&B (positive percentage means worse than B&B and negative percentage means better).

search reduced B&B DP OS
network space space score gap time(s) score time(s) score time(s)
adult 2210 271 -286902.8 5.5% 150.3 0.0% 0.77 0.1% 0.17
car 242 210 -13100.5 0.0% 0.01 0.0% 0.01 0.0% 0.01
letter 2272 2188 -173716.2 8.1% 574.1 -0.6% 22.8 1.0% 0.75
lung 23192 2330 -1146.9 2.5% 907.1 Fail Fail 1.0% 0.13
mushroom 2506 2180 -12834.9 15.3% 239.8 Fail Fail 1.0% 0.12
nursery 272 217 -126283.2 0.0% 0.04 0.0% 0.04 0.0% 0.04
wdbc 2930 2216 -3053.1 13.6% 333.5 Fail Fail 0.8% 0.13
zoo 2272 2111 -773.4 0.0% 5.2 0.0% 3.5 1.0% 0.03

the corresponding spent time are presented (excluding
the cache construction). A limit of ten million steps is
given to each method (steps here are considered as the
number of queries to the cache). It is also presented
the reduced space where B&B performs its search, as
well as the maximum gap of the solution. This gap
is obtained by the relaxed version of the problem. So
we can guarantee that the global optimal solution is
within this gap (even though the solution found by the
B&B may already be the best, as shown in the first
line of the table). With the reduced cache presented
here, finding the best structure for a given ordering is
very fast, so it is possible to run OS over millions of
orderings in a short period of time.

Table 3. B&B procedure learning TANs. Time (in seconds)
to find the global optimum, cache size (number of stored
scores) and (reduced) space for B&B search.

network time(s) cache size space
adult 0.26 114 239

car 0.01 14 26.2

letter 0.32 233 261

lung 0.26 136 251

mushroom 0.71 398 288

nursery 0.06 26 212

wdbc 361.64 361 299

Some additional comments are worth. DP can solve
the mushroom set in less than 10 minutes if we drop
the limit of steps. The expectation for wdbc is around
four days. Hence, we cannot expect to obtain an an-
swer in larger cases, such as lung. It is clear that, in
worst case, the number of steps of DP is smaller than
that of B&B. Nevertheless, B&B eventually bounds
some regions without processing them, provides an up-
per bound at each iteration, and does not suffer from
memory exhaustion as DP. This makes the method ap-
plicable even to very large settings. Still, DP seems a
good choice for small n. When n is large (more than
35), DP will not finish in reasonable time, and hence

will not provide any solution, while B&B still gives an
approximation and a bound to the global optimum.
About OS, if we sample one million times instead of
one thousand as done before, its results improve and
the global optimum is found also for adult and mush-

room sets. Still, OS provides no guarantee or estima-
tion about how far is the global optimum (here we
know it has achieved the optimum because of the ex-
act methods). It is worth noting that both DP and
OS are benefited by the smaller cache.

Table 3 shows the results when we employ constraints
to force the final network to be a Tree-augmented
Naive Bayes (zoo was run, but it is not included be-
cause the unconstrained learned network was already
TAN). Here the class is isolated in the data set and
constraints are included as described in Section 3.2.
Note that the cache size, the search space and con-
sequently the time to solve the problems have all de-
creased. Finally, Table 4 has results for random data
sets with predefined number of nodes and instances. A
randomly created BN with at most 3n arcs is used to
sample the data. Because of that, we are able to gener-
ate random parameter and structural constraints that
are certainly valid for this true BN (approximately n/2
constraints for each case). The table contains the to-
tal time to run the problem and the size of the cache,
together with the percentage of gain when using con-
straints. Note that the code was run in parallel with
a number of tasks equals to n, otherwise an increase
by a factor of n must be applied to the results in the
table. We can see that the gain is recurrent in all cases
(the constrained version has also less gap in all cases,
although such number is not shown).

6. Conclusions

This paper describes a novel algorithm for learning
BN structure from data and expert’s knowledge. It
integrates structural and parameter constraints with
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Table 4. Results on random data sets generated from ran-
dom networks. Time to solve (10 million steps) and size of
the cache are presented for the normal unconstrained case
and the percentage of gain when using constraints.
nodes(n)/ unconstrained constrained gain
instances gap time(s) cache time cache
30/100 0% 0.06 125 67% 11.6%
30/500 0% 2.7 143 47.5% 26.5%
50/100 0% 0.26 310 31.4% 16.1%
50/500 0% 20.66 231 57.2% 29.8%
70/100 0% 4.58 1205 36.9% 18.8%
70/500 1.1% 356.9 666 38.4% 21.9%
100/100 0.5% 9.05 2201 47.5% 23.5%
100/500 1.4% 1370.4 726 50.2% 33.0%

data through a B&B procedure that guarantees global
optimality with respect a decomposable score function.
It is an any-time procedure in the sense that, if stopped
early, it provides the best current solution found so far
and a maximum error of such solution. The software
is available as described in the experiments.

We also describe properties of the structure learning
problem based on scoring DAGs that enable the B&B
procedure presented here as well as other methods to
work over a reduced search space and memory. Such
properties allow the construction of a cache with all
possible local scores of nodes and their parents without
large memory consumption.

Because of the properties and the characteristics of
the B&B method, even without constraints the B&B
is more efficient than state-of-the-art exact methods
for large domains. We show through experiments with
randomly generated data and public data sets that
problems with up to 70 nodes can be exactly processed
in reasonable time, and problems with 100 nodes are
handled within a small worst case error. These results
surpass by far current methods, and may also help
to improve other approximate methods and may have
interesting practical applications, which we will pursue
in future work.
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Bayesian networks (BNs) have gained increasing attention in recent years. One key issue in Bayesian net-

works is parameter learning. When training data is incomplete or sparse or when multiple hidden nodes

exist, learning parameters in Bayesian networks becomes extremely difficult. Under these circumstances,

the learning algorithms are required to operate in a high-dimensional search space and they could easily

get trapped among copious local maxima. This paper presents a learning algorithm to incorporate domain

knowledge into the learning to regularize the otherwise ill-posed problem, to limit the search space, and

to avoid local optima. Unlike the conventional approaches that typically exploit the quantitative domain

knowledge such as prior probability distribution, our method systematically incorporates qualitative

constraints on some of the parameters into the learning process. Specifically, the problem is formulated

as a constrained optimization problem, where an objective function is defined as a combination of the

likelihood function and penalty functions constructed from the qualitative domain knowledge. Then, a

gradient-descent procedure is systematically integrated with the E-step and M-step of the EM algorithm,

to estimate the parameters iteratively until it converges. The experiments with both synthetic data and

real data for facial action recognition show our algorithm improves the accuracy of the learned BN pa-

rameters significantly over the conventional EM algorithm.

© 2009 Elsevier Ltd. All rights reserved.

1. Introduction

In recent years, Bayesian networks (BNs) have been increasingly

used in a wide range of applications including computer vision [1],

bioinformatics [2], information retrieval [3], data fusion [4], decision

support systems and others. A BN is a directed acyclic graph (DAG)

that represents a joint probability distribution among a set of vari-

ables, where the nodes denote random variables and the links de-

note the conditional dependencies among variables. The advantages

of BNs can be summarized as their semantic clarity and understand-

ability by humans, the ease of acquisition and incorporation of prior

knowledge, the possibility of causal interpretation of learned mod-

els, and the automatic handling of noisy and missing data [5].

In spite of these claims, people often face the problem of learning

BNs from training data in order to apply BNs to real-world applica-

tions. Typically, there are two categories in learning BNs, one is to

learn BN parameters when a BN structure is known, and another is

∗ Corresponding author.

E-mail addresses: wenhui.liao@thomsonreuters.com (W. Liao), qji@ecse.rpi.edu

(Q. Ji).

0031-3203/$ - see front matter © 2009 Elsevier Ltd. All rights reserved.

doi:10.1016/j.patcog.2009.04.006

to learn both BN structures and parameters. In this paper, we focus

on BN parameter learning by assuming the BN structure is already

known. If the training data is complete, learning BN parameters is

not difficult, however, in real world, training data can be incomplete

for various reasons. For example, in a BN modeling video surveil-

lance, the training data may be incomplete because of security issue;

in a BN modeling customer behaviors, the training data may be in-

complete because of privacy issue. Sometimes, the training data may

be complete but sparse, because some events rarely happen, or the

data for these events are difficult to obtain.

In general, training data can be missed in three ways: missing at

random (MAR), missing completely at random (MCAR), and not miss-

ing at random (NMAR). MAR means the probability of missing data

on any variable is not related to its particular value, but could be

related to other variables. MCAR means the missing value of a vari-

able depends neither on the variable itself nor on the values of other

variables in the BN. For example, some hidden (latent) nodes never

have data. NMAR means data missing is not at random but depends

on the values of the variables.

The majority of the current learning algorithms assume the MAR

property holds for all the incomplete training samples since learning

is easier for MAR than NMAR and MCAR. The classical approaches

http://www.sciencedirect.com/science/journal/pr
http://www.elsevier.com/locate/pr
mailto:wenhui.liao@thomsonreuters.com
mailto:qji@ecse.rpi.edu
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include the Expectation Maximization (EM) algorithm [6] and Gibbs

sampling [7]. Other methods are proposed to overcome the dis-

advantages of EM and Gibbs sampling. For example, methods are

proposed to learn the parameters when data are not missing at ran-

dom, such as the AI&M procedure [8], the RBE algorithm [9], and

the maximum entropy method [10,11]; some methods are proposed

to escape local maxima under the assumption of MAR, such as the

information-bottleneck EM (IB-EM) algorithm [12], data perturba-

tion method [13], etc.; other methods are proposed to speed up the

learning procedure, such as generalized conjugate gradient algorithm

[14], online updating rules [15], and others.

When data are missing completely at random, in other words,

when several hidden nodes exist, those methods could fail, where

the learned parameters may be quite different from the true param-

eters. In fact, since there are no data for hidden nodes, learning pa-

rameters becomes an ill-posed problem. Thus, prior data on domain

knowledge are needed to regularize the learning problem. In most

domains, at least some information, either from literature or from

domain experts, is available about themodel to be constructed. How-

ever, many forms of prior knowledge that an expert might have are

difficult to be directly used by existing machine learning algorithms.

Therefore, it is important to formalize the knowledge systematically

and incorporate it into the learning. Such domain knowledge can

help regularize the otherwise ill-posed learning problem, reduce the

search space significantly, and help escape local maxima.

This motivates us to propose a Bayesian network learning al-

gorithm for the case when multiple hidden nodes exist by sys-

tematically combining domain knowledge during learning. Instead

of using quantitative domain knowledge, which is often hard to

obtain, we propose to exploit qualitative domain knowledge. Qual-

itative domain knowledge impose approximated constraints on

some parameters or on the relationships among some parameters.

These kind of qualitative knowledge are often readily available.

Specifically, two qualitative constraints are considered, the range

of parameters, and the relative relationships between different pa-

rameters. Instead of using the likelihood function as the objective

to maximize during learning, we define the objective function as a

combination of the likelihood function and the penalty functions

constructed from the domain knowledge. Then, a gradient-descent

procedure is systematically integrated with the Expectation-step (E-

step) and Maximization-step (M-step) of the EM algorithm, to esti-

mate the parameters iteratively until it converges. The experiments

show the proposed algorithm significantly improves the accuracy

of the learned BN parameters over the conventional EM method.

2. Related work

During the past several years, many methods have been pro-

posed to learn BN parameters when data are missing. Two standard

learning algorithms are Gibbs sampling [7] and EM [6]. Gibbs sam-

pling by Geman and Geman [7] is the basic tool of simulation and

can be applied to virtually any graphical model whether the arcs are

directed or not, and whether the variables are continuous or discrete

[16]. It completes the samples by inferring the missing data from the

available information and then learns from the completed database

(imputation strategy). Unfortunately, Gibbs sampling method suf-

fers from convergence problems arising from correlations between

successive samples [10]. In addition, it is not effective when data

are missing in complete random (e.g. the case of the hidden

nodes).

The EM algorithm can be regarded as a deterministic version of

Gibbs sampling used to search for the Maximum Likelihood (ML) or

Maximum a Posteriori (MAP) estimate for model parameters [16,6].

However, when there aremultiple hidden variables or a large amount

of missing data, EM gets easily trapped in a local maximum. “With

data missing massively and systematically, the likelihood function

has a number of local maxima and straight maximum likelihood

gives results with unsuitably extreme probabilities” [17]. In addition,

EM algorithms are sensitive to the initial starting points. If the initial

starting points are far away from the optimal solution, the learned

parameters are not reliable.

Different methods are proposed to help avoid local maxima.

Elidan and Friedman [12] propose an information-bottleneck EM

(IB-EM) algorithm to learn the parameters of BNs with hidden

nodes. It treats the learning problem as a tradeoff between two

information-theoretic objectives, where the first one is to make the

hidden nodes uninformative about the identity of specific instances,

and the second one is to make the hidden variables informative

about the observed attributes. However, although IB-EM has a better

performance than the standard EM for some simple BNs, it is actu-

ally worse than EM for the complex hierarchical models as shown in

[12]. To escape local maxima in learning, Elida et al. [13] propose a

solution by perturbing training data. Two basic techniques are used

to perturb the weights of the training data: (1) random reweighing,

which randomly samples weight profiles on the training data, and

(2) adversarial reweighing, which updates the weight profiles to ex-

plicitly punish the current hypothesis, with the intent of moving the

search quickly to a nearby basin of attraction. Although it usually

achieves better solutions than EM, it is still a heuristic method and

not necessarily able to escape local maxima. And also, it is much

slower than the standard EM algorithm.

The previous methods emphasize improving the machine learn-

ing techniques, instead of using domain knowledge to help learning.

Since there are no data available for hidden nodes, it is important to

incorporate any available information about these nodes into learn-

ing. The methods for constraining the parameters for a BN include

Dirichlet priors, parameter sharing, and qualitative constraints. Ac-

cording to [18], there are several problems using Dirichlet priors.

First, it is impossible to represent even the simple equality con-

straints on the parameters. Second, it is often beyond expert's capa-

bility to specify a full Dirichlet prior over the parameters of a Bayesian

network. Parameter sharing, on the other hand, allows parameters

of different models to share the same values, i.e., it allows to impose

equality constraints. Parameter sharing methods, however, do not

capture more complicated constraints among parameters such as in-

equality constraints among the parameters. In addition, both Dirich-

let priors and parameter sharing methods are restricted to sharing

parameters at the level of sharing a whole CPT or CPTs, instead of at

the level of granularity of individual parameters. To overcome these

limitations, others [19–22,18] propose to explicitly exploit qualita-

tive relationships among parameters and systematically incorporate

them into the parameter estimation process.

Druzdel et al. [19] give formal definitions of several types of qual-

itative relationships that can hold between nodes in a BN to help

specify CPTs of BNs, including probability intervals, qualitative in-

fluences, and qualitative synergies. They express these available in-

formation in a canonical form consisting of (in)equalities expressing

constraints on the hyperspace of possible joint probability distribu-

tions, and then use this canonical form to derive upper and lower

bounds on any probability of interest. However, the upper and lower

bounds cannot give sufficient insight into how likely a value from

the interval is to be the actual probability.

Wittig and Jameson [20] present a method for integrating formal

statements of qualitative constraints into two learning algorithms,

APN [23,24] and EM. Two types of qualitative influences [19] are con-

sidered as constraints for parameters during learning in this method:

(1) a positive influence holds between two variables (X1,X2) if for

any given value of X2, an increase in the value of X1 will not decrease

the probability that the value of X2 is equal to or greater than that

given value; and (2) a negative influence can be defined analogously.
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This paper shows that the accuracy of the learned BNs is superior to

that of the corresponding BNs learned without the constraints.

Even when data are complete, domain knowledge can help learn-

ing significantly, in particular when insufficient data are available.

Altendorf et al. [21] show how to interpret knowledge of qualita-

tive influences, and in particular of monotonicities, as constraints on

probability distribution, and to incorporate this knowledge into BN

learning algorithms. It assumes that the values of the variables can be

totally ordered. It focuses on learning from complete but sparse data.

It shows the additional constraints provided by qualitative mono-

tonicities can improve the performance of BN classifiers, particularly

on extremely small training sets. The assumption that the values of

the variables can be totally ordered is, however, too restrictive.

Feelders and Gaag [22,25] present a method for learning BN pa-

rameterswith prior knowledge about the signs of influences between

variables. The various signs are translated into order constraints on

the network parameters and isotonic regression is then used to com-

pute order-constrained estimates from the available data. They also

focus only on learning from complete but sparse data. In addition,

they assume all variables are binary.

The constraints analyzed in these papers [20–22] are somewhat

restrictive, in the sense that each constraint must involve all parame-

ters in a conditional probability table (CPT). Niculescu [18] considers

a different type of domain knowledge for constraining parameter es-

timate when data are complete but limited. Two types of constraints

are used: one is that the sum of several parameters within one con-

ditional probability distribution is bounded by the sum of other pa-

rameters in the same distribution; another is an upper bound on the

sumof several parameters in one conditional probability distribution.

Both the constraints have to be twice differentiable, with continu-

ous second derivatives. They formalize the learning as a constraint

optimization problem and derive closed form maximum likelihood

parameter estimators.

Our learning method also exploits domain knowledge to help pa-

rameter learning, but especially for BNs with hidden nodes or a large

amount of missing data. Different from other learning methods, the

domain knowledge we used has the following features: (1) it does

not need to involve all the parameters in a conditional probability

table; (2) it can deal with relationships between different parame-

ters; (3) it is associated with confidence levels to reflect the confi-

dence of the domain experts; (4) it is easy to assess and define; and

(5) new format of domain knowledge can be easily incorporated into

the algorithm. Our algorithm systematically incorporates the domain

knowledge and is capable of learning parameters successfully even

when a large percent of nodes are hidden in a Bayesian network.

3. Learning Bayesian network parameters

3.1. The basic theory

Let G be a BN with nodes X1, . . . ,Xn. If there is a directed arc from

Xi to Xj, Xi is called a parent of Xj, pa(Xj). Given its parent nodes, a

node is conditionally independent from all the other nodes. Thus the

joint distribution of all the nodes can be written as

p(X1, . . . ,Xn) =

n
∏

i=1

p(Xi|pa(Xi)) (1)

Each node is associated with several parameters to describe the con-

ditional probability distribution of the random variable given its par-

ents. We use � to denote the entire vector of parameter value �ijk,

�ijk = p(xk
i
|pa

j
i
), where i (i = 1, . . . ,n) ranges over all the variables in

the BN, j (j = 1, . . . , qi) ranges over all the possible parent configura-

tions of Xi, and k (k = 1, . . . , ri) ranges over all the possible states of

Xi. Therefore, x
k
i
represents the kth state of variable Xi, and pa

j
i
is the

jth configuration of the parent nodes of Xi.

Given the data set D={D1, . . . ,DN}, where Dl ={x1[l], . . . , xn[l]} that

consists of instances of the BN nodes, the goal of parameter learning

is to find the most probable value �̂ for � that can best explain the

data set D, which is usually quantified by the log-likelihood function,

log(p(D|�)), denoted as LD(�). If D is complete, based on the condi-

tional independence assumption in BNs as well as the assumptions

that the samples are independent, we can get the equation as fol-

lows:

LD(�) = log

⎧

⎨

⎩

N
∏

m=1

p(x1[m], . . . , xn[m] : �)

⎫

⎬

⎭

= log

⎧

⎨

⎩

n
∏

i=1

N
∏

m=1

p(xi[m]|pai[xi(m)] : �)

⎫

⎬

⎭

(2)

where pai[xi(m)] indicates the ith parent of xi(m). With the MLE

(Maximum Likelihood Estimation)method, we can get the parameter

�
∗
as follows:

�
∗

= argmax
�

LD(�) (3)

However, when the dataD is incomplete, Eq. (2) cannot be directly

applied anymore. A common method is the EM algorithm [6]. Let

Y = {Y1,Y2, . . . ,YN}, which is observed data; Z = {Z1, Z2, . . . , ZN}, which

is missing data; and Dl = Yl ∪ Zl. The EM algorithm starts with some

initial guess at the maximum likelihood parameter, �
(0)

, and then

proceeds to iteratively generate successive estimates, �
(1)

, �
(2)

, . . .,

by repeatedly applying the Expectation-step and Maximization-step,

for t = 1, 2, . . .

E-step: computes the conditional expectation of the log-

likelihood function given the observed data Y and the current

parameter �
(t)

Q(�|�
(t)
) = E

�
(t) [logp(D|�)|�

(t)
,Y] (4)

M-step: finds a new parameter �
(t)

whichmaximizes the expected

log-likelihood under the assumption that the distribution found in

the E-step is correct

�
(t+1)

= argmax
�

Q(�|�
(t)
) (5)

Each iteration is guaranteed to increase the likelihood, and fi-

nally the algorithm converges to a local maximum of the likelihood

function. However, when there are multiple hidden nodes or when

a large amount of data are missing, EM method easily gets stuck in a

local maximum. Next, we show how to incorporate domain knowl-

edge into the learning process in order to reduce search space and

to avoid local maxima.

3.2. Qualitative constraints with confidence

In many real-world applications, domain experts usually have

valuable information about model parameters. We consider two

types of constraints: type-I is about the range of a parameter; and

type-II is about the relative relationships (> ,< ,=) between differ-

ent parameters. One of our goals is to make the constraints as sim-

ple as possible, so that experts can easily formalize their knowledge

into these constraints.

The range of a parameter allows domain experts to specify an

upper bound and a lower bound for the parameter, instead of defin-

ing specific values. Fig. 1 shows a very simple BN and we assume all

the nodes have binary states. The table in the right is the conditional

probability table of the node B, indicating P(B|A), which can be de-

scribed by four parameters �B00, �B01, �B10, �B11, where �B00+�B01=1

and �B10 + �B11 = 1. The domain experts may not know the specific
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A

B C

A B

p(B|A)

0 1

0

1

�B00 �B01

�B10 �B11

Fig. 1. A simple Bayesian network example and its conditional probability table.

values of �B00 and �B10, but they can set the ranges for �B00 and �B10

as 0.3<�B00<0.5, 0.6<�B10<0.9, respectively.

In addition to assessing the ranges of parameters, the domain ex-

perts may also know the relative relationships between some param-

eters. For each type-II constraint, if the two associated parameters

are in the same CPT of a node, we call it an inner-relationship con-

straint; if the two parameters come from the CPTs of different nodes,

we call it an outer-relationship constraint. For example, if the obser-

vation of A=0 increases the posterior of B=0 the most, we could say

that p(B = 0|A = 0)> p(B = 0|A = 1), in other words, �B00>�B10. Ob-

viously, the constraint of �B00>�B10 defines an inner-relationship.

On the other hand, if the observation of A=0 increases the posterior

of B= 0 more than the observation of A= 0 increasing the posterior

of C = 0, we can get the constraint of �B00>�C00, which defines an

outer-relationship since B and C are from two different CPTs.

In real-world applications, there are always such constraints that

can be found by domain experts. For example, assume we use a BN

to model human state and its symptoms such as blinking rate, head

tilt rate, eye gaze distribution, etc. Some symptommay be a stronger

indicator of a particular human state than another symptom. This

kind of relationship can be captured by the type-II constraints in the

BN. They can often be identified either through subjective experience

or through a sensitivity analysis. These constraints look simple, but

are very important for the hidden nodes, where no data are available.

By adding these constraints into learning, the domain knowledge can

be well utilized to obtain parameters that meet the requirements of

real-world applications.

Now we formally define the two types of constraints. Let A be

the set that includes the parameters whose ranges are known based

on the domain knowledge. For each �ijk ∈ A, we define the range

as lijk��ijk�uijk. Obviously, lijk�0, and uijk�1. Let B be the set

that includes the parameters whose relative relationships are known

based on the domain knowledge. For each �ijk, �i′j′k′ ∈ B, we have

�ijk>�i′j′k′ , and/or, �ijk = �i′j′k′ , where i� i′, or j� j′, or k� k′.

However, the domain knowledge may not be reliable all the time.

To account for it, we associate confidence levels �ijk, �i′j′k′

ijk
to each

constraint in the sets A and B, respectively. The value of each �
is between 0 and 1. If a domain expert is very confident with a

constraint, the corresponding value of � is 1; otherwise, � is less than

1 but larger than 0.

3.3. Parameter learning with uncertain qualitative constraints

Now our goal is to find the optimal parameter �̂ that maximizes

the log-likelihood LD(�) given the three constraints as below:

Maximize LD(�)

Subject to
∑

k

�ijk = 1

1� i�n, 1� j�qi, 1�k�qi

lijk��ijk�uijk, �ijk ∈ A

�ijk��i′j′k′ ,�ijk,�i′j′k′ ∈ B (6)

The above equation shows a constrained optimization problem.

For each inequality constraint, we define the following penalty func-

tions:

g′(�ijk) = [�ijk − lijk]
−, ∀�ijk ∈ A (7)

g′′(�ijk) = [uijk − �ijk]
−, ∀�ijk ∈ A (8)

g′′′(�ijk,�i′j′k′ ) = [�ijk − �i′j′k′ ]−, ∀�ijk,�i′j′k′ ∈ B (9)

where [x]− = max(0,−x).

Therefore, we can rephrase Eq. (6) as follows:

Maximize J(�) = LD(�) −
w1

2

∑

�ijk∈A

�ijk[(g
′(�ijk))

2
+ (g′′(�ijk))

2]

−
w2

2

∑

�ijk ,�i′ j′k′ ∈B

�i′j′k′

ijk
(g′′′(�ijk,�i′j′k′ ))2

Subject to
∑

k

�ijk = 1 (10)

where wi is the penalty weight, which is decided empirically. Ob-

viously, the penalty varies with the confidence level for each con-

straint.

In order to solve the problem, first, we eliminate the constraint
∑

k�ijk=1 by reparameterizing �ijk, so that the new parameters auto-

matically respect the constraint on �ijk no matter what their values

are. We define a new parameter �ijk so that

�ijk ≡
exp(�ijk)

∑ri
k′=1

exp(�ijk
′ )

(11)

In this way, a local maximum w.r.t. to �ijk is also a local maximum

w.r.t. �ijk, and vice versa. Most importantly, the constraint is auto-

matically satisfied.

In the next step, we need to compute the derivative of J(�) w.r.t.

�. Based on [24], ∇�ijk
LD(�) can be expressed as follows:

∇�ijk
LD(�) =

� ln
∏N

l=1p(Dl|�)

��ijk

=

N
∑

l=1

� lnp(Dl|�)

��ijk

=

N
∑

l=1

� lnp(Dl|�)/��ijk

p(Dl|�)
(12)

where

� ln p(Dl|�)/��ijk

p(Dl|�)
=

�

��ijk

∑

j′ ,k′p(Dl|x
k′

i
,pa

j′

i
,�)p(xk

′

i
,pa

j′

i
|�)
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=
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��ijk
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k′
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,pa

j′
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|pa
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,�)p(paj
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|�)
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=
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�ijk

(13)
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By combining Eqs. (12) and (13), we obtain the equation as below:

∇�ijk
LD(�) =

∑N
l=1p(x

k
i
, pa

j
i
|Dl,�)

�ijk

(14)

Therefore, based on the chain rule,

∇�ijk
LD(�) =

�LD(�)

��ijk

��ijk

��ijk

= ∇�ijk
LD(�)(�ijk − �

2
ijk)

=

N
∑

l=1

p(xki ,pa
j
i
|Dl,�)(1 − �ijk) (15)

Similarly, for g′(�ijk), g
′′(�ijk), and g′′′(�ijk), the derivatives are as fol-

lows:

∇�ijk
g′(�ijk) =

{

�
2
ijk − �ijk if �ijk� lijk

0 otherwise
(16)

∇�ijk
g′′(�ijk) =

{

�ijk − �
2
ijk if �ijk�uijk

0 otherwise
(17)

∇�ijk
g′′′(�ijk,�i′j′k′ ) =

⎧

⎨

⎩

�
2
ijk−�ijk if �ijk��i′j′k′ , i� i′ or j� j′

�
2
ijk−�ijk−�ijk�i′j′k′ if �ijk��i′j′k′ , i = i′, j = j′

0 otherwise

(18)

Table 1

A constrained EM (CEM) learning algorithm.

Repeat until it converges

Step 1: E-step to compute the conditional expectation of the log-likelihood

function based on Eq. (4);

Step 2: M-step to find the parameter �
′
that maximizes the expected

log-likelihood based on Eq. (5);

Step 3: Perform the following optimization procedure based on the

gradient-descent method:

�
t
= �

′
; map �

t
to �

t
based on Eq. (11)

Repeat until ��
t
≃ 0

��
t
= 0

for each variable i, parent configuration j, value k

for each Dl ∈ D

��
t+1

ijk = ��
t

ijk + p(xki , pa
j

i|Dl ,�t)

��
t+1
ijk = ��

t+1
ijk (1 − �ijk) + K

(K represents the last three terms in Eq. (19))

�
t+1

= �
t
+ ��

t+1

map �
t+1

to �
t+1

based on Eq. (11)

�
t
= �

t+1

Go to Step 1

Return �
t
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Fig. 2. Two BN examples: (a) BN1; (b) BN2. The shaded nodes are hidden nodes, the others are observable nodes.

Therefore, the derivative of J(�ijk) w.r.t. �ijk is as we can see here:

∇�ijk
J(�ijk) =

N
∑

l=1

p(xki , pa
j
i
|Dl,�)(1 − �ijk)

− w1�ijk[g
′(�ijk)∇�ijk

g′(�ijk) + g′′(�ijk)∇�ijk
g′′(�ijk)]

− w2

∑

B+(�ijk)

[�i′j′k′

ijk
g′′′(�ijk,�i′j′k′ )∇�ijk

g′′′(�ijk,�i′j′k′ )]

+ w2

∑

B−(�ijk)

[�i′j′k′

ijk
g′′′(�i′j′k′ ,�ijk)∇�ijk

g′′′(�i′j′k′ ,�ijk)] (19)

where B+(�ijk) is the set of the constraints whose first term is �ijk,

while B−(�ijk) is the set of the constraints whose second term is �ijk.

Both B+(�ijk) and B−(�ijk) belong to the set B.

Now, we are ready to present the constrained EM (CEM) learning

algorithm as summarized in Table 1. The algorithm consists of three

steps. The first two steps are the same as the E-step and M-step in

the EM algorithm. In the third step, a gradient-based update is used

to force the solutions to move towards the direction of reducing

constraint violations.

4. Experiments

In this section, we compare our algorithm to the EM algorithm

with synthetic data. We first describe how the testing data is gener-

ated, and then demonstrate the results in three scenarios: (1) vary-

ing the type-I constraints; (2) varying the type-II constraints; and

(3) varying the number of training samples. Furthermore, in the next

section, we will apply our algorithm to a real-world application.

4.1. Experiment design

In order to compare the CEM algorithm to the EM algorithm, we

design the experiments as follows.

Generation of original BNs. Two BNs as shown in Fig. 2 are created

in the experiments. Then 22 instances are created with the same

structures as BN1 and BN2, respectively (11 for each), but with dif-

ferent parameters. Two BNs (called original BNs) are then used as

the ground-truth for BN1 and BN2, respectively, and the others are

to be learned.

Generation of constraints. For each BN, based on the true CPTs,

type-I (the range of a parameter) and type-II (the relationship be-

tween different parameters) constraints are generated for the node

sets A and B, where A and B vary in the experiments. Specifically,

to generate type-I constraints for the nodes in A, for each true pa-

rameter �ijk, the lower bound is set as (1 − r)�ijk, and the upper

bound is set as min(1, (1 + r)�ijk), where r is a ratio (0< r<1) and

varies in the experiments. Type-II constraints can be divided into
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two kinds: inner-relationship, which compares two parameters

within the same CPT; outer-relationship, which compares two pa-

rameters in different CPTs. For example, in BN1, two parameters in

the CPT of the node 18 can be associated with an inner-relationship

Table 2

Some examples of type-II constraints for BN1.

Inner-relationship constraints Outer-relationship constraints

Node 14: �1411 >�1421 Node 13 and Node 17: �1311 >�1711

Node 15: �1511 >�1522 Node 14 and Node 15: �1411 >�1531

Node 20: �2011 >�2021 Node 18 and Node 19: �1821 >�1941
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Fig. 3. Learning results vs. type-I constraints. The charts in the left are the results for BN1; and the charts in the right are the results for BN2. (a), (b) EM vs. CEM when

r = 0.4; (c), (d) CEM when r = 0.4 and 0.2; and (e), (f) negative log-likelihood for different BNs.

constraint; while a parameter in the CPT of the node 18 and a

parameter in the CPT of the node 19 can be associated with an outer-

relationship constraint. Table 2 shows some examples of type-II con-

straints for BN1. For each parameter �abcd in the table, the first two

numbers (ab) of the subscript represent the index of the node, and

the third number (c) represents the index of the parent configura-

tions, and the last number (d) represents the state index of the node.

Generation of training data. For each BN, 500 samples are gener-

ated based on the true parameters. The values of the hidden nodes

are then removed from the generated samples. With the remaining

samples, we then learn the 20 BNs with randomly assigned initial

parameters, which are required to be different from the true param-

eters.
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Fig. 4. Learning results vs. type-II constraints for BN1: (a) EM vs. CEM (eight inner-relationship constraints for the hidden nodes are used); (b) EM vs. CEM (eight outer-re-

lationship constraints for the hidden nodes are used); (c) CEM (eight outer-relationship constraints are used) vs. CEM (eight outer-relationship and eight inner-relationship

constraints are used); (d) eight and 16 inner-relationship constraints are used, respectively; (e) eight and 16 outer-relationships are used, respectively; and (f) CEM (eight

outer-relationship and eight inner-relationship constraints are used) vs. CEM (16 inner-relationship and 16 outer-relationship constraints are used). BN2 has the similar results.

Evaluation of performance. Two criteria are used to evaluate the

performance of the learning algorithms. The first one is to compare

the estimated CPT of each node to the ground-truth CPT using the

Kullback–Leibler (KL) divergence. The smaller the KL-divergence is,

the closer the estimated CPT to the true CPT. The second criterion

is the negative log-likelihood per sample. It evaluates how well a

learned BN fits the testing data as a whole. To compute that, we

first generate 500 testing samples from each original BN. Each of

the learned BNs is then evaluated on these samples to get the av-

erage negative log-likelihood. Since it is negative log-likelihood, the

smaller the value is, the better the learned BN fits the data.

4.2. Learning results vs. type-I constraints

In this section, we compare learning performance when type-

I constraints vary while type-II constraints are fixed. Specifically,

both the set A and B include only hidden nodes. For type-I con-

straints, r varies from 0.2 to 0.4. For type-II constraints, only the

inner-relationships for two parameters in the CPT of each hidden

node are used as constraints.

Fig. 3 illustrates the results. In Charts (a) through (d), the x-

coordinate denotes the node index, and the y-coordinate denotes the

KL-divergence. The median of each bar is the mean, and the height

of the bar is the standard deviation, which are obtained from 10 BN

instances. Charts (a) and (b) compare EM to CEM when r = 0.4. We

can see that CEM achieves better results in both mean and standard

deviation of KL-divergence than EM for both BNs. In BN1, for the hid-

den nodes, the average mean decreases from 1.0687 (EM) to 0.2337

(CEM, r=0.4); the average standard deviation decreases from 0.7659

(EM) to 0.2219 (CEM, r=0.4). In BN2, for the hidden nodes, the aver-

age mean decreases from 0.6657 (EM) to 0.1163 (CEM, r = 0.4); the

average standard deviation decreases from 0.5614 (EM) to 0.0969

(CEM, r = 0.4). Specifically, as shown in Charts (a) and (c), for the

hidden node 18 in BN1, the KL-divergence decreases from around

2.1 (EM) to 0.2 (CEM, r = 0.2); for the hidden node 19 in BN1, the

KL-divergence decreases from around 2.2 (EM) to 0.2 (CEM, r = 0.2).

Charts (c) and (d) compare CEMwhen r varies. As r decreases from

0.4 to 0.2, the performance of CEM is further improved, especially for

the hidden nodes. The negative log-likelihood further confirms that

CEM performs better than EM, as shown in Charts (e) and (f), where

the x-coordinate indicates BN index and the y-coordinate indicates

the negative log-likelihood. The negative log-likelihood from CEM is

smaller than that from EM.

4.3. Learning results vs. type-II constraints

In the second scenario, we change type-II constraints while fix

the type-I constraints (r is set as 0.4). We observe the learning results

in the following cases: (1) varying the number of inner-relationship

constraints; (2) varying the number of outer-relationship con-

straints; and (3) combining inner-relationship constraints and

outer-relationship constraints.

Fig. 4 illustrates the results in the three cases. Charts (a) and

(b) compare EM to CEM when eight inner-relationship constraints

and eight outer-relationship constraints are used, respectively. Ob-

viously, CEM always performs better than EM. For example, in Chart

(a), the average mean for the hidden nodes decreases from 1.0687

(EM) to 0.2337 (CEM), the average standard deviation decreases
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Fig. 5. Learning results vs. the number of training samples for BN1: (a) Average KL-divergence for the observable nodes whose parameters are independent from the hidden

nodes (i.e., nodes 2, 3, 4, 9); (b) average KL-divergence for the other observable nodes; (c) average KL-divergence for the hidden nodes; and (d) negative log-likelihood. BN2

has the similar results.

from 0.7659 (EM) to 0.2219 (CEM); and in Chart (b), the average

mean for the hidden nodes decreases from 1.0687 (EM) to 0.2214

(CEM), the average standard deviation decreases from 0.7659 (EM)

to 0.2377 (CEM). Charts (c) through (f) show how the performance

of CEM varies as different numbers of constraints are used. Chart

(c) demonstrates that when both inner-relationship constraints and

outer-relationship constraints are used, the performance is better

than single-type constraints are used. The average mean for the hid-

den nodes decreases from 0.2214 to 0.1929, and the average stan-

dard deviation decreases from 0.2377 to 0.1763. Charts (d)–(f) show

that the performance of CEM is improved slightly when we double

the same types of constraints.

4.4. Learning results vs. training samples

We now demonstrate how the learning results vary with the

number of training samples. In the experiments, we fix the con-

straints (r=0.2), and only eight inner-relationship constraints for the

hidden nodes are used, but vary the number of training samples dur-

ing learning. Fig. 5 demonstrates the results for BN1 only, since BN2

has the similar results. In order to observe how the training sam-

ples affect different types of nodes in BN1, we divide the nodes into

three groups: group 1 includes the nodes (2, 3, 4, and 9) whose pa-

rameters are independent from the hidden nodes; group 2 includes

the other observable nodes; and group 3 includes all the hidden

nodes.

As shown in Chart (a) of Fig. 5, for the nodes in group 1, the KL-

divergence decreases when the number of samples increases. And

the KL-divergence is very small in all the cases even when there are

only 200 training samples. Both EM and CEM return the same results

since the data are complete for all those nodes. In both Charts (b)

and (c), the KL-divergence decreases slightly when the number of

training samples increases, while the KL-divergence of CEM is much

smaller than that of EM. Especially for the hidden nodes, even when

the number of the training sample is 6000, the KL-divergence for the

hidden nodes is only slightly smaller than the KL-divergence when

the number of training sample is 200. This is because the information

about the hidden nodes rarely varies as the total number of training

samples increases. Therefore, in order to improve the learning results

for the hidden nodes, domain knowledge is more important than

training samples.

5. A case study

In this section, we apply our algorithm to a real-world application

in computer vision: facial action unit (AU) recognition.

5.1. A Bayesian network for facial action unit modeling and recognition

In recent years, a variety of approaches are proposed to recog-

nize facial expressions. Besides recognizing six basic facial expres-

sions directly, techniques have also been developed to automatically

recognize facial action units. According to the Facial Action Unit Sys-

tem (FACS) by Ekman [26], each AU is related to the contraction of

a specific set of facial muscles. FACS has been demonstrated to be a

powerful means for representing and characterizing a large number
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Fig. 6. A Bayesian network for AU modeling. We adapted it from [27]. The unshaded

nodes are measurement nodes.

of facial expressions through the combination of only a small set of

AUs.

Current techniques for recognizing AUs are mostly based on com-

puter vision techniques. But due to the richness, ambiguity, and dy-

namic nature of facial actions, as well as the image uncertainty and

individual difference, it is difficult to recognize each AU individually

by using only computer vision techniques. Computer vision tech-

niques should be combined with additional sematic information to

achieve a more robust and consistent AU recognition. Fortunately,

there are some inherent relationships among AUs as described in

the FACS manual [26]. For example, the alternative rules provided in

the FACS manual describe the mutual exclusive relationship among

AUs. Furthermore, the FACS also includes the co-occurrence rules in

their old version, which were “designed to make scoring more de-

terministic and conservative, and more reliable” [26].

Therefore, instead of recognizing each AU alone, a Bayesian net-

work can be used to model the probabilistic relationships among

different AUs, and given the BN model, AU recognition can be per-

formed through a probabilistic inference [27]. Fig. 6 illustrates such

a BN to model 14 AUs, and Table 3 summarizes a list of the 14 AUs

and their meanings. They are adapted from [27]. Such a model is

capable of representing the relationships among different AUs in a

coherent and unified hierarchical structure, accounting for uncer-

tainties in the AU recognition process with conditional dependence

links, and providing principled inference and learning techniques to

systematically combine the domain information and statistical in-

formation extracted from the data.

To incorporate the AU recognition results from a computer vision

technique, in the BN model, each AU is connected with a measure-

ment node (unshaded node), which encodes the measurement ob-

tained from computer vision techniques. For AU measurement, we

employ a technique similar to the one described in [28]. The output

of the technique is a score for each AU, which is subsequently dis-

credited to produce a value for a corresponding AU measurement

node.

5.2. AU model parameter learning

Given the BN structure in Fig. 6 and the AU measurements, we

then need parameterize the BN model before AU inference can com-

mence. For this, we need training data. As defined before, a com-

plete training sample requires the true AU label for each AU node

Table 3

A list of action units.

and the measurement for each meresman node. However, manually

labeling AUs is usually time consuming and difficult. Moreover, the

labeling process is highly subjective, therefore prone to human er-

rors. In addition, some AU events rarely happen in the collected data.

Therefore, the training data could be incomplete, biased, or spare for

certain AUs. We thus apply our algorithm to learn the BN parame-

ters using only the AU measurements and some domain knowledge,

without any AU labeling.

We first generate constraints. For type I constraints, domain ex-

perts are consulated to specify the approximate ranges for most of

the parameters. Type II constraints are also constructed from domain

specific knowledge. Specifically, for each measurement node, since

the measurement accuracy for each AU varies, depending the com-

puter vision technique used as well as on the difficulty of the AU,

we can rank the measurements by their accuracy and then trans-

late such a ranking into the outer-relationships between the cor-

responding measurement nodes. For example, the computer vision

technique usually performs better in recognition of AU2 (outer brow

raiser) than AU23 (lip tighten), hence we can get constraints like

p(O2=0|AU2=0)> p(O23=0|AU23=0), p(O2=1|AU2=1)> p(O23=

1|AU23 = 1), where 0 means an AU is absent, and 1 means an AU is

present.

More type-II constraints can be obtained based on the properties

of different AUs. For example, for AU6 (cheek raiser) and AU12 (lip

corner puller), the probability of AU12 being absent if AU6 is ab-

sent, is smaller than the probability of AU6 being present if AU12

is present, i.e., p(AU12= 0|AU6= 0)<p(AU12= 1|AU6= 1). For AU1

(inner brow raiser), the influence of AU2 (outer brow raiser) on AU1

is larger than the influence of AU5 (upper lid raiser) on AU1, i.e.

p(AU1= 1|AU2= 1, AU5= 0)>p(AU1= 1|AU2= 0,AU5= 1). Overall,

we generate one type-I constraint for each parameter, and about 28

type-II constraints for all the parameters. Of course, the number of

constraints depends on the application and the domain knowledge

available for the application.

5.3. AU recognition results

We use 8000 images collected from Cohan and Kanade's DFAT-

504 database [29], where 80% are used for training and 20% data

are used for testing. We first use MLE to learn parameters from the

complete data, which consists both the true AU labels and the AU

measurements. Then, we use the EM and CEM algorithms to learn

parameters from the incomplete data, which only includes the AU

measurements.
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Fig. 7. Comparison of average AU recognition results using the BNs learned from MLE, EM, and CEM, respectively: (a) true skill score; (b) positive rate; and (c) false alarm.

MLE uses complete training data, while EM and CEM use incomplete data that only include AU measurements.

Fig. 7 compares the AU recognition results with BNs learned from

MLE, EM, and CEM in terms of true skill score (the difference between

the positive rate and the false alarm), positive rate, and false alarm.

CEM performs similarly to MLE (based on complete data), but much

better than EM. The average true skill score is only 0.37 for EM, 0.72

for CEM, and 0.76 for MLE. The positive rate increases from 0.69 (EM)

to 0.82 (CEM), and the false alarm decreases from 0.32 (EM) to 0.1

(CEM). For EM, some AUs totally fail, such as AU2, AU7, and AU23.

But CEM has a fair performance for all the AUs even it is learned

from the unlabeled data. This again shows the importance of domain

knowledge. CEM is able to fully utilize the domain knowledge for

automatic parameter learning. Compared to MLE that is based on

the labeled data, the CEM has comparable performance but without

using any labeled AUs. This is indeed very encouraging. This may

represent a significant step forward in machine learning in general

and BN learning in particular.

6. Conclusion and future work

When a large amount of data are missing, or when multiple

hidden nodes exist, learning parameters in Bayesian networks be-

comes extremely difficult. The learning algorithms are required to

operate in a high-dimensional search space and could easily get

trapped among copious local maxima. We thus present a constrained

EM algorithm to learn Bayesian network parameters when a large

amount of data are missing in the training data. The algorithm

fully utilizes certain qualitative domain knowledge to regularize the

otherwise ill-posed problem, limit the search space, and avoid lo-

cal maxima. Compared with the quantitative domain knowledge

such as prior probability distribution typically used by the existing

methods, the qualitative domain knowledge is local (only concerned

with some parameters), easy to specify, and does not need strong

assumption.

For many computer vision and pattern recognition problem, data

is often hard to acquire and the model becomes increasingly com-

plex. It, therefore, becomes increasingly important to incorporate

human knowledge into the otherwise ill-posed learning process. Our

method can solicit simple yet effective qualitative constraints from

human experts, and then systematically incorporate them into the

learning process. The improvement in learning performance is signif-

icant. Both the experiments from the synthetic data and real data for

facial action recognition demonstrate that our algorithm improves

the accuracy of the learned parameters significantly over the tradi-

tional EM algorithm.

The domain knowledge in the current learning algorithm was

formalized by two simple constraints: a range of a parameter, and

relative relationships between different parameters. Although they

are very useful, it is possible to introduce more types of constraints

into learning, such as the relationships between the sum of several

parameters, parameter sharing, etc. More constraints will help fur-

ther reduce the search space, although they may not be easy for

domain experts to specify.

Furthermore, we assumed model structures are known and thus

only focused on learning model parameters. However, in many ap-

plications, the structure could be unknown, or it is too difficult for

domain experts to manually construct a complete structure. Learn-

ing the BN structure is therefore also necessary. Most current ap-

proaches to BN structure learning assume generic prior probabilities

on graph structures, typically encoding a sparseness bias but other-

wise expecting no regularities in the learned structures. We believe

that the domain knowledge about model parameters can also help

in learning the model structure.
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Abstract

This paper describes a new algorithm to
solve the decision making problem in In-
fluence Diagrams based on algorithms for
credal networks. Decision nodes are asso-
ciated to imprecise probability distributions
and a reformulation is introduced that finds
the global maximum strategy with respect
to the expected utility. We work with Lim-
ited Memory Influence Diagrams, which gen-
eralize most Influence Diagram proposals and
handle simultaneous decisions. Besides the
global optimum method, we explore an any-
time approximate solution with a guaran-
teed maximum error and show that imprecise
probabilities are handled in a straightforward
way. Complexity issues and experiments
with random diagrams and an effects-based
military planning problem are discussed.

1 INTRODUCTION

An influence diagram is a graphical model for deci-
sion making under uncertainty [13]. It is composed
by a directed graph where utility nodes are associated
to profits and costs of actions, chance nodes represent
uncertainties and dependencies in the domain and de-
cision nodes represent actions to be taken. Given an
influence diagram, a strategy defines which decision to
take at each node, given the information available at
that moment. Each strategy has a corresponding ex-
pected utility. One of the most important problems in
influence diagrams is strategy selection, where we need
to find the strategy with maximum expected utility.
A simple approach is to evaluate each possible strat-
egy and compare their expected utilities. However, the
number of strategies grows exponentially in the num-
ber of decision to be taken.

In this paper, we propose a new idea to find the best

strategy based on a reformulation of the problem as
an inference in a credal network [4]. We show through
experiments that this approach can handle small and
medium diagrams exactly, and provides an anytime
approximation in case we stop the process early. Our
idea works with a very general class of influence di-
agrams, named Limited Memory Influence Diagrams
(LIMIDs) [15]. Limited Memory means that the as-
sumption of no-forgetting usually employed in Influ-
ence Diagrams (that is, values of observed variables
and decisions that have been taken are remembered at
all later times) is relaxed. This class of diagrams is
interesting because most other influence diagram pro-
posals can be efficiently converted into LIMIDs.

To solve strategy selection, many approaches work on
special cases of influence diagrams, exploiting their
characteristics to improve performance. In many
cases, it is assumed that there is an ordering on which
the decisions are to be taken and the no-forgetting rule,
so as previous decisions are assumed to be known in
the moment of the current decision [14, 18, 19, 20, 21].
The ordering of decision nodes is exploited to eval-
uate the optimal strategy. There are also proposals
in the class of simultaneous influence diagrams, where
decisions are assumed to have no antecedents. This
assumption reduces the number of possible strategies
and allows for factorization ideas [22]. LIMIDs do not
have assumptions about no-forgetting and ordering for
decisions, even though it is possible to convert dia-
grams that have such assumptions into LIMIDs.

In order to test our method, we generate a data set
of random influence diagrams. Empirical results indi-
cate that the accuracy of our method is better than
other approaches’. We also apply our idea to solve
an Effects-based operations (EBO) military planning.
The EBO approach seeks for a campaign objective by
considering direct, indirect and cascading effects of
military, diplomatic, psychological and economic ac-
tions [6, 11]. We use an influence diagram to model an
EBO hypothetical problem.



Section 2 introduces our notation for influence dia-
grams and the problem of strategy selection. Section 3
describes the framework of credal networks and the in-
ference problem on such networks. Section 4 presents
how we solve strategy selection through a reformula-
tion of the problem as an inference in credal networks.
Section 5 presents some experiments, including the
EBO military planning problem, and finally Section
6 concludes the paper and indicates future work.

2 INFLUENCE DIAGRAMS

A Limited Memory Influence Diagram I is composed
by a directed acyclic graph (V , E) where nodes are
partitioned in three types: chance, decision and utility
nodes. Let C, D and U be the set of chance, decision
and utility nodes, respectively, and let X = C ∪ D.
Links of E characterize dependencies among nodes.
Explicitly, links toward a chance node indicate prob-
abilistic dependence of the node on its parents; links
toward a decision node indicate which information is
available to take such decision, and links toward utility
nodes represent that an utility for those parents is to
be considered (utility nodes may not have children).
Associated to each node, there are some parameters:

1. A chance node has an associated categorical ran-
dom variable C with finite domain ΩC and con-
ditional probability distributions p(C|πj(C)), for
each configuration πj(C) of its parents π(C) in
the graph. j is used to indicate a configuration of
the parents of C, that is, πj(C) ∈ Ωπ(C), where
the notation ΩV′ = ×V ∈V′ ΩV , for any V ′ ⊆ V .

2. A decision node D is associated to a finite set of
mutually exclusive alternatives ΩD. Parents of D

describe the information that is available at the
moment on which decision D has to be taken.

3. An utility node U is associated to a rational func-
tion fU : Ωπ(U) → Q. The value corresponding to
a parent configuration is the profit (cost is viewed
as negative profit) of such parent configuration.
Utility nodes have no children.

A simple example is depicted in Figure 1. De-
cision nodes are represented by rectangles, chance
nodes by ellipses and utility nodes by diamonds.
do ground attack has an associated cost, which is de-
picted by the corresponding utility node. The same is
modeled for bomb bridge. The goal is to achieve ter-
ritory occupation, which also has an utility (the profit
of the goal). ground attack and bridge condition repre-
sent the uncertain outcomes of the corresponding ac-
tions. Note that there is no known ordering on which

cost_of
attack

ground_attack

territory_occupation
profit
of_goal

do_ground_attack

bridge_condition

bomb_bridge

bombing
cost_of

Figure 1: Simple Influence Diagram example.

decisions must be taken. Although decision nodes have
no parents in this example, there is no such restriction.

A policy δD for the decision node D is a function
δD : ΩD∪π(D) → [0, 1] defined for each alternative
of D and each configuration of π(D) such that, for
each πj(D) ∈ Ωπ(D) we have

∑

d∈ΩD
δD(d, πj(D)) = 1.

A pure policy is a policy such that its image is inte-
ger (δD : ΩD∪π(D) → {0, 1}), and thus specifies with
certainty which action (alternative of D) is taken for
each parent configuration (in a pure policy, only one
δD(d, πj(D)) for each πj(D) will be non-zero as they
sum 1). A strategy ∆ is a set of policies {δD : D ∈ D},
one for each decision node of the diagram. A pure
strategy is composed only by pure policies.

The expected utility EU(∆) of a strategy ∆ is evalu-
ated through the following equation:

∑

x∈ΩX

(

∏

C

p(xC |πj(C))
∏

D

δD(xD)
∑

U

fU (πj′ (U))

)

,

(1)
where xC , πj(C), xD and πj′ (U) are respectively the
projections of x in ΩC , Ωπ(C), ΩD∪π(D) and Ωπ(U).
This equation means that, given a strategy, its ex-
pected utility is the sum of the utility values weighted
by the probability of each diagram configuration (for
all configurations). The maximum expected utility is
obtained over all possible strategies:

MEU = max
∆

EU(∆).

The problem of strategy selection is to obtain the
strategy that maximizes its expected utility, that is,
argmaxmax∆ EU(∆).

3 CREDAL NETWORKS

We need some concepts of credal networks before pre-
senting the reformulation to solve strategy selection.
A convex set of probability distributions is called a



credal set [4]. A credal set for X is denoted by K(X);
we assume that every random variable is categori-
cal and that every credal set has a finite number of
vertices. Given a credal set K(X) and an event A,
the upper and lower probability of A are respectively
maxp(X)∈K(X) p(A) and minp(X)∈K(X) p(A). A condi-
tional credal set is a set of conditional distributions,
obtained by applying Bayes rule to each distribution
in a credal set of joint distributions.

A (separately specified) credal network N = (G, X, K)
is composed by a directed acyclic graph G = (V, E)
where each node of V is associated with a random
variable Xi ∈ X and with a collection of conditional
credal sets K(Xi|π(Xi)) ∈ K, where π(Xi) denotes
the parents of Xi in the graph. Note that we have a
conditional credal set related to Xi for each configura-
tion πj(Xi) ∈ Ωπ(Xi). A root node is associated with
a single marginal credal set. We take that in a credal
network every random variable is independent of its
non-descendants non-parents given its parents; this is
the Markov condition on the network. In this paper
we adopt the concept of strong independence1: two
random variables Xi and Xj are strongly independent
when every extreme point of K(Xi, Xj) satisfies stan-
dard stochastic independence of Xi and Xj (that is,
p(Xi|Xj) = p(Xi) and p(Xj|Xi) = p(Xj)) [4]. Strong
independence is the most commonly adopted concept
of independence for credal sets, probably due to its
connection with standard stochastic independence.

Given a credal network, its extension is any joint credal
set that satisfies all constraints encoded in the net-
work. The strong extension K of a credal network is
the largest joint credal set such that every variable
is strongly independent of its non-descendants non-
parents given its parents. The strong extension of a
credal network is the joint credal set that contains ev-
ery possible combination of vertices for all credal sets
in the network [5]; that is, each vertex of a strong ex-
tension factorizes as follows:

p(X1, . . . , Xn) =
∏

i

p(Xi|π(Xi)) . (2)

Thus, a credal network can be viewed as a represen-
tation for a set of Bayesian networks with distinct pa-
rameters but sharing the same graph.

3.1 INFERENCE

A marginal inference in a credal network is the com-
putation of upper (or lower) probabilities in an exten-
sion of the network. If Xq is a query variable, then a
marginal inference is the computation of tight bounds

1We note that other concepts of independence are found
in the literature [3, 10].

for p(xq) for one or more categories xq of Xq. For in-
ferences in strong extensions, it is known that distribu-
tions that maximize p(xq) belong to the set of vertices
of the extension [12]. So, an inference can be produced
by combinatorial optimization, as we must find a ver-
tex for each local credal set K(Xi|π(Xi)) so that Ex-
pression (2) leads to a maximum of p(xq). In general,
inference offers tremendous computational challenges,
and exact inference algorithms based on enumeration
of all potential vertices face serious difficulties [4].

A different way to solve the problem is to recognize
that an upper (or lower) value for p(xq) may be ob-
tained by the optimization of a multilinear polynomial
over probability values, subject to constraints. This
idea is discussed in the literature and different methods
to reformulate the inference problem were proposed
[7, 9]. Empirical results suggest that this is the most
effective way for exact inferences. In the next section,
we describe an idea based on bilinear programming
[9] to perform inferences in credal networks and show
how it can be employed to solve the strategy selection
problem of influence diagrams.

4 STRATEGY SELECTION AS A

CREDAL NET INFERENCE

Suppose we want to find the strategy ∆opt that max-
imizes the expected utility in an influence diagram I,
that is, ∆opt = argmaxMEU. Let f and f be the
minimum and maximum utility values specified in the
diagram for all possible utility nodes and parent con-
figurations, that is,

f = min
U,πj(U)

fU (πj(U)), f = max
U,πj(U)

fU (πj(U)).

We create an identical influence diagram I ′ except that
the utility function f ′

U (for each node U) is defined as

∀πj(U) f ′
U (πj(U)) =

fU (πj(U)) − f

f − f
.

The denominator is positive because f < f (if f =

f , then the influence diagram is trivial as all utility
values are equal). We note that this transformation is
similar to that proposed by Cooper [2]. It is not hard
to see that argmaxMEU = argmaxMEU’ (just take
the terms out of summations in Equation (1)), and

max
∆

EU’(∆) =
max∆ EU(∆) − |U|f

f − f
.

This implies that strategy selection in I is the same as
strategy selection in I ′. Now, we translate the selec-
tion problem of I ′ to a credal network inference. Sup-
pose we define a credal network with a similar graph
as I ′ such that:



• Chance nodes are directly translated as nodes of
the credal network (parents are the same as in I ′).

• Utility nodes are translated to binary random
nodes. Let U be an utility node with function fU .
In the credal network, U becomes a binary node
(with the same parents as before) and categories
u and ¬u such that: p(u|πj(U)) = fU (πj(U)) and
p(¬u|πj(U)) = 1 − p(u|πj(U)) [2].

• Decision nodes are translated to probabilistic
nodes with imprecise distributions such that poli-
cies become probability distributions (in fact, ac-
cording to our definition of policy, they are al-
ready greater than zero and sum 1). Thus,
p(d|πj(D)) = δD(d, πj(D)) for all d and πj(D).
Note that p(D|πj(D)), for each πj(D), is a dis-
tribution with unknown probability values (this
interpretation of decision nodes as imprecise prob-
ability nodes is discussed by Antonucci and Zaf-
falon, see e.g. [1]).

Using this credal network formulation, the expected
utility of a strategy ∆ can be written as

EU’(∆) =
∑

x∈ΩX

(

∏

X

p∆(x|πj(X))
∑

U

p(u|πj′(U))

)

,

where x, πj(X) and πj′ (U) are projections of x into
the corresponding domains, X ranges on all nodes cor-
responding to chance and decision nodes of the influ-
ence diagram, and p∆ represents the distribution in-
duced by the strategy ∆, that is, when the strategy is
chosen, p∆ is a known probability distribution.

With some simple manipulations, we have:

EU’(∆) =
∑

x∈ΩX

(

p∆(x)
∑

U

p(u|πj′(U))

)

,

EU’(∆) =
∑

x∈ΩX

(

∑

U

p(u|πj′ (U))p∆(x)

)

,

EU’(∆) =
∑

U

∑

x∈ΩX

p∆(u,x) =
∑

U

p∆(u),

and then

MEU’ = max
∆

∑

U

p∆(u) = max
p∈K

∑

U

p(u),

where p ∈ K means that we select a distribution p in
the extension of the credal network. In fact the only
places p may vary are related to the imprecise proba-
bilities of the former decision nodes. When we select
p, we get a precise distribution that has a correspond-
ing strategy ∆. So, we have a credal network and
need to find a distribution p that maximizes the sum
of marginal probabilities of the U nodes.

4.1 INFERENCE AS AN OPTIMIZATION

PROBLEM

The sum of marginal inferences in the credal network
can be formulated as a multilinear programming prob-
lem. The goal is to maximize the expression

∑

U

p(u) =
∑

U

∑

x∈ΩX

(

p(u|πj′(U))
∏

X

p(x|πj(X))

)

,

(3)
where x, πj′ (U) and πj(X) are the projections of x in
the corresponding domains, and where some distribu-
tions p(X |πj(X)) are precisely known and others are
imprecise. In this formulation we must deal with a
large number of multilinear terms. To avoid them, we
briefly describe the bilinear transformation procedure
proposed by de Campos and Cozman [9] to replace
the large Expression (3) by simple bilinear expressions.
We refer to [9] for additional details.

The idea is based on a precedence ordering of the net-
work variables, which is an ordering where all ances-
tors of a given variable in the network’s graph appear
before it in the ordering. The bilinear transformation
algorithm processes the network variables top-down:
at each step some constraints are generated that de-
fine the relationship between the query and the cur-
rent variable being processed. A variable may be pro-
cessed only if all its ancestors have already been pro-
cessed. The active nodes at each step form a path-
decomposition of the network’s graph.

To better explain the method, we take the exam-
ple of Figure 1. For simplicity, assume that vari-
ables are binary2 (with categories b and ¬b) re-
named as follows: do ground attack is D1, bomb bridge
is D2, cost of attack is U1, cost of bombing is U2,
ground attack is C1, bridge condition is C2, terri-
tory occupation is C3, and finally profit of goal is U3.

After the translation of the utility functions into prob-
ability distributions and the replacement of decision
nodes by nodes with imprecise probabilities (as previ-
ously described), we have a credal network and need to
maximize the sum of the marginal probabilities of the
U nodes. In fact this is an extension of the standard
query in a credal network, because we have a summa-
tion instead of a single probability to maximize. So
the objective function is max p(u1) + p(u2) + p(u3)
(there are three utility nodes in the example) sub-
ject to constraints that define each marginal proba-
bility p(u1), p(u2) and p(u3). To create these con-
straints, we run a symbolic inference based on the
precedence ordering for each of the marginal proba-
bilities. The constraints for p(u1) and p(u2) are very

2The method works on non-binary variables as well.
The assumption is made here for ease of expose.



simple: p(u1) = p(u1|d1)p(d1) + p(u1|¬d1)p(¬d1) and
p(u2) = p(u2|d2)p(d2)+p(u2|¬d2)p(¬d2), because they
only depend on one other variable. Note that p(d1),
p(¬d1), p(d2), and p(¬d2) that appear in these con-
straints are unknown and thus become optimization
variables in the bilinear problem.

To write the constraints for p(u3), we need to choose
a precedence ordering. We will use the ordering
D2, C2, D1, C1, C3, U3 (variables U1 and U2 do not ap-
pear in the order as they are not relevant to evaluate
the marginal p(u3)). Hence, the first variable to be
processed is D2. We write a constraint that relates
the query u3 and probabilities p(D2) (which are de-
fined in the network specification):

p(u3) =
∑

d∈{d2,¬d2}

p(d) · p(u3|d).

D2 now appears in the conditional part of p(u3|d),
which may be viewed as an artificial term in the opti-
mization, as it does not appear in the network. Be-
cause of that, we must create constraints to define
p(u3|d) in terms of network parameters (for all cat-
egories d ∈ D2). According to our chosen ordering,
the current variable to be processed is C2. Thus,

p(u3|d2) =
∑

c∈{c2,¬c2}

p(c|d2) · p(u3|c),

p(u3|¬d2) =
∑

c∈{c2,¬c2}

p(c|¬d2) · p(u3|c).

Note that p(u3|c) = p(u3|c, d) (for any d), so we use
the simpler. At this stage, our query is conditioned on
C2. Following the same idea, we process D1, obtaining

p(u3|c2) =
∑

d∈{d1,¬d1}

p(d) · p(u3|c2, d),

p(u3|¬c2) =
∑

d∈{d1,¬d1}

p(d) · p(u3|¬c2, d).

Now the current variable to be treated is C1, and our
query is conditioned on C2, D1, that is, we must de-
fine how to evaluate p(u3|C2, D1) for all configurations.
Thus, for all c ∈ {c2,¬c2} and d ∈ {d1,¬d1}:

p(u3|c, d) =
∑

c′∈{c1,¬c1}

p(c′|c, d) · p(u3|c, c
′).

At this moment, u3 is conditioned on C1, C2 in the
artificial term p(u3|c, c

′) (D1 is not present in the ar-
tificial term as C1, C2 separate u3 from D1). Now we
process C3: for all c′ ∈ {c1,¬c1} and c ∈ {c2,¬c2}

p(u3|c, c
′) =

∑

c′′∈{c3,¬c3}

p(c′′|c, c′) · p(u3|c
′′).

Note that, as p(u3|c
′′) is specified in the network, we

can stop. All artificial terms are related (through con-
straints) to parameters of the network. Besides all
these constraints, we also include simplex constraints
to ensure that probabilities sum 1.

Hence, we have a collection of linear and bilinear con-
straints on which non-linear programming can be em-
ployed [7]. It is also possible to use linear integer pro-
gramming [9]. The steps to achieve a linear integer
programming formulation are simple, because the only
non-linear terms of the problem have the format b · t,
where b ∈ {0, 1} and t ∈ [0, 1]. b is an unknown proba-
bility value of the credal network (which is zero or one
because the solution we look for lies on extreme points
of credal sets [12]) and t is a constant or an artificial
term created in the procedure just described. To lin-
earize the problem, b · t is replaced by an additional
artificial optimization variable y and the following con-
straints are inserted: 0 ≤ y ≤ b and t − 1 + b ≤ y ≤ t.
After replacing all non-linear terms using this idea, the
problem becomes a linear integer programming prob-
lem, where a solution is also a solution for the strategy
selection in the initial influence diagram.

We emphasize that, as we are translating the strat-
egy selection problem into a credal network inference,
it is straightforward to use imprecise probabilities in
the chance nodes of the influence diagram. Intervals
or sets of probabilities may be used. The translation
works in the same way, but the generated problem will
have more imprecise probabilities to optimize.

The following theorem shows that, when reformulat-
ing the strategy selection problem as a modified credal
network inference, we are not making use of “more ef-
fort” than necessary, that is, strategy selection has the
same complexity as inference in credal networks.

Theorem 1 Let I be a LIMID and k a rational. De-
ciding whether there is a strategy ∆ such that MEU
is greater than k is NP-Complete when I has bounded
induced width,3 and NPPP-Complete in general.

Proof sketch: Pertinence for the bounded induced
width case is achieved because (given a strategy) we
can compute MEU and verify if it is greater than k

in polynomial time (using the reformulation and the
sum of marginal queries, each marginal query takes
polynomial time in a bounded induced width Bayesian
network); in the general case, we can perform this ver-
ification using a PP oracle. Hardness for the bounded
induced width case is obtained with the same reduc-

3The maximum clique and the maximum degree in the
moral graph are bounded by a logarithmic function in the
size of the input needed to specify the problem, which for
instance includes polytrees.



tion as in [8] from the MAXSAT problem (replacing
the credal nodes with decision nodes and introducing
a single utility node). In the general case, the same re-
duction as in [17] from E-MAJSAT can be used (MAP
nodes are replaced by decision nodes). �

5 EXPERIMENTS

We conduct two experiments with the procedure.
First, we use random generated influence diagrams
to compare the solutions obtained by our procedure
(which we call CR for credal reformulation) against the
Single Policy Updating (SPU) of Lauritzen and Nils-
son [15]. Later we work with a practical EBO military
planning problem and compare the method against the
factorization of Zhang and Ji [22].4

Concerning random influence diagrams, we have gen-
erated a data set based on the total number of nodes
and the number of decision nodes. The configurations
chosen are presented in the first two columns of Table
1. We have from 10 to 120 nodes, where 3 to 35 are
decision nodes. The number of utility nodes is cho-
sen equal to the number of decision nodes. Each line
in Table 1 contains the average result for 30 random
generated diagrams within that configuration. The
third column of the table shows the approximate aver-
age number of distinct strategies in the diagrams that
would need to be evaluated by a brute force method.

The three columns of the CR method show the time
spent to solve the problem, the number of nodes evalu-
ated in the branch-and-bound tree of the optimization
procedure (which is significantly smaller than the total
number of strategies in brute force) and the maximum
error of the solution (all numbers are averages). Af-
ter the reformulation, the CPLEX solver [16] is used,
which includes a heuristic search before starting the
branch-and-bound procedure. The evaluations of this
heuristic search are not counted in the fifth column of
Table 1. Note that the first five rows are separated
from the last three because they strongly differ on the
size of the search space (exact solutions were found
only for the former). The maximum error of each so-
lution is obtained straightforward from the relaxation
of the linear integer problem. The last two columns
of Table 1 show the time and maximum error of the
SPU approximate procedure. Although very fast, the
SPU procedure has worse accuracy than the “approxi-
mate” CR (solution was approximate in last three rows
because we have imposed a time-limit of ten minutes
for each run). Furthermore, SPU does not provide an
upper bound for the best possible expected utility, as
obtained by CR. Still, a possible improvement is to use

4The factorization idea only works on simultaneous in-
fluence diagrams, so it was not used in the other test cases.

SPU to provide an initial guess to the optimization.

5.1 EBO MILITARY PLANNING

In this section we describe the performance of our
method in an hypothetical Effects-based Operations
planning problem [11]. An influence diagram similar
to the model described by Zhang and Ji [22] is
employed. Its graph is shown in Figure 2. The goal is
to win a war, which is represented by the Hypothesis
node (on top of Figure 2). Just below there are the
subgoals Air superiority, Territory occupation, and
Commander surrender, which are directly related
to the main goal. There are eleven decision nodes
(represented by rectangles): destroy C2 (C2 stands
for Command and Control), destroy Radars, de-
stroy Communications, launch air strike, destroy RD,
destroy storage, destroy assembly, launch ground
attack, launch broadcasting, capture bodyguard,
use special force. Just above decision nodes, we have
chance nodes representing the outcomes of performing
such actions (they indicate the workability of such
systems), and below we have utility nodes (diamond-
shaped nodes) describing the cost of each action.
Furthermore, we have six chance nodes (in the center
of the figure) indicating general workability of IADS
(Integrated Air Defense System), Air force, Artillery,
Ground force, Morale and Commander in custody
with respect to enemy forces. The overall profit of
winning is given by the node UH , child of Hypothesis.

As this is an hypothetical example, we define utility
functions and probability distributions as follows:

• Probability of Hypothesis is one given that all
subgoals are achieved. If one of subgoals is not
achieved, then the probability of Hypothesis is
60%; if two of them are not achieved, then the
probability of success is 30%; if none of subgoals
is achieved, then we certainly fail in the campaign.

• For the subgoals Air superiority, Terri-
tory occupation, and Commander surrender,
we define that the subgoal is accomplished
with probability one when both children were
achieved, 50% when only one child is achieved,
and zero when none is achieved.

• For the probabilities of IADS, Air force, Ar-
tillery, Ground force, Morale and Comman-
der in custody, we define a decrease of 50% for
each unaccomplished child (with a minimum of
zero, of course). Any node has probability zero if
two or more of its children are not achieved.

• The outcomes of actions (chance nodes above de-
cision nodes) have 90% of success. For exam-



Nodes Approx.# of CR SPU
Total Decision Strategies Time(sec) Evals (B&B) Max.Error(%) Time(sec) Max.Error(%)
10 3 217 0.66 5 0.000 0.10 0.740
20 6 234 1.73 125 0.000 0.39 2.788
50 10 251 30.42 4048 0.000 1.62 2.837
60 15 252 29.77 2937 0.000 2.99 1.964
70 20 254 125.06 7132 0.000 5.52 3.448
120 25 2102 254.80 15626 0.544 11.58 2.193
120 30 2116 403.13 5617 4.639 13.79 7.281
120 35 2120 578.99 9307 5.983 16.87 11.584

Table 1: Average results on 30 random influence diagrams of different sizes for the CR and SPU methods.

ple, destroy Radars will have EW/GCI radars de-
stroyed with 90% of odds (EW/GCI means Early
Warning/Ground Control Interception).

• The reward of achieving the main goal is 1000,
while not achieving it costs 500.

• Costs of actions are as follows: ground attack is
150, use special force is 100, capture bodyguard is
80, air strike is 50, and other actions cost 20 each.

For this problem, the best strategy found by SPU
has expected utility of −55.2825, and suggests to
take all action except destroy RD, destroy storage, de-
stroy assembly and launch ground attack. The global
optimum strategy is found in less than 5 seconds with
our method and has expected utility equal to 156.4051
(all actions are taken). This is much faster than the
solution reported by [22] (around 45 seconds).

6 CONCLUSION

We discuss in this paper a new idea for strategy selec-
tion in Influence Diagrams. We work with the Limited
Memory Influence Diagram, as it generalizes many of
the influence diagram proposals. The main contribu-
tion is the reformulation of the problem as a credal
network inference, which makes possible to find the
global maximum strategy for small- and medium-sized
influence diagrams. Experiments indicate that many
instances can be treated exactly. As far as we know,
no deep investigation of exact procedures for this class
of diagrams has been conducted.

Because of the characteristics of our procedure, an
anytime approximate solution with a maximum guar-
anteed error is available during computations. It is
clear that large diagrams must be treated approxi-
mately. Nevertheless, in the conducted experiments,
our method produced results that surpass existing al-
gorithms. Although spending more time, many sit-
uations require a solution to be as good as possible,

while time is a secondary issue. The ability of our ap-
proach to provide an upper bound for the result is also
valuable, which is not available with the SPU method.

We also discuss the theoretical complexity of the prob-
lem, which is derived from the known properties of
MAP problems in Bayesian networks and belief up-
dating inferences in credal networks. The complex-
ity results show that the proposed idea is not making
use of a harder problem to solve a simpler one, as
the complexity of strategy selection is the same as the
complexity of inferences in credal networks.

Because strategy selection in influence diagrams and
inferences in credal networks are related, improve-
ments on algorithms of credal networks can be directly
applied to influence diagram problems. The applica-
tion of other approximate techniques based on credal
networks seems a natural path for investigation. We
also intend to explore other optimization criteria for
influence diagrams with imprecise probabilities, be-
sides expected utility. Proposals in the theory of im-
precise probabilities might be applied to this setting.
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A Factorization Approach to Evaluating
Simultaneous Influence Diagrams

Weihong Zhang and Qiang Ji, Senior Member, IEEE

Abstract—Evaluating an influence diagram (ID) is a challeng-
ing problem because its complexity increases exponentially in
the number of decision nodes in the diagram. In this paper, we
examine the problem for a special class of IDs where multiple
decisions must be made simultaneously. We describe a brief theory
that factorizes out the computations common to all policies in
evaluating them. Our evaluation approach conducts these com-
putations once and uses them across all policies. We identify the
ID structures for which the approach can achieve savings. We
show that the approach can be used to efficiently recompute the
optimal policy of an ID when its structure or parameters change.
Finally, we demonstrate the superior performance of the approach
by simulation studies and a military planning example.

Index Terms—Algorithm, decision making under uncertainty,
graphical model, influence diagram (ID), military analysis.

I. INTRODUCTION

AN INFLUENCE diagram (ID) is a plausible graphical

model for decision making under uncertainty [1]. An ID

comprises of decision nodes, random nodes, value nodes, and

the probabilistic relations among these nodes. An ID is a more

compact representation of a decision tree, which is a simple tool

for decision analysis [2].

Given an ID, a policy prescribes an action choice for each

decision node. Evaluating a policy is to compute the expected

value of the ID under the policy. Evaluating an ID is to find

the optimal policy that maximizes the expected value of the

ID. A generic approach to evaluating an ID has to enumerate

all policies, compare the expected utilities under them, and

choose the optimal one. However, the number of policies grows

exponentially with the number of decision nodes. This renders

the approaches for general ID evaluation very inefficient and

infeasible for large IDs. Consequently, it is advisable to study

efficient algorithms for special IDs.

Most of the previous approaches assume that there exists a

linear ordering among the decision nodes. This ordering implies

that the choice of a decision node is known to the decision

maker when he/she chooses the actions for the successive

decision nodes (e.g., see [13]). For a decision node, this linear
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ordering usually can be exploited to decompose the ID into one

fraction prior to the node and the other fraction posterior to the

node. The choice for the decision node can be made using the

fraction posterior to the node. The procedure repeats for each

decision node.

In this paper, we examine the ID evaluation problem for a

special class of IDs in which decision nodes have no parents.

Essentially, an ID with this property assumes no precedence

relationship among decision nodes. In other words, one has to

determine the choices for all decision nodes simultaneously.

For this reason, such an ID is said to be simultaneous. The si-

multaneity assumption prevails in real-world problem domains.

For instance, a military planner must select among a number

of available actions to achieve his/her overall goal success; a

business owner must consider multiple elements in order to

maximize his/her monetary profit.

In evaluating a simultaneous ID, we exploit the assumption

and divide the ID into two fractions, calling them the upstream

and downstream. Roughly, the upstream consists of decision

nodes and their children nodes through which the decisions

propagate their impacts on the ID. Informally, these child

nodes are called interface nodes. The downstream consists of

the interface nodes and their succeeding nodes. We present

a representation theorem, showing that the expected value of

a value node under a policy can be represented as the sum

of some intermediate quantities weighted by the probabilities

determined by the policy. These intermediate quantities involve

only the downstream. The factorization approach we proposed

computes them once but uses them across all policies. The

computational gain brought by the approach depends on the

size of the downstream. Usually, larger downstream size im-

plies more savings.

We organize the paper as follows. In the next section, we

discuss related work to this research. We then introduce IDs

and the evaluation problem. In Section IV, we describe the

representation theorem and develop the factorization approach.

In Section V, we discuss two extensions of the approach: how

it can be adapted to network structure/parameter changes and

how it can be used in planning over time. We report empirical

results on simulation studies and a military planning example

in Section VI. Finally, we conclude the paper in Section VII.

II. RELATED WORK

Since IDs were introduced by Howard and Matheson [1],

a variety of approaches have been proposed to find the opti-

mal policy of a given ID. To mitigate the exponential growth

1083-4427/$20.00 © 2005 IEEE
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problem of the policy number in the number of decision nodes,

researchers have studied several special ID classes and pro-

posed efficient approaches exploiting their specific problem

characteristics. We give a brief survey of these IDs and their

solutions.

A. Regular and No-Forgetting IDs

To some extent, most IDs that have been studied assume

a precedence ordering of the decision nodes. A regular ID

assumes that there is a directed path containing all decision

nodes; a no-forgetting ID assumes that each decision node and

its parents are also parents of the successive decision nodes; and

a stepwise decomposable ID assumes that the parents of each

decision node divide the ID into two separate fractions. These

assumptions are different from ours, which requires the actions

to be chosen simultaneously. There exist direct and indirect

approaches evaluating a regular no-forgetting ID. A direct

approach works on the ID and evaluates it directly. Shachter [3]

proposed an algorithm that evaluates an ID by applying a series

of value-preserving reductions. A value-preserving reduction is

an operation that can transform an ID into another one with

the same expected value. Specifically, Shachter identified the

following four reductions arc reversal, barren-node removal,

random-node removal, and decision-node removal. An indirect

approach first transforms an ID into an intermediate struc-

ture whose optimal policy (or value) remains the same as in

the original ID. It then evaluates the intermediate structure

and obtains the optimal policy. For instance, Howard and

Matheson discussed a way to transform an ID into a decision-

tree network and to compute an optimal policy from the deci-

sion tree. In transforming an ID into a decision-tree network, a

basic operation is arc reversal [1], [3]. Since a no-forgetting ID

must be stepwise decomposable, stepwise decomposability is

more general than no-forgetting.

In most ID evaluation approaches, the ordering of decision

nodes is an important information source in decision making

and therefore, is exploited to evaluate the optimal decision

for decision nodes [4]–[6]. A stepwise decomposable ID can

be evaluated by a divide-and-conquer approach. The approach

deals with one decision node at a time [7]. For each decision

node, its parental set separates an ID into two parts—a body and

a tail. The tail is a simple ID with only one decision node. The

body’s value node is a new value node whose value function

is obtained by evaluating the tail. In evaluating a stepwise

decomposable ID, the approach begins with a leaf decision

node and repeats the decomposition/evaluation procedure for

the preceding decision nodes. In evaluating the tail with only

one single decision node, the problem is reduced to that of

computing posterior probabilities in a Bayesian network.

Hence, the approach uses probabilistic inference techniques to

evaluate an ID. Cooper [8] initiated the research in this direc-

tion. He gave a recursive formula for computing the maximal

expected utilities and optimal policies of IDs. Shachter and

Peot [9] showed that the problem of ID evaluation can be

reduced to a series of probabilistic inferences. Zhang [13]

described an algorithm that induces much easier probabilistic

inferences than those in [8] and [9].

B. Partial IDs

There also exists research work that relaxed the regularity or

no-forgetting assumption. The specific ID types include partial

IDs, unconstrained IDs and limited memory ID (LIMID), which

is a compact representation of IDs. A partial ID is an ID that

allows a non-total ordering of decision nodes [10]. Because

the solution to a partial ID depends on the temporal ordering

of the decisions, it is of interest to find the conditions iden-

tifying a class of partial IDs whose solution is independent

of the legal evaluation ordering. Based on the concept of

d-connectivity, Nielsen and Jensen presented an algorithm de-

termining whether or not a partial ID represents well-defined

scenarios, and they also addressed the problem of whether all

admissible orderings yield the same optimal strategy.

An unconstrained ID is an ID where the order of decision

nodes and the observable random nodes is not determined

[11]. For an unconstrained ID, it is of interest to determine

the order of decision nodes and information on which set of

nodes is necessary for decision making in a decision node.

For this purpose, a set of rules have been developed in order

to determine the choice of the next decision node, given the

current information. Such a decision choice may be dependent

on the specific information from the past.

Another recently proposed ID is called LIMID, which

violates the no-forgetting assumption [12]. In contrast to the

regular and no-forgetting assumption, the assumption behind a

LIMID is that only requisite information for the computation

of optimal policies is depicted in the graphical representation.

Two properties pertaining to LIMIDs are: 1) any ID can be

converted to a LIMID; and 2) the converted LIMID is more

compact than the original ID in the sense that only requisite

information is depicted in the LIMID for computing an optimal

policy. By these properties, one may convert an ID to its

LIMID version and solve the LIMID instead of the original

ID. This optimal policy is also optimal in the original ID. The

algorithm solving a LIMID exploits the fact that the entire de-

cision problem can be partitioned into a set of smaller decision

problems, each of which has one decision node only. This is

analogous to the divide-and-conquer approach [13].

C. Simultaneous IDs

From its root definition, an ID does not impose a prece-

dence ordering of the decision nodes. As an example, there

are military applications that need to choose multiple actions

simultaneously. A simultaneous ID is suitable for this situation.

We exploit this assumption and divide a simultaneous ID into

the upstream and the downstream fractions. The decomposition

takes the random and value nodes as interface nodes between

the upstream and the downstream. The computations involv-

ing the downstream fraction can be precomputed and reused

across all policies in evaluating them. This computation-sharing

schema can greatly accelerate the procedure of finding the

optimal policy for a given ID, as indicated in our theoretical

and empirical analysis.

Technically, the factorization approach has some conceptual

similarities to the probabilistic inference-based algorithm [13].
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Both algorithms divide the ID into two fractions. However,

there are apparent differences. In [13], the separation of an ID

relies on a single decision node. With respect to a decision node,

roughly, the body contains the predecessors of the decision

nodes, while the tail contains the successors. The choice of the

decision node is evaluated by the tail part. This is quite different

from our factorization approach, where the separation relies on

the set of interface nodes. The set of the interface nodes sepa-

rates an ID into two fractions: roughly, the upstream contains

the predecessors of all interface nodes, while the downstream

contains the successors. This difference in solution techniques

stems from the difference in assumption—the probabilistic

inference algorithm works with a regular ID that specifies a

linear order among decision nodes, whereas the factorization

algorithm works with a simultaneous ID that assumes no order-

ing among decision nodes.

III. INFLUENCE DIAGRAM

Mathematically, an ID I is a directed acyclic graph consist-

ing of three types of nodes and the links among these nodes [1].

1) Its node set is partitioned into a set of random nodes Y ,

a set of decision nodes X , and a set of value nodes U . A

value node cannot have children. The links characterize

the conditional dependence among the nodes in the ID.

Specifically, links to a random node indicate the proba-

bilistic dependence of the node on its parents; links to

a decision node indicate the information available to the

planner at the time the planner must choose a decision

for it; and links to a value node indicate the functional

dependencies.

We will adopt the following notational conventions.

We will use bold-typed letters such as Z to denote a set of

variables and capital letters such as Z to denote a variable

in the set. Each random or decision node Z is associated

with a set ΩZ , denoting the set of its possible states. The

set ΩZ is called the domain of node Z. An element in ΩZ

is denoted by a low-case letter z. For any node Z, we use

π(Z) to denote its parent set. For any subset Z ′ ⊂ Y ∪ X ,

we use ΩZ′ to denote the Cartesian product ΠZ∈Z′ΩZ .

For convenience, we shall interchangeably use a node and

a variable. Without loss of generality, we assume that all

the nodes are binary throughout this paper.

2) For each decision or random node Z, given an assign-

ment of π(Z), the distribution P (Z|π(Z)) specifies the

probability of Z being in each state of the node Z. Such a

distribution is called a conditional probability table (CPT)

in the case that the domain of the variable Z is a finite set.

3) For each value node U , gU is a value function gU :
Ωπ(U) → R, where R denotes the set of the real numbers.

To avoid unnecessary notations, we define the (optimal)

policy concept only for a simultaneous ID.1 A policy, denoted

by δ, specifies one action choice for each decision node in X .

Hence, a policy δ can be denoted by (δ1, . . . , δn), where δi

belongs to the domain of Xi for each i.

1For general IDs, the definition of an (optimal) policy can be found in,
e.g., [6].

Given a policy δ, a probability Pδ can be defined over the

random nodes and decision nodes as follows:

Pδ(Y,X ) = ΠY ∈YP (Y |π(Y )) Πn
i=1Pδ(Xi) (1)

where P (Y |π(Y )) is specified in the definition of I, while

Pδ(Xi) is equal to 1.0 if Xi = δi, and 0.0 otherwise.

The expectation of the value node U under policy δ, denoted

by Eδ[U ], is defined as

Eδ[U ] =
∑

π(U)

Pδ (π(U)) gU (π(U)) . (2)

The expected value Eδ of I under the policy δ is the sum

Eδ[U ] over all value nodes U in U , i.e.,

Eδ =
∑

U∈U

Eδ[U ]. (3)

For simplicity, Eδ is also called the expected value of policy δ.

Evaluating a policy δ means to compute its expected value. The

maximum of Eδ over all policies is the optimal (expected) value

of I. An optimal policy is the policy that achieves the optimal

expected value. To evaluate an ID is to find an optimal policy

and to compute its optimal expected value.

IV. THE FACTORIZATION APPROACH

In this section, we describe the representation theorem and

the factorization approach.

A. The Idea

From its definition, an ID is a network structure consisting

of decision nodes, random nodes, and value nodes. Among

them, in determining the expected value of the ID, a decision

node plays a different role from a random or a value node. The

choices of a decision node can affect the expected value of the

ID through changing the CPTs of its child random nodes, or

through changing the value functions of its child value nodes

(note that a decision node cannot have another decision node

as child in a simultaneous ID). In this sense, a node, if it is a

child of a decision node, serves as an interface through which

the choices of decision nodes may affect the value of the ID.

Such a node is called an interface node. All interface nodes

constitute an interface set. Collectively, an interface set serves

as an interface of an ID through which policies can affect the

expected value of the ID. Consequently, an ID can be divided

into two fractions: the upstream fraction, which includes the

interface nodes and the nodes “preceding” them, and the down-

stream fraction, which includes the interface nodes and the

nodes “succeeding” the interface nodes.

Example: We use the ID in Fig. 1 to informally illustrate

these concepts. The ID has two decision nodes {X1,X2}, five

random nodes {A,B,C,D,H}, and one value node U . The

interface set Yin is {A,C} since they have parental decision

nodes. The upstream is {X1,X2, A,B,C}, which consists of

two interface nodes A and C, node X1 preceding node A,

and nodes B and X2 preceding node C. The downstream is
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Fig. 1. ID to illustrate the representation theorem.

{A,C,H,D,U}, which consists of interface nodes A and C,

the nodes H , D, U succeeding to the interface nodes. �

Interestingly, corresponding to the structural separation that

an ID can be divided into two fractions, the expected value of

a value node under a policy breaks into two fractions, each of

which involving only the upstream or the downstream of the ID.

B. The Theorem

We formalize the above idea in this section. For the sake

of simplicity, throughout the paper, unless explicitly stated, we

assume that: 1) the ID has only one value node; and 2) the value

node has no decision node as its parent. We also note that our

results in this paper generalize to the IDs with multiple value

nodes and with value nodes having parental decision nodes. We

relax these assumptions at the end of this section.

We begin by defining several concepts. A random node Y
is an interface node if its parent set has at least one decision

variable, i.e., π(Y ) ∩ χ �= ∅. The interface set of an ID is the

set of all interface nodes. Due to the above assumptions, the

interface set contains only random nodes; for this reason, we

denote the set by Yin. The upstream of the ID includes the

interface set and all ancestors of the nodes in the interface.

By this definition, in addition to the interface random nodes

and decision nodes, the upstream may contain the random-node

ancestors of the interface nodes. These ancestral nodes must be

included because they, together with decision nodes, determine

the CPTs of the interface nodes. These ancestral random nodes

form a set denoted by Y0.

Given an ID, we can efficiently identify its upstream using

a queuing mechanism. We initialize a queue to be the interface

set Yin (it can be readily built by checking whether there is

a parental decision node for every node in the ID) and the

upstream Iup to be empty. At each step, a node is removed

from the queue and added to Iup if it is not in Iup. The parents

of the node, if not present in Iup thus far, are added to the

queue. The procedure terminates when the queue is empty.

When it terminates, the set Iup becomes the upstream set. The

procedure must terminate after a finite number of steps because

an ID is a directed acyclic graph.

The upstream can be partitioned into three sets: the set X
of decision nodes, interface set Yin, and the set Y0 of random-

node ancestors of interface nodes. Given a policy δ, we define

a function fδ from ΩYin
to the real line R. For notations, we

let m be the number of nodes in the set Yin, Y 1:m
in be a short

notation of {Y 1
in, . . . , Y m

in }, and y1:m
in be an assignment to all

interface variables, i.e., an element of ΩY 1:m
in

fδ

(

y1:m
in

)

=
∑

Y ∈Y0

ΠY ∈Y0∪Yin
Pδ (Y |π(Y )) Πn

i=1Pδ(Xi) (4)

where ΠY ∈Y0∪Yin
Pδ(Y |π(Y ))Πn

i=1Pδ(Xi) is the joint proba-

bility distribution of the variables in X , Y0, and Yin, given

policy δ. Hence, fδ(Y
1:m
in ) is the conditional probability that

the interface Y 1:m
in = y1:m

in occurs upon the policy δ. For con-

venience, we call them interface probabilities.

In contrast to the upstream, the downstream of an ID is the

set consisting of all the interface nodes and their descendants.

The downstream contains the value node, the interface nodes,

and the random nodes that do not belong to the upstream.

We use Y1 to denote the set of noninterface random nodes in

the downstream. Note that the random nodes in the interface

set belong to both the upstream and the downstream. For an

assignment y1:m
in of the set Y 1:m

in and the value node U , we can

define a function as follows;

fin,U

(

y1:m
in

)

=
∑

Y ∈Y1

ΠY ∈Y1
Pδ (Y |π(Y )) gU (π(U)) . (5)

To see that fin,U is a function of Y 1:m
in , we note that the inter-

face variables may appear in π(Y ) for Y ∈ Y1. Given an

assignment y1:m
in of Y 1:m

in , fin,U (y1:m
in ) is the expected utility

conditioned on the assigned interface y1:m
in . These quantities

are called interface utilities for convenience. Since π(Y ) for

Y in Y1 must belong to the downstream, Pδ(Y |π(Y )) is inde-

pendent of policy δ. Consequently, these utilities are inde-

pendent of policy δ.

Theorem 1: Given a policy δ and a value node U , the ex-

pected value of the node U under policy δ

Eδ[U ] =
∑

y1:m
in

∈Ω
Y 1:m
in

fδ

(

y1:m
in

)

· fin,U

(

y1:m
in

)

. (6)

Proof: We show that Eδ[U ] can be rewritten as the sum

of the interface utility fin,U weighted by the probability fδ over

all interfaces

Eδ[U ] =
∑

π(U)

Pδ (π(U)) gU (π(U)) (a)

=
∑

π(U)







∑

Y

π(U)

ΠY ∈YP (Y |π(Y )) Πn
i=1Pδ(Xi)







× gU (π(U)) (b)

=
∑

Y ∈Yin

∑

Y ∈Y0

∑

Y ∈Y1

ΠY ∈Y0∪Yin
P (Y |π(Y ))

× ΠY ∈Y1
P (Y |π(Y )) Πn

i=1Pδ(Xi)gU (π(U)) (c)
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=
∑

Y ∈Yin

[

∑

Y ∈Y0

ΠY ∈Y0∪Yin
P (Y π(Y ))

]

×

[

∑

Y ∈Y1

ΠY ∈Y1
P (Y |π(Y )) gU (π(U))

]

(d)

=
∑

y1:m
in

∈Ω
Y 1:m
in

fδ

(

y1:m
in

)

· fin,U

(

y1:m
in

)

. (e)

Step (a) is true by (2). At step (b), Y/π(U) is the

difference set of Y and π(U). This step is true by in-

serting (1) into (2). Step (c) follows from the fact that

{π(U),Y/π(U)} and {Y0,Yin,Y1} are two partitions of the set

Y . At step (d), we break the distribution ΠY ∈YP (Y |π(Y )) ×
Πn

i=1Pδ(Xi) into two fractions ΠY ∈Y0∪Yin
P (Y |π(Y )) and

ΠY ∈Y1
P (Y |π(Y ))gU (π(U)). At step (e), we replace the

two fractions with the definitions of the interface utilities

and interface probabilities. �

By the theorem, given a policy δ and a value node U , the

expected value of the node under the policy can be represented

as the sum of the multiplications of the interface utilities and

corresponding interface probabilities.

Example (Continued): For the ID in Fig. 1, we show how to

represent Eδ[U ] for the value node U and a given policy δ. Let

the policy δ be (δ1, δ2), where δi is the decision choice of Xi

for i = 1, 2. By definition

Eδ[U ] =
∑

H

∑

ABCD

P (A|δ1δ2)P (B|A)P (C|Bδ2)

× P (D|C)P (H|AD)Π2
i=1Pδ(Xi)gU (H).

The two functions are defined as follows.

fδ(A,C) =
∑

B

P (A|δ1δ2)P (B|A)P (C|Bδ2)Π
2
i=1Pδ(Xi)

fin,U (A,C) =
∑

HD

P (H|AD)P (D|C)gU (H).

It can be verified that Eδ[U ]=
∑

A,C fδ(A,C)· fin,U (A,C).�
We examine the assumptions we made at the beginning of

this section. First, we have assumed that there is only one

value node. In case of multiple value nodes, we may apply the

representation theorem to each node. The expected value of a

policy is the additive sum of the expected values of all value

nodes under the policy.

Second, we have assumed that the value node has no decision

nodes as its parents. In the other case that the value node has a

decision node as its parents, the functions fδ,U and fin can be

defined as follows, such that the theorem holds

fδ,U

(

Y 1:m
in

)

=
∑

Y ∈Y0

ΠY ∈Y0∪Yin
Pδ (Y |π(Y ))

× Πn
i=1Pδ(Xi)gU (π(U))

fin

(

Y 1:m
in

)

=
∑

Y ∈Y1

ΠY ∈Y1
Pδ (Y |π(Y )) .

TABLE I
FACTORIZATION APPROACH TO ID EVALUATION

Therefore, we can lift the assumption that the value node has

no decision node as parents. In this case, U is also called an

interface node, but it belongs to the upstream only. The reason

is that, by definition, a value node cannot have children and

therefore cannot produce impact on the downstream.2 Note

that fδ changes to fδ,U , since the value node is considered in

computing the quantities relevant to the upstream. Interestingly,

it can be proven that fin(= 1.0) is a constant. To see why, let

us assume that the size of Y1 be k. We enumerate the set Y1 as

{Y 1
1 , . . . , Y k

1 } such that a node’s parents appear after the node

in the set. In computing fin(Y 1:m
in ), we can sequentially sum

out the variables in Y1 in the enumerated order. Ultimately, we

have fin = 1.0.

C. The Algorithm

By the representation theorem, the expected value of a policy

is represented as the sum of interface utilities weighted by the

corresponding interface probabilities. The interface utilities are

independent of the individual policies, whereas the interface

probabilities are dependent on the policies. Therefore, the in-

terface utilities can be factored out, i.e., they can be calculated

once and reused across all the policies.

This is the idea behind our factorization approach, which

is described in Table I. The factored-out computations are

calculated once at line 1. They are used for all policies at line

2.2. Note that the procedure generalizes to IDs with multiple

value nodes.

D. Complexity Analysis

It is of interest to compare the approach and the generic

brute-forced approach that evaluates a policy directly by com-

bining (1) and (2). Let n be the number of decision nodes.

Thus, the size of the policy space is 2n. Let the complexity of

evaluating one policy be C. The complexity C breaks into three

pieces: computing fδ , computing fin,U , and computing Eδ[U ]
by (6). We denote them, respectively, by C1, C3, and C2. To

evaluate all policies, the generic approach has complexity 2nC,

i.e., 2n(C1 + C2 + C3). In contrast, since the factorization

approach computes fin,U only once but uses them 2n times, its

complexity is 2n(C1 + C2) + C3. A good measure to predict

the computational gain is the size of the downstream, i.e.,

the number of nodes in it. In one extreme, if the downstream

contains only the interface nodes and the value nodes (thus, C3

is a constant), the two approaches have the same complexity. In

the other extreme, if the downstream contains far more nodes

2Note that this is different from random nodes having parental decision
nodes. Such a random node belongs to both the upstream and the downstream.
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Fig. 2. Dynamic ID model.

than the upstream (i.e., C3 ≫ C1 + C2), the computational

gain is significant.

E. Bounding the Optimal Expected Value

We show that the interface utilities computed in the factor-

ization approach can be used to derive both an upper and a

lower bound of the optimal value of the ID. These bounds have

significant implications in practical planning.

We define f+
in,U and f−

in,U to be the largest and the smallest

one among all interface utilities, i.e.,

f+
in,U = max

y1:m
in

∈Ω
Y 1:m
in

fin,U

(

y1:m
in

)

f−
in,U = min

y1:m
in

∈Ω
Y 1:m
in

fin,U

(

y1:m
in

)

where the max and min are taken over the domain of the

variables in Y 1:m
in . From the theorem, we see that f+

in,U (f−
in,U )

is the upper (lower) bound of the optimal value of the ID. These

bounds have significant importance in practice. Suppose, for

instance, that these bounds are available to a planner. In one

extreme, if the planner expects a utility that is larger than the

upper bound, he never bothers to evaluate all the policies and

finds the optimal one because even the best policy provides less

than he expects. In this case, he needs to redesign the network

structure or parameters such that the performance of the ID

can be improved. In the other extreme, if the planner expects a

utility that is less than the lower bound, again he never bothers

to evaluate all the policies and chooses the optimal one because

any policy can provide more than he expects. In this case, he

can pick any policy and execute it.

We note that from the computational point of view, comput-

ing these bounds is easier than evaluating the ID. There are

two reasons. First, as discussed earlier, computing these bounds

involves only the downstream of the ID, whereas evaluating

an ID involves its entire structure. If the downstream contains

much fewer variables than the upstream, the interface utilities

(and also the bounds) can be obtained efficiently. Second,

computing these bounds avoid enumerating all the policies and

calculating their expected values.

Finally, the tightness of the bounds depends on the structure

of an ID, the CPTs of random nodes, and the value functions of

value nodes. It is difficult to characterize a general condition to

determine the tightness of the bounds. In our experiments, we

empirically show that these bounds are reasonably tight for the

tested problems.

V. EXTENSIONS TO THE FACTORIZATION APPROACH

In this section, we discuss two extensions to the factoriza-

tion approach. These extensions deal with reconstructing the

policies as the network structure/parameters undergo changes.

There are two perspectives. First, at one decision step, the

network might change such as more actions being available for

a planner’s choice, more value nodes needed consideration, and

so on. Second, the network might dynamically alter its structure

or parameters as time goes by. For example, if a subgoal is

successfully accomplished at one step, it can be removed from

the network in the subsequent steps.

A. Network Structure/Parameter Changes

The principle for the factorization approach to accommo-

date structure or parameter changes is as follows. First, if

the changes involve only the upstream of an ID, the inter-

face utilities do not need to be recomputed and can still be

shared in evaluating the ID. Specifically, these changes include

addition or removal of decision/random/value nodes and also

the alternation of CPTs and value functions in the upstream.

Second, if the changes involve only the downstream of the

ID, the approach needs to reconstruct the interface utilities.

Fortunately, the interface probabilities are preserved and the

calculations for them can be saved. Third, if the changes involve

not only the upstream but also the downstream, the approach

needs to recompute both the interface utilities and the interface

probabilities.

B. Planning Over Time

In realistic applications, network parameters may change

over time. In this case, we can use a dynamic ID to model

the conditional dependencies among nodes over time. In this

section, we show how the factorization approach can be used to

reconstruct the policies on a step-by-step basis for dynamic IDs.

To facilitate our discussions, we extend the example in Fig. 1

to a dynamic ID. We assume that the variable H evolves over

time and let Ht denote H at step t. The dynamic ID is drawn in

Fig. 2. In contrast, the ID in Fig. 1 is said to be static since the

multiple decisions are made at one time step.
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The dynamic ID has two prominent features. First, at a single

step, the decision problem can be modeled as a static ID. In

addition to the nodes and links in Fig. 1, the node Ht+1 at

step t + 1 has one more parent node Ht. Second, the intertem-

poral link between two consecutive nodes carries the historic

information about the sequence of performed policies. For step

n + 1, the information can be summarized by a probability

distribution of Ht conditioned on the history [14].

For a dynamic ID, we are interested in optimal planning on

the step-by-step basis. The problem is formulated as: Given

an initial probability distribution P (H0), at step t + 1, how

to efficiently find the policy δ[ = (δ1, . . . , δn) where n is the

number of decision nodes] that maximizes Eδ[UHt+1
]? To solve

the problem, we show: 1) how to select the optimal policy at

step t + 1, given the probability distribution P (Ht); and 2) how

to sequentially update the probability distribution P (Ht+1)
from P (Ht), given a policy δ at the previous step. After these

two questions are settled, we may choose the optimal policy as

follows. At step t + 1, we first choose the optimal policy for

the step and then update the probability P (Ht+1) from P (Ht).
The procedure repeats at each step.

To answer the first question, we introduce the concept of

an augmented interface node and an augmented interface set.

We call the node Ht an augmented interface node of the ID at

step t + 1 since the node Ht can produce impact on the network

via altering its probability distribution. In this sense, it is an

interface node.3 The augmented interface set consists of Yin as

before and the node Ht. The downstream of the ID at step t + 1
remains the same as that of the static ID. Likewise, we may

define the two functions fδ and fin,UHt+1
. Therefore, we can

use the factorization approach to solve the planning problem

over time. The computations involving fin,UHt+1
are factored

out. Note that these interface utilities are shared for all policies

at each decision step. For the ID in Fig. 2, we can define the

following functions for the ID:

fδ(A,C,Ht)

= P (Ht)
∑

B

P (A|δ1δ2)P (B|A)P (C|Bδ2)Π
2
i=1Pδ(Xi)

fin,UHt
(A,C,Ht)

=
∑

Ht+1D

P (Ht+1|ADHt)P (D|C)gU (Ht+1).

It can be verified that Eδ[UHt+1
] =

∑

A,C,Ht
fδ(A,C,Ht) ·

fin,UHt
(A,C,Ht).

To answer the second question, we show how to efficiently

compute P (Ht+1), given a distribution P (Ht) and the policy

δ performed at step t. We introduce a technique such that the

procedure of computing P (Ht+1) can be conducted similar to

that of computing Eδ[UHt+1
]. Suppose that Ht+1 can take on

two values h(true) and ¬h(false). We first show how to calculate

3Previously, we defined an interface node to be a node that has parental
decision nodes since the choices of decision nodes can affect its CPTs and
in turn, the expected value of the ID. In contrast, the node Ht is called an
augmented interface node since it can change its probability distribution and
thus, affect the expected value of the ID.

the probability of Ht+1 being true. Let V be a value node that

differs from UHt+1
only in its value function. Specifically, gV is

1.0 if its parent Ht+1 is true; it is 0.0 otherwise. For simplicity,

let Ht+1 = h(¬h) denote the event that the hypothesis Ht+1 is

true (false). We prove that Eδ[V ] = Pδ(Ht+1 = h).
Proposition 1: Eδ[V ] = Pδ(Ht+1 = h).

Proof:

Eδ[V ] =
∑

Ht+1

Pδ(Ht+1)gV (Ht+1)

=Pδ(Ht+1 = h)gV (Ht+1 = h)

+ Pδ(Ht+1 = ¬h)gV (Ht+1 = ¬h)

=Pδ(Ht+1 = h).

In the last step, we use the definition of the value function gV .�

To calculate the probability of Ht+1 being false, we may

define gV as follows: It is 1.0 if its parent Ht+1 is false; it is

0.0 otherwise. If we define two functions fδ and fin,V , we see

that the computational steps for Eδ[V ] are the same as those for

computing Eδ[UHt+1
]. Hence, computing P (Ht+1) does not

add much overhead to ID evaluation.

It is interesting to compare the generic approach and the

factorization approach in the context of the dynamic ID. Let

the number of decision steps be T . Recall that the complexity

of computing fδ is C1, the complexity of computing fin,UHt+1

is C3, and the complexity of computing Eδ[UHt+1
] is C2. Since

C1 takes constant time, it can be ignored. For one decision

step, the factorization approach has the complexity 2nC2 + C3

while the generic approach has the complexity 2n(C2 + C3).
For T steps, the complexity of the factorization approach is

2nTC2 + C3 [note that this does not include the overhead

of computing P (Ht+1)], while the complexity of the generic

approach is 2nT (C2 + C3). If C3 ≫ C2, the factorization

approach can be extremely efficient.

VI. EXPERIMENTS

In this section, we report our experiments on both simulation

studies and a military planning example. In our experiments,

we wrote Matlab-V6.5 codes and ran them on a laptop with a

2.0-GHz central processing unit (CPU) under Windows XP. We

compare the factorization approach against the generic brute-

forced approach. We chose the generic approach because we

were not aware of specific algorithms for evaluating simulta-

neous IDs. For convenience, we refer to the two algorithms

as evalCS (named after computation sharing) and evalBF

(named after brute forced).

A. Simulation Studies

To thoroughly evaluate the performance of the factorization

approach, we conducted simulated studies on the ID in the

left chart of Fig. 3, which is similar to the military planning

examples in [15]. It is referred to as the static ID in the rest

of this section. The CPTs are randomly generated. The value

functions for value nodes are manually specified.

Specifically, our experiments are designed to: 1) evaluate

the performances of the factorization approach for static and
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Fig. 3. Test example is shown in the left chart, while the right is its variant for comparative studies.

Fig. 4. Performance comparison of evalBF and evalCS.

dynamic IDs; 2) show the tightness of bounds derived from

the interface utilities; 3) demonstrate how the computational

gain achieved by the approach varies with different network

structures; and 4) demonstrate the computational gain by

adapting the approach to account for newly added decisions

and value nodes.

1) Performances of the Factorization Approach: To see how

the performances of the algorithms vary with the number of

decision nodes, we fix the number of random nodes at each

level at four and vary the number of decision nodes. Thus, the

static ID with n decision nodes has additionally ten random

nodes and n + 1 value nodes. We ran evalBF and evalCS

for seven problems with n = 3, 5, . . . , 13. The timing data are

presented in the left chart of Fig. 4. The chart gives the total

CPU seconds that the algorithms took for each of the problems.

Note that the vertical direction is drawn in log scale. The

solid (dashed) curve is for evalCS (evalBF). It can be seen

that evalCS is considerably more efficient than evalBF. For

instance, from our data, for n = 9, to evaluate 512 policies,

evalCS took 3.51 s while evalBF, 646.74 s; for n = 13, to

evaluate 8192 policies, evalCS used 46.32 s while evalBF,

9284.05 s.

To quantitatively characterize how much savings the factor-

ization procedure can bring about, we use the timing results

of evalCS to predict the performance of evalBF. Recall

that the complexity of evaluating a policy breaks into three

fractions C1, C3, and C2. We ignore C1 since it is a constant.

For each problem, we estimate C3 by the actual seconds Ĉ3

of computing fin,UH
, and C2 by Ĉ2 as (the total CPU time −

Ĉ3)/(the number of policies). The complexity of evalBF is

predicted by 2n(Ĉ2 + Ĉ3). We found that these estimations are

almost the same as the actual timing results of evalBF. This

suggests the effectiveness of our complexity analysis.

We also tested the algorithms over the dynamic ID in Fig. 5,

which is an extension of the left chart of Fig. 3.

Initially, the probability of the node H being false is set to

1.0. Its probability is updated at each decision step. We ran

both algorithms for up to ten decision steps. We showed the
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Fig. 5. Dynamic influence diagram.

total CPU time for the ID with nine decision nodes in the right

chart of Fig. 4. The chart gives the total CPU seconds for both

algorithms against the time steps. Note that again the vertical

direction is drawn in log scale. It can be seen that the CPU

time linearly increases with the elapsed time for evalBF while

its increase is negligible for evalCS. This is not a surprising

observation. In evalBF, all policies are evaluated at each step.

The time cost for all steps remains the same. Hence, the increase

is linear. From our data, evalBF uses about 1300 s to evaluate

all 512 (29) policies at each step. However, in evalCS, the

interface utilities are computed only once at the first step. So,

we observe that at the first step, evalCS takes about 2.66 s

to compute these utilities; thereafter, each step takes about only

10 s to evaluate all 512 policies. The increase is negligible when

compared against that in evalBF.

2) Tightness of Bounds: To show the tightness of the upper

and lower bounds of the optimal expected value, in Fig. 6, we

plot the optimal value (the middle curve) and these bounds

(the upper and lower curves) for the static IDs with 3, 5, . . .,13

decision nodes. We see that these bounds are reasonably tight

for the tested problems. For example, for n = 7, the optimal

value is 871.47 while the bounds are 722.91 and 936.637.

Although it is difficult to quantitatively analyze the properties

of these bounds, these experiments show they can be tight at

least for these tested problems.

3) Computational Gain Under Network-Structure Changes:

To demonstrate how the computational gain of evalCS varies

with different network structures, we run evalCS over the

static ID and a modified version of it. The modified ID is

obtained as follows: Every link from Xi to Y 1
j is redirected

to Y 2
j . The resulting ID is shown in the right chart of Fig. 3.

Its upstream is X ∪ Y 1
1:m1

∪ Y 2
1:m2

∪ U1:n, whereas its down-

stream is Y 3
1:m3

∪ {H} ∪ {UH}, where U1:n means the set

of value nodes, and Y i
1:mi

means the set of nodes Y i
j , i.e.,

Y i
1:mi

= {Y i
1 , . . . , Y i

mi
} for i = 1, 2, 3. Compared with that of

Fig. 6. Lower and upper bounds obtained from the interface utilities.

the static ID, the downstream of the modified ID contains fewer

random nodes. We expect: 1) evalCS is still more efficient

than evalBF in the modified ID, since its downstream contains

a number of random nodes; and 2) evalCS achieves less

savings in modified ID than it does in the original ID.

The experiments presented in Fig. 7 confirm these expecta-

tions. First, the left chart plots the CPU seconds (in log scale)

that evalCS and evalBF take for the modified IDs with a dif-

ferent number of decision variables. It can be seen that evalCS

is more efficient. Second, the right chart plots the magnitudes

of the savings brought by evalCS. For each approach, the

saving magnitude is measured by the quotient of the total time

of evalBF and that of evalCS. The magnitudes are drawn in

the vertical direction. For a modified ID, evalCS is about 14

times faster than evalBF. For the original IDs, the magnitudes

vary with the number of their decision nodes. We see that the

computational savings brought by evalCS are more significant

for IDs whose downstream contains more nodes.
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Fig. 7. Computational gains versus network structure.

Fig. 8. Replanning for added action/value nodes. In both charts, the curves from the top and bottom plot the total/replanning time for the generic approach, and
the total/replanning time for the factorization approach.

4) Computational Gain Under Network-Parameter

Changes: We also conducted experiments to show how

the factorization approach achieves computational savings as

the network changes. For this purpose, given the static ID,

we first evaluate it (the planning phase), then add more nodes

to the ID and reevaluate it (the replanning phase). We like

to compare both the replanning time and total time of the

factorization approach against that of the generic approach.

In one experiment, we first evaluate a static ID with n
decision nodes. We then add two decision nodes to the ID and

evaluate the modified ID. Every newly added node has a link

from itself to every Y 1
j node. The timing results in log scale

are presented in the left chart of Fig. 8. In the chart, the curve

corresponding to CS1 (BF1) depicts the replanning time for

the factorization (generic) approach, whereas the curve corre-

sponding to CS (BF) depicts the total time similarly. We see

that for the tested problems, the factorization approach achieves

considerable savings in replanning when more decision nodes

are added. For instance, for the ID with nine decision nodes,

the factorization and generic approach, respectively, takes 9.80

and 2313.94 s. These savings are achieved through sharing

the interface utilities computed during the evaluation of the

original ID. Since the factorization approach takes much less

time in both evaluating and reevaluating the ID, its total time is

considerably less than that used by the generic approach.

In the other experiment, we evaluate the ID and then add one

more value node for replanning. The added value node has a

link from every node Y 2
j for j = 1, . . . , 4. In computing the

expected value of the added value node, we still use the factor-

ization approach. In reevaluating an ID, we do not recompute

the expected value of the existing value node. The timing results

in log scale are collected in the right chart of Fig. 8. The legends

read similar to those in the left chart. It can be seen that the

factorization approach can achieve great savings in replanning.

The reason is obvious: The factorized computations are saved

in computing the expected value of the newly added value node.

By taking advantage of shared computations in evaluating two

value nodes, the total time used by the factorization approach is

considerably less than that by the generic approach.

B. A Military Planning Example

We applied the factorization approach to a hypothetical

military planning example, which is illustrated in Fig. 9.

The overall military goal is to win a war or to bring a

tyrant to justice. The goal is represented by a Hypothesis

node, which is on the top of the figure. There are 12 prim-

itive actions, namely destroy_C2, destroy_Radars,

. . ., operate_special_force, which are on the bottom

side. Performing an action has direct effects of specific pur-

pose. For instance, if the action destroy_Radars is

performed, the EW/GCIRadars is destroyed with a high

probability. These effects alter the overall goal through

altering the low-level subgoals. For instance, the status
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Fig. 9. Static ID illustrating a military planning problem.

of C2 (command and control), EW/GCIRadars and

Communications facilities, and Air_strike determine

the workability of the integrated air defense system (IADS)

and the strength of the enemy air force. In turn, the

workability of IADS system and the strength of the en-

emy air force determine the loss of Air_superiority.

The Air_superiority, Territory_occupation, and

Commander_surrender are three subgoals determining

the overall goal success. Without loss of generality, we as-

sume all nodes are binary. In the example, each decision node

is associated with a value node encoding the cost of perform-

ing the action, and the hypothesis node is associated with a

value node encoding the utility of goal success. The optimal

policy needs to balance the utility of goal success and cost of

performing actions.

We designed a reasonable set of CPTs and value

functions. For the Hypothesis node, if all the subgoals

Air_superiority, Territory_occupation, and

Command_surrender are achieved, the overall goal

is successfully achieved. If one of the subgoals is to be

achieved, the probability of the overall success is decreased

by 0.3; however, if none of the subgoals is achieved, the

overall goal fails with certainty. Similarly, for the subgoal

Air_superiority, the two influencing factors are IADS

and Air_force. If the IADS system works well and

Air_force is strong, Air_superiority is true for the

enemy air force; if either the IADS system works poorly or

Air_force is weak, the probability of Air_superiority

being true is decreased by 0.5. Other CPTs for

Territory_occupation and Command_surrender

are set analogously to those for Air_superiority. A

similar strategy is used in parameterizing the nodes IADS,

Air_force, Artillery, Ground_force, Morale, and

Commander_in_custody. In determining the CPTs for

random nodes that are immediate children of the decision

nodes, we assume that an action achieves its intended effect

with probability 0.9. For example, a destroy_Radars

decision will destroy the EW/GCI radars with probability

0.9. To complete the ID definition, we also assigned value

functions. If the goal is successfully achieved, the reward is

1000; otherwise, the cost, i.e., a negative reward, is 500. For

other decision nodes, if a ground attack is launched, the cost

is 150; if the special force operation is performed, its cost is

100; if the commander decides to capture the bodyguards of

the tyrant, the operating cost is 80; if an air strike is launched,

the cost is 50; for any other actions, their operating cost is 20.

Our primary interest is in the performance of the factorization

algorithm. From our data, to evaluate the ID, the factorization

algorithm took 45 s, while the brute-forced algorithm took

9012 s. Hence, the computational saving is tremendous. We

can explain the performance difference by the ID structure—its

downstream contains a large number of nodes: all random

nodes and the value node associated with the goal. Since its

downstream contains far more random nodes than its upstream,

the approach is expected to be significantly more efficient.

Our secondary interest is concerned with the optimal policy.

The optimal policy is the one that performs only air strike

and special force operation. The expected value of the ID
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is 561.98, and the probability of goal success is 0.81. We note

that the optimal policy excludes “launching a ground attack,”

although it is the action that is most likely to lead to goal

success. One possible reason, as explained earlier, is that the

action is excluded due to the high operating cost of performing

the action.

VII. CONCLUSION AND FUTURE WORK

In this paper, we studied a special ID class, namely simul-

taneous IDs, where multiple decisions need to be made at

one time step. We intended to make two contributions. First,

we examined a simultaneous ID and studied its theoretical

properties. We showed that such an ID can be decomposed

into an upstream fraction and a downstream fraction, and that

the expected value of a value node under a policy can be

represented as the sum of interface utilities that involve only the

downstream fraction, weighted by the corresponding interface

probabilities that involve only the upstream fraction. The inter-

face utilities naturally provide an upper and lower bound of the

optimal value of the ID. Second, we proposed a novel factoriza-

tion algorithm to evaluate a simultaneous ID. The interface util-

ities are independent of the individual policies; therefore, they

can be calculated once but used across all policies in evaluating

them. We also extend the factorization approach to a dynamic

ID. The algorithm has been tested on simulation studies and

a military planning example. Our experiments showed that the

factorization algorithm is significantly more efficient than the

generic algorithm in evaluating a simultaneous ID.

To further speed up ID evaluating, one future direction is

to combine the factorization approach with the approaches

of reducing the search space. In this paper, we address one

difficulty in ID evaluation, i.e., evaluating individual policies.

Another difficulty in ID evaluation is that the policy space

contains exponentially many polices and one needs to evaluate

all of them in order to find the optimal one. The ID evaluation

process can be accelerated if the technique in this paper can be

integrated with the approaches of reducing the search space.
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