
The Author(s). BMCGenomics 2016, 17(Suppl 4):465

DOI 10.1186/s12864-016-2789-9

RESEARCH Open Access

Efficient sequential and parallel
algorithms for finding edit distance based
motifs
Soumitra Pal1, Peng Xiao1 and Sanguthevar Rajasekaran2*

From IEEE International Conference on Bioinformatics and Biomedicine 2015

Washington, DC, USA.9-12 November 2015

Abstract

Background: Motif search is an important step in extracting meaningful patterns from biological data. The general

problem of motif search is intractable and there is a pressing need to develop efficient, exact and approximation

algorithms to solve this problem. In this paper, we present several novel, exact, sequential and parallel algorithms for

solving the (l, d) Edit-distance-basedMotif Search (EMS) problem: given two integers l, d and n biological strings, find all

strings of length l that appear in each input string with atmost d errors of types substitution, insertion and deletion.

Methods: One popular technique to solve the problem is to explore for each input string the set of all possible

l-mers that belong to the d-neighborhood of any substring of the input string and output those which are common

for all input strings. We introduce a novel and provably efficient neighborhood exploration technique. We show that it

is enough to consider the candidates in neighborhood which are at a distance exactly d. We compactly represent

these candidate motifs using wildcard characters and efficiently explore them with very few repetitions. Our

sequential algorithm uses a trie based data structure to efficiently store and sort the candidate motifs. Our parallel

algorithm in a multi-core shared memory setting uses arrays for storing and a novel modification of radix-sort for

sorting the candidate motifs.

Results: The algorithms for EMS are customarily evaluated on several challenging instances such as (8,1), (12,2), (16,3),

(20,4), and so on. The best previously known algorithm, EMS1, is sequential and in estimated 3 days solves up to

instance (16,3). Our sequential algorithms are more than 20 times faster on (16,3). On other hard instances such as

(9,2), (11,3), (13,4), our algorithms are much faster. Our parallel algorithm has more than 600 % scaling performance

while using 16 threads.

Conclusions: Our algorithms have pushed up the state-of-the-art of EMS solvers and we believe that the techniques

introduced in this paper are also applicable to other motif search problems such as Planted Motif Search (PMS) and

Simple Motif Search (SMS).

Keywords: Motif, Edit distance, Trie, Radix sort

*Correspondence: rajasek@engr.uconn.edu
2Department of Computer Science and Engineering, University of

Connecticut, 371 Fairfield Road, 06269 Storrs, CT, USA

Full list of author information is available at the end of the article

© 2016 The Author(s). Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and
reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the
Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver
(http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.

http://crossmark.crossref.org/dialog/?doi=10.1186/s12864-016-2789-9-x&domain=pdf
mailto: rajasek@engr.uconn.edu
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/

The Author(s). BMCGenomics 2016, 17(Suppl 4):465 Page 316 of 456

Background
Motif search has applications in solving such crucial

problems as identification of alternative splicing sites,

determination of open reading frames, identification of

promoter elements of genes, identification of transcrip-

tion factors and their binding sites, etc. (see e.g., Nicolae

and Rajasekaran [1]). There are many formulations of

the motif search problem. A widely studied formulation

is known as (l, d)-motif search or Planted Motif Search

(PMS) [2]. Given two integers l, d and n biological strings

the problem is to find all strings of length l that appear

in each of the n input strings with atmost d mismatches.

There is a significant amount of work in the literature on

PMS (see e.g., [1, 3–5], and so on).

PMS considers only point mutations as events of diver-

gence in biological sequences. However, insertions and

deletions also play important roles in divergence [2, 6].

Therefore, researchers have also considered a formula-

tion in which the Levenshtein distance (or edit distance),

instead of mismatches, is used for measuring the degree of

divergence [7, 8]. Given n strings S(1), S(2), . . . , S(n), each

of length m from a fixed alphabet �, and integers l, d,

the Edit-distance-based Motif Search (EMS) problem is to

find all patterns M of length l that occur in atleast one

position in each S(i) with an edit distance of atmost d.

More formally, M is a motif if and only if ∀i, there exist

k ∈ [l − d, l + d] , j ∈ [1,m − k + 1] such that for the sub-

string S
(i)
j,k of length k at position j of S(i), ED

(

S
(i)
j,k ,M

)

≤ d.

Here ED(X,Y) stands for the edit distance between two

strings X and Y .

EMS is also NP-hard since PMS is a special case of

EMS and PMS is known to be NP-hard [9]. As a result,

any exact algorithm for EMS that finds all the motifs

for a given input can be expected to have an expo-

nential (in some of the parameters) worst case runtime.

One of the earliest EMS algorithms is due to Rocke and

Tompa [7] and is based on Gibbs Sampling which requires

repeated searching of the motifs in a constantly evolv-

ing collection of aligned strings, and each search pass

requires O(nl) time. This is an approximate algorithm.

Sagot [8] gave a suffix tree based exact algorithm that

takes O
(

n2mld|�|d
)

time and O
(

n2m/w
)

space where w

is the word length of the computer. Adebiyi and Kauf-

mann [10] proposed an exact algorithm with an expected

runtime of O
(

nm + d(nm)(1+pow(ǫ)) log nm
)

where ǫ =

d/l and pow(ǫ) is an increasing concave function. The

value of pow(ǫ) is roughly 0.9 for protein and DNA

sequences. Wang and Miao [11] gave an expectation min-

imization based heuristic genetic algorithm.

Rajasekaran et al. [12] proposed a simpler Determinis-

tic Motif Search (DMS) that has the same worst case time

complexity as the algorithm by Sagot [8]. The algorithm

generates and stores the neighborhood of every substring

of length in the range [l − d, l + d] of every input string

and using a radix sort based method, outputs the neigh-

bors that are common to atleast one substring of each

input string. This algorithm was implemented by Pathak

et al. [13].

Following a useful practice for PMS algorithms, Pathak

et al. [13] evaluated their algorithm on certain instances

that are considered challenging for PMS: (9,2), (11,3),

(13,4) and so on [1], and are generated as follows: n = 20

random DNA/protein strings of length m = 600, and a

short random string M of length l are generated accord-

ing to the independent identically distributed (i.i.d) model.

A separate random d-hamming distance neighbor of M

is “planted” in each of the n input strings. Such an (l, d)

instance is defined to be a challenging instance if l is the

largest integer for which the expected number of spurious

motifs, i.e., the motifs that would occur in the input by

random chance, is atleast 1.

The expected number of spurious motifs in EMS are

different from those in PMS. Table 1 shows the expected

number of spurious motifs for l ∈ [5, 21] and d upto

max{l−2, 13}, n = 20,m = 600 and � = {A,C,G,T} [see

Additional file 1]. The challenging instances for EMS turn

out to be (8,1), (12,2), (16,3), (20,4) and so on. To compare

with [13], we consider both types of instances, specifically,

(8,1), (9,2), (11,3), (12,2), (13,4) and (16,3).

The sequential algorithm by Pathak et al. [13] solves the

moderately hard instance (11,3) in a few hours and does

not solve the next difficult instance (13,4) even after 3

days. A key time-consuming part of the algorithm is in

the generation of the edit distance neighborhood of all

substrings as there are many common neighbors.

Contributions

In this paper we present several improved algorithms

for EMS that solve instance (11,3) in less than a cou-

ple of minutes and instance (13,4) in less than a cou-

ple of hours. On (16,3) our algorithm is more than 20

times faster than EMS1. Our algorithm uses an effi-

cient technique (introduced in this paper) to generate

the edit distance neighborhood of length l with dis-

tance atmost d of all substrings of an input string.

Our parallel algorithm in the multi-core shared mem-

ory setting has more than 600 % scaling performance

on 16 threads. Our approach uses following five ideas

which can be applied to other motif search problems as

well:

Efficient neighborhood generation: We show that it is

enough to consider the neighbors which are at a dis-

tance exactly d from all possible substrings of the input

strings. This works because the neighbors at a lesser dis-

tance are also included in the neighborhood of some other

substrings.

The Author(s). BMCGenomics 2016, 17(Suppl 4):465 Page 317 of 456

Table 1 Expected number of spurious motifs in random instances for n=20,m=600. Here, ∞ represents value ≥1.0e+7

l d=0 1 2 3 4 5 6 7 8 9 10 11 12 13

5 0.0 1024.0 1024.0 ∞

6 0.0 4096.0 4096.0 ∞ ∞

7 0.0 14141.8 16384.0 ∞ ∞ ∞

8 0.0 225.8 65536.0 65536.0 ∞ ∞ ∞

9 0.0 0.0 262144.0 262144.0 ∞ ∞ ∞ ∞

10 0.0 0.0 1047003.6 1048576.0 ∞ ∞ ∞ ∞ ∞

11 0.0 0.0 1332519.5 4194304.0 ∞ ∞ ∞ ∞ ∞ ∞

12 0.0 0.0 294.7 1.678e+07 1.678e+07 ∞ ∞ ∞ ∞ ∞ ∞

13 0.0 0.0 0.0 6.711e+07 6.711e+07 ∞ ∞ ∞ ∞ ∞ ∞ ∞

14 0.0 0.0 0.0 2.517e+08 2.684e+08 ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞

15 0.0 0.0 0.0 2.749e+07 1.074e+09 ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞

16 0.0 0.0 0.0 139.1 4.295e+09 4.295e+09 ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞

17 0.0 0.0 0.0 0.0 1.718e+10 1.718e+10 ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞

18 0.0 0.0 0.0 0.0 3.965e+10 6.872e+10 ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞

19 0.0 0.0 0.0 0.0 1.226e+08 2.749e+11 2.749e+11 ∞ ∞ ∞ ∞ ∞ ∞ ∞

20 0.0 0.0 0.0 0.0 35.8 1.100e+12 1.100e+12 ∞ ∞ ∞ ∞ ∞ ∞ ∞

21 0.0 0.0 0.0 0.0 0.0 4.333e+12 4.398e+12 ∞ ∞ ∞ ∞ ∞ ∞ ∞

The instances in bold represents challenging instances

Compact representation using wildcard characters:

We represent all possible neighbors which are due to an

insertion or a substitution at a position by a single neigh-

bor using a wildcard character at the same position. This

compact representation of the candidate motifs in the

neighborhood requires less space.

Avoiding duplication of candidate motifs: Our algo-

rithm uses several rules to avoid duplication in candidate

motifs and we prove that our technique generates neigh-

borhood that is nearly duplication free. In other words,

our neighborhood generation technique does not spend

a lot of time generating neighbors that have already been

generated.

Trie based data structure for storing compact motifs:

We use a trie based data structure to efficiently store the

neighborhood. This not only simplifies the removal of

duplicate neighbors but also helps in outputting the final

motifs in sorted order using a depth first search traversal

of the trie.

Modified radix-sort for compact motifs: Our parallel

algorithm stores the compact motifs in an array and uses a

modified radix-sort algorithm to sort them. Use of arrays

instead of tries simplifies updating the set of candidate

motifs by multiple threads.

Methods
In this section we introduce some notations and

observations.

An (l, d)-friend of a k-mer L is an l-mer at an exact

distance of d from L. Let Fl,d(L) denote the set of all (l, d)-

friends of L. An (l, d)-neighbor of a k-mer L is an l-mer at

a distance of atmost d from L. Let Nl,d(L) denote the set

of all (l, d)-neighbors of L. Then

Nl,d(L) = ∪d
t=0Fl,t(L). (1)

For a string S of length m, an (l, d)-motif of S is an l-

mer at a distance atmost d from some substring of S. Thus

an (l, d)-motif of S is an (l, d)-neighbor of atleast one sub-

string Sj,k = SjSj+1 . . . Sj+k−1 where k ∈[l − d, l + d].

Therefore, the set of (l, d)-motifs of S, denoted byMl,d(S),

is given by

Ml,d(S) = ∪l+d
k=l−d ∪m−k+1

j=1 Nl,d(Sj,k). (2)

For a collection of strings S = {S(1), S(2), . . . , S(m)}, a

(common) (l, d)-motif is an l-mer at a distance atmost d

from atleast one substring of each S(i). Thus the set of

(common) (l, d)-motifs of S , denoted by Ml,d(S), is given

by

Ml,d(S) = ∩n
i=1Ml,d(S

(i)). (3)

One simple way of computing Fl,d(L) is to grow the

friendhood of L by one distance at a time for d times and

to select only the friends having length l. Let G(L) denote

the set of strings obtained by one edit operation on L and

G({L1, L2, . . . , Lr}) = ∪r
t=1G(Lt). If G

1(L) = G(L), and for

t > 1, Gt(L) = G(Gt−1(L)) then

Fl,d(L) = {x ∈ Gd(L) : |x| = l}. (4)

The Author(s). BMCGenomics 2016, 17(Suppl 4):465 Page 318 of 456

Using Eqs. (1), (2), (3) and (4), Pathak et al. [13] gave

an algorithm that stores all possible candidate motifs in

an array of size |�|l. However the algorithm is inefficient

in generating the neighborhood as the same candidate

motif is generated by several combinations of the basic

edit operations. Also, the O(|�|l) memory requirement

makes the algorithm inapplicable for larger instances. In

this paper we mitigate these two limitations.

Efficient neighborhood generation

We now give a more efficient algorithm to generate the

(l, d)-neighborhood of all possible k-mers of a string.

Instead of computing (l, t)-friendhood for all 0 ≤ t ≤ d,

we compute only the exact (l, d)-friendhood.

Lemma 1. Ml,d(S) = ∪l+d
k=l−d ∪m−k+1

j=1 Fl,d(Sj,k).

Proof. Consider the k-mer L = Sj,k . If k = l + d then we

need d deletions to make L an l-mer. There cannot be any

(l, t)-neighbor of L for t < d. Thus

∪d
t=0Fl,t(Sj,l+d) = Fl,d(Sj,l+d). (5)

Suppose k < l+d. Any (l, d − 1)-neighbor B of L is

also an (l, d)-neighbor of L′ = Sj,k+1 because ED(B, L′) ≤

ED(B, L) + ED(L, L′) ≤ (d − 1) + 1 = d. Thus

∪d
t=0Fl,t(Sj,k) ⊆ Fl,d(Sj,k)

⋃

∪d
t=0Fl,t(Sj,k+1)

which implies that

∪k+1
r=k ∪d

t=0 Fl,t(Sj,r) = Fl,d(Sj,k)
⋃

∪d
t=0Fl,t(Sj,k+1). (6)

Applying (6) repeatedly for k = l − d, l − d + 1, . . . , l +

d − 1, along with (5) in (1) and (2) gives the result of the

lemma.

We generate Fl,d(Sj,k) in three phases: we apply δ dele-

tions in the first phase, β substitutions in the second

phase, and α insertions in the final phase, where d =

δ + α + β and l = k − δ + α. Solving for α,β , δ gives

max{0, q} ≤ δ ≤ (d + q)/2, α = δ − q and β = d − 2δ + q

where q = k − l. In each of the phases, the neighborhood

is grown by one edit operation at a time.

Compact motifs

The candidate motifs in Fl,d(Sj,k) are generated in a com-

pact way. Instead of inserting each character in � sep-

arately at a required position in Sj,k , we insert a new

character ∗ /∈ � at that position. Similarly, instead of

substituting a character σ ∈ Sj,k by each σ ′ ∈ � \ {σ }

separately, we substitute σ by ∗. The motifs common to

all strings in S is determined by using the usual definition

of union and the following definition of intersection on

compact strings A,B ∈ (� ∪ {∗})l in (3):

A∩B =

⎧

⎨

⎩

∅ if ∃j s.t. Aj,Bj ∈ �,Aj �= Bj

σ1σ2 . . . σl else, where σj =

{

bj if aj=∗

aj if bj= ∗ .

(7)

Trie for storing compact motifs

We store the compact motifs in a trie based data struc-

ture which we call a motif trie. This helps implement the

intersection defined in (7). Each node in the motif trie

has atmost |�| children. The edges from a node u to

its children v are labeled with mutually exclusive subsets

label(u, v) ⊆ �. An empty set of compact motifs is repre-

sented by a single root node. A non-empty trie has l + 1

levels of nodes, the root being at level 0. The trie stores

the l-mer σ1σ2 . . . σl, all σj ∈ �, if there is a path from the

root to a leaf where σj appears in the label of the edge from

level j − 1 to level j.

For each string S = S(i) we keep a separate motif trie

M(i). Each compact neighbor A ∈ Fl,d(Sj,k) is inserted

into the motif trie recursively as follows. We start with

the root node where we insert A1A2 . . .Al. At a node u at

level j where the prefix A1A2 . . .Aj−1 is already inserted,

we insert the suffix AjAj+1 . . .Al as follows. If Aj ∈ � we

insert A′ = Aj+1Aj+2 . . .Al to the children v of u such

that Aj ∈ label(u, v). If label(u, v) �= {Aj}, before insert-

ing we make a copy of subtrie rooted at v. Let v′ be the

root of the new copy. We make v′ a new child of u, set

label(u, v′) = {Aj}, remove Aj from label(u, v), and insert

A′ to v′. On the other hand if Aj = ∗ we insert A′ to each

children of u. Let T = � if Aj = ∗ and T = {Aj} other-

wise. Let R = T \ ∪vlabel(u, v). If T �= ∅ we create a new

child v′ of u, set label(u, v′) = R and recursively insert A′

to v′. Figure 1 shows examples of inserting into the motif

trie.

We also maintain a motif trie M for the common com-

pact motifs found so far, starting with M = M(1). After

processing string S(i) we intersect the root ofM(i) with the

Fig. 1 Inserting into motif trie for � = {A, C,G, T} and l = 3. a After

inserting ∗GT into empty trie. b After inserting another string A∗C

The Author(s). BMCGenomics 2016, 17(Suppl 4):465 Page 319 of 456

root of M. In general a node u2 ∈ M(i) at level j is inter-

sected with a node u1 ∈ M at level j using the procedure

shown in Algorithm 1. Figure 2 shows an example of the

intersection of two motif tries.

Algorithm 1: Intersect subtries rooted at u1,u2

input : subtrie(u1), subtrie(u2)

output: subtrie(u1) ← subtrie(u1) ∩ subtrie(u2)

V ← all children of u1;

foreach v1 ∈ V do

foreach child v2 of u2 do

newLabel ← label(u1, v1) ∩ label(u2, v2);

if newLabel �= ∅ then

if newLabel �= label(u1, v1) then

let v′
1 be a new child of u1;

copy at v′
1 the subtrie rooted at v1;

label(u1, v
′
1)←newLabel;

label(u1, v1)← label(u1, v1)\newLabel;

intersect subtries rooted at v′
1, v2;

else

intersect subtries rooted at v1, v2;
if label(u1, v1)=∅ then delete subtrie rooted at v1

if u1 has no child then delete subtrie rooted at u1

The final set of common motifs is obtained by a depth-

first traversal of M outputting the label of the path from

the root whenever a leaf is traversed. An edge (u, v) is

traversed separately for each σ ∈ label(u, v).

Efficient compact neighborhood generation

A significant part of the time taken by our algorithm is in

inserting compact neighbors into themotif trie as it is exe-

cuted for each neighbor in the friendhood. Our efficient

neighborhood generation technique and the use of com-

pact neighbors reduce duplication in neighborhood but

do not guarantee completely duplication free neighbor-

hood. In this section, we design few simple rules to reduce

duplication further. Later we will see that these rules are

Fig. 2 Intersection of motif tries. a Trie for AG∗ ∪ C∗T . b Intersection

of trie in Fig. 1b and trie in Fig. 2 a

quite close to the ideal as we will prove that the compact

motif generated after skipping using the rules, are distinct

if all the characters in the input string are distinct.

To differentiate multiple copies of the same compact

neighbor, we augment it with the information about how

it is generated. This information is required only in the

proof and is not used in the actual algorithm. Formally,

each compact neighbor L of a k-mer Sj,k is represented as

an ordered tuple 〈Sj,k ,T〉 where T denotes the sequence

of edit operations applied to Sj,k . Each edit operation in T

is represented as a tuple 〈p, o〉 where p denotes the posi-

tion (as in S) where the edit operation is applied and o ∈

{D,R, I} denotes the type of the operation – deletion, sub-

stitution and insertion, respectively. At each position there

can be one deletion or one substitution but one or more

insertions. The tuples in T are sorted lexicographically

with the natural order for p and for o, D < R < I.

The rules for skipping compact neighbors are given in

Table 2. Rule 1 applies when Sj,k is not the rightmost k-mer

and the current edit operation deletes the leftmost base of

Sj,k , i.e., Sj. Rule 2 applies when the current edit operation

substitutes a base just after a base that was already deleted.

Rule 3 skips the neighbor which is generated from a k-mer

except the rightmost by deleting a base and substituting

all bases before it. Rules 4–9 apply when the current oper-

ation is an insertion. Rule 4,6 apply when the insertion

is just before a deletion and a substitution, respectively.

Rule 5 applies when the insertion is just after a deletion.

Rule 7,8 apply when the k-mer is not the leftmost. Rule 7

applies when the insertion is at the leftmost position and

Rule 8 applies when all bases before the position of inser-

tion are already substituted. Rule 9 applies when the k-mer

is not the rightmost and the insertion is at the right end.

The first in each pair of the figures in Fig. 3 illustrates the

situation where the corresponding rule applies.

Let M̄l, d(S) denote the multi-set of tuples for the com-

pact motifs of S that were not skipped by our algorithm

Table 2 Conditions for skipping motif L = 〈M, Sj,k , T〉

Rule Conditions (in all rules t ≥ 0)

1 (j + k ≤ m) ∧ 〈j,D〉 ∈ T

2 {〈j + t,D〉, 〈j + t + 1, R〉} ⊆ T

3 (j+k≤m) ∧ {〈j, R〉,〈j+1, R〉, . . . ,〈j+t, R〉,〈j+t+1,D〉}⊆T

4 {〈j + t,D〉, 〈j + t, I〉} ⊆ T

5 {〈j + t,D〉, 〈j + t + 1, I〉} ⊆ T

6 {〈j + t, R〉, 〈j + t, I〉} ⊆ T

7 (j > 1) ∧ 〈j, I〉 ∈ T

8 (j > 1) ∧ {〈j, R〉, 〈j+1, R〉, . . . , 〈j+t, R〉, 〈j+t+1, I〉}⊆T

9 (j + k ≤ m) ∧ 〈j+k, I〉∈T

The Author(s). BMCGenomics 2016, 17(Suppl 4):465 Page 320 of 456

Fig. 3 Construction of L′ under different rules in the proof of Lemma 2. Insertions are shown using arrows, deletions using − and substitutions

using ∗. Rule 5 case (i) is similar to Rule 4 case (i)

using the rules in Table 2 and Ml, d(S) be the set of

compact motifs generated by (3). Let Ŵ(〈Sj, k ,T〉) be the

resulting string when the operations in T are applied to

Sj, k and Ŵ(Z) = ∪L∈ZŴ(L).

Lemma 2. Ŵ(M̄l,d(S)) = Ml,d(S).

Proof. By construction, Ŵ(M̄l,d(S)) ⊆ Ml,d(S). We show

Ml,d(S) ⊆ Ŵ(M̄l,d(S)) by giving a contradiction when

Ml,d(S) \ Ŵ(M̄l,d(S)) �= ∅.

We define an order on the compact neighbors L1 =

〈Sj1,k1 ,T1〉 and L2 = 〈Sj2,k2 ,T2〉 as follows: L1 < L2 if

Ŵ(L1) < Ŵ(L2) and L2 < L1 if Ŵ(L2) < Ŵ(L1). When

Ŵ(L1) = Ŵ(L2) we have L1 < L2 if and only if (k1 <

k2) ∨ ((k1 = k2) ∧ (p1 < p2)) ∨ ((k1 = k2) ∧ (p1 =

p2) ∧ (o1 < o2)) where 〈p1, o1〉 ∈ T1, 〈p2, o2〉 ∈ T2 are the

leftmost edit operations where T1,T2 differ.

Suppose M ∈ Ml,d(S) \ Ŵ(M̄l,d(S)). Let L = 〈Sj, k ,T〉 be

the largest (in the order defined above) tuple skipped by

our algorithm such that Ŵ(L) = M. For each r = 1, . . . , 9

we show a contradiction that if L is skipped by Rule r then

there is another L′ = 〈Sj′, k′ ,T ′〉 with the same number

of edit operations and Ŵ(L′) = M but L < L′. Figure 3

illustrates the choice of L′ under different rules.

Rule 1. Here j + k ≤ m and 〈j,D〉 ∈ T . Consider T ′ =
(

T \
{

〈j,D〉
})

∪
{

j + k,D
}

, and j′ = j + 1, k′ = k.

Rule 2. Consider T ′ = T \ {〈j + t,D〉, 〈j + t + 1,R〉} ∪

{〈j + t,R〉, 〈j + t + 1,D〉}, and j′ = j, k′ = k.

Rule 3. T ′ = T \ {〈j,R〉, 〈j + t + 1,D〉} ∪

{〈j + t + 1,R〉, 〈j + k,D〉}, j′ = j + 1, k′ = k.

Rule 4. For this and subsequent rules k < l+d as there is

atleast one insertion and hence k′ could possibly be equal

to k+1.We consider two cases. Case (i) j+k ≤ m:T ′ = T\

{〈j + t,D〉, 〈j + t, I〉} ∪ {〈j+t,R〉, 〈j + k,D〉}, j′ = j, k′ = k +

1. Case (ii) j+ k = m+ 1: Here deletion of Sj is allowed by

Rule 1. T ′ = T\{〈j + t,D〉, 〈j + t, I〉}∪{〈j − 1,D〉, 〈j+t,R〉},

j′ = j − 1, k′ = k + 1.

Rule 5. The same argument for Rule 4 applies consider-

ing 〈j+t+1, I〉 instead of 〈j+t, I〉.

Rule 6. T ′=T\{〈j + t, I〉}∪{〈j + t + 1, I〉}, and j′=j, k′=k.

Rule 7. T ′=T\{〈j, I〉} ∪ {〈j−1,R〉}, j′ = j − 1, k′ = k+1.

Rule 8. T ′=T\{〈j+t, I〉}∪{〈j−1,R〉}, j′=j−1, k′ = k+1.

Rule 9. T ′=T\{〈j+k, I〉} ∪ {〈j + k,R〉}, j′ = j, k′ = k+1.

Consider two compact motifs M1 = 〈Sj1,k1 ,T1〉 and

M2 = 〈Sj2,k2 ,T2〉 in M̄l,d(S). For q ∈ {1, 2}, let

The Author(s). BMCGenomics 2016, 17(Suppl 4):465 Page 321 of 456

〈

p
(1)
q , o

(1)
q

〉

,
〈

p
(2)
q , o

(2)
q

〉

, . . . ,
〈

p
(d)
q , o

(d)
q

〉

be the sequence of

edit operations in Tq arranged in the order as the

neighbors are generated by our algorithm, and

the intermediate neighbors be L
(h)
q =

〈

Sjq ,kq ,
{〈

p
(1)
q , o

(1)
q

〉

,
〈

p
(2)
q , o

(2)
q

〉

, . . . ,
〈

p
(h)
q , o

(h)
q

〉}〉

for all h = 1, 2, . . . , d.We also

denote the initial k-mer as a neighbor L
(0)
q = 〈Sjq ,kq ,∅〉.

Lemma 3. If Sjs are all distinct and Ŵ
(

L
(h)
1

)

= Ŵ
(

L
(h)
2

)

for 1 ≤ h ≤ d then
〈

p
(h)
1 , o

(h)
1

〉

=
〈

p
(h)
2 , o

(h)
2

〉

and

Ŵ

(

L
(h−1)
1

)

= Ŵ

(

L
(h−1)
2

)

.

Proof. To simplify the proof, we use pq, oq, Lq to denote

p
(h)
q , o

(h)
q , L

(h)
q , respectively, for all q ∈ {1, 2}. Without loss

of generality we assume p1 ≤ p2.

As p1, p2 are positions in S, it would be enough to prove

〈p1, o1〉 = 〈p2, o2〉 because that would imply Ŵ
(

L
(h−1)
1

)

=

Ŵ

(

L
(h−1)
2

)

.

If 〈p1, o1〉 �= 〈p2, o2〉 then either (a) o1 = o2 and p1 < p2
or (b) o1 �= o2 and p1 ≤ p2, giving us the following 9

possible cases. We complete the proof by giving a contra-

diction in each of these 9 cases:

Case o1 o2 cond. Case o1 o2 cond. Case o1 o2 cond.

1 D D p1<p2 4 R D p1≤p2 7 I D p1≤p2
2 D R p1≤p2 5 R R p1<p2 8 I R p1≤p2
3 D I p1≤p2 6 R I p1≤p2 9 I I p1<p2

Cases 2, 3, 4, 7

Our algorithm applies edit operations in phases: first dele-

tions, followed by substitutions and finally insertions. In

all these cases, one of Ŵ(L1),Ŵ(L2) does not have any ∗

because only deletions have been applied so far and the

other has at least one ∗ because a substitution or an inser-

tion has been applied. This implies Ŵ(L1) �= Ŵ(L2), a

contradiction.

Case 1

L2 has Sp2 deleted. As Ŵ(L1) = Ŵ(L2), Sp2 must have been

deleted in some operation prior to reaching L1. As the

deletions are applied in order, left to right, we must have

p1 = p2 which is a contradiction.

Case 5

This case has been illustrated in Fig. 4a. L1 has no substi-

tution at a position > p1 and no insertion at all. The ∗ at

p2 in L2 must be matched with the ∗ at p1 in L1 and as

the characters in S are distinct, all of Sp1+1, . . . , Sp2 cannot

appear in L1 and hence must be deleted in L1.

Now for each t < p1, right to left, and y = t + p2 − p1,

we have the following: Sy is either deleted or substituted

in L1, which implies that Sy must be substituted in L2 as

the deletion of Sy in L2 is prohibited by Rule 2, and finally

to match this ∗ in L2, St must be substituted in L1 as St
cannot be deleted in L1, again by Rule 2.

But this makes Rule 3 applicable to L1 and L1 must have

been skipped. This is a contradiction.

Case 6

By Rule 9 the insertion in L2 cannot be at the rightmost

position and hence L2 must have at least one character

after the insertion. By Rules 4 and 6, Sp2 must not be

deleted or substituted in L2 and hence it must not be

deleted or substituted in L1 either. Thus p1 < p2. There

cannot be any insertion or substitution at a position > p1
in L1. Thus the ∗ due to the insertion at p2 in L2 must be

matched by the ∗ due to the substitution at p1 in L1 and all

of Sp1+1, . . . , Sp2−1 must be deleted in L1.

By Rule 7, Sp2 cannot be the leftmost in Sj2,k2 . So we

consider Sp2−1 in L1, L2. It is either deleted or substituted

in L1 and hence by Rule 5, it must be substituted in Sp2
(there can be multiple insertions at p2 in L2 but that does

not affect this argument). To match this ∗, Sp1−1 must be

substituted in L1.

Using a similar argument as in Case 5, St must be substi-

tuted in L1 for each t < p1−1. But this again makes Rule 3

applicable to L1 and L1 must have been skipped, which is

not possible. This case has been illustrated in Fig. 4b.

Case 8

Due to Rules 4, 6 and 9, Sp1 must not be deleted or substi-

tuted in L1 and hence it must not be deleted or substituted

in L2 either. Thus p1 < p2. The ∗ due to the insertion in

L1 must be matched by a substitution at p3 < p1 such that

all of Sp3+1, . . . , Sp1−1 are deleted in L2.

By Rule 7, p1 cannot be the leftmost in L1. For each t <

p1, right to left, and y = t+p3−p1, we have the following:

Sy is substituted in L1 because as the deletion of Sy in L1 is

prohibited by Rules 2 and 5, Sy must be substituted in L2
again by Rule 2, and tomatch this ∗, St must be substituted

in L1.

But this makes Rule 8 applicable to L1 and L1 must have

been skipped which is not possible. This case has been

illustrated in Fig. 4c.

Case 9

This case has been illustrated in Fig. 4d. Due to Rules 4, 6

and 9, Sp1 , Sp2 must not be deleted or substituted in L1, L2.

The insertion at p2 in L2 must be matched by a substitu-

tion at a position p3 in L1 such that p1 < p3 < p2 and all

of Sp3+1, . . . , Sp2−1 must be deleted in L1.

Now for each position y, from right to left, where p1 <

y < p2, Sy is either deleted or substituted in S1, Sy cannot

be deleted in L2 by Rules 2 and 5 and hencemust be substi-

tuted in L2, which againmust bematched by a substitution

The Author(s). BMCGenomics 2016, 17(Suppl 4):465 Page 322 of 456

Fig. 4 Proof of uniqueness (Lemma 2). Subfigures a,b,c,d illustrates the cases 5,6,7,8,9 respectively

at a position t in L1 such that p1 < t < p3. However this is

impossible as the number of possible ys is larger than the

number of possible ts.

If all Sjs are distinct and Ŵ(M1) = Ŵ(M2) then applying

Lemma 3 repeatedly for h = d, d−1, . . . , 0 gives us the fact

that starting k-mers Sj1,k1 , Sj2,k2 as well as the correspond-

ing edit operations in T1,T2 forM1,M2 must be the same.

This is another way of stating the following theorem.

Theorem 1. If Sjs are all distinct then M̄l,d(S) is dupli-

cation free.

In general Sjs are not distinct. However, as the input

strings are random, the duplication due to repeated char-

acters are limited. On instance (11, 3) our algorithm gen-

erates each compact motif, on an average, 1.55 times using

the rules compared to 3.63 times without the rules (see

Fig. 5).

Implementation To track the deleted characters, instead

of actually deleting we substitute them by a new symbol

− not in �′. We populate the motif trie M(i) by calling

genAll(S(i)) given in Algorithm 2. Rules 1–8 are incor-

porated in G(L, j, δ,β ,α), H(L, j,β ,α) and I(L, j,α) which

are shown in Algorithms 3, 4, and 5, respectively where

sub(L, j, σ) substitutes Lj by σ and ins(L, j, σ) inserts σ just

before Lj.

Modified radix-sort for compact motifs

A simpler data structure alternative to tries for storing

compact motifs could be an array. However, it becomes

difficult to compute the intersection in (3) as defined

Algorithm 2: genAll(S)

foreach q ← −d to + d do

k ← l + q; start ← 2 ; // Rule 1

leftMost ← rightMost ← false;

for j ← 1 to |S| − k + 1 do
if j = 1 then leftMost ← true;

if j+k−1=m then
rightMost←true; start←1

foreach δ ← max{0, q} to (d + q)/2 do

G(Sj,k , start, δ, d − 2δ + q, δ − q);

in (7) when the compact motifs are stored in arrays. One

straight-forward solution is to first expand the ∗s in the

compact motifs, then sort the expanded motifs and finally

compute the intersection by scanning through the two

sorted arrays. This, to a great extent, wipes out the advan-

tage using the ∗s in the compact motifs. However, we

salvage execution time by executing a modified radix-

sort that simultaneously expands and sorts the array of

compact motifs: Compact-Radix-Sort(A, l) where the first

parameter A represents the array of compact motifs and

the second parameter represents the number of digits of

the elements in A which is equal to the number of base

positions l in a motif.

Algorithm 3: G(L, j, δ,β ,α)

if δ = 0 then H(L, j,β ,α); return;

foreach j′ ← j to |L| do

G(sub(L, j′,−), j′ + 1, δ − 1,β ,α);

The Author(s). BMCGenomics 2016, 17(Suppl 4):465 Page 323 of 456

Fig. 5 Histogram of number of times a motif is repeated with and without using the skipping rules 1–9

Algorithm 4: H(L, j,β ,α)

if β = 0 then

t ←

{

largest t′ s.t. Lj′= ∗ for allj′≤t′

0 if no such j′ exists;

start ←

{

1 if leftMost

t + 2 otherwise;
// Rules 7,8

I(L, start,α); return;

foreach j′ ← j to |L| do

if Lj = − then continue; // deleted

if (j > 1) ∧ Lj−1 = − then continue; // Rule 2

if ¬rightMost ∧j′′<j′ (Lj′′=∗) ∧ (Lj′+1=−) then

continue ; // Rule 3

H(sub(L, j′, ∗), j′+1,β−1,α);

As in the standard radix-sort, our algorithm uses l

phases, one for each base position in the motif. In the

ith phase it sorts the motifs using bucket sort on the ith

base of the motifs. However, in case of compact motifs,

for each ∗ at a base position, the bucket counters for all

σ ∈ � are incremented. While reordering the motifs as

per the bucket counts, if there is a ∗ at ith base posi-

tion of a motif, |�| copies of the motif are created and

they are placed at appropriate locations in the array after

finalizing the correct σ for the ∗. The details are given

in Algorithm 6. In each phase a bucket counter B and

a cumulative counter C are used. The temporary array

T stores the partially expanded motifs from the current

phase.

Discussion We did an experiment to compare the time

taken by the two approaches – (i) using the expanded

motifs, i.e., without using the wildcard character, and (ii)

using compact motifs and sorting them using Compact-

Radix-Sort. For a single input string of instance (16,3), the

first approach generated in 24.4 s 198,991,822 expanded

motifs in which 53,965,581 are unique. The second

approach generated in 13.7 s 11,474,938 compact motifs

with the same number of unique expanded motifs. This

shows the effectiveness of the second approach.

Parallel algorithm

We now give our parallel algorithm in the multi-core

shared memory setting. To process each input sequence

S(i) the algorithm uses p + 1 threads. The main thread

first prepares the workload for other p threads. A work-

load involves the generation of the neighborhood for a

k-mer of S(i), where l − d ≤ k ≤ l + d. There are total
∑l+d

k=l−d(m − k + 1) = (2d + 1)(m − l + 1) workloads.

Algorithm 5: I(L, j,α)

if α = 0 then

insert L toM(i) after deleting all − in L; return

foreach j′ ← j to |L| do

if Lj ∈ {−, ∗} then continue; // Rules 4,6

if (j > 1) ∧ (Lj−1 = −) then ; // Rule 5

continue I(ins(L, j′, ∗), j′+1,α−1);

if rightMost ∧ (L|L| �= −) then

I(ins(L, |L| + 1, ∗), |L| + 2,α−1); // Rule 9

The Author(s). BMCGenomics 2016, 17(Suppl 4):465 Page 324 of 456

Algorithm 6: Compact-Radix-Sort(A, l)

for i ← 1 to l do
foreach σ ∈ � do B[σ]← 0;

for j ← 1 to |A| do

σ ← digit i of A[j];

if σ = ∗ then
foreach σ ′ ∈ � do B[σ ′]← B[σ ′]+1;

else C[σ]← B[σ]+1;
foreach σ ∈ � do C[σ]←

∑

σ ′≤σ B[σ ′] ;

T ← empty array of size maxσ C[σ];

for j ← 1 to |A| do

σ ← digit i of A[j];

if σ = ∗ then

foreach σ ′ ∈ � do

T[C[σ ′]]← A[j] with σ ′ at digit i;

C[σ ′]← C[σ ′]−1;

else

T[C[σ]]← A[j];

C[σ]← C[σ]−1;

A ← T ;

The number of neighbors generated in the workloads are

not the same due to the skipping of some neighbors using

rules 1–9. For load balancing, we randomly and evenly dis-

tribute workloads to threads. Each thread first generates

all the compact motifs in its workloads and then sort them

using Compact-Radix-Sort. If i > 2 then it removes all

neighbors not present in M(i−1) which is the set of com-

monmotifs of S(1), S(2), . . . , S(i−1). Themaster thread then

merges the residue candidate motifs from all the p threads

to computeM(i). The merging takes place in log2 p phases

in a binary tree fashion where the jth phase uses 2log2 p−j

threads each merging two sorted arrays of motifs.

Results and discussion
We implemented our algorithms in C++ and evaluated on

a Dell Precisions Workstation T7910 running RHEL 7.0

on two sockets each containing 8 Dual Intel Xeon Proces-

sors E5-2667 (8C HT, 20 MB Cache, 3.2 GHz) and 256 GB

RAM. For our experiments we used only one of the two

sockets. We generated random (l, d) instances according

to Pevzner and Sze [2] and as described in the background

section. For every (l, d) combination we report the aver-

age time taken by 4 runs. We compare the following four

implementations:

• EMS1: A modified implementation of the algorithm

in [13] which considered the neighborhood of only

l-mers whereas the modified version considers the

neighborhood of all k-mers where l − d ≤ k ≤ l + d.
• EMS2: A faster implementation of our sequential

algorithm which uses tries for storing candidate

motifs where each node of the trie stores an array of

pointers to each children of the node. However, this

makes the space required to store a tree node

dependent on the size of the alphabet �.
• EMS2M: A slightly slower but memory efficient

implementation of our sequential algorithm where

each node of the trie keeps two pointers: one to the

leftmost child and the other to the immediate right

sibling. Access to the other children are simulated

using the sibling pointers.

Table 3 Comparison between EMS1 and three implementations of EMS2

Instance Metric EMS1 EMS2 EMS2M
EMS2P threads

1 2 4 8 16

(8,1) time 0.11 s 0.13 s 0.12 s 0.09 s 0.08 s 0.06 s 0.05 s 0.06 s

memory 2.69 MB 4.25 MB 3.17 MB 2.67 MB 3.20 MB 3.55 MB 6.02 MB 7.99 MB

(12,2) time 19.87 s 15.60 s 16.62 s 2.71 s 1.94 s 1.44 s 0.89 s 0.55 s

memory 34.28 MB 210.47 MB 126.91 MB 84.98 MB 104.60 MB 125.18 MB 142.82 MB 150.23 MB

(16,3) time 1.74 h 23.73 m 26.79 m 3.73 m 2.32 m 1.38 m 48.58 s 36.93 s

memory 8.39 GB 11.62 GB 6.97 GB 8.55 GB 10.21 GB 10.53 GB 9.84 GB 9.91 GB

(9,2) time 10.84 s 1.72 s 3.02 s 1.12 s 0.96 s 0.78 s 0.49 s 0.35 s

memory 3.44 MB 26.67 MB 17.04 MB 42.86 MB 57.76 MB 54.77 MB 59.85 MB 66.53 MB

(11,3) time 33.48 m 1.91 m 3.57 m 45.85 s 30.78 s 19.68 s 13.49 s 9.78 s

memory 92.86 MB 477.12 MB 313.33 MB 2.27 GB 2.63 GB 2.65 GB 2.55 GB 2.60 GB

(13,4) time - 1.08 h 1.76 h 44.03 m 26.16 m 14.51 m 8.62 m 6.82 m

memory - 8.26 GB 5.58 GB 149.60 GB 179.66 GB 180.13 GB 168.80 GB 172.74 GB

Time is in seconds (s), minutes (m) or hours (h). An empty cell implies the algorithm did not complete in the stipulated 72 h

The Author(s). BMCGenomics 2016, 17(Suppl 4):465 Page 325 of 456

Fig. 6 Scaling performance of our parallel algorithm

• EMS2P: Our parallel algorithm which uses arrays for

storing motifs. We experimented with

p = 1, 2, 4, 8, 16 threads.

We run the four algorithms on the challenging instances

(8,1), (12,2), (16,3) and on the instances (9,2), (11,3), (13,4)

which are challenging for PMS and have been used for

experimentation in [13]. We report the runtime and the

memory usage of the four algorithms in Table 3.

Our efficient neighborhood generation enables our

algorithm to solve instance (13, 4) in less than two hours

which EMS1 could not solve even in 3 days. The factor

by which EMS2 takes more memory compared to EMS1

gradually decreases as instances become harder. As EMS2

stores 4 child pointers for A,C,G,T in each node of the

motif trie whereas EMS2M simulates access to children

using only 2 pointers, EMS2 is faster. Memory reduction

in EMS2M is not exactly by a factor 2(=4/2) because we

also keep a bit vector in each node to represent the sub-

set of {A,C,G,T} a child corresponds to. The memory

reduction would be significant for protein strings.

Our parallel algorithm EMS2P using one thread is sig-

nificantly faster than the sequential algorithms EMS2 and

EMS2M but uses more memory. This space-time trade off

is due to the fact that the arrays are faster to access but

the tries use lessermemory.Moreover, the repeatedmotifs

are uniquely stored in a single leaf node in the trie but

stored separately in the array. The scaling performance

using multiple threads are shown in Fig. 6 where we plot

the ratio of time taken by p threads to the time taken by a

single thread on the Y-axis. The time required for handling

16 threads turns out to be costlier than actually processing

the motifs in the smallest instance (8,1).We observe speed

up consistent across other bigger instances. For exam-

ple, instance (16,3) takes about 224 s using 1 thread and

37 s using 16 threads. This gives more than 600 % scaling

performance using 16 threads.

Conclusions
We presented several efficient sequential and parallel

algorithms for the EMS problem. Our algorithms use

some novel and elegant rules to explore the candidate

motifs in such a way that only a small fraction of the can-

didate motifs are explored twice or more. In fact, we also

proved that these rules are close to ideal in the sense that

no candidate motif is explored twice if the characters in

the input string are all distinct. This condition may not

be practical and ideas from [14] can be used when the

characters in the input string are repeated. Nevertheless,

the rules help because the instances are randomly gen-

erated and the k-mers in the input string are not much

frequent. The second reason for the efficiency of our

sequential algorithms is the use of a trie based data struc-

ture to compactly store the motifs. Our parallel algorithm

stores candidate motifs in an array and uses a modified

radix-sort basedmethod for filtering out invalid candidate

motifs.

Our algorithms pushed up the state-of-the-art of

EMS solvers to a state where the challenging instance

(16,3) is solved in slightly more than half a minute

using 16 threads. Future work could be to solve

harder instances, including those involving protein

strings, and possibly using many-core distributed

algorithms.

The Author(s). BMCGenomics 2016, 17(Suppl 4):465 Page 326 of 456

Additional file

Additional file 1: Expected number of spurious motifs. This file gives the

expression for the expected number of spurious (l, d)-motifs in n random

strings of lengthm from the alphabet �. (PDF 143 kb)

Acknowledgments

This work has been supported in part by the NIH grant R01-LM010101 and

NSF grant 1447711.

Declarations

Publication of this article was funded by the NIH grant R01-LM010101 and NSF

grant 1447711. This article has been published as part of BMC Genomics Vol

17 Suppl 4 2016: Selected articles from the IEEE International Conference on

Bioinformatics and Biomedicine 2015: genomics. The full contents of the

supplement are available online at https://github.com/soumitrakp/ems2.git.

Availability

A C++ based implementation of our algorithm can be found at the following

github public repository:

https://github.com/soumitrakp/ems2.git.

Authors’ contributions

SP and SR conceived the study. SP implemented the algorithms and PX carried

out the experiments. SP and SR analyzed the results and wrote the paper. All

authors reviewed the manuscript. All authors read and approved the final

manuscript.

Competing interests

The authors declare that they have no competing interests.

Author details
1Department of Computer Science and Engineering, University of

Connecticut, 371 Fairfield Road, 06269 Storrs, CT, USA. 2Department of

Computer Science and Engineering, University of Connecticut, 371 Fairfield

Road, 06269 Storrs, CT, USA .

Published: 18 August 2016

References

1. Nicolae M, Rajasekaran S. qPMS9: An Efficient Algorithm for Quorum

Planted Motif Search. Nat Sci Rep. 2015;5. doi:10.1038/srep07813.
2. Floratou A, Tata S, Patel JM. Efficient and Accurate Discovery of Patterns

in Sequence Data Sets. IEEE Trans Knowl Data Eng. 2011;23(8):1154–68.

http://doi.ieeecomputersociety.org/10.1109/TKDE.2011.69.
3. Nicolae M, Rajasekaran S. Efficient Sequential and Parallel Algorithms for

Planted Motif Search. BMC Bioinformatics. 2014;15(1):34.
4. Tanaka S. Improved Exact Enumerative Algorithms for the Planted

(l, d)-motif Search Problem. IEEE/ACM Trans Comput Biol Bioinformatics

(TCBB). 2014;11(2):361–74.
5. Yu Q, Huo H, Zhang Y, Guo H. PairMotif: A new pattern-driven algorithm

for planted (l, d) DNA motif search. PloS One. 2012;7(10):48442.
6. Karlin S, Ost F, Blaisdell BE. Patterns in DNA and Amino Acid Sequences

and Their Statistical Significance. In: Waterman MS, editor. Mathematical

Methods for DNA Sequences. Boca Raton, FL, USA: CRC Press Inc; 1989.
7. Rocke E, Tompa M. An Algorithm for Finding Novel Gapped Motifs in

DNA Sequences. In: Proceedings of the Second Annual International

Conference on Computational Molecular Biology. New York, NY, USA:

ACM; 1998. p. 228–33.
8. Sagot MF. Spelling Approximate Repeated or Common Motifs using a

Suffix Tree. In: LATIN’98: Theoretical Informatics. Brazil: Springer; 1998.

p. 374–90.
9. Lanctot JK, Li M, Ma B, Wang S, Zhang L. Distinguishing string selection

problems. Inform Comput. 2003;185(1):41–55.
10. Adebiyi EF, Kaufmann M. Extracting Common Motifs under the

Levenshtein Measure: Theory and Experimentation. In: Guigó R, Gusfield

D, editors. Algorithms in Bioinformatics: Second International Workshop,

WABI 2002 Rome, Italy, September 17–21, 2002 Proceedings. Berlin,

Heidelberg: Springer Berlin Heidelberg; 2002. p. 140–56.

11. Wang X, Miao Y. GAEM: A Hybrid Algorithm Incorporating GA with EM for

Planted Edited Motif Finding Problem. Curr Bioinformatics. 2014;9(5):

463–9.

12. Rajasekaran S, Balla S, Huang CH, Thapar V, Gryk M, Maciejewski M,

Schiller M. High-performance Exact Algorithms for Motif Search. J Clin

Monitoring Comput. 2005;19(4–5):319–28.

13. Pathak S, Rajasekaran S, Nicolae M. EMS1: An Elegant Algorithm for Edit

Distance Based Motif Search. Int J Foundations Comput Sci. 2013;24(04):

473–86.

14. Knuth DE. The Art of Computer Programming, Volume 4, Generating All

Tuples and Permutations, Fascicle 2. New Jersey, USA: Addison Wesley;

2005.

• We accept pre-submission inquiries

• Our selector tool helps you to find the most relevant journal

• We provide round the clock customer support

• Convenient online submission

• Thorough peer review

• Inclusion in PubMed and all major indexing services

• Maximum visibility for your research

Submit your manuscript at
www.biomedcentral.com/submit

Submit your next manuscript to BioMed Central
and we will help you at every step:

http://dx.doi.org/10.1186/s12864-016-2789-9
https://github.com/soumitrakp/ems2.git
https://github.com/soumitrakp/ems2.git
http://dx.doi.org/10.1038/srep07813
http://doi.ieeecomputersociety.org/10.1109/TKDE.2011.69

	Abstract
	Background
	Methods
	Results
	Conclusions
	Keywords

	Background
	Contributions
	Efficient neighborhood generation:
	Compact representation using wildcard characters:
	Avoiding duplication of candidate motifs:
	Trie based data structure for storing compact motifs:
	Modified radix-sort for compact motifs:

	Methods
	Efficient neighborhood generation
	Compact motifs
	Trie for storing compact motifs
	Efficient compact neighborhood generation
	Cases 2, 3, 4, 7
	Case 1
	Case 5
	Case 6
	Case 8
	Case 9

	Modified radix-sort for compact motifs
	Discussion

	Parallel algorithm

	Results and discussion
	Conclusions
	Additional file
	Additional file 1

	Acknowledgments
	Declarations
	Availability
	Authors' contributions
	Competing interests
	Author details
	References

