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Abstract

In many retrieval, object recognition and wide baseline

stereo methods, correspondences of interest points are es-

tablished possibly sublinearly by matching a compact de-

scriptor such as SIFT. We show that a subsequent coseg-

mentation process coupled with a quasi-optimal sequential

decision process leads to a correspondence verification pro-

cedure that has (i) high precision (is highly discriminative)

(ii) good recall and (iii) is fast. The sequential decision on

the correctness of a correspondence is based on trivial at-

tributes of a modified dense stereo matching algorithm. The

attributes are projected on a prominent discriminative di-

rection by SVM. Wald’s sequential probability ratio test is

performed for SVM projection computed on progressively

larger co-segmented regions. Experimentally we show that

the process significantly outperforms the standard corre-

spondence selection process based on SIFT distance ratios

on challenging matching problems.

1. Introduction

Many successful image retrieval, object recognition and

wide baseline stereo methods exploit correspondences of lo-

cal transformation-covariant regions. Most real-world vi-

sual recognition problems are large scale where correspon-

dences between regions from a query (test) image and many

database (training) images (multiple views of a many ob-

jects or scenes) are sought. To achieve acceptable response

times, large problems require the time complexity of the

region matching process be sublinear in the size of the

database; memory footprint of the database representation

becomes a concern too. The standard solution is to describe

regions with a compact descriptor such as SIFT [9] or some

discretization of it (e.g. ”visual words” [17]) and to store

database image representations in a search tree (k-d [9],

metric [7], k-means [13, 16, 3]). 1

1Terms ”viewpoint invariant features”, ”interest points”, ”patches”,

”distinguished regions” also appear in the literature.

A better estimate of correspondence quality (a predic-

tion of it being correct) can be obtained by looking at both

test and training image simultaneously, e.g. by attempting to

expand the correspondence domains or to improve the pre-

cision of registration. The value of correspondence growing

methods has been demonstrated in [19, 4], sometimes with

impressive results, e.g. those achieved by the dual bootstrap

method [21, 18]. Most approaches to simultaneous coseg-

mentation and registration focus on the problem of finding

the largest corresponding domain and codomain [21, 4, 8].

Our objective is almost opposite: given acceptable false

positive and false negative rates, design the fastest possible

test for correctness of a correspondence, based on coseg-

mentation of regions of growing size. We formulate the

problem as sequential decision making performing Wald’s

sequential probability ratio test. The test is based on sim-

ple statistics of a modified dense stereo matching algorithm

which are projected on a single prominent discriminative

direction by a linear SVM.

On challenging matching problems, we show that the

selection of correspondences based on sequential co-

segmentation is very efficient, runs near to real-time and

significantly outperforms the standard correspondence pro-

cess based on SIFT distance ratios, producing a higher

number as well as higher percentage of correct correspon-

dences. Consequently, combinatorial procedures for esti-

mation of a geometrically consistent subset of correspon-

dences with time complexity sensitive to inlier ratios (poly-

nomial dependence), e.g. RANSAC, should always adopt

sequentially terminated cosegmentation as a preprocessing

step. In fact, the process of generating tentative corre-

spondences can be set to be much more permissive, out-

putting higher number of correspondences with lower inlier

ratios but containing larger number of inliers. After filtering

by simultaneous cosegmentation, inlier ratios are recovered

and the larger number of inliers leads to higher recognition

rates.

The method scales well: the number of potential corre-

spondences for a query image region can be controlled. If

it is constant, the total time complexity of the region ex-
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Algorithm 1 SCV: Sequential Correspondence Verification

Require: images I, I′,

correspondence with affine frame (x, y,A),
SIFT ratio sr,

false positive and false negatives rates (α, β),
model: learned SVM parameters θi,

likelihoods pi(q| +1), pi(q| −1).
1.1: for i = 1 : maximum number of decision stages do

1.2: µi =
{0, i=1,

10i−1, i>1.

1.3: (ḡ, c̄, ū) = grow(I, I′, (x, y,A), µi).
1.4: q = SVM(sr, ḡ, c̄, ū, θi).

1.5: L = pi(q|+1)
pi(q|−1) .

1.6: if Wald SPRT(L,α, β) is conclusive then break.

1.7: end for

1.8: return likelihood ratio L.

pansion process is independent of the size of the database

and linear in the size of the input (number of regions in the

query image). On a large scale retrieval experiment [13],

we observed that the time needed to carry out the sequen-

tial procedure is not significant in comparison with the time

needed for the initial indexing process for establishing ten-

tative correspondences.

The rest of the paper is organized as follows. The method

is described in Sec. 2, the experiments are found in Sec. 3,

and the conclusion is given in Sec. 4.

2. The sequential correspondence verification

algorithm

The basic idea of the approach is to distinguish, as fast as

possible, correct and incorrect correspondences via a dense

matching (pixel-to-pixel) growing algorithm. The require-

ments of high speed and quality of the decision process

are contradictory. We therefore propose a quasi-optimal se-

quential decision algorithm that minimizes time to decision,

given user-specified probabilities of false positive and false

negative rates.

The Sequential Correspondence Verification algorithm

(SCV) is summarized in Fig. 1. It proceeds in decision

stages i. In the first decision stage, a fast dense stereo

matching growing algorithm, Sec. 2.1, is initialized by a

tentative correspondence with a Local Affine Frame. The

verification proceeds by attempting to match discriminative

neighboring pixels. After a maximum number of growing

steps µi, this cosegmentation produces three simple statis-

tics (ḡ, c̄, ū) characterizing the quality of the correspon-

dence: the growth rate ḡ is the size of the grown region

divided by the maximum number of growing steps µi, the

average correlation c̄ of the region, and the average num-

ber of pixels violating the uniqueness ū, i.e. non-bijectivity

matching.
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Í

not decided
= + 1i i

decided
SVM L

® ¯

i

i

SIFT ratio

p qi( 1)| p qi( 1)| -θ
i

q L L

model:

ˆ

Figure 1. The Sequential Correspondence Verification algorithm.

The vector of statistics is projected by SVM to a scalar

quality q which simplifies the estimation of likelihoods

pi(q| + 1), pi(q| − 1) of correct and incorrect correspon-

dence classes respectively. The region statistics are aug-

mented with the first to second nearest SIFT descriptor dis-

tance ratio sr, a standard tentative correspondence selection

technique [9].

The Wald’s Sequential Probability Ratio Test (SPRT)

is performed on the likelihood ratio Li. If the SPRT test

is conclusive, the algorithm terminates and the correspon-

dence is assigned the decision and the likelihood ratio Li

of the decision. Otherwise, another decision stage i is per-

formed, i.e. the cosegmentation is continued with exponen-

tially larger maximum number of growing steps µi, Alg. 1,

step 2 (Alg. 1.2), potentially producing more discriminative

statistics, since it is based on more measurements. Note,

that µ1 = 0 which means the decision in the first stage is

based solely on the SIFT ratio without growing.

The process continues until the maximum number of de-

cision stages i is reached. In our experiments, we set the

maximum number of decision stages to 4, so the largest

growth is by µ4 = 1000 steps. Details of the algorithm

are described below.

2.1. Growing algorithm

The following simple algorithm explores regions around

the input tentative correspondence. The growing mecha-

nism is inspired by [1, 15, 8, 11].

Each affine correspondence defines a local mapping

from the reference image I to the target image I
′. The map-

ping generates several pixel to pixel correspondences, the

seeds.2 Seed s = (x, y,A) is a point (x, y) in I with asso-

ciated affine transformation A which maps the local neigh-

borhood to the other image I
′:

x′ = a1x + a2y + a3,
y′ = a4x + a5y + a6,

(1)

or simply (x′, y′) = A(x, y).

2In our experiments, this is realized by a Local Affine Frame (LAF)

constructed on Maximally Stable Extremal Region [14, 10] (MSER). We

take all three points in LAF as the initial seeds of the growing process.



Algorithm 2 The Growing Algorithm

Require: images I, I′,

initial correspondence seeds S
maximum number of growing steps µ.

2.1: Initialize matching tables T(:, :) = 0, T
′(:, :) = 0,

variables K := G := C := U := 0.

2.2: Compute the image correlation for all seeds s ∈ S.

2.3: while K ≤ µ and S not empty do

2.4: K := K + 1.

2.5: Draw the seed s ∈ S of the best similarity corr(s).
2.6: for each of the four best neighbors

t
∗
i = (x, y,A) = argmax

t∈Ni(s)

corr(t), i ∈ {1, 2, 3, 4}

do

2.7: c := corr(t∗i ), c2 := maxt∈{Ni(s)rt
∗

i
} corr(t).

2.8: if c ≥ τ and c − c2 ≥ ǫ and T(x, y) = 0 then

2.9: G := G + 1, C := C + c.
2.10: if T

′(A(x, y)) = 1 then

2.11: U := U + 1.
2.12: end if

2.13: Update the matching maps

T(x, y) := T
′(A(x, y)) := 1 and

2.14: the seed queue S := S ∪ {t∗i }.

2.15: end if

2.16: end for

2.17: end while

2.18: return growth rate ḡ := G
µ

, average correlation c̄ := C
G

,

average uniqueness violation ū := U
G

.

The procedure is presented in pseudo-code as Alg. 2.

The input are the images I, I′, the set of initial seeds S and

the maximum number of growing steps µ. The output are

three statistics ḡ, c̄, ū which characterize the (in)correctness

of the input correspondence.

The algorithm computes the image correlation corr(s) of

all initial seeds s ∈ S, Alg. 2.2, as Moravec’s normalized

cross-correlation [12] (MNCC) of 5×5 pixel windows cen-

tered at pixels (x, y) in the reference image and A(x, y) in

the target image, deformed with accordance to the affinity

A. Set S is organized as a correlation-priority queue. A

seed is removed from the top of the queue, and for all its 4-

neighbors (left, right, up, down) in the reference image, the

best correlating candidate in Ni is found (out of 9 possible

positions in the target image), Alg. 2.6, such that

N1(s) =
{

(x − 1, y,Ai−1,j) | i, j ∈ {−1, 0, 1}
}

,
N2(s) =

{

(x + 1, y,Ai+1,j) | i, j ∈ {−1, 0, 1}
}

,
N3(s) =

{

(x, y − 1,Ai,j−1) | i, j ∈ {−1, 0, 1}
}

,
N4(s) =

{

(x, y + 1,Ai,j+1) | i, j ∈ {−1, 0, 1}
}

,

(2)

where

Ai,j =

[

a1 a2 a3 + a1i + a2j
a4 a5 a6 + a4i + a5j

]

. (3)

If the highest correlation exceeds threshold τ = 0.5 and

the difference of the first and second highest correlations is

above ǫ = 0.01 and the point is not matched in the reference

image, a new match is found, Alg. 2.8. Next, the counter

for the region size G is incremented, correlation value c is

added to sum C. If the pixel in the target image I
′ is already

matched, the counter for uniqueness violation U is incre-

mented, Alg. 2.11. The binary matching maps T and T
′

are updated and the found match becomes a new seed. Up

to four seeds are created in each growing step.

The process continues until there are no seeds in the

queue or the algorithm is stopped when reaching the maxi-

mum number of growing steps µ, Alg. 2.3.

Discussion. Unlike Vedaldi and Soatto’s region growing

algorithm [19], Algorithm 2 includes no explicit regular-

ization either of the mapping or of the shape of the coseg-

mented regions. The reason is that the algorithm grows

only in informative areas with distinguishing signal (tex-

ture), so regularization is not needed. Areas without texture

are ambiguous and do not help to distinguish correct and

incorrect correspondences. Growth is restricted to unam-

biguous areas by requiring MNCC statistic3 to stay above

a threshold τ , and by requiring the distance of the first and

second highest correlation to be above ǫ, Alg. 2.8. Param-

eters τ and ǫ were set empirically, as a tradeoff between

reliable growth of correct correspondences and preventing

the growth into ambiguous regions. There is only an im-

plicit surface smoothness via the disparity gradient cannot

change too much in (2), similarly as [8].

Usually in wide baseline dense stereo [15, 11], local

affine parameters (a1, a2, a4, a5) representing a matching

window deformation due to surface slant are optimized after

each growing step, in order to enable the growth on curved

or projectively distorted surfaces as far as possible. How-

ever, our goal is different; for correspondence verification

the surface need not be grown too far. Therefore, in our al-

gorithm, the parameters inherited from the initial seed are

kept constant, which is faster than the iterative optimiza-

tion. A small imprecision of the local affine parameters is

not critical.

2.2. Statistical correspondence quality

Ideally, the correspondence quality would be a function

of the probability that the pair of grown patches from the

correspondence is a projection of a 3D surface, calculated

e.g. via MRF on the image grid as by global methods in

dense stereo [6]. However, finding the MAP solution is

computationally intensive even for simple fields. There-

fore, we use the efficient growing algorithm as a subopti-

3Note, the MNCC is a zero mean normalized correlation. For areas

without texture, after subtracting the mean values of signals in windows,

the rest is an uncorrelated noise which results in a low value of the statistic.



mal solution and model the correspondence quality based

on elementary statistics which discriminate the correct and

incorrect correspondences.

We observed, the growth rate ḡ is typically larger for cor-

rect correspondences than for incorrect as reported by [19],

but not always since the correct correspondence may lie on a

small surface or be partially occluded. The average correla-

tion in the region c̄ is also typically higher for correct corre-

spondences, but incorrect correspondences may accidently

have high correlation due to locally similar structures espe-

cially for small regions. The average uniqueness violation

ū (deviation from bijective matching) when growing the re-

gion is also quite discriminative. It is often higher for wrong

correspondences, while for the correct ones the mapping is

more coherent. To forbid the uniqueness violation as in [8]

is not suitable in our wide-baseline setup due to possibly

high surface slant or scale changes.

The statistics returned by the growing algorithm are

combined with a ratio of the first to second closest dis-

tance of SIFT descriptors sr [9]. The problem of estimation

of high dimensional likelihood ratio is avoided by project-

ing the four dimensional statistic into a 1D scalar quality

qi = f(sr, ḡi, c̄i, ūi) which expresses a confidence on cor-

rectness of the correspondence. This is done using the Sup-

port Vector Machine (SVM) trained on a set of exemplar

positive and negative correspondences, see Sec. 3.

In consecutive decision stages i, the statistics are more

discriminative, as the growth has an increasing maximum

number of steps µi, Alg. 1.2. Thus a different SVM θi is

trained for each decision stage i.
The likelihoods pi(q| +1) and pi(q| −1) of positive and

negative class respectively were estimated by Parzen win-

dow method with a moving average kernel. The likelihood

ratio Li given the SVM output qi is computed from linearly

interpolated likelihood estimates. When the qi is out of es-

timated bounds a Gaussian extrapolation is applied.

2.3. Wald’s sequential decision

Let x be an object belonging to one of two classes

{−1,+1}. In our case, the classified objects are corre-

spondences and the classes are ”correct” (1) and ”incor-

rect” (-1). Next, let an ordering on the set of measurements

{x1, . . . , xn} on x be given. Here measurements xi are

scalar values, oriented distances from SVM decision bound-

aries after growing step i.
A sequential decision strategy is a set of decision func-

tions S = {S1, . . . , Sn}, where Si : {x1, . . . , xi} →
{−1,+1, ♯}. The strategy S takes one measurements at a

time. The ’♯’ sign stands for a “continue” (do not decide

yet). If a decision is ’♯’, xi+1 is obtained and Si+1 is eval-

uated. Otherwise, the output of S is the class returned by

Si.

In two-class classification problems, errors of two kinds

can be made by strategy S. Let us denote αS the proba-

bility of rejecting a correct correspondence (x belongs to

+1 but is classified as −1) and βS the probability of ac-

cepting an incorrect correspondence (x belongs to −1 but

is classified as +1). A sequential strategy S is character-

ized by its error rates αS and βS and its average evaluation

time T̄S = E(TS(x)) where the expectation is over p(x),
and T̄S is the expected evaluation time (or time-to-decision)

for strategy. An optimal strategy for the sequential decision

making problem is then defined as

S∗ = arg min
S

T̄S (4)

s.t. βS ≤ β,

αS ≤ α

for specified α and β.

Wald [20] proved that the solution of the optimization

problem (4) is the sequential probability ratio test.

Sequential Probability Ratio Test. Let x be an object

characterized by its hidden state (class) y ∈ {−1,+1}.

The decision about the hidden state is based on successive

measurements x1, x2, . . .. Let the joint conditional density

p(x1, . . . , xm|y = c) of the measurements x1, ..., xm be

known for c ∈ {−1,+1}.

SPRT is a sequential strategy S∗, which is defined as

S∗
m =







+1, Lm ≥ A
−1, Lm ≤ B

♯, B < Lm < A
(5)

where Lm is the likelihood ratio

Lm =
p(x1, ..., xm|y = −1)

p(x1, ..., xm|y = +1)
. (6)

The constants A and B are set according to the required

error of the first kind α and error of the second kind β. Op-

timal A and B are difficult to compute in practice, but tight

bounds are easily derived. It can be shown that setting the

thresholds A and B to

A =
1 − β

α
, B =

β

1 − α
(7)

is close to optimal.

In the SCV algorithm, we assume that all information

about a correspondence is contained in the statistics from

the last growth step: p(qi|y) = p(q1, . . . , qi|y). Therefore

only 1D PDFs are needed to carry out the SPRT test. Esti-

mation of scalar PDFs poses no technical problems as dis-

cussed in previous section.



Figure 2. The set of training images.

3. Experiments

The complete set of 24 image pairs used in a training set

of correspondences is shown in Fig. 2. For all image pairs,

MSERs were detected, LAFs were constructed [10, 14] and

SIFT descriptors were computed on normalized patches.

Preliminary matching was performed which produced a set

of tentative correspondences. Finally, RANSAC was run on

each pair of this set to estimate the epipolar geometry. We

took as the positive correspondence examples inliers of the

epipolar geometry, while the outliers were taken as the neg-

ative examples. We have manually relabeled the correspon-

dences which were accidently consistent with the epipolar

geometry but were in fact incorrect. We obtained approxi-

mately 6200 positive and 9800 negative correspondence ex-

amples. This is our ground-truth set.

The ground-truth set was used to adapt SVM models and

to estimate the likelihoods via Parzen windowing. We used

a publicly available Statistical Pattern Recognition Tool-

box [5] to train the linear SVM.

3.1. The SCV efficiently increases discriminability

Discriminability is the algorithm’s ability to distinguish

correct and incorrect correspondences while the efficiency

is related to speed of the decision. We show the SCV al-

gorithm is more discriminative than a standard SIFT ratio

and the sequential decision making process speeds the al-

gorithm up of the expense of a small discriminability loss.

All the measurements are on an independent test set,

which is a randomly taken half of the ground-truth set, while

the other half was used to the model learning: SVM training

and likelihood estimates.

The discriminability of SCV was measured using a
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Figure 3. Discriminability of the SCV algorithm. The precision-

recall curves for SCV with various setting of false positive and

false negative rates and for the SIFT ratio alone.

precision-recall curve. The SCV algorithm assigns likeli-

hood ratio L to all N correspondences in test set. The cor-

respondences are sorted according to their likelihood ratio,

such that L(1) ≥ L(2) ≥ ... ≥ L(N). The precision is

defined as Q+
n /n, where Q+

n is a number of correct corre-

spondences when retrieving first n samples according to the

likelihood ratio ordering. The recall is defined as Q+
n /Q+

N .

We compared the discriminability of the SCV algorithm

with various settings of Wald’s test parameters (α, β) and

the SIFT ratio, Fig. 3. The SIFT ratio curve is computed in

the same way as explained above, the sorting is performed

on the negative ratio of SIFT distances. The SCV algorithm

outperforms the SIFT ratio alone for all three settings. The

SCV-1 (α = 0.001, β = 0.001) is the most strict setting

which has the highest discriminability. The SCV-2 (α =
0.05, β = 0.001) allows more false negatives, while the

SCV-3 (α = 0.001, β = 0.05) more false positives, but

they both are more efficient in terms of number of window

correlations they had to compute.

In Fig. 4, we compared the three (α, β) settings of SCV

algorithm with the non-sequential version (CV), which

which does not decide until the last stage performing max-

imally µ4 = 1000 growing steps. We measured the aver-

age number of window correlations per correspondence C
which had to be computed, and the percentage di of corre-

spondences decided in i-th stage of the algorithm.

These values differ for correct and incorrect correspon-

dences, so besides the mean values di, C (which depends on

the percentage of correct correspondences in the test set),

we show the tables for correct correspondences d+
i , C+ and

wrong correspondences d−i , C−.

We can see that in the non-sequential (CV) algorithm,

wrong correspondences take more than four times fewer

correlations than correct correspondences. This behavior is

expected, since the algorithm stops growing when there are

no high correlating neighbors and typically finishes by ex-

hausting the seed queue S before the maximum number of



all correspondences

d1 d2 d3 d4 C × 103

CV 0 0 0 100 8.6

SCV-1 9.7 12.7 9.5 68.1 4.1

SCV-2 9.7 63.1 16.4 10.8 2.1

SCV-3 33.6 9.5 4.2 52.8 2.0

correct correspondences only

d+
1 d+

2 d+
3 d+

4 C+ × 103

CV 0 0 0 100 16.2

SCV-1 23.8 23.5 22.9 29.8 4.8

SCV-2 23.8 27.9 24.8 23.4 4.2

SCV-3 79.9 11.3 5.8 3.1 0.4

incorrect correspondences only

d−1 d−2 d−3 d−4 C− × 103

CV 0 0 0 100 3.7

SCV-1 0.8 6.0 1.1 92.2 3.6

SCV-2 0.8 85.1 11.1 2.9 0.7

SCV-3 4.5 8.3 3.1 84.0 3.1

Figure 4. Efficiency of the algorithm. The di is a percentage of cor-

respondences decided in ith stage of the decision process. The C

is an average number of window correlation per correspondence.

growing steps is reached, see Alg. 2.3. This is convenient,

as the matching of tentative correspondences can be much

more permissive without losing much efficiency which is

shown in next experiment.

Further we can see, the sequential decision can speed

up the process by factor of two (SCV-1) or more than four

(SCV-2, SCV-3) compared to the non-sequential algorithm

without losing much discriminability. The curve in Fig. 3

of the non-sequential algorithm (CV) is almost identical to

the SCV-1, therefore it is not shown. In the tables we can

also verify that the SCV-2 having higher allowed false neg-

ative rate tends to decide negative correspondences in lower

stages of the sequence speeding up the decision process by

factor of more than 5, while the SCV-3 vice-versa, speed-

ing up the decision process of positive correspondences by

factor of 12.

Computational complexity. The dominant operation in

SCV algorithm is computation of correlations, the other

overheads (SVM classification, Wald’s SPRT) are negligi-

ble. Considering the average number of tentative correspon-

dences 1000, each requiring on average C = 2100 corre-

lations (c.f . Fig. 4) we end up with approximately 2 × 106

correlations per image pair. This can be computed on recent

CPU in about 0.5 seconds and about 20–100 times faster in

parallel computation on a modern GPU.

3.2. Challenging wide baseline stereo scenes

The results on correspondence selection on difficult wide

baseline stereo scenes are shown in Fig. 5. These scenes

are challenging due to a small overlap of a common part,

a high degree of noise in the images (Raglan), a complex

3D structure with many occlusions (Forsythia), and due

to locally similar background which is not the same (Or-

ange). To find the epipolar geometry at all, the matching

process generating the tentative correspondences preceding

RANSAC had to be much more permissive, otherwise there

were not enough correct among tentative correspondences.

We allowed more than one-to-one mapping in tentative cor-

respondences which lead to a higher number of inliers but

also a higher number of outliers (about 90 percent).

Plots in the last column in Fig. 5 show the curves of

precision in the best n retrieved correspondences. This is

important for progressive RANSAC procedure [2] which

samples tentative correspondences in a given order to fit the

model. So, we can see that for our algorithm, for all three

scenes, this procedure would terminate successfully after 1

iteration, since there is most of the correct correspondences

evaluated with high quality placed in first ranks. This is

neither the case when the ordering of tentative correspon-

dences is given by the negative ratio of SIFT distances, nor

the SIFT distances alone which is even worse.

The sequential algorithm (SCV-2) and its non-sequential

version (CV) are compared. For all the scenes, the results of

SCV-2 are slightly worse than for CV, but it is much faster.

For the Raglan scene it took 0.5 × 103 and 2.5 × 103, for

the forsythia 0.6 × 103 and 5.7 × 103, and for the orange

scene it was 1.2 × 103 and 6.3 × 103 of average number

of computed window correlations per correspondence for

the sequential and full algorithm respectively. The reason

why the decision is even faster here than on the test set in

previous experiment is that there are many more wrong cor-

respondences which are faster to decide and these outliers

are quickly decidable in early stages of the sequence.

3.3. Image retrieval

We show the benefits of SCV algorithm in a large scale

image retrieval setup, using the data set from Nistér and

Stewénius benchmark [13]. It consists of 10200 images in

groups of four that show the same object. Each image is

retrieved from the whole data set. For each query the top

N images are returned, and the score counting how many

of the correct answers are in top K is computed. In the

benchmark K is set to 4, giving the highest score 4, if the

algorithm manages to retrieve top four images that matches

four instances of the object in the data set. Since the query

image is also present in the data set, the worst score of al-

gorithm returning only the query in top K is 1. The overall

performance of the algorithm is computed as the average

score of all 10200 queries from the data set.

A part of the solution proposed by Nistér was reimple-

mented. The MSERs [10] and LAFs [14] were computed

on each of the images. Each of approximately 7 millions
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Figure 5. Results on challenging wide-baseline scenes. For Forsythia, we show the color coded depth map of a common part (marked

approximately by blue frame) to prove the 3D structure of the image pair. Notice, the orange is placed in a different place in the table with

no true correspondence on it.

LAFs was described using SIFT descriptor [9] computed

on an affine normalized patch. Then, similarly to visual

words approach proposed by Sivic and Zisserman [17], we

build visual words vocabulary consisting of 1 million k-

means in the SIFT descriptor space and assign all the de-

scriptors in the images to the nearest visual word. Each

visual word in a given document is weighted using TFIDF

(Term Frequency – Inverse Document Frequency) measure

from text retrieval. The similarity of two documents is then

the L1 distance between their vectors of the visual words

weights. The top K most similar documents are retrieved.

Described approach is similar to the flat scoring of Nistér

and Stewénius. It achieves the average score of 3.40 images

retrieved per query on the whole dataset.

To evaluate the performance of the SCV algorithm we

took all queries that can be improved by verifying reason-

able number of images retrieved by VW method, i.e. queries

where there is at least one image of the retrieved object with

rank 5 to 20. There are 1904 such query images. The over-

all score, the average number of correct images among top

4, achieved by TFIDF visual word ranking is 2.32 for these

queries. Top 20 score, i.e. the average number of correct

images among top 20, is 3.54. This is the upper bound of

the performance for a retrieval algorithm that resorts the top

20 retrieved images.

For comparison, tentative correspondences were com-

puted as nearest SIFT descriptions for each of 1904 query

images and its top 20 retrieved images giving altogether

38080 pairs. Tentative correspondences of each pair were

then verified using the SCV (α = 0.02, β = 0.001) algo-

rithm. Finally, new ranking was established according to the

number of SCV correspondences found in each pair of the

images. We also compared our method to the ranking based

on SIFT correspondences (rank is based on the number of

correspondences with SIFT distance ratio < 0.8). The per-

formance of the SCV algorithm is compared in a histogram

of ranks of the four correct images in answer to each query

(see Fig. 6). Clearly, SCV significantly improves the rank-
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Figure 6. Ranking of documents based on the visual word method,

the number of SIFT correspondences with distance ratio <0.8 and

the number of SCV correspondences.

score higher same lower

SIFT 750 926 228

SCV 1224 597 83

Table 1. Comparison of the

scores of the VW method and

rankings based on SIFT and

SCV correspondences.

ing of the correct images bringing most of them to top 4.

Its overall top 4 score on the 1904 query images is 5717 re-

sulting in average 3.00, the average top 5 score is 3.14. The

overall top 4 score for SIFT correspondences is 5004 result-

ing in average 2.63 and the average top 5 score is 2.85.

At last, we compared the achieved top 4 scores of both

methods to the visual words method in Tab. 1. It shows

the ranking is improved or unchanged with SCV in 95%

of cases. Wrong ranking occurs typically for images of dif-

ferent objects with little texture (usually slightly blurred) on

the same structured background. In this case, the most of, in

fact correct, correspondences are found in the background

which does not help retrieving a correct image.

4. Conclusions

We have presented a method which is able to efficiently

distinguish correct and incorrect correspondences, via col-

lecting statistics while cosegmenting gradually larger re-

gions. We have shown it benefits the matching process in

challenging wide baseline scenes and improves results in a

large scale image retrieval. Note that, the statistical model

– parameters of SVM and likelihoods in SPRT, was learned

on a small and probably non-representative database. We

expect, the results would further improve if the set was en-

larged or adapted to a specific domain.
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