
DOI: 10.1007/s00145-014-9190-0
J Cryptol (2016) 29:115–155

Efficient Set Intersection with Simulation-Based Security
Michael J. Freedman

Department of Computer Science, Princeton University, Princeton, NJ , USA
mfreed@cs.princeton.edu

Carmit Hazay∗
Faculty of Engineering, Bar-Ilan University, Ramat Gan, Israel

carmit.hazay@biu.ac.il

Kobbi Nissim†

Department of Computer Science, Ben-Gurion University, Beer-Sheva, Israel
kobbi@cs.bgu.ac.il

Benny Pinkas‡

Department of Computer Science, Bar-Ilan University, Ramat Gan, Israel
benny@pinkas.net

Communicated by Hugo Krawczyk

Received 6 December 2010
Online publication 24 October 2014

Abstract. Weconsider the problem of computing the intersection of private datasets of
two parties, where the datasets contain lists of elements taken from a large domain. This
problem has many applications for online collaboration. In this work, we present proto-
cols based on the use of homomorphic encryption and different hashing schemes for both
the semi-honest and malicious environments. The protocol for the semi-honest environ-
ment is secure in the standard model, while the protocol for the malicious environment
is secure in the random oracle model. Our protocols obtain linear communication and
computation overhead. We further implement different variants of our semi-honest pro-
tocol. Our experiments show that the asymptotic overhead of the protocol is affected
by different constants. (In particular, the degree of the polynomials evaluated by the
protocol matters less than the number of polynomials that are evaluated.) As a result,
the protocol variant with the best asymptotic overhead is not necessarily preferable for
inputs of reasonable size.

∗ Research partially supported by a grant from the Israel Ministry of Science and Technology (Grant No.
3-10883).

† Research partially supported by the Israel Science Foundation (Grant No. 860/06).
‡ Research partially supported by the European Unions 7th Framework Program (FP7/2007-2013) under

Grant Agreement No. 609611 (PRACTICE) and by a grant from the IsraelMinistry of Science and Technology
(Grant No. 3-9094).

© International Association for Cryptologic Research 2014

http://crossmark.crossref.org/dialog/?doi=10.1007/s00145-014-9190-0&domain=pdf

116 M. J. Freedman et al.

1. Introduction

In the setting of secure two-party computation, two parties with private inputs wish to
jointly compute some function of their inputswhile preserving certain security properties
such as privacy and correctness. The standard way of defining security in this setting
is via the so-called ideal/real model paradigm [9,14,31,52]. Here, an ideal model is
first defined where an uncorrupted trusted party is used to compute the function for the
parties. Then, a real protocol is said to be secure if no adversary can do more harm
in a real protocol execution than in an ideal one (where by definition no harm can be
done). Starting with the work of [11,15,33,65], it is by now well known that (in various
settings, and considering semi-honest and malicious adversaries) any polynomial-time
computation can be generically compiled into a secure function evaluation protocol
with polynomial complexity. However, more often than not, the resulting protocols are
inefficient for practical uses, and hence, attention was given to constructing efficient
protocols for specific functions.
In this work, we consider the basic two-party set intersection problem, where two

parties P1 and P2 hold input sets X, Y , respectively, and wish to compute X ∩ Y .
The secure variant of this computation guarantees that nothing beyond X ∩ Y leaks
within the protocol execution. This problem has been widely studied due to its extensive
usage in computations over databases, e.g., for data mining where the data are vertically
partitioned between parties (namely, each party has different attributes referring to the
same subjects). One could easily envision other potential applications for secure set
intersection such as online recommendation services, online dating services, medical
databases, and many other applications.
We continue with a survey of the current state of affairs with respect to secure two-

party computation of set intersection.

1.1. Background and Related Work

Private equality tests (PET) The simplest non-trivial form of set intersection is where
each of the two datasets consists of a single element. A circuit computing this function
has O(log N) gates (where N is the domain size) and therefore can be securely evaluated
with this overhead. Specialized protocols for this function, denoted by private equality
test (PET) or the socialist millionaires problem, were also suggested in [13,29,47,53]
with essentially the same overhead. We note that the solution in [13] also provides
fairness. A related problem is that of private authenticated key exchange (PAKE), in
which two parties agree on a secure key if both share the same password, taken from a
small domain, see [44] and references within.

Private set intersection The following intuitive “solution” is often suggested for private
set intersection. Assume the two parties agree on some cryptographic function H(·) such
as a one-way hash function or a pseudorandom function. Alice sends to Bob the results
of applying H(·) to each element of her input set. Bob then compares these values to the
results of applying the function to the elements in his input set. If Bob identifies that,
for an input x of his, the value H(x) appears in the list of values sent by Alice, then x
must be in the intersection. This simple solution is unfortunately insecure. The reason

Efficient Set Intersection with Simulation-Based Security 117

is that given Alice’s hashed values Bob can test whether an element x appears in her set
by searching for H(x) in Alice’s hashed set. In particular, when Alice’s set comes from
a polynomial domain, Bob can recover her entire input set.
Denoting by n the number of elements in each dataset and by N the domain size from

which the elements are picked, a trivial solution compares all combinations of items from
the two datasets using n2 instantiations of a PET protocol (that incurs O(log N) over-
head). The computation of this comparison can be reduced to O(n log N), while retaining
the O(n2 log N) communication overhead [53]. A circuit with a smaller asymptotic size
can be constructed by sorting the inputs of the two parties using a sorting network and
then comparing every two adjacent items. The size of a sorting network is O(n log n)

comparators when using the AKS sorting network [6] (which has a large constant factor)
or O(n log2 n) comparators when using the Batcher sorting network [8], whose overhead
induces a more reasonable constant factor. Since our circuit has to handle N -bit long
inputs, the size of the circuit would be O(n log n log N) when using the AKS sorting
network or O(n log2 n log N)when using the Batcher sorting network. The log N factor
can be somewhat reduced using hashing.
These solutions can be implemented securely by applying Yao’s construction of gar-

bled circuit [65]. For the semi-honest setting, this results in a protocol with commu-
nication complexity of the same order as that of the circuit’s size times the security
parameter [49]. Coping with malicious adversaries is more challenging and requires
additional tools for ensuring correctness such as cut-and-choose [50] or zero-knowledge
proofs [21,24,42], which inflate the communication/computation costs. In this work, we
avoid both costly techniques.
The first concrete construction solving the set intersection problem securely had a cost

of O(n) exponentiations [25,35]. However, these constructions were only analyzed in
the randomoraclemodel against semi-honest parties and did not provide a full proof with
simulation-based security. In [28], Freedman et al. studied set intersection in the standard
model and presented a construction for the semi-honest setting, utilizing oblivious poly-
nomial evaluation and balanced allocation hash functions. Their protocol exhibits linear
communication and O(n log log n) computation overhead (counting modular exponen-
tiations). In addition to their semi-honest protocol, Freedman et al. presented variants
of the above protocol for the case where one of the parties is malicious and the other is
semi-honest. The protocol for a malicious P1 and a semi-honest P2 utilizes a cut-and-
choose strategy, and therefore, the communication/computation costs are enhanced by
a statistical security parameter.
Kissner and Song [46] used polynomials to represent multi-sets. Letting the roots of

Q X (·) and QY (·) coincide with elements of the multi-sets X and Y . They observed that
if r(·), s(·) are polynomials chosen at random, then the roots of r(·) · Q X (·)+s(·) · QY (·)
coincide with high probability with the multi-set X ∩ Y . Their result is a set intersec-
tion protocol for the semi-honest case, where the parties use an additively homomorphic
encryption scheme to perform the polynomialmultiplication, introducing quadratic com-
putation costs in the set sizes. For the security of the protocol, it is crucial that no party
should be able to decrypt on its own. Hence, the secret key must be shared and joint
decryption must be deployed. For malicious parties, Kissner and Song [46] introduced
the generic zero-knowledge proofs for proving adherence to the prescribed protocol
(e.g., zero-knowledge proofs of knowledge for the multiplication of the encrypted Qx (·)

118 M. J. Freedman et al.

with a randomly selected r(·)). The costs of these proofs as well as those of setting the
shared key for the Paillier scheme are not specified explicitly and can be relatively high.
An improved protocol for the malicious setting using more efficient zero-knowledge
proofs was presented in [16].
Another tool that can be used for computing set intersection is secure implementation

of oblivious pseudorandom function evaluation (OPRF). Namely, having one party holds
the keys to a PRF fk() while enabling the other party, who has an input x , to compute
fk(x) without learning anything else. The idea of using this tool for set intersection was
first described in [27]. In [36], Hazay and Lindell presented two OPRF-based protocols
for set intersection, one achieving security in the presence of malicious adversaries with
one-sided simulatability, whereas the other is secure in the presence of covert adver-
saries [7]. Having P1, P2 hold sets of sizes m1, m2, respectively, both protocols in [36]
are constant round and incur communication of O(m1 log N + m2) group elements and
computation of O(m1 log N + m2) modular exponentiations. We note that the protocols
in [36] can be made secure in the malicious setup by introducing a secure key selection
step for the oblivious PRF and by adding zero-knowledge proofs of knowledge to show
correctness at each step. Namely, for proving that the same PRF key is used by party P1
for all PRF evaluations and to enable the extraction of the preimages (as a pseudorandom
function is not necessarily invertible). While this would preserve the complexity of these
protocols asymptotically (inm1, m2), introducing such proofs would probably make this
protocol impractical since there is no efficient known way to design such proofs.
Jarecki and Liu [40] generalized the technique of [36] and presented a very efficient

protocol for computing a pseudorandom function with a committed key (informally, this
means that the same key is used in all invocations) and showed that it yields an efficient
set intersection protocol. Themain restriction of this construction is that the input domain
size of the PRFmust be polynomial in the security parameter (since the proof of security
for the set intersection protocol makes use of the ability to exhaustively search over the
input domain). Their protocol is secure in the CRS model with a safe RSA modulus
placed in the CRS and relies on the Decisional q-Diffie–Hellman Inversion assumption.
In a followup work [41], Jarecki and Liu presented a protocol for set intersection that
is secure against malicious adversaries under the interactive One-More Gap Diffie–
Hellman assumption in the random oracle model. Their protocol computes an adaptive
variant of set intersection for which a receiver is allowed to make adaptive queries, each
time revealing whether an item yi belongs to a set X . On the other hand, their protocol
takes only one round of interaction and its total computational cost is under 3(|X |+ |Y |)
exponentiations (which is better than our protocol presented here).
Dachman-Soled et al. [22] presented a protocol for set intersection in the presence

of malicious adversaries without restricting the domain. Their construction uses poly-
nomial evaluation and secret sharing of the inputs. They avoid generic zero knowl-
edge by utilizing the fact that Shamir’s secret sharing implies Reed Solomon code.
Their protocol incurs communication of O(nk2 log2 n + kn) group elements and
O(n2k log n + nk2 log2 n) exponentiations where k is the security parameter.
Finally, Hazay and Nissim [38] investigated protocols in the malicious setting for

constructing efficient secure two-party protocols for set intersection and set union.
They designed constant-round protocols that exhibit linear communication and a
(practically) linear number of exponentiations with simulation-based security. More

Efficient Set Intersection with Simulation-Based Security 119

explicitly, they get that for sets X, Y ⊆ {0, 1}log N of m1, m2 elements, respectively,
the costs are of sending O(m1 + m2 log N) group elements and the computation of
O(m1 + m2(log logm1 + log N)) modular exponentiations. In the heart of these con-
structions is a technique based on a combination of a perfectly hiding commitment and
an oblivious pseudorandom function evaluation protocol with the aim to replace the
random oracle used in [28]. Their work does not consider Cuckoo hashing, but our ideas
can be applied to their construction as well.
Other variants of the problemwere also investigated. Ateniese et al. [3] discussed size-

hiding set intersection, where one of the parties can hide the size of its set. Camenisch
and Zavrucha [18] investigated the problem of set intersection inputs that are certified
by a third party.

Disjointness and set intersection Much attention has been given to bounding the com-
munication complexity of the disjointness function, defined as

Disj(A, B) = 1 if A ∩ B = φ.

It is known [45,60] that if A, B can be arbitrary subsets of [n], then the randomized
communication complexity of the disjointness function is �(n). An immediate impli-
cation is that computing the intersection of two sets |X | = |Y | = n (over a large enough
domain) requires �(n) communication. This follows by a reduction from Disj(·, ·) to
set intersection over domain of size N ≥ 3n.1 Let Z = {z1, . . . , z3n} be a subset of
the domain and let φ be a one-to-one mapping from [n] to {z1, . . . , zn}. Given a subset
A ⊆ [n] let X̂ = {φ(a) : a ∈ A} and set X = X̂ ∪ {zn+1, . . . , z2n−|X̂ |}. Similarly,

given B ⊆ [n] let Ŷ = {φ(b) : b ∈ B} and set Y = Ŷ ∪ {z2n+1, . . . , z3n−|Ŷ |}. Note that
|X ∩ Y | = |X̂ ∩ Ŷ | = |A ∩ B| and hence Disj(A, B) = 1 iff X ∩ Y = ∅. We thus obtain
a lower bound of �(n) on the communication needed for computing the intersection
even without taking privacy and security into consideration.

Set intersection and oblivious transfer The bit oblivious transfer functionality is
defined as

((b0, b1), σ) 	→ (λ, bσ),

where (b0, b1) ∈ {0, 1} × {0, 1} is the sender’s input, σ is the receiver’s input bit and λ

denotes the empty string (meaning that the sender has no output). A simple reduction
from oblivious transfer (OT) to set intersection shows that implementing set intersection
implies implementing oblivious transfer. Given its input (b0, b1), the sender generates
a set of two strings X = {0|b0, 1|b1}. The receiver generates the set Y = {σ |0, σ |1}.
The parties run the set intersection protocol on X, Y where at the end the receiver learns
X ∩Y = {σ |bσ }. By the results of Impagliazzo andRudich [39], it follows that there is no
black-box reduction of oblivious transfer to one-way functions, and therefore, the same
holds with regard to reductions of set intersection to one-way functions. Indeed, our set

1 The reduction is to a domain of size 3n in order to ensure that the inputs to the set intersection problem
are always of size �(n). This simplifies the description of the result that is proved by the reduction.

120 M. J. Freedman et al.

intersection protocols use a stronger primitive—an additively homomorphic encryption
scheme.

1.2. Our Contributions

This paper is an extended and improved version of [28]. We present secure protocols
for set intersection in the presence of semi-honest and malicious adversaries with linear
costs (with respect to the sets sizes). Our results include the following.

1.2.1. Protocols for Computing Set Intersection

These protocols employ a homomorphic encryption scheme and, in particular, the Pail-
lier or ElGamal encryption schemes: (i) a protocol with security against semi-honest
adversaries (cf. Sect. 3.1) and (ii) a protocol in the random oracle model with security
against malicious adversaries (cf. Sect. 5). Our protocols have simulation-based security
(unlike the protocols in [28]), assuming the hardness of DDH/DCR problems.Moreover,
they introduce linear (or nearly linear) computation and communication overheads with
small constant factors, where the analysis depends on the type of the hash scheme we
use. The most efficient result is achieved using a new protocol based on Cuckoo hashing.
We further analyze efficiency based on simple hashing and balanced allocation schemes.
Our analysis is presented in details in Sect. 3.2.

The semi-honest setting The high-level description of our semi-honest protocol follows
by having party P1 generating a polynomial Q(·) of degree m1, with roots set to the
m1 elements of X , and sending the encrypted coefficients to P2 (using a homomorphic
encryption). Then, for each element y ∈ Y , P2 replies with the encryption of r · Q(y)+ y
for a random r . This immediately implies that for y ∈ X ∩Y the result plaintext would be
y.Otherwise, the plaintext equals a randomvalue that does not leak any information about
y. Note first that the communication complexity of this protocol is linear in m1+m2, yet
the work performed by P2 is high, as each of the m2 oblivious polynomial evaluations
includes performing O(m1) exponentiations totaling in O(m1 · m2) exponentiations.
To save on computational work, we use hashing to map the items into different bins.

In that case, the items mapped by P1 to a certain bin must only be compared to those
mapped by P2 to the same bin. Thus, the number of comparisons can be reduced to be in
the order of the number of P2’s inputs times the maximum number of items mapped to a
bin. In this work, we describe and compare modifications of the basic protocol based on
the following different hash schemes: simple hashing, balanced allocations, and Cuckoo
hashing. We also provide in Sect. 4 results of experiments with each of these schemes.

The malicious setting Introducing security in themalicious setting raises new concerns.
First, the basic scheme introduced above is not secure any longer in the malicious setting
since, for instance, amalicious P2 can compute the encryption of r ·Q(y)+y′ for distinct
y and y′ (which implies the ciphertext is decrypted to y′ if and only if y ∈ X). In addition,
using hashing introduces new attacks since we must ensure that P1 computes the small
polynomials correctly and that its input is well defined.

Efficient Set Intersection with Simulation-Based Security 121

Our protocol for the malicious setting avoids the standard solutions that involve zero-
knowledge proofs or the cut-and-choose technique for demonstrating correct behavior.
Instead, it enables party P1 to redo the entire computation supposedly carried out by P2
on each element and verify that its outcome is consistent with the messages received
from P2. In the proof, we show that the probability that P2 convinces P1 of a correct
behavior even though it is not the case is negligible. This technique is implemented in
the random oracle model. Importantly, we do not rely on the programmability property
of the random oracle which weakens the security random oracle notion that we require.
In particular, our simulator only needs to observe the adversary’s random oracle queries.
We note that using hash functions to reduce communication cost in the malicious

setting introduces new problems as the parties must prove that they used a correct
mapping for each element without leaking anything about it. Our solution also deals
with this challenge, ensuring that each element is mapped to the correct bin. A more
subtle problem that we deal with that was overlooked in prior work, is that with some
homomorphic PKEs P1 may construct Q(·) such that the evaluation of r · Q(y) (and
hence also of r · Q(y) + y) is far from being random in the plaintext space even though
Q(y) �= 0 and r is chosen at random. This attack can be carried out with respect to PKEs
for which the plaintext space is not a cyclic group of prime order, implying that r · Q(y)

may be a random element within a smaller subgroup.

Variants of set intersection Finally, we present in Sect. 3.4 a protocol for computing
the cardinality of the intersection. This protocol uses our protocol for computing the set
intersection as a main building block. The computation/communication overheads do
not change.

1.2.2. Experimental Results

We implement and test the different variants of the semi-honest protocol and analyze their
overhead (cf. Sect. 4). These experiments are new to this work and were not conducted
in [28]. Throughout our experiments, we gain some insights regarding the practicality
of the cryptographic primitives we use in our constructions and the relation between
the asymptotic and actual overhead of the protocols. Somewhat surprisingly, we get that
the variant with the best asymptotic overhead is not necessarily preferable for inputs
of reasonable size. In particular, the degree of the polynomials evaluated by the proto-
col matters less than the number of polynomials that are evaluated. More specifically,
recalling that the random hashing construction evaluates a single polynomial of degree
O(logm1), whereas the balanced allocations construction evaluates two polynomials of
degree O(log logm1) and the Cuckoo hashing construction evaluates three polynomials:
two linear polynomials and a polynomial of degree 2. Asymptotically, the performance
of the constructions based on balanced allocations and Cuckoo hashing is preferable,
but since these two constructions use more polynomials than the first construction, their
overhead is higher than that of random hashing for the input sizes that we tested.

1.2.3. A Roadmap

In Sect. 2, we present definitions and tools that are useful for our constructions. In Sect. 3,
we present our first construction for the semi-honest setting and generalizations for two

122 M. J. Freedman et al.

related problems. In Sect. 4, we present our performance evaluation, and in Sect. 5, we
describe our protocol for the malicious setting and its proof.

2. Definitions and Tools

Basic notations The security parameter is denoted by k, and, although not explicitly
specified, input lengths are always assumed to be bounded by some polynomial in k.
A probabilistic machine is said to run in polynomial time (PPT) if it runs in time that
is polynomial in the security parameter k. A function μ(k) is called negligible in k
(negligible for short) if for every polynomial p(·) there exists a value k0 = k0(p) such
that μ(k) < 1

p(k)
for all k > k0; i.e., μ(k) = k−ω(1). Let X = {X (k, a)}k∈N,a∈{0,1}∗ and

Y = {Y (k, a)}k∈N,a∈{0,1}∗ be distribution ensembles (over strings of length polynomial

in k). We say that X and Y are computationally indistinguishable, denoted X
c≡ Y , if for

every polynomial non-uniform distinguisher D there exists a negligible μ(·) such that

∣
∣
∣Pr[D(X (k, a)) = 1] − Pr[D(Y (k, a)) = 1]

∣
∣
∣ < μ(k)

for every k ∈ N and a ∈ {0, 1}∗.

2.1. Secure Two-Party Computation

We briefly present the standard definition for secure multiparty computation and refer
to [34, Chapter 7] for more details and motivating discussions.

Two-party computation A two-party protocol problem is cast by specifying a random
process that maps pairs of inputs to pairs of outputs (one for each party). We refer to
such a process as a functionality and denote it f : {0, 1}∗ × {0, 1}∗ → {0, 1}∗ × {0, 1}∗,
where f = (f1, f2). That is, for every pair of inputs (x, y), the output vector is a
random variable (f1(x, y), f2(x, y)) ranging over pairs of strings where P1 receives
f1(x, y) and P2 receives f2(x, y). We use the notation (x, y) 	→ (f1(x, y), f2(x, y))

to describe a functionality. For example, the oblivious transfer functionality is written
((x0, x1), σ) 	→ (λ, xσ), where (x0, x1) is the first party’s input, σ is the second party’s
input and λ denotes the empty string (meaning that the first party has no output). A
special case for a two-party functionality is that of zero-knowledge proof of knowledge
for a relationRZK. This relation can be defined by the inputs (x, (x, w)) that are mapped
into (1, λ) if RZK(x, w) = 1, or into (⊥, λ) otherwise.

Security of protocols We prove the security of our protocols in the settings of semi-
honest andmalicious computationally bounded adversaries. Loosely speaking, the adver-
sary in the semi-honest setting is assumed to act according to its prescribed actions in the
protocol, whereas in the malicious setting it may arbitrarily deviate from the specified
protocol. Security is analyzed by comparing what an adversary can do in a real protocol
execution to what it can do in an ideal scenario. In the ideal scenario, the computa-
tion involves an incorruptible trusted third party to whom the parties send their inputs.
The trusted party computes the functionality on the inputs and returns to each party its

Efficient Set Intersection with Simulation-Based Security 123

respective output. Informally, the protocol is secure if any adversary interacting in the
real protocol (i.e., where no trusted third party exists) can do no more harm than what it
could do in the ideal scenario. There are technical issues that arise, such as that it may be
impossible to achieve fairness or guaranteed output delivery. For example, it is possible
for an adversarial party to prevent an honest party from receiving outputs.

2.1.1. The Semi-Honest Setting

In this model, the adversary controls one of the parties and follows the protocol speci-
fication. However, it may try to learn more information than allowed by looking at the
transcript of messages that it received and its internal state. The following definition is
according to [34].
Let f = (f1, f2) be a two-party functionality and let π be a two-party protocol for

computing f . The view of the first party in an execution of π on inputs (x, y) is

Viewπ,1(x, y) = (x, r1, m1, . . . , mt),

where r1 is the content of the first party’s internal random tape and mi represents the
i th message that it received. The output of the first party in an execution of π on
(x, y) is denoted Outputπ,1(x, y) and can be computed from Viewπ,1(x, y). Similarly,
Viewπ,2(x, y)(y, r2, m1, . . . , mt) where r2 is second party’s randomness and mi is the
i th message it received. The output of the second party can be computed from her view
and is denoted Outputπ,2(x, y).

Definition 2.1. Let f and π be as above. Protocol π is said to securely compute f
in the presence of semi-honest adversaries if there exist probabilistic polynomial-time
algorithms S1 and S2 such that

(S1(x, f1(k, x, y)), f2(k, x, y))k∈N,x,y∈{0,1}∗
c≡ {(Viewπ,1(k, x, y),Outputπ,2(k, x, y))}k∈N,x,y∈{0,1}∗

(f1(k, x, y),S2(y, f2(k, x, y)))k∈N,x,y∈{0,1}∗
c≡ {(Outputπ,1(k, x, y), (Viewπ,2(k, x, y)))}k∈N,x,y∈{0,1}∗

where k is the security parameter.

2.1.2. The Malicious Setting

Execution in the ideal model In an ideal execution, the parties submit inputs to a trusted
party that computes the output. An honest party receives its input for the computation
and just directs it to the trusted party, whereas a corrupted party can replace its input
with any other value of the same length. Since we do not consider fairness, the trusted
party first sends the outputs of the corrupted parties to the adversary and the adversary
then decides whether the honest parties would receive their outputs from the trusted
party or an abort symbol ⊥. Let f be a two-party functionality where f = (f1, f2),
let A be a non-uniform probabilistic polynomial-time machine, and let I ⊂ [2] be the

124 M. J. Freedman et al.

set of corrupted parties (either P1 is corrupted or P2 is corrupted or neither). Then, the
ideal execution of f on inputs (x, y), auxiliary input z to A and security parameter k,
denoted Ideal f,A(z),I (k, x, y), is defined as the output pair of the honest party and the
adversary A from the above ideal execution.

Execution in the real model In the real model, there is no trusted third party and the
parties interact directly. The adversary A sends all messages in place of the corrupted
party and may follow an arbitrary polynomial-time strategy. The honest parties follow
the instructions of the specified protocol π .
Let f be as above and let π be a two-party protocol for computing f . Furthermore,

let A be a non-uniform probabilistic polynomial-time machine and let I be the set of
corrupted parties. Then, the real execution of π on inputs (x, y), auxiliary input z to A
and security parameter k, denoted Realπ,A(z),I (k, x, y), is defined as the output vector
of the honest parties and the adversary A from the real execution of π .

Security as emulation of a real execution in the ideal model Having defined the ideal
and realmodels,we cannowdefine security of protocols. Loosely speaking, the definition
asserts that a secure party protocol (in the real model) emulates the ideal model (in which
a trusted party exists). This is formulated by saying that adversaries in the ideal model
are able to simulate executions of the real model protocol.

Definition 2.2. Let f and π be as above. Protocol π is said to securely compute
f with abort in the presence of malicious adversaries if for every non-uniform
probabilistic polynomial-time adversaryA for the real model, there exists a non-uniform
probabilistic polynomial-time adversary S for the ideal model, such that for every I ⊂
[2],

{

Ideal f,S(z),I (k, x, y)
}

k∈IN,x,y,z∈{0,1}∗
c≡ {

Realπ,A(z),I (k, x, y)
}

k∈IN,x,y,z∈{0,1}∗

where k is the security parameter.

The f -hybrid model In our constructions, we will use secure two-party protocols as
sub-protocols. A standard way of abstracting out the details of the sub-protocols is to
work in a “hybrid model” where the two parties interact with each other (as in the real
model) and also use trusted help (as in the ideal model). Specifically, an execution of
a protocol π that uses a sub-protocol for securely computing some functionality f is
modeled as if the parties run π and issue “ideal calls” to a trusted party for computing
f instead of invoking the protocol for f . In these calls to f , the parties send inputs to
the trusted party, which, upon receiving the inputs from the parties, computes f and
sends each party its corresponding output. After receiving these outputs, the protocol π
continues.
We stress that we use the f -hybrid model in a sequential composition, i.e., the parties

do not send messages in π between the time that they send input to the trusted party and
the time that they receive back output. The trusted party may be used a number of times
throughout the execution of π . Each time is independent in the sense that the trusted
party does not maintain any state between these calls. We call the regular messages of

Efficient Set Intersection with Simulation-Based Security 125

π that are sent among the parties standard messages and the messages that are sent
between parties and the trusted party ideal messages.
Let f be a functionality and let π be a two-party protocol that uses ideal calls

to a trusted party computing f . Let A be a non-uniform probabilistic polynomial-
time machine and let I be the set of corrupted parties. Then, the f -hybrid execu-
tion of π on inputs (x, y), auxiliary input z to A and security parameter k, denoted
Hybrid f

π,A(z),I (k, x, y), is defined as the output vector of the honest parties and the
adversary A from the hybrid execution of π with a trusted party computing f .

Let f and π be as above, and let ρ be a protocol. Consider the real protocol πρ that
is defined as follows. All standard messages of π are unchanged. When a party Pi is
instructed to send an ideal message αi to the trusted party, it begins a real execution
of ρ with input αi instead. When this execution of ρ concludes with output βi , party
Pi continues with π as if βi was the output received by the trusted party (i.e., as if
it were running in the f -hybrid model). Then, the composition theorem of [14] states
that if ρ securely computes f , then the output distribution of a protocol π in a hybrid
execution with f is computationally indistinguishable from the output distribution of
the real protocol πρ . Thus, it suffices to analyze the security of π when using ideal calls
to f ; security of the real protocol πρ is derived via this composition theorem.

2.2. Hardness Assumptions

Our constructions rely on the following hardness assumptions.

Definition 2.3. (DDH) We say that the decisional Diffie–Hellman (DDH) problem is
hard relative to G = {Gk} if for all polynomial-sized circuits A = {Ak} there exists a
negligible function negl such that

∣
∣
∣ Pr

[A(G, q, g, gx , gy, gz) = 1
] − Pr

[A(G, q, g, gx , gy, gxy) = 1
]
∣
∣
∣ ≤ negl(k),

where q is the order of G and the probabilities are taken over the choices of g and
x, y, z ∈ Zq .

We require the DDH assumption to hold for prime-order groups.

Definition 2.4. (DCR)We say that the decisional composite residuosity (DCR) problem
is hard if for all polynomial-sized circuits A = {Ak} there exists a negligible function
negl such that

∣
∣
∣Pr

[

A(N , z) = 1|z = yN mod N 2
]

−Pr
[

A(A(N , z) = 1|z = (1 + N)r · yN mod N 2
] ∣
∣
∣ ≤ negl(k),

where N is a random k-bit RSA composite, r is chosen at random in ZN and the
probabilities are taken over the choices of N , y and r .

126 M. J. Freedman et al.

2.3. Public Key Encryption Schemes

We begin with the definitions of public key encryption and semantic security. We then
specify the definition of homomorphic encryption and two encryption schemes that meet
this definition.

Definition 2.5. (PKE) We say that � = (G, E, D) is a public key encryption scheme
if G, E, D are polynomial-time algorithms specified as follows:

• G, given a security parameter n (in unary), outputs keys (pk, sk), where pk is a
public key and sk is a secret key. We denote this by (pk, sk) ← G(1k).

• E , given the public key pk and a plaintextmessagem, outputs a ciphertext c encrypt-
ing m. We denote this by c ← E pk(m); and when emphasizing the randomness r
used for encryption, we denote this by c ← E pk(m; r).

• D, given the public key pk, secret key sk and a ciphertext c, outputs a plaintext
message m s.t. there exists randomness r for which c = E pk(m; r) (or ⊥ if no such
message exists). We denote this by m ← Dpk,sk(c).

For a public key encryption scheme � = (G, E, D) and a non-uniform adversary
A = (A1,A2), we consider the following Semantic security game:

(pk, sk) ← G(1k).

(m0, m1, history) ← A1(pk), s.t. |m0| = |m1|.
c ← E pk(mb), where b ←R {0, 1}.
b′ ← A2(c, history).

A wins if b′ = b.

Denote by Adv�,A(n) the probability that A wins the semantic security game.

Definition 2.6. (Semantic security) A public key encryption scheme � = (G, E, D)

is semantically secure, if for every polynomial non-uniform adversary A = (A1,A2)

there exists a negligible function negl such that Adv�,A(k) ≤ 1
2 + negl(k).

2.3.1. Building Blocks: Additively Homomorphic PKE

Intuitively, a public key encryption scheme is additively homomorphic if given two
ciphertexts c1 = E pk(m1; r1) and c2 = E pk(m2; r2) it is possible to efficiently compute
E pk(m1+m2; r)with independent r and without the knowledge of the secret decryption
key. Clearly, this assumes that the plaintextmessage space is a group; we actually assume
that both the plaintext and ciphertext spaces are groups (with respective group operations
+ and ·). We abuse notation and use E pk(m) to denote the random variable induced
by E pk(m; r) where r is chosen uniformly at random. We have the following formal
definition.

Definition 2.7. (Homomorphic PKE) A public key encryption scheme (G, E, D) is
homomorphic if for all k and all (pk, sk) output by G(1k), it is possible to define
groups M,C such that:

Efficient Set Intersection with Simulation-Based Security 127

• The plaintext space is M, and all ciphertexts output by E pk(·) are elements of C.2

• For every m1, m2 ∈ M, it holds that

{pk, c1 = E pk(m1), c1 · E pk(m2)} ≡ {pk, E pk(m1), E pk(m1 + m2)} (1)

where the group operations are carried out in C and M, respectively, and the
randomness for the distinct ciphertexts is independent.

Note that any such scheme supports a multiplication of a plaintext by a scalar, that can
be achieved by computing multiple additions. In particular, this homomorphic property
allows oblivious evaluation of any polynomial Q(x) = ∑

i Qi xi , given its encrypted
coefficients {E pk(Qi)}i .

The Paillier PKE An example of an encryption scheme that meets Definition 2.7 is
the encryption scheme of Paillier [55]. In this scheme, the public key pk is an RSA
composite N and the corresponding secret key sk is φ(N). Then, given a message
m ∈ ZN , the encryption procedure selects r ←R Z

∗
N (in practice r ←R ZN) and

computes E pk(m; r) = (1+N)m ·r N mod N 2. Conversely, given a ciphertext c ∈ Z
∗
N2 ,

the decryption procedure computes

Dsk(c) = [cφ(N) mod N 2] − 1

N
· φ(N)−1 mod N .

This scheme is semantically secure, assuming hardness of the decisional composite
residuosity problem. Note that the Paillier scheme is homomorphic with respect to
addition modulo N , as Dsk[E pk(m1) · E pk(m2)] = m1 + m2 mod N . Furthermore,
Dsk[(E pk(m))c mod N 2] = cm mod N . Hence, given encryptions {ci } of messages
{mi } and pk, one can compute an encryption of any linear combination

∑

i αi · mi

mod N .

The ElGamal PKE Another encryption scheme suitable for our needs is the ElGamal
encryption [26]. Namely, let G be a group generated by g of prime order q, in which
the decisional Diffie–Hellman (DDH) problem is hard. A public key is then a pair pk =
〈g, h〉 and the corresponding secret key is s = logg(h), i.e., gs = h. Then, an encryption
of amessagem ∈ Zq is defined by E pk(m; r) = 〈gr , hr ·gm〉where r is picked uniformly
at random from Zq . The decryption algorithm follows by outputting c2/cs

1, decrypting
a ciphertext 〈c1, c2〉. This scheme does not directly support the necessary homomorphic
operations since the decryption yields gm rather than m. Fortunately, the lack of “full”
decryption is not an issue since P1 only needs to distinguish between an encryption of
a uniformly picked m and the case where m ∈ X (i.e., when m is part of its input).

Our experiments, detailed in Sect. 4, show that the ElGamal PKE is much faster than
the Paillier PKE with comparable security, and therefore, one might prefer using the
ElGamal-based version of our protocols.

2 The plaintext and ciphertext spaces may depend on pk; we leave this implicit.

128 M. J. Freedman et al.

3. Secure Set Intersection in the Semi-Honest Setting

In this section, we present in detail our construction for a protocol realizing F∩ in the
presence of semi-honest adversaries. The main tool used in our construction is oblivious
polynomial evaluation, implemented based on an additively homomorphic PKE. We
consider the functionality of set intersection where each party’s input consists of a set
and the size of the other party’s input set (the reason for including the size of the other
party’s set in each party’s input is to model the fact that the protocol leaks the sizes of
the input sets). More formally:

Definition 3.1. Let X and Y be subsets of a predetermined domain,3 the functionality
F∩ is:

((X, m2), (Y, m1)) 	→
{

(X ∩ Y, λ) if |X | = m1 and |Y | = m2,

(λ, λ) otherwise.

We continue with a high-level description of the basic semi-honest protocol as given
in [28]. We then discuss techniques to improve the computational overhead (Sect. 3.2)
and provide a formal description of our protocol together with a detailed simulation-
based security proof (Sect. 3.3). In Sect. 3.4, we consider two variants of the set inter-
section problem and discuss solutions for these problems.

3.1. A High-Level Description

Recall that P1 has m1 elements and P2 has m2 elements. The basic protocol works as
follows:

1. Party P1 chooses a pair of encryption/decryption keys (pk, sk) ← G(1k) for a
homomorphic PKE (G, E, D) and sends pk to P2.

2. P1 computes the coefficients of a polynomial Q(·) of degree m1, whose roots are
set to be the m1 elements of X . P1 sends the encrypted coefficients of Q(·) to P2.

3. For each element y ∈ Y (in a random order), party P2 chooses r at random (from
the appropriate plaintext space M) and uses the homomorphic properties of the
encryption scheme to compute an encryption of r ·Q(y)+y. P2 sends the encrypted
values to P1.

4. Upon receiving these encrypted values, P1 extracts X ∩Y by decrypting each value
and then checking if the result is in X .

Security argument (informal) This argument is split into two parts. First note that if
y ∈ X ∩ Y , then by the construction of the polynomial Q(·) we get that r · Q(y) + y =
r · 0 + y = y. On the other hand, if y /∈ X ∩ Y , we require that the product r · Q(y)

corresponds to a random valuewithin the plaintext group so that it reveals no information

3 W.l.o.g., we assume X, Y ⊆ {0, 1}p(k) for some polynomial p(·) such that 2p(k) is super-polynomial in
k.

Efficient Set Intersection with Simulation-Based Security 129

about y and (with high probability) is not in X .4 This requirement is obtained almost
immediately when using the ElGamal PKE since the plaintext space (excluding zero),
Z

∗
q , is a multiplicative group. Therefore, for any element m ∈ Z

∗
q , the probability that

r · Q(y) = m is 1/(q − 1) since r = m/Q(y), given that Q(y) �= 0. This, however,
is not immediately true when using the Paillier PKE with plaintext space ZN since N
is not a prime. Fortunately, the fraction of elements outside the multiplicative subgroup
Z

∗
N is negligible in k (furthermore, finding an element in ZN \Z∗

N when the secret key
is unknown amounts to factoring N). We thus get that for any element y �∈ X ∩ Y the
probability that Q(y) /∈ Z

∗
N is negligible in k.

More generally, we formalize the requirements from the homomorphic PKE as fol-
lows:

Definition 3.2. We say that homomorphic PKE is good for plaintext space if the fol-
lowing holds:

1. The plaintext space M contains the input domain space {0, 1}p(k).
2. There exists a multiplicative group G for which all but a negligible fraction of M

is in G. Specifically, for any X, Y ⊆ {0, 1}p(k), the probability that Q(y) /∈ G for
all y /∈ X ∩ Y is negligible, where the probability is taken over the choice of the
parameters for G.

Efficiency The communication complexity of this simple scheme is linear in m1 and
m2, as m1 + 1 ciphertexts are sent from P1 to P2 (these are the encrypted coefficients
of Q(·)), and m2 encrypted values are sent from P2 to P1 (i.e., Q(y) for every y ∈ Y).
However, the work performed by P2 is relatively high as each of the m2 oblivious
polynomial evaluations includes performing O(m1) exponentiations, totaling in O(m1 ·
m2) exponentiations.
A first improvement in the computational overhead can be obtained by applying

Horner’s rule to the evaluation of Q(·). Any polynomial P(y) = α0 + α1y + α2y2 +
· · · + αm1 ym1 can be evaluated “from the inside out” as follows,

α0 + y(α1 + y(α2 + y(α3 + · · · y(αm1−1 + yαm1) · · ·))).

This method of computation employs m1 multiplications by y, compared with the
straightforward polynomial computation method that multiplies the coefficients with
the values y, y2, . . . , ym1 . The improvement is significant when the length of y is much
shorter than the length of a full exponent. Recall that with the textbook algorithm for
modular exponentiation the computational overhead is linear in the length of the expo-
nent. The gain may be significant even when fine-tuned exponentiation algorithms such
as Montgomery’s method or Karatsuba’s technique are used.
For example, the length of the exponent is typically at least 1,024 bits in the case

of Paillier and could be as short as 160 bits in the case of ElGamal. There are many
applications in which the input y can be rather short, e.g., if y is a social security number

4 This construction can be considered a generalization of the oblivious transfer protocols of [5,47,54].
In those, a chooser retrieving item i sends to the sender a predicate which is 0 if and only if i = j , where
j ∈ [N].

130 M. J. Freedman et al.

then it can be encoded using only 30 bits. When the domain from which the inputs y are
taken is large, standard hashing techniques can be used as long as collision probability
is negligible. Based on the birthday paradox, it is sufficient to hash the values to strings
of length about 2max(logm1, logm2) bits. For the textbook exponentiation algorithm,
the improvement is by a factor of k/2max(logm1, logm2), where k is the length of the
exponent. For m1, m2 ≈ 100,000, this factor is about 30 for Paillier with k = 1,024 or
about 5 for ElGamal with k = 160.

3.2. Using Hashing to Reduce the Computational Overhead

The main computational overhead of the basic protocol is the work of P2, which essen-
tially has to do m1 · m2 comparisons, in order to compare each of its inputs to each of
the inputs of P1. This overhead can be reduced using hashing, if both parties use the
same hash scheme to map their respective items into different bins. In that case, the
items mapped by P1 to a certain bin must only be compared to those mapped by P2 to
the same bin. Thus, the number of comparisons can be reduced to be in the order of the
number of P2’s inputs times the maximum number of items mapped to a bin. (Of course,
care must be taken to ensure that the result of the hashing does not reveal information
about the inputs.) We describe and compare modifications of the basic protocol based on
the following different hash schemes: simple hashing, balanced allocations, and Cuckoo
hashing. We also provide in Sect. 4 results of experiments with each of these schemes.

Using simple hashing Suppose that the items are hashed into one of B bins as fol-
lows. Let h be a randomly chosen hash function mapping elements into bins numbered
1, . . . , B. It is well known that if the hash function h mapsm1 items to random bins, then,

if m1 ≥ B log B, each bin contains with high probability at most M = m1
B +

√
m1 log B

B
(see, e.g., [61,63]). Setting B = m1/ logm1 and applying the Chernoff bound shows
that M = O(logm1) except with probability (m1)

−s , where s is a constant that depends
on the exact value of M .5

In the protocol, the hash function h will be known to both parties. We would therefore
like to hide from each party how many of the inputs of the other party are mapped by
h to each bin. Thus, the modified protocol works by having P1 define a polynomial of
degree M for each bin by fixing its mapped elements to be the set of roots. In addition,
P1 adds the root 0 sufficiently many times, so that the total degree of the polynomial is
M . That is, if h maps items to the bin, P1 first defines a polynomial whose roots are
these items and then multiplies it by x M−. (We assume that 0 is not a valid input.) The
process results in B polynomials, all of degree M , with exactly m1 nonzero roots. Note
that although only a few of the bins have M items, we have to set all polynomials to this
degree and pay the associated overhead, in order to hide the exact number of items that
are mapped to every bin.

5 By setting B = m1 log logm1/ logm1, we can make the error probability negligible in m1. However,
any actual implementation will have to examine the exact value of B which results in a sufficiently small error
probability for the input sizes that are expected. As for theoretical analysis, the subsequent construction, based
on balanced allocation hashing, presents a negligible error probability.

Efficient Set Intersection with Simulation-Based Security 131

Finally, P1 sends to P2 the encrypted coefficients of the polynomials and the mapping
h from elements to bins. (For our purposes, it is sufficient that the mapping is selected
pseudorandomly, either jointly or by either party.) For every y ∈ Y , P2 finds the bin into
which y is mapped and evaluates the polynomial of this bin. It proceeds as before and
responds to P1 with the encryptions of r P(y) + y for all y. Note that the communica-
tion complexity is not affected, as P1 sends B M = O(m1) items and p2 replies with
m2 values. The main gain is that P2 now has to perform only m2M = m2O(logm1)

exponentiations (rather than m1m2 exponentiations if no hashing is used).

Using balanced allocations To save on the computational work even more, we intro-
duce a balanced allocation scheme for randomly mapping elements into bins. Loosely
speaking, we use the balanced allocation scheme of [1] where elements are inserted into
B bins as follows. Let h0, h1 be two randomly chosen hash functions mapping elements
into bins numbered 1, . . . , B. An element x is inserted into the less occupied bin from
{h0(x), h1(x)}, where ties are broken arbitrarily. Ifm1 elements are inserted, then, except
with negligible probability over the choice of the hash functions h0, h1, the maximum
number of elements allocated to any single bin is at most M = O(m1/B + log log B).
(The exact probability is described in a note below.) Setting B = m1

log logm1
, we get

that M = O(log logm1).6 Note that in this case the degree of the polynomials and the
associated overhead are much smaller than the logm1 degree that was set when simple
hashing was used.
Then, upon receiving the encrypted polynomials, party P2 obliviously evaluates, for

each of its inputs y, the encryption of r0 · Qh0(y)(y)+ y and r1 · Qh1(y)(y)+ y for each of
the two bins h0(y), h1(y) in which y can be allocated. (Note that here P2 must evaluate
two polynomials for each of its inputs since it has no way of knowing what is the right
bin.) Finally, P1 decrypts both evaluations and performs the same check as in the high-
level description above, twice. Setting B = m1

log logm1
and M = O(log logm1), we get

that the communication complexity is not affected (neglecting constant factors), as P1
now sends B M = O(m1) encrypted values and P2 replies with 2m2 encrypted values.
There is, however, a reduction in the work performed by P2, as each of the oblivious
polynomial evaluations amounts to performing O(M) exponentiations, and so P2 now
performs only 2m2M = 2m2O(log logm1) exponentiations overall.
Finally, onemayworry about the case that P1 is unlucky in its choice of hash functions

such that more than M items are mapped to some bin. The bound of [1] only guaran-
tees that this happens with probability o(1). However, Broder and Mitzenmacher [12]
have shown that asymptotically, when we map n items into n bins, the number of
bins with i or more items falls approximately like 2−2.6i

. Formally, this means that
if M = ω(log log n), then except with negligible probability no bin will be of size
greater than M . Practically, this means that a bound of M = 5 suffices with probability
1 − 10−35. The authors also provide experimental results that confirm the asymptotic
bound for the case of n = 32,000.

6 A constant factor improvement is achieved using theAlways Go Left scheme in [62]where h0 : {0, 1}∗ →
[1, . . . , B

2], h1 : {0, 1}∗ → [B
2 + 1, . . . , B]. In that scheme, an element x is inserted into the less occupied

bin from {h0(x), h1(x)}; in case of a tie, x is inserted into h0(x).

132 M. J. Freedman et al.

Using Cuckoo hash Cuckoo hash [58] is a multiple-choice hashing scheme with evic-
tions. In its simplest form, n items are mapped to 2(1 + ε)n bins (where ε is a small
constant that affects the error probability), using two hash functions h0, h1. When item
x is inserted, then if either bin h0(x) or bin h1(x) is free, x is mapped to the free bin.
Otherwise, we put x in bin h0(x), evict the item x ′ that is already in that location, and
try to move x ′ to the location defined by the other hash function (i.e., if h0(x) = h0(x ′),
then we try to move x ′ to h1(x ′)). If that location is occupied as well, we evict the item
that is located there and try to relocate it, and so on. A version of this algorithm described
in [58] continues with this process, until there is a series of O(log n) evictions, in which
case it chooses new hash functions h0, h1 and tries to re-insert all items. It was shown
in [58] that the expected time, i.e., the expected number of insertion trials, needed by
the scheme to insert all items is O(n).
The use of Cuckoo hash for our purposes is appealing, since at most a single item is

mapped to every bin. Therefore, the number of comparisons can be reduced to be linear
in the uninput size. A major obstacle, though, is that there is a pretty high probability,
of 1/n, that a specific input set of n elements cannot be inserted in the table using a
specific pair of hash functions h0, h1, and then, a new pair of hash functions must be
chosen. Therefore P2, which knows the hash functions and knows that they were chosen
at random from the set of pairs of functions which do not cause an abort for P1’s input,
can identify with probability of about 1/n whether a certain potential input set of P1
cannot be the actual input of P1 in a specific run of the protocol. This problem occurs
even if P1 rearranges its input element in a random order.
One approach to reducing the effect of this problem is to use the “Cuckoo hashingwith

a stash” solution of [43]: In addition to the hash table, this solution keeps a small amount
of additional memory, namely a stash of s items. If the insertion algorithm encounters
an infinite cycle of evictions, then an element in that cycle is moved to the stash. When
we look for an item x in the table, we search for it in locations h0(x) and h1(x) as well
as in the stash. It was shown in [43] that, for any constant s, using a stash of size s fails
with probability O(n−s) (taken over the choice of the hash functions). Therefore, if we
change the algorithm so that it aborts if the original choice of hash functions results in
more than s items being moved to the stash, then the algorithm aborts with probability
of at most O(n−s). Consequently, P2 can identify with probability O(n−s) whether a
specific potential input of P1 does not agree with the hash functions h0, h1. This is a
low (albeit not negligible) probability which we further characterize experimentally in
Sect. 4 for various settings of hash table size (1 + ε), n and stash size s.
When the protocol is implemented using Cuckoo hash, then when P2 processes an

input x it must evaluate the polynomials of the two bins to which x might have been
mapped (bins h0(x) and h1(x)), as well as the polynomial representing the stash. The
advantage is that the polynomials of the two bins are linear and the polynomial repre-
senting the stash is of small degree. This should be compared to the balanced allocation
solution in which the polynomials representing the bins are of degree log logm1.

3.3. The Detailed Protocol

We are now ready to formally present our protocol. We describe the protocol based on
balanced allocations, since for that hashing scheme there is a negligibly small bound on

Efficient Set Intersection with Simulation-Based Security 133

the failure probability. We remind the reader that our construction is secure with respect
to both Paillier and ElGamal and any homomorphic PKE that meets Definition 3.2.
We describe our construction using a general notation for the homomorphic encryption
scheme. In Sect. 4, we describe the results of experiments with each of the hashing
schemes.

Protocol 1. (πSH∩ - secure set intersection in the semi-honest model):

• Inputs: The input of P1 is m2 and a set X ⊆ {0, 1}p(k) containing m1 items; the
input of P2 is m1 and a set Y ⊆ {0, 1}p(k) containing m2 items (hence, both parties
know m1 and m2). Recall from definition 3.2 that {0, 1}p(k) is contained in the
plaintext space of a homomorphic PKE with a good plaintext space.

• Auxiliary inputs: A security parameter 1k .
• Convention: Both parties check every received ciphertext for validity and abort if

an invalid ciphertext is received.
• The protocol:

1. Key setup: P1 chooses (pk, sk) ← G(1k) and sends pk to P2.
2. Setting the balanced allocation scheme: P1 computes the parameters B, M

for the scheme and chooses two randomly chosen hash functions h0, h1 :
{0, 1}p(k) → [B].7 It sends B, M, h0, h1 to P2.

3. Creating polynomials for the set X: For every x ∈ X, P1 maps x into the
less occupied bin from {h0(x), h1(x)} (ties broken arbitrarily). Let Bi denote

the set of elements mapped into bin i and let Qi (x)
def= ∑M

j=0 Qi, j · x j denote
a polynomial with the set of roots Bi (if Bi = ∅, then P1 sets Qi (x) = 1). If
|Bi | < M, then P1 multiplies Qi (·) by x M−|Bi |.
P1 encrypts the coefficients of the polynomials, setting qi, j = E pk(Qi, j ; ri, j).
It sends the encrypted coefficients to P2.

4. Substituting in the polynomials: Let y1, . . . , ym2 be a random ordering of
the elements of set Y . P2 does the following for all α ∈ {1, . . . , m2}:

- It sets ĥ0 = h0(yα), ĥ1 = h1(yα) (these values denote the bin number).
Then, it chooses random plaintexts r0, r1 in the domain of E pk() and
uses the homomorphic properties of the encryption scheme to evaluate
e0α = E pk(r0 · Qĥ0

(yα) + yα) and e1α = E pk(r1 · Qĥ1
(yα) + yα). Finally,

it sends e0α, e1α to P1.

5. Computing the intersection: For each received e0α, e1α , party P1 checks if for
some x ∈ X, x = Dsk(e0α) or x = Dsk(e1α). In this case, P1 records x as part
of its output.

Correctness We first note that when both parties follow the protocol, P1 outputs X ∩Y
with probability negligibly close to 1: (i) For elements x ∈ X ∩ Y , there exists yα ∈ Y
that zeros at least one of the polynomials Qh0(yα)(·), Qh1(yα)(·). Hence, getting the

7 Any implementation of a hashing scheme must replace the idealized random hash function (that is used
for the analysis) with an actual construction of a hash function that works well in practice. See, e.g., [59] and
related work.

134 M. J. Freedman et al.

messages sent for yα , P1 records yα . (ii) For elements x ∈ X\Y , P1 records x only if
either x = Dsk(e0α) or x = Dsk(e1α) which occurs with negligible probability due to the
randomness of r0 and r1 and the requirement that the homomorphic PKE is good for
plaintext space.

Theorem 3.3. Assume that (G, E, D) is a semantically secure homomorphic PKE that
is good for plaintext space (cf. Definition 3.2). Then, Protocol 1 securely computes F∩
in the presence of semi-honest adversaries (cf. Definition 2.1).

Proof. We consider two corruption cases.

Simulating the view of party P1 The simulation is based on the fact that messages
received by P1 are encryptions either of elements of the intersection set or are random
elements of the message space of the encryption scheme. We construct a simulator S as
follows:

1. S is given X , m2, X ∩ Y and 1k and sets m1 = |X |.
2. S receives from P1 its public key pk.
3. S receives from P1 the parameters B, M and the seeds for the two chosen hash

functions h0, h1 : {0, 1}p(k) → [B] used in the balanced allocation scheme.
4. S receives from P1 the encrypted polynomials {qi, j }i∈{1,...,B}, j∈{0,...,M}.
5. S completes X ∩ Y to size m2 by adding random elements from {0, 1}p(k). Let Ỹ

denote this recorded set.
6. S now plays the role of the honest P2 for the rest of the execution, using Ỹ as the

input for P2.
7. S outputs the view of P1.

We claim that the joint distributions of P1’s view and P2’s output are statistically close
in the real and simulated executions. The potential difference between these executions
is in Step 5 of the simulation, where S plays the role of the honest P2 with Ỹ instead
of Y . The difference is that the random elements in Ỹ ′ = Ỹ\(Y ∩ X) are used in the
simulated execution where members of Y ′ = Y\X = Y\(Y ∩ X) are used in the real
execution.
Let y ∈ Y ′ (respectively, ỹ ∈ Ỹ ′) be elements considered in the real (respectively,

simulated) execution. Then, P1 receives the encryptions e0 = E pk(r0 · Qh0(y)(y) + y)

and e1 = E pk(r1 · Qh1(y)(y) + y) in the real execution and the encryptions ẽ0 =
E pk(r̃0 · Qh0(ỹ)(ỹ) + ỹ) and ẽ1 = E pk(r̃1 · Qh1(ỹ)(ỹ) + ỹ) in the simulated execution.
Note first that due to the requirement that the input domain size is super-polynomial in
k, the probability that elements from Ỹ are in X as well is negligible in k. Moreover,
Qh0(y)(y), Qh1(y)(y), Qh0(ỹ)(ỹ), Qh1(ỹ)(ỹ) ∈ G with overwhelming probability (for
G ⊆ M multiplicative group as specified in Definition 3.2). We thus get that all the
encrypted plaintexts sent to P1 (by both P2 and S) are uniformly distributed in G and
therefore P1 cannot distinguish between the two cases since they are identical with
overwhelming probability.

Simulating the view of party P2 The simulation is based on the fact that as P2 only
receives encrypted values it cannot detect whether these are encryption of values sent in

Efficient Set Intersection with Simulation-Based Security 135

the real protocol or encryptions of arbitrary messages sent by the simulator. Construct a
simulator S as follows:

1. S is given Y , m1, X ∩ Y and 1k and invokes P2 on these inputs. S sets m2 = |Y |.
2. S chooses (pk, sk) ← G(1k) and sends pk to P2.
3. S computes the parameters B, M for the balanced allocation scheme and chooses

random seeds for the hash functions h0, h1. These are then sent to P2.
4. S sends to P2, B M encryptions of the value 0, under the key pk (i.e., encryptions of

the coefficients of B polynomialswhich are identically equal to 0). Each encryption
is done with fresh randomness.

5. S completes the execution and outputs whatever P2 does.

In the following, we define a sequence of hybrid games and denote by the random
variable H(k, X, Y) (for a fixed k) the joint output of P2 and P1 in hybrid game H.
Game H0: The simulated execution.
Game H1: The simulator S1 acts identically to S except that in Step 2 of the simulation
S1 does not get to know the secret key sk. The random variables H0(k, X, Y) and
H1(k, X, Y) are identical as S ignores sk.
GameH2: In this game, there is no trusted party and no honest P1. Instead, the simulator
S2 is given as input P1’s real input X . S2 works exactly like S1 except that instead of
sending encryptions of zero polynomials it computes the polynomials as in the real
execution using the set X .

We prove that the random variablesH1(k, X, Y) andH2(k, X, Y) are computationally
indistinguishable via a reduction to the security of (G, E, D).8 Assume, for contradic-
tion, the existence of a distinguisher circuit D for the distribution induced by games
H1(k, X, Y) and H2(k, X, Y) and choose hash functions h0, h1 that maximize D’s dis-
tinguishing advantage. Construct a distinguisher circuit DE that distinguishes between
the encryptions of two sets of messages: (i) coefficients of zero polynomials as con-
structed in game H1 and (ii) coefficients of polynomials corresponding to X and hash
functions h0, h1 as constructed in game H2. DE receives a public key pk and vector
of encryptions c under pk and works exactly like S2 except that it uses the public key
given to it as input in the semantic security game, instead of generating it by itself,
and forwards to P2 the vector of encryptions c instead of the encrypted polynomials.
Note that the output distribution generated by DE is either identical to H1(k, X, Y) or
to H2(k, X, Y) (conditioned on our choice of h0, h1), and hence, the existence of D
contradicts the indistinguishability of ciphertexts of the encryption scheme (G, E, D).
GameH3: The simulator S3 acts identically toS2 except that S3 is given sk. The random
variables H2(k, X, Y) and H3(k, X, Y) are identical as S2 and S3 do not use sk.
Note that game H3 is identical to the real execution with respect to the adversary’s

view.

8 We consider an extension of the semantic security game (cf. Definition 2.6), where a distinguisher DE
is given a public key pk, outputs two vectors of plaintexts m0, m1, and receives back a vector of ciphertexts
c comprised of the encryptions of mb under E pk , where b ←R {0, 1}. DE then outputs a bit b′, and we say
that it distinguishes successfully in this game if b′ = b.

136 M. J. Freedman et al.

3.4. Computing Set Intersection Cardinality

In a protocol for computing the cardinality of the set intersection, P1 learns |X ∩ Y | but
not the actual elements of this set. In order to compute this functionality, P2 needs only
slightly change his behavior from that in Protocol 1. That is, instead of computing the
encryptions of r0 · Qĥ0

(yα)+ yα and r1 · Qĥ1
(yα)+ yα , P2 now only encodes r0 · Qĥ0

(yα)

and r1 · Qĥ1
(yα). Then, in Step 5 of the protocol, P1 counts the number of ciphertexts

received from P2 that are decrypted to zero and locally outputs this number. The proof
of security for this protocol trivially follows from that of Protocol 1.

4. Performance Evaluation

In order to give concrete performance numbers to our protocol, we provide in this
section performance benchmarks for an implementation of the privatematching protocol
described in Sect. 3.1. As described below, the benchmarks show the advantage of the
hashing-based approaches over the basic approach which uses no hashing. On the other
hand, the performance benefit of using the solutions based on balanced allocations and
on Cuckoo hashing, over that of a single hash function, does not become noticeable until
the input sets are pretty large, due to additional factors that affect the overhead.
Our implementation uses the cryptographic libraries that are part of the SFS

toolkit [51] (although we wrote the implementation of the Paillier cryptosystem), which
in turn uses the GNU Multi-Precision library 4.3.0 [32] for large arithmetic operations.
Performance benchmarks were performed on a Sun X2200 M2 server running Fedora
core 12 in 64-bitmode, using a single core of anAMDOpteron 2376processor (2.3GHz).
Table 1 shows the performance of the encryption schemes of Paillier [55] in a fast

decryption mode, as described in Section 6 of [55], and ElGamal, using the variant
described in Sect. 2.3.1. (Recall that in that variant of ElGamal we encrypt values in
the exponent, to support the homomorphic addition property. This makes decryption
harder, but that issue is irrelevant to our protocol since we only need to checkwhether the
decrypted plaintext is equal to 0.)Weused key andmodulus sizes that offered comparable
security: a 1,024-bit value for N in the Paillier cryptosystem (and thus a 2,048-bit
modulus for N 2) and a 160-bit key and 1,024-bit prime modulus for ElGamal. The
numbers correspond to themean value (inmicroseconds) of 100 runs across five different
keys. The column HAdd corresponds to the cost of performing a homomorphic addition
of plaintexts, which is akin to modular multiplication. Due to its superior performance,
we use ElGamal to instantiate our set intersection protocol in this section’s subsequent
benchmarks. We also note that the ElGamal encryption can be implemented even more
efficiently based on elliptic curve cryptography.

Table 1. Average speed (μs) of public key operations with a 1,024-bit El Gamal modulus and a 2,048-bit
Paillier modulus.

Encrypt Decrypt HAdd

Paillier 3,742 273 4
El Gamal 266 155 2

Efficient Set Intersection with Simulation-Based Security 137

10-4

10-3

10-2

10-1

100

10-4 10-3 10-2 10-1

F
ra

ct
io

n
ex

ce
ed

in
g

st
as

h

epsilon

Cuckoo hashing with
100 elements

0
1
2
3
4
5

10-4

10-3

10-2

10-1

100

10-4 10-3 10-2 10-1

F
ra

ct
io

n
ex

ce
ed

in
g

st
as

h

epsilon

Cuckoo hashing with
10 000 elements

0
1
2
3
4
5
6
7
8

10-4

10-3

10-2

10-1

100

10-4 10-3 10-2 10-1

F
ra

ct
io

n
ex

ce
ed

in
g

st
as

h

epsilon

Cuckoo hashing with
1 000 000 elements

0
1
2
3
4
5
6
7
8

Fig. 1. In Cuckoo hashing, fraction of randomized trials that exceed a given stash size, for varying hash table
sizes 2 · (1 + ε) · n. Solid vertical line at 0.02 corresponds to the ε used in set intersection experiments.

For the Cuckoo hash construction, we need to instantiate the protocol with appropriate
parameters for the stash size s and table size 2 · (1+ε) ·n. As stated earlier, it was shown
in [43] that using a stash of size of size s fails with probability O(n−s); here, we also
characterize this probability experimentally. Figure 1 shows the fraction of randomized
trials (out of a total of 100,000 trials) for which the stash was not large enough to prevent
cycles, for varying choices of ε and s. We evaluate input sizes n = 10i for i = 1 . . . 6,
of which three sizes are shown in the figure. In our set intersection experiments, we
instantiate the Cuckoo hashing version with ε = 0.02 (shown by the solid vertical line
in the figure) and a stash size of 2. With this configuration, n = 1,000 has the highest
fraction of failed constructions at∼0.55%, while inputs that were very small or large had
a much lower rate of failure (n = 10 has ∼0.005%, n = 106 has none). We conclude
that these chosen parameters are adequate to balance safety and performance across
various values of n, although an implementation might choose to vary both parameters
as a function of n, in order to better tune this tradeoff to a particular setting. As we will
see next, however, this still will not result in any real benefit compared with the simpler
hashing strategies.
Recall that the set intersection protocol consists of three main stages: (1) P1’s setup to

construct an encrypted polynomial. The overhead of this step is O(m1) exponentiations
in the basic protocol, and O(B M) = O(m1) exponentiations in each of the hashing-
based constructions, where B is the number of bins and m1 is the size of P1’s input. (2)
P2’s evaluation of this polynomial on its inputs. This step takes O(m1m2) exponentia-
tions in the basic method, O(m2 logm1) exponentiations in the random hash method,
O(m2 log logm1) exponentiations in the balanced allocations construction, and only
O(m2) exponentiations in the Cuckoo hash construction. (3) P1’s subsequent recovery
of the intersection. This step requires O(m2) decryptions in each of the methods.

Measured performance trends First, let us analyze the high-level performance trends
of our various set intersection constructions. Figure 2 shows the performance of the set
intersection protocol for these three stages in log–log scale, where both client and server
have the same input set size ranging from 10 to 1 million elements. The figure demon-
strates the poor performance implications of using a single polynomial constructed across
all of P1’s input (i.e., “No Hashing”), as compared to the hashing-based schemes. The
latter’s performance is almost linear in n.

138 M. J. Freedman et al.

10-3
10-2
10-1
100
101
102
103
104
105

101 102 103 104 105 106

C
lie

nt
 p

re
pa

re
 ti

m
e

(s
ec

on
ds

)

Input set size

No Hashing
Basic Hashing
Balanced Hashing
Cuckoo Hashing

10-3
10-2
10-1
100
101
102
103
104
105

101 102 103 104 105 106

S
er
ve

r
ev

al
ua

tio
n

tim
e

(s
ec

on
ds

)

Input set size

No Hashing
Basic Hashing

Balanced Hashing
Cuckoo Hashing 10-3

10-2
10-1
100
101
102
103
104
105

101 102 103 104 105 106

C
lie

nt
 r

ec
ov

er
y

tim
e

(s
ec

on
ds

)

Input set size

No Hashing
Basic Hashing
Balanced Hashing
Cuckoo Hashing

Fig. 2. Computational set intersection performance for P1’s setup and precomputation (left), P2’s evaluation
(center), and P1’s corresponding recovery of the intersection (right).

Explaining asymptotic performance Wenow explain themeasured performance trends
of the three hashing-based approaches, as it differs from their asymptotic computational
overhead. To simplify the notation, we consider the case of m1 = m2 = n. Recall
that asymptotically, the computation overhead of the constructions based on random
hashing, balanced allocations, and Cuckoo hashing is O(n log n), O(n log log n), and
O(n), respectively, where the bulk of the computation is done in Step 2.Our experiments,
however, show the opposite: The run time of the random hashing-based approach, in
Stages 2 and 3, is better than that of the balanced allocations scheme, which is in turn
better than the run time of the Cuckoo hashing approach. In order to explain these results,
we must examine the constants that affect the overhead.
Table 2 details the run times for the case of n = 10,000. We ran experiments for

values of n up to n = 100,000, where we parameterized the experiments based on the
results from initial experiments to find values which do not result in the hash functions
overflowing the capacity of the bins. The results for n = 10,000 are representative of the
results in the range we examined. The random hash scheme used B = n/ log n = 753
bins, each of size 26. The balanced allocation scheme used B = n/ log log n = 2,680
bins, each of size 6. The Cuckoo hashing scheme used 2 · 1.02 · n = 20,400 bins, each
with a single element, and a stash of size 2.
In Stage 1, P1 constructs a polynomial for each bin in the hash table (corresponding

to polynomials of degree 26, 6, or 1, respectively for each scheme). The task of P1 is
to encrypt each of the coefficients of the polynomials, and, therefore the overhead per
polynomial is linear in the degree. An analysis based on the number of polynomials used

Table 2. Speed (ms) of each of the hashing-based solutions, for m1 = m2 = n = 10,000, computed as the
average of 10 runs.

Construction Stage 1 Stage 2 Stage 3
P1’s setup P2’s evaluation decryption by P1

Random hash 10,936 52,334 2,153
Balanced allocations 7,833 68,336 4,692
Cuckoo hash 8,503 86,193 6,375

The random hash construction required a single evaluation of a polynomial of degree 26. The balanced
allocations construction evaluated two polynomials of degree 6. The Cuckoo hash construction evaluated two
linear polynomials and a degree two polynomial (representing a stash of size 2)

Efficient Set Intersection with Simulation-Based Security 139

in every experiment and their degrees shows that the overhead per polynomial of degree
d is about 0.55d ms.
Let us now focus on the overhead of Stage 2, which consists of the evaluation of

the polynomials by P2 and consumes the bulk of the overhead. Recall that P2 must
compute expressions of the form E pk(r · P(y) + y). The overhead of computing these
expressions includes a component that is linear in the degree of P and some constant
overhead, which does not depend on the degree and is caused by multiplying P(y) by r
and adding y. The random hash based construction requires computing n polynomials
of a relatively high degree (26 when n = 10,000). The balanced allocations experiment
requires computing 2n polynomials of a lower degree (degree 6 when n = 10,000),
whereas the Cuckoo hash experiment has 2n evaluations of linear polynomials and n
evaluations of polynomials of degree 2 (corresponding to the stash).
Linear regression based on the experiment results shows that the evaluation time of

a polynomial of degree d is about 2.8 + 0.1d ms. Namely, that it has a large additive
constant, which is comparable to increasing the degree by 28. This large additive constant
is mostly due to the combined effect of Horner’s rule and of the short length of value
y used as input to the polynomials (which is only 5 bytes long). The Horner’s rule-
based implementation uses homomorphic multiplications by y, that are implemented
as exponentiations with a short, 5-byte long exponent, whereas the multiplication by r
(that is done once per polynomial) is implemented as a full exponentiation. Therefore,
the effect of that single exponentiation is quite dominant.
As a result, for n = 10,000, the runtime of Step 2 in our implementation for the

random hash experiment, which evaluates a single polynomial of degree 26, is about
(2.8 + 2.6) · n = 5.4n. The runtime of the balanced allocations experiment, which
evaluates two polynomials of degree 6, is about 2·(2.8+.6)·n = 6.8n. The runtime of the
Cuckoo hashing experiment, which evaluates for each input two linear polynomials and
one polynomial of degree 2, is about (2 ·(2.8+ .1)+(2.8+ .2)) ·n = 8.8n. The balanced
allocations construction is therefore slower than the random hashing construction, and
the run time of the Cuckoo hashing construction is slower than that of the balanced
allocations construction.
When n increases, the degrees of the polynomials of the randomized hashing and

balanced allocations constructions increase and dominate the constant additive factor.
As a result, the runtime should approach its asymptotic behavior, where the Cuckoo
hashing construction is favorable, followed by the balanced allocations construction. To
verify that this phenomenon indeed takes place, we charted the ratio of the runtimes
of the randomized hashing construction and the balanced allocations construction for
different values of n ranging from n = 100 to n = 100,000. This ratio is decreasing
and is almost 1 when n = 100,000, and we assume that it will become smaller than 1
for larger values of n. See Fig. 3.

As for Stage 3, note that in the three constructions P2 sends back n, 2n, and 3n
encryptions, respectively. P1 must decrypt all these encryptions, and its actual run time
in this stage is indeed linear in the number of decryptions that it must perform.
We note that the running timemight be further optimized by increasing the sizes of the

tables and by reducing the size of the bins. This will increase the overhead of Stages 1
and 3, as well the communication overhead, but should decrease the overhead of Stage 2.

140 M. J. Freedman et al.

Fig. 3. The ratio of the runtimes of Step 2 in the randomized hashing and balanced allocations constructions,
for n = 100, . . . , 100,000.

To summarize our observations about the actual runtime, we found that the running
time of evaluating each polynomial is linear in the degree, but it also has a constant
factor which increases the degree by about 28. As a result, each additional polynomial
that is evaluated has a considerable effect. The random hashing construction evaluates
a single polynomial of degree O(log n), whereas the balanced allocations construction
evaluates two polynomials of degree O(log log n) and the Cuckoo hashing construction
evaluates three polynomials: two linear polynomials and a polynomial of degree 2.
Asymptotically, the performance of the constructions based on balanced allocations and
Cuckoo hashing is preferable, but since these two constructions use more polynomials
than the first construction, their overhead is higher than that of random hashing for the
input sizes that we tested.

5. Security in the Presence of Malicious Adversaries

We now modify the secure set intersection protocol to accommodate malicious adver-
saries. We present in detail a protocol that is based on a balanced allocation scheme.
A similar transformation can be applied to the protocol based on Cuckoo hashing. The
overhead of the resulting protocol is of the same order as that of the corresponding
semi-honest protocol. Considering our construction for semi-honest parties, a number
of problems need to be taken care of:

1. P1 can construct polynomials that would enable it to learn the value of elements
that are not in the intersection. For instance, by setting the polynomial Qi to be
identically zero, P1 learns all elements {y ∈ Y : h0(y) = i or h1(y) = i}.
We solve this problem by presenting a zero-knowledge protocol for verifying that
∑

i∈{1,...,B} deg(Qi) = m1, and Qi (·) �≡ 0 for all i ∈ {1, . . . , B} (Sect. 5.1).
2. A more subtle problem that was overlooked in prior work is that with some homo-

morphic encryption PKEs, P1 may construct Q(·) such that the evaluation of

Efficient Set Intersection with Simulation-Based Security 141

r · Q(y) (and hence also of r · Q(y) + y) is far from being random in M, even
though Q(y) �= 0 and r is chosen at random. This attack can be carried out with
respect to encryption schemes for which the plaintext space is not a cyclic group
of prime order. Therefore, in this case, r · Q(y) may be a random element within
a smaller subgroup.
For a concrete example, consider the Paillier encryption scheme and note that
since P1 knows both the public and secret keys (pk = N , sk = φ(N)), it can
construct a polynomial Q(·) such that Q(y) �∈ Z

∗
N for some specific value(s) of

y of its interest.9 This implies that r · Q(y) �∈ Z
∗
N and so is very far from being

random in ZN , hence failing to hide y. This problem does not exist when using
ElGamal.
We are aware of two ways to address this problem: The first solution would be to
have P1 generating the polynomials after it learns pk but before it learns sk. That
is, the parties first run a secure protocol for a mutual generation of the public key in
which the secret key is shared between them. Then, P1 generates its polynomials
and finally, P2 reveals its share so that P1 will be able to learn the secret key. For
the Paillier encryption scheme, we get that coming up with a polynomial Q(·)
and y such that Q(y) �∈ Z

∗
N amounts to factoring the product N . The public key

generation can be computed using the efficient protocol of Hazay et al. [37] that is
proven with simulation-based security in the malicious setting. To the best of our
knowledge, this is the only non-generic protocol that guarantees simulation-based
security in the two-party setting. We further note that generating such a public
key for the ElGamal scheme is easier following the underlying ideas of Diffie and
Hellman [19].
Another solution by [48] would be to have P2 encrypting some padding of the
payload value added to the polynomial evaluation. This corresponds to a random-
ized encoding in order to compensate the loss of entropy. Looking ahead, this
implies that P2 first encodes s and then adds it to the encrypted polynomial eval-
uation. This yields an encryption to an element in Z

∗
N that is statistically close

to a random element in this group, where the statistical difference depends on the
encoding parameters. For simplicity, we employ the former solution in our protocol
below.

3. A malicious P1 may choose the hash functions adversarially, e.g., so that an over-
flow is caused conditioned on P2 having certain input set. This issue can be over-
come by having the two parties choose the hash functions jointly so that as long
as one of them is honest the result is a randomly chosen hash function. There
exist well-known efficient protocols for joint coin tossing, secure against mali-
cious adversaries. We therefore reduce the task of choosing the hash function to
joint coin tossing. It is known in advance that the hash function will be applied to
some n values, and we wish to ensure that the hash function that is chosen would
be close to uniform on the set of n inputs to which it will be applied. A straight-
forward method of defining this function is by choosing at random the coefficients
of an (n − 1) degree polynomial. However, this function has the drawback that

9 Learning sk allows P1 to efficiently decrypt messages it receives from P2. Otherwise, P1 and P2 would
have to engage in a protocol for a joint decryption.

142 M. J. Freedman et al.

each evaluation of the polynomial takes O(n) time. A result of [57] describes a
function defined by O(n log n) random bits (actually O(n log |V |) bits, where |V |
is the size of the range of function), where the function can be computed in O(1)
time, and has the property that for any set S of n items the function is uniform on
S except with probability that can be bounded by an arbitrarily small polynomial
in n. A very recent construction for the case of a Cuckoo hash with a stash shows
that the hash functions used can be defined by only 2n1/2 log n + O(s log n) bits,
where s is the size of the stash, which is also O(1) [4]. The run time of the resulting
hash function was further improved in [23,64], although it still requires the same
number of random bits.

4. Lastly, while party P2 is supposed to send m2 pairs of encryptions resulting from
substituting a value y (known to P2) in the (encrypted) polynomials Qh0(y) and
Qh1(y), it may deviate from its prescribed computation. Thus, its input to the
protocol may be ill-defined.
The standard solution to this problem involves the usage of zero-knowledge proofs
for demonstrating the correct behavior by P2. The cost of such a proof for each
y ∈ Y would be proportional to the size ofX since P2 cannot disclose the identity of
y’s bin. Therefore, the overall cost would be quadratic in the size of X . Instead, we
introduce a technique that enables P1 to redo the entire computation supposedly
carried out by P2 on any value y supposedly in the intersection and verify that
its outcome is consistent with the messages received from P2. This is where we
incorporate the usage of a random oracle H in our protocol.
We first describe how to use this technique in the case where P2 evaluates a single
polynomial first (the “No Hashing” case) and then extend it for the hashing-based
protocols.
For each y ∈ Y in P2’s input set, it chooses a random element s and computes
the encryption of r · Q(y) + s, where the randomness used for this computation is
taken from H(s). Clearly, if Q(y) = 0, then P1 learns s and can be easily verified
whether there exists x ∈ X such that together with s yields exactly the same
encryption. The security argument shows that this is true only for elements in the
intersection set. In particular, when P2 deviates from the prescribed computation,
P1 records an incorrect output with only a negligible probability.
When using a balanced allocation scheme (or Cuckoo hashing), P2 needs to eval-
uate more than one polynomial on the same value y. Furthermore, when y is in the
intersection, exactly one of these polynomials evaluates to zero. To force P2 to act
according to the protocol, we let P2 repeat the above computation twice so that it
ends up sending two encryptions for r0 · Qh0(y)(y)+ s1 and r1 · Qh1(y)(y)+ s0. By
learning sb ∈ {s0, s1}, P1 is able to extract s1−b and hence verify P2’s computation.
Loosely speaking, by applying the random oracle on sb, the adversary learns r1−b

and thus is able to extract s1−b from the plaintext that is combined with s1−b. This
method is different than the one applied in [38] that uses a single value of s for both
bins, where the randomness is extracted from the outcome of a PRF evaluated on s.
Specifically, in [38], P2 commits to each y and the payload value s first. Later, P2
uses s to generate the randomness used to evaluate the corresponding polynomial
with y.

Efficient Set Intersection with Simulation-Based Security 143

5.1. Properties of Homomorphic PKE

In this section, we consider the properties of the homomorphic PKE that we need for
proving the security of our protocol. We demonstrate that these properties hold for both
Paillier and ElGamal PKEs.

1. Given a random pk (but not sk), it is infeasible to come up with a message m �= 0
such that m �∈ G, for G ⊆ M a multiplicative group for which only a negligible
fraction of M is not in G (as specified in Definition 3.2). For Paillier G denotes
Z

∗
N , whereas for ElGamal G denotes Z∗

q .
2. There exists a polynomial-time algorithm that on input (pk, c) outputs 1 iff c

is valid, i.e., in the range of E pk(·; ·). For Paillier one only needs to check that
c ∈ Z

∗
N2 . For ElGamal, one can use the subgroup of quadratic residues modulo

q ′ = 2q + 1.
3. There exists a protocol πKEY for securely computing the key generation function-

ality FKEY in the presence of malicious adversary, where FKEY is defined by

(1k, 1k) 	→
(

(pk, sk1), (pk, sk2)
)

, (2)

where (pk, sk) ← G(1k), sk1 and sk2 are random shares of sk that do not leak any
information about the secret key, and (efficient) reconstruction of sk is with respect
to the specific PKE via a secure two-party protocol. We also require that given sk,
a simulator can efficiently compute shares sk1, sk2 such that the distribution over
these shares when output by the protocol and by a simulator is computationally
indistinguishable.
For Paillier, one can use the protocol of [37] for which its efficiency is dominated
by the number of trial divisions for testing the candidates composites. This protocol
ensures an improved analysis based on the analysis from [10] for which a random
number of length 1,024 is a prime with probability 1/44, condition that it passed
a trial division with some threshold parameter B. Thus, the expected number of
attempts is 1,936. For ElGamal, the key setup protocol by Diffie and Hellman [19]
(that can be made secure for the malicious setting) can be used here.

4. There exists an efficient computational zero-knowledge proof of knowledge πMULT

for proving the multiplication of two plaintexts. The relation RMULT is formalized
as follows,

RMULT =
{(

(pk, (ea, eb, ec))
) ∣

∣
∣∃(a, ra, b, rb, rc) s.t

ea = E pk(a; ra) ∧ eb = E pk(b; rb)

∧ ec = E pk(ab; rc)

}

.

A constant-round zero-knowledge proof for ŁMULT with 15 exponentiations can be
found in [20].10

10 The original construction of [20] is presented in the honest verifier setting. Deriving a statistical zero-
knowledge proof can be achieved by instantiating Pedersen’s commitment scheme [56] with the technique of
Goldreich and Kahan [30]. The analysis of 15 exponentiations already takes into account this adjustment.

144 M. J. Freedman et al.

5. There exists an efficient computational zero-knowledge proof πNZ for proving that
some ciphertext encrypts a nonzero plaintext. Formally,

ŁNZ = {

(pk, ea) | e = E pk(a; ra) for some a �= 0, ra
}

.

A simple reduction toπMULT is as follows. The prover chooses random b, rb, rc, sets
eb = E pk(b; rb), ec = E pk(ab; rc) andproves that ((pk, (ea, eb, ec)), (a, ra, b, rb,

rc)) ∈ RMULT. If the proof is accepted, then the prover sends ab, rc, and the verifier
accepts if ec = E pk(ab; rc) and ab �= 0.

6. There exists an efficient computational zero-knowledge proof πZERO for proving
that some ciphertext encrypts the zero plaintext. Formally,

ŁZERO = {

(pk, ea) | e = E pk(0; ra) for some ra
}

.

A constant-round zero-knowledge proof for ŁZERO with 13 exponentiations for
ElGamal can be found in [17] and with 8 exponentiations for Paillier [20].11

5.2. Zero-Knowledge Proof of Knowledge for RPOLY

In addition to the above, we will need a zero-knowledge proof of knowledge for proving
the correctness of the polynomials sent by P1. We recall that in the set intersection
protocol presented below, P1 generates B polynomials {Qi (·)}i∈{1,...,B} representing its
input set X and sends their encryptions to P2. We present an efficient zero-knowledge
proof of knowledge πPOLY that is used for checking these encrypted polynomials.12 The
basic idea of our proof is to count the number of nonzero coefficients and compare
this result with m − B (we subtract B since there are B bins and the number of roots
of a polynomial Qi (·) is upper bounded by deg Qi (·) − 1). To prove this, the prover
sends an encryption Zi, j of 1 for every 0 ≤ j ≤ deg(Qi (·)), and 0 otherwise. It then
proves that it computed these encryptions correctly by proving that Zi, j is indeed an
encryption of a value within {0, 1}, and that Qi, j · (1− Zi, j) = 0 for all j ∈ {0, . . . , M}.
However, a problem arises if Qi (·) has zero coefficients. In this case the prover can
convince the verifier that

∑

i deg(Qi (·)) = m even if it is actually larger (as we only
count the nonzero elements). To solve this problem, we add an additional check that the
set Zi,0, Zi,1, . . . , Zi,M is monotonically non-increasing, which guarantees that ∀i , and
j ≥ deg(Qi (·)), the event in which Zi, j = 0 and Zi, j+1 = 1 does not happen. The proof
is concluded by having the parties sum up these values using homomorphic addition,
and having the prover proving that the result is an encryption of m − B. We note that
the attack in which P1 encrypts the zero polynomials is prevented by assuming that the
coefficient of the highest degree equals 1.
Formally, the relation is defined by,

RPOLY =
{(

{qi, j }i, j , m, pk
)

,
(

{Qi, j , ri, j }i, j

)∣
∣
∣

∀i, j qi, j = E pk(Qi, j ; ri, j) ∧
∑

i deg(Qi (·)) = m ∧ ∀i, Qi (·) �≡ 0

}

11 See previous footnote.
12 We will use the convention that the degree of a polynomial Qi (·) can be chosen to be any integer j ′ such

that Qi, j = 0 for all j ≥ j ′; hence, equality with m can always be achieved.

Efficient Set Intersection with Simulation-Based Security 145

where Qi (x) = ∑M
j=0 Qi, j · x j , and i ∈ {1, . . . , B}, j ∈ {0, . . . , M}.

A protocol for RPOLY, as well as a complete proof, can be found in [38]. For the sake
of completeness, we give a slightly modified description of their protocol.

Protocol 2. (Zero-knowledge proof of knowledge πPOLY for RPOLY):

Joint statement: A collection of B sets, each set is of M + 1 encryptions
{qi, j }i∈{1,...,B}, j∈{0,...,M}, a public key pk and an integer m.

• Auxiliary inputs for the prover: A collection of B sets, each set is of M +1 values
{Qi, j , ri, j }i∈{1,...,B}, j∈{0,...,M} such that the conditions in RPOLY are met.

• Convention: Both parties check every received ciphertext for validity and abort
if an invalid ciphertext is received. Unless written differently, i ∈ {1, . . . , B} and
j ∈ {0, . . . , M}.

• The protocol:

1. For every i let Qi (x) = ∑M
j=0 Qi, j · x j = ∑M

j=0 Dsk(qi, j) · x j , and recall
that by our convention (cf. Footnote 12),

∑

i deg(Qi (·)) = m. Let Zi, j = 1 for
0 ≤ j ≤ deg(Qi (·)), and otherwise Zi, j = 0 (i.e., Zi,0 = 1, Zi,1, . . . , Zi,M is
monotonically non-increasing, and

∑

j∈{0,...,M} Zi, j = deg(Qi (·)) + 1).
2. The prover P computes zi, j = E pk(Zi, j ; r̃i, j) and sends {zi, j }i, j to the verifier

V .
∀i , P performs the following:

(a) For each zi, j encrypting a value Zi, j , it proves that Zi, j · (1 − Zi, j) = 0
(and hence Zi, j ∈ {0, 1}).13 Let mi, j = E pk(0; r̂i, j). Then, P proves that
(

(pk, zi, j , z′
i, j , mi, j), (Zi, j , r̃i, j , 1 − Zi, j , r̃ ′

i, j , r̂i, j)
)

∈ RMULT and that

mi, j is an encryption of zero by decrypting mi, j .
(b) P proves that Zi,0, Zi,1, . . . , Zi,M is monotonically non-increasing, i.e.,

that Zi, j = 0 and Zi, j+1 = 1 does not happen for any value of j ∈
{deg(Qi (·)), . . . , M − 1}. For that, P and V compute an encryption of
2Zi, j +Zi, j+1−1 (note that both parties can compute this encryption) and
P proves in zero-knowledge that (pk, E pk(2Zi, j + Zi, j+1 − 1)) ∈ ŁNZ.

(c) P completes the proof that the values Zi, j were constructed correctly by
proving (similarly to Step 2a above) that Qi, j · (1 − Zi, j) = 0 for all
j ∈ {0, . . . , M}.

3. Finally, to prove that the sum of degrees of the polynomials {Qi (·)}i equals m,
both parties compute an encryption t of T = ∑

i, j Zi, j − B, and P proves that
(pk, t/E pk(m)) ∈ ŁZERO.

4. V verifies all the zero-knowledge proofs and decryptions. If any of the verifi-
cations fails, V outputs 0; otherwise, it outputs 1.

Note that Protocol πPOLY runs in a constant number of rounds because each of the
zero-knowledge proofs can be implemented in constant rounds and can be invoked in

13 The proof can be easily computed since both parties can compute an encryption z′ of 1 − Zi, j , where
P can recover randomness r̃ ′

i, j that is consistent with this encryption. We also assume that P and V agree on
an encryption of 1, for which both know the randomness.

146 M. J. Freedman et al.

parallel. The parties compute and exchange O(B M) = O(m) encryptions and execute
O(B M) = O(m) zero-knowledge proofs (forRMULT,ŁNZ,ŁZERO).Overall, these amount
to performing O(m) exponentiations and exchanging O(m) group elements.

Proposition 5.1. Assume that πMULT, πZERO, and πNZ are as described above and that
(G, E, D) is homomorphic PKE that is good for plaintext space (cf. Definition 3.2).
Then Protocol 2 is a computational zero-knowledge proof of knowledge for RPOLY with
perfect completeness.

A complete proof can be found in [38]. Intuitively, the zero-knowledge property follows
from the fact that all the sub-protocols are zero-knowledge aswell. Knowledge extraction
follows from the fact that πMULT is a proof of knowledge proof, so that the plaintexts and
randomness can be extracted in Step 2c. Finally, soundness follows from soundness of
sub-protocols, ensuring that the degree of the polynomial cannot exceed M .

5.3. Secure Set Intersection in the Random Oracle Model

We are now ready to present a formal description of our protocol in a setting where the
parties are malicious and have oracle access to a random function H : G → M‖M‖R,
i.e., the outcome is split into three values: (1) The first value is used tomask the encrypted
polynomial evaluation (for the message space specified for either Paillier or ElGamal),
(2) the second value is used to mask the input to the polynomial, (3) and the third value is
used to encrypt the values s0, s1 (to rerandomize the ciphertext encrypting the outcome of
the polynomial evaluation), for R denoting the randomness space fromwhich the random
coins for the specified PKE are sampled from. A high-level description is presented in
Fig. 4.

Protocol 3. (πRO∩ – secure set intersection in the random oracle model):

• Inputs: The input of P1 is m2 and a set X ⊆ {0, 1}p(k) containing m1 items; the
input of P2 is m1 and a set Y ⊆ {0, 1}p(k) containing m2 items (hence, both parties
know m1 and m2).

• Auxiliary inputs: A security parameter 1k .
• Convention: Both parties check every received ciphertext for validity and abort if

an invalid ciphertext is received.
• The protocol:

1. Key setup: P1 and P2 run an execution of πKEY for generating pk and random
shares sk1, sk2 of sk. Let (pk, sk1) and (pk, sk2) denote the respective outputs
of P1 and P2 from this execution.

2. Setting the balanced allocation scheme: P1 computes the parameters B, M
for the scheme and the parties run a coin tossing protocol in order to choose
the seeds for two randomly chosen hash functions h0, h1 : {0, 1}p(k) → [B].
It sends B, M, h0, h1 to P2. P2 checks that the parameters B, M and the seeds
h0, h1 were computed correctly and aborts otherwise.

3. Creating polynomials for the set X: For every x ∈ X, P1 maps x into the
less occupied bin from {h0(x), h1(x)} (ties broken arbitrarily). Let Bi denote

Efficient Set Intersection with Simulation-Based Security 147

P1(X, m2) P2(Y = {yα}α∈{1...m2}, m1)

1k −→
(pk, sk1) ←− πKEY

←− 1k

−→ (pk, sk2)

1k −→
(h0, h1) ←− πCOIN−TOSS

←− 1k

−→ (h0, h1)

Epk (Q1(·)) . . . Epk (QB(·))

Q1(·) . . . QB(·) −→ πPOLY

←− Epk (Q1(·)) . . . Epk (QB(·))
−→ 0/1

Verify sk = sk1 + sk2
sk2

For all α ∈ {1 . . . m2}, j ∈ {0, 1} :
sα
0 , sα

1 ←R

H(sα
j) → rj‖r̃j‖r̂j

qj
def= Qhj(yα)(yα)

eα
j = Epk rj · qj + sα

1−j ; r̂j

)
,

tα = r̃j ⊕ yα

For all α ∈ {1 . . . m2}, j ∈ {0, 1} :
s′

j = Dsk(ẽα),
H(s′

j) → r′
j‖r̃′

j‖r̂′
j

Check if ∃ x ∈ X j ∈ {0, 1} s.t. :
tαj = r̃j ⊕ x, and
ẽα
0 , eα

1 , consistent with
r′
1, r

′
2, s

′
0, s

′
1, r̂

′
0, r̂

′
1.

Fig. 4. A high-level diagram of πRO∩ (random oracle model).

the set of elements mapped into bin i and let Qi (x)
def= ∑M

j=0 Qi, j · x j denote
a polynomial with the set of roots Bi (if Bi = ∅ then P1 sets Qi (x) = 1). If
|Bi | < M then P1 sets the M + 1− |Bi | highest degree coefficients of Qi (·) to
zero.
P1 encrypts the coefficients of the polynomials, setting qi, j = E pk(Qi, j ; ri, j).
It sends the encrypted coefficients to P2.

4. Checking the polynomials: P1 and P2 engage in an execution of πPOLY for
which P1 enters pk and the sets {Qi, j , ri, j }i∈{1,...,B}, j∈{0,...,M} and P2 enters
the sets {qi, j }i∈{1,...,B}, j∈{0,...,M}. If the outcome is not 1 then P2 aborts.

5. Key setup completion: P2 sends his share of the private key sk2, as well as the
randomness used for generating this share, to P1. P1 reconstructs sk from the
shares sk1, sk2 and checks that the result is a valid private key that corresponds
to pk and that P2 sent the correct share. If it is not, it aborts.

6. Substituting in the polynomials: Let y1, . . . , ym2 be a random ordering of
the elements of set Y . P2 does the following for all α ∈ {1, . . . , m2}:
(a) It sets ĥ0 = h0(yα), ĥ1 = h1(yα) (these values denote the bin number).

Then, it chooses sα
0 , sα

1 ←R Mand parsesH(sα
j) to obtain random strings

r j , r̃ j , r̂ j of appropriate lengths for their usage below, for all j ∈ {0, 1}
(i.e., r j , r̃ j , r̂ j = H(sα

j)).

148 M. J. Freedman et al.

(b) P2 uses the homomorphic properties of the encryption scheme to evalu-
ate E pk(r0 · Qĥ0

(yα)) and E pk(r1 · Qĥ1
(yα)). It then applies an homo-

morphic operation on these ciphertexts and E pk(sα
1 ; r̂0) and E pk(sα

0 ; r̂1),
respectively. This results in eα

0 = E pk(r0 · Qĥ0
(yα) + sα

1) and eα
1 =

E pk(r1 · Qĥ1
(yα) + sα

0).
Finally, P2 sends eα

0 , eα
1 together with tα0 = r̃0 ⊕ yα , tα1 = r̃1 ⊕ yα to P1.

7. Computing the intersection: P1 checks that P2 sent m2 tuples and aborts
otherwise. For each received eα

0 , eα
1 , tα0 , tα1 , party P1 computes s′

0 = Dsk(eα
1)

and s′
1 = Dsk(eα

0) and sets r ′
j , r̃ ′

j , r̂ ′
j = H(s′

j) for all j .
If tαj = r̃ ′

j ⊕ x for some x ∈ X and j ∈ {0, 1}, then P1 records sx
j = s′

j and
sx
1− j = s′

1− j − r ′
j · Qh j (x)(x). P1 uses these recorded values and x in order

to recompute the set eα
0 , eα

1 , tα0 , tα1 . If its outcome agrees with P2’s messages,
it records x.
Namely, P1 recomputes eα

j and tαj using P2’s procedure in Step 3, but with
sx
0 , sx

1 in the role of sα
0 , sα

1 .

Correctness Notice first that if both parties are honest, then P1 outputs X ∩ Y with
probability negligibly close to 1: (i) For elements x ∈ X ∩ Y , there exists a yα that zeros
at least one of the polynomials Qh0(yα)(·), Qh1(yα)(·), say w.l.o.g. the first polynomial.
Hence, getting the messages sent for yα , P1 recovers s′

1 = sα
1 immediately. Moreover,

since it already knows yα from tα1 , and r1 from H(sα
1), it can recover sα

0 as well by
simply computing sα

0 = s′
0−r1 · Qh1(yα)(yα) and verify that the recomputed encryptions

eα
0 , eα

1 , tα0 , tα1 agree with P2’s messages. Consequently, P1 records x in its output. (ii) For
elements x ∈ X\Y , P1 records x only if for some yα and j the values r ′

j , r̃ ′
j , r̂ ′

j = H(s′
j)

are such that tαj = r̃ ′
j ⊕ x and furthermore, the conditions on eα

0 , eα
1 , tα0 , tα1 are met. As

proven below, this occurs with only a negligible probability.

Theorem 5.1. Assume that πKEY and πPOLY are as described above, that (G, E, D) is
a semantically secure homomorphic PKE that is good for plaintext space (cf. Defini-
tion 3.2), and that H is a random oracle. Then, Protocol 3 securely computes F∩ in the
presence of malicious adversaries in the random oracle model.

Proof. We separately prove security in the case that P1 is corrupted and the case that
P2 is corrupted. Our proof is in a hybrid model where a trusted party computes the ideal
functionalities FKEY and the zero-knowledge proof of knowledge RPOLY.

P1is corrupted. Intuitively, all a corrupted P1 can do in protocol πRO∩ is to try and
construct the polynomials Qi (·) such that it gains information about P2’s input Y . There
are two provisions in the protocol against such an attempt: (i) The application of πPOLY

ensures that as long as all the homomorphic operations are within elements of G (as
specified in Definition 3.2), P1 should fail; and (ii) Letting P1 learn sk only after it
constructs the polynomials ensures that this would indeed be the case. The following
proof makes this intuition formal. Let A denote an adversary controlling P1. Construct
a simulator S for A as follows:

Efficient Set Intersection with Simulation-Based Security 149

Convention:During the entire execution, S evaluates queries to the random oracle
H. Such queries are made by A or by S during its simulation of P2. To evaluate
H(s), S first checks if it has already recorded a pair (s, r), in which case H(s)
evaluates to the value r . Otherwise, S chooses a random string r of the appropriate
length, records (s, r) and evaluates H(s) to r .

1. S is given X , m2, and 1k and invokes A on these inputs. S sets m1 = |X |.
2. S receives from A its input 1k for the ideal functionality FKEY and computes

(pk, sk) ← G(1k). Next, S computes random shares sk1, sk2 such that the recon-
struction with these shares yields sk, and sends (pk, sk1) to A, emulating the
response of a trusted party for FKEY.

3. Upon engaging in a coin-tossing protocolwithA,S receives fromA the parameters
B, M and the seeds for the two randomchosen hash functions h0, h1 : {0, 1}p(k) →
[B] used in the balanced allocation scheme. If the parameters B, M or h0, h1 were
not computed correctly, S sends ⊥ to the trusted party for F∩ and aborts.

4. S receives from A the encrypted polynomials {qi, j }i∈{1,...,B}, j∈{0,...,M}.
5. S receives from A its input {Qi, j , ri, j }i∈{1,...,B}, j∈{0,...,M} and pk for the ideal

computation RPOLY. If the conditions of RPOLY for outputting (λ, 1) are not met,
then S sends ⊥ to the trusted party for F∩ and aborts.

6. S sends sk2 to A.
7. S sets X̃ = ∪B

i=1{x : Qi (x) = 0 ∧ (h0(x) = i ∨ h1(x) = i)} (note that for
Paillier, S would know the factorization p and q of the public key N , so that it
can factor Qi (·) over the fields Zq and Zp, recovering the roots over ZN using
the Chinese Reminder Theorem) and completes X̃ to size m1 by adding random
elements from {0, 1}p(k). S sends X̃ to the trusted party for F∩ and receives as
answer a set Z = X̃ ∩ Y . S sets Ỹ to Z and completes Ỹ to the size m2 by adding
random elements from {0, 1}p(k).

8. S plays the role of the honest P2 for the rest of the execution, using Ỹ as the input
for P2, with the exception that S itself evaluates queries to H as described above.

9. S outputs whatever A does.

We claim that A’s output distributions in the hybrid and the simulated executions are
statistically close. The potential difference between these executions is in Step 7 of the
simulation, where S plays the role of the honest P2 with Ỹ instead of Y . Ignoring the
case where Y ∩ X̃ �= Y ∩ X (which happens with only a negligible probability), the
difference is that members of Ỹ ′ = Ỹ\(Y ∩ X) are used in the simulated execution,
whereas members of Y ′ = Y\X = Y\(Y ∩ X) are used in the hybrid execution.
Let y ∈ Y ′ (y ∈ Ỹ ′) be theαth element considered in the hybrid (simulated) execution,

then A receives four values: eα
0 , eα

1 , tα0 , tα1 . Note first that unless A recovers either sα
0

or sα
1 the plaintexts encrypted under eα

0 , eα
1 are statistically close to random messages.

Similarly, the strings tα0 and tα1 are statistically close to uniformly selected strings in
M. Hence, it suffices to show that sα

0 , sα
1 cannot be recovered, unless with negligible

probability.
Recall that eα

j = E pk(r j · Qh j (y)(y) + sα
1− j ; r̂ j). Then if Qh0(y)(y), Qh1(y)(y) ∈ G,

except with negligible probability, r j is uniformly distributed in G and we get that
r j · Qh j (y)(y) is uniformly distributed in G. Therefore, the probability of guessing
sα
1− j is negligible in the order of G. Moreover, the probability that Qh0(y)(y) �∈ G or

150 M. J. Freedman et al.

Qh1(y)(y) �∈ G is negligible both in the hybrid and in the simulated executions by Item 1
in Sect. 5.1. This concludes the proof.

P2 is corrupted. Intuitively, we should prevent a corrupted P2 from learning about P1’s
input and from making P1 output a wrong output. The latter concern is dealt with using
a technique we mentioned above, i.e., by having P1 recover P2’s randomness fromH(s)
and verify that P2’s messages that result in an element supposedly in the intersection are
in accordance with what a honest P2 would have sent.
Getting to the formal proof, let A denote an adversary controlling P2 and construct a

simulator S for A as follows:

Convention:During the entire execution, S evaluates queries to the random oracle
H. Such queries are made by A or by S during its simulation of P1. To evaluate
H(s), S first checks if it has already recorded a pair (s, r), in which case H(s)
evaluates to the value r . Otherwise, S chooses a random string r of the appropriate
length, records (s, r) and evaluates H(s) to r .

1. S is given Y , m1, and 1k and invokes A on these inputs. S sets m2 = |Y |.
2. S receives from A its input 1k for the ideal functionality FKEY and computes

(pk, sk) ← G(1k). Next, S chooses random shares such that the reconstruction
with these shares yields sk, and sends (pk, sk2) to A, emulating the response of a
trusted party for FKEY.

3. Upon engaging in a coin-tossing protocol with A, S computes the parameters
B, M for the balanced allocation scheme and the seeds for the hash functions
h0, h1. These are then sent to A.

4. S sends to A, B M encryptions of the value 0, under the key pk (i.e., encryptions
of B zero polynomials). Each encryption is done with fresh randomness.

5. S emulates the ideal computation of RPOLY. It receives from A a set of B M coef-
ficients and pk. If A’s input is the exact set of encryptions that it received from S
in the previous step and pk then S returns 1; otherwise, it returns 0.

6. S receives from A its private-key share. If A does not send sk2, S aborts, sending
⊥ to the trusted party for F∩.

7. In case, A sends more than m2 tuples in Step 3 of the protocol S aborts, sending
⊥ to the trusted party.

8. For every eα
0 , eα

1 , tα0 , tα1 received fromA in the simulation of Step 3 of the protocol,
every j ∈ {0, 1} and every pairs (s0, r0), (s1, r1) recorded by S as part of its
evaluation of the random oracle H, S performs the following: (i) it parses r j

as r ′
j‖r̃ j‖r̂ j and sets y j = tαj ⊕ r̃ j . (ii) For all j ∈ {0, 1}, it checks whether

eα
0 , eα

1 , tα0 , tα1 are consistent with what P2 should have sent on yα = y j given
sα
1− j = s1− j and r ′

j , r̃ j , r̂ j . That is, S recomputes these encryptions using s, r ,
and yα as the honest P2 would in the real execution, and checks whether the result
equals eα

0 , eα
1 , tα0 , tα1 . If the check succeeds, S locally records the value yα .

Naively implementing the above algorithm, the computational complexity of the
simulator is quadratic in the number of queries. It is possible to reduce this cost
into a linear overhead by additional encoding a common payload in the cipher-
texts. Namely, the input to the random oracle would be the si ’s concatenated with
additional string that is in common for both s0 and s1.

Efficient Set Intersection with Simulation-Based Security 151

9. S sets Ỹ to the set of values recorded in the previous step and completes Ỹ to the
size m2 by adding random elements from {0, 1}p(k).

10. S sends Ỹ to the trusted party and outputs whenever A does.

In the following, we define a sequence of hybrid games and denote by the random
variable HA(z)

 (k, X, Y) (for a fixed k) the joint output of A and P1 in hybrid game H.
Game H0: The simulated execution.
Game H1: The simulator S1 acts identically to S except that it does not get to know sk.
The random variables HA(z)

0 (k, X, Y) and HA(z)
1 (k, X, Y) are identical as S and S1 do

not use sk.
GameH2: In this game, there is no trusted party and no honest P1. Instead, the simulator
S2 is given as input P1’s real input X .S2 works exactly likeS1, except that insteadof send-
ing zero polynomials, it computes the polynomials as in the hybrid execution using the set
X . In addition, S2 does not send Ỹ to the trusted party, but uses X to compute and output
X ∩ Ỹ . The random variables HA(z)

1 (k, X, Y) and HA(z)
2 (k, X, Y) are computationally

indistinguishable via a reduction to the security of (G, E, D). Assume, for contradiction,
the existence of a distinguisher circuit D for HA(z)

1 (k, X, Y) and HA(z)
2 (k, X, Y) and

choose hash functions h0, h1 that maximize D’s distinguishing advantage. Construct a
distinguisher circuit DE that distinguishes between the encryptions of two sets of mes-
sages: (i) coefficients of zero polynomials as constructed in gameH1 and (ii) coefficients
of polynomials corresponding to X and hash functions h0, h1 as constructed in gameH2.
DE receives a public key pk and a vector of encryptions c under pk and works exactly
like S2 except that it uses the public key given to it as input instead of the public key
it generated within FKEY, and forwards to A the vector of encryptions c instead of the
encrypted polynomials. Note that the output distribution generated by DE is identical
either to HA(z)

1 (k, X, Y) or to HA(z)
2 (k, X, Y) (conditioned on our choice of h0, h1),

and hence, the existence of D contradicts the indistinguishability of ciphertexts of the
encryption scheme (G, E, D).
GameH3: The simulator S3 acts identically toS2 except that S3 is given sk. The random
variables HA(z)

2 (k, X, Y) and HA(z)
3 (k, X, Y) are identical as S2 and S3 do not use sk.

Game H4: In this game, S4 acts identically to S3 except that S4 performs in Step 3
of the protocol the same check as in the hybrid execution, i.e., first decrypt and then
recompute. To conclude the proof, we show that the random variables HA(z)

3 (k, X, Y)

andHA(z)
4 (k, X, Y) are statistically close. Neglecting the event that new elements added

to Ỹ are in X as well and ignoring this set observe first that if an element yα satisfies the
conditions for being included in the output in Game H3, it also satisfies the conditions
for being included in the output in GameH4. Namely, if S3 outputs an element yα , then
it must be that yα ∈ X , and either eα

0 or eα
1 encrypts sα

j , and hence, S4 would have
outputted it.
Consider now the reverse direction. Let bad denote the event where there exists an

element x ∈ X such that S4 decided to output, but should not have been outputted by S3.
We show that Pr[bad] is negligible. Note that for bad to occur it must be that for some
j , one of eα

0 , eα
1 is decrypted into sα

j such that for some x ∈ X the values eα
0 , eα

1 , tα0 , tα1
are consistent with setting y = x and the randomness obtained from H(sα

0) and H(sα
1),

152 M. J. Freedman et al.

and this occurs only with negligible probability due to the fact that the output by H is
truly random.
GameH5:Thehybrid execution.The randomvariablesHA(z)

4 (k, X, Y) andHA(z)
5 (k, X, Y)

are identical as the only difference between the executions is that in H4 the outcome
of the random oracle is chosen upon request, whereas in H5 it is chosen before the
execution. In both cases, the outcome of the execution does not depend on entries of the
random oracle which are not accessed.

Efficiency Protocol πRO∩ runs in a constant number of rounds, because all the zero-
knowledge proofs can be implemented in constant rounds, and also the implementations
of πKEY and πPOLY are constant round. Implementation of πKEY depends on the homo-
morphic PKE that is used. For ElGamal, the key setup of [19] can be used here with
additional zero-knowledge proofs of knowledge for proving a knowledge of discrete
logarithm. The overhead induced by this protocol is relatively small since each such
zero-knowledge proof of knowledge requires 9 exponentiations. A protocol for Paillier
requires an increased overhead since its costs depend on the number of attempts to suc-
cessfully generate a pair of primeswhich takes an expected number of 1,936 trials, where
for each trial the number of exponentiations for generating and testing the composite is
constant [10]. Clearly, ElGamal gives better efficiency with a shorter security parameter
(i.e., 160 bits compared with 1,024/2,048).
The overhead induced by protocol πPOLY is O(B M) which amounts to performing

O(m1) exponentiations and exchanging O(m1) group elements. In the last two steps
of the protocol, P2 substitutes m2 values in the encrypted polynomials and sends the
results of the substitution to P1. Neglecting the costs of invoking the random oracle H,
this amounts to performing O(m2M) = O(m2 log logm1)modular exponentiations and
communicating O(m2) group elements.We get that the overall communication costs are
of sending O(m1 + m2) group elements, and the computation costs are of performing
O(m1 + m2 log logm1) modular exponentiations.

References

[1] Yossi Azar, Andrei Z. Broder, Anna R. Karlin, and Eli Upfal.Balanced allocations. SIAM Journal on
Computing, 29(1):180–200, 1999.

[2] Proc. Twentieth Annual ACM Symposium on Theory of Computing, Chicago, Illinois, 2–4 May 1988.
[3] Giuseppe Ateniese, Emiliano De Cristofaro, and Gene Tsudik. (if) size matters: Size-hiding private set

intersection. In Dario Catalano, Nelly Fazio, Rosario Gennaro, and Antonio Nicolosi, editors, Public
Key Cryptography, volume 6571 of Lecture Notes in Computer Science, pages 156–173. Springer, 2011.

[4] Martin Aumller, Martin Dietzfelbinger, and Philipp Woelfel. Explicit and efficient hash families suffice
for cuckoo hashing with a stash. 2012.

[5] Bill Aiello, Yuval Ishai, and Omer Reingold. Priced oblivious transfer: How to sell digital goods. In
Advances in Cryptology–EUROCRYPT 2001, Innsbruck, Austria, May 2001.

[6] Miklós Ajtai, János Kolmós, and Endre Szemerédi. An O(n log n) sorting network. In STOC, pages 1–9,
1983.

[7] YonatanAumann andYehudaLindell. Security against covert adversaries: Efficient protocols for realistic
adversaries. In Salil P. Vadhan, editor, TCC, volume 4392 of Lecture Notes in Computer Science, pages
137–156. Springer, 2007.

Efficient Set Intersection with Simulation-Based Security 153

[8] Kenneth E. Batcher. Sorting networks and their applications. In AFIPS Spring Joint Computing Confer-
ence, pages 307–314, 32(1968).

[9] Donald Beaver. Foundations of secure interactive computing. CRYPTO, 576:377–391, 1991.
[10] Dan Boneh and Matthew K. Franklin. Efficient generation of shared rsa keys. J. ACM, 48(4):702–722,

2001.
[11] Michael Ben-Or, Shafi Goldwasser, and Avi Wigderson. Completeness theorems for non-cryptographic

fault-tolerant distributed computation (extended abstract). In ACM [2], pages 1–10.
[12] Andrei Z. Broder and Michael Mitzenmacher. Using multiple hash functions to improve ip lookups.

In IEEE INFOCOM 2001. 20th Ann. Joint Conference of the IEEE Computer and Communications
Societies. Proceedings, 2001.

[13] Fabrice Boudot, Berry Schoenmakers, and Jacques Traore. A fair and efficient solution to the socialist
millionaires’ problem. Discrete Applied Mathematics, 111(1-2):23–036, 2001.

[14] Ran Canetti. Security and composition of multi-party cryptographic protocols. Journal of Cryptology,
13(1):143–202, 2000.

[15] David Chaum, Claude Crépeau, and Ivan Damgård. Multiparty unconditionally secure protocols
(extended abstract). In ACM [2], pages 11–19.

[16] Jung Hee Cheon, Stanislaw Jarecki, and Jae Hong Seo. Multi-party privacy-preserving set intersection
with quasi-linear complexity. Cryptology ePrint Archive, Report 2010/512, 2010.

[17] David Chaum and Torben P. Pedersen. Wallet databases with observers. In CRYPTO, pages 89–105,
1992.

[18] Jan Camenisch andGregoryM. Zaverucha. Private intersection of certified sets. In Roger Dingledine and
Philippe Golle, editors, Financial Cryptography, volume 5628 of Lecture Notes in Computer Science,
pages 108–127. Springer, 2009.

[19] Whitfield Diffie and Martin E. Hellman. New directions in cryptography. IEEE Transactions on Infor-
mation Theory, 22(6):644–654, November 1976.

[20] Ivan Damgård and Mads Jurik. A generalisation, a simplification and some applications of Paillier’s
probabilistic public-key system. In 4th International Workshop on Practice and Theory in Public Key
Cryptosystems (PKC 2001), pages 13–15, Cheju Island, Korea, February 2001.

[21] Ivan Damgård, Valerio Pastro, Nigel P. Smart, and Sarah Zakarias. Multiparty computation from some-
what homomorphic encryption. In CRYPTO, pages 643–662, 2012.

[22] Dana Dachman-Soled, Tal Malkin, Mariana Raykova, and Moti Yung. Efficient robust private set inter-
section. In Michel Abdalla, David Pointcheval, Pierre-Alain Fouque, and Damien Vergnaud, editors,
ACNS, volume 5536 of Lecture Notes in Computer Science, pages 125–142, 2009.

[23] Martin Dietzfelbinger and Philipp Woelfel. Almost random graphs with simple hash functions. In Pro-
ceedings of the 35th Annual ACM Symposium on Theory of Computing, pages 629–638, 2003.

[24] Ivan Damgård and Sarah Zakarias. Constant-overhead secure computation of boolean circuits using
preprocessing. In TCC, pages 621–641, 2013.

[25] Alexandre Evfimievski, Johannes Gehrke, and Ramakrishnan Srikant. Limiting privacy breaches in
privacy preserving data mining. In Proc. 22nd ACM Symposium on Principles of Database Systems
(PODS 2003), pages 211–222, San Diego, CA, June 2003.

[26] Taher ElGamal. A public key cryptosystem and a signature scheme based on discrete logarithms. IEEE
Transactions on Information Theory, 31(4):469–472, 1985.

[27] Michael J. Freedman, Yuval Ishai, Benny Pinkas, and Omer Reingold. Keyword search and oblivious
pseudorandom functions. In JoeKilian, editor, TCC, volume 3378 of Lecture Notes in Computer Science,
pages 303–324. Springer, 2005.

[28] Michael J. Freedman, Kobbi Nissim, and Benny Pinkas. Efficient private matching and set intersection.
In Christian Cachin and Jan Camenisch, editors, Advances in Cryptology–EUROCRYPT 2004, volume
3027 of LNCS, pages 1–19. Springer-Verlag, 2–6 May 2004.

[29] Ronald Fagin, Moni Naor, and Peter Winkler. Comparing information without leaking it. Communica-
tions of the ACM, 39(5):77–85, 1996.

[30] Oded Goldreich and Ariel Kahan. How to construct constant-round zero-knowledge proof systems for
NP. Journal of Cryptology, 9(3):167–189, 1996.

[31] Shafi Goldwasser and Leonid A. Levin. Fair computation of general functions in presence of immoral
majority. CRYPTO, 537:77–93, 1990.

[32] GMP. GNU Multiple Precision Arithmetic Library. gmplib.org, 2009.

154 M. J. Freedman et al.

[33] Oded Goldreich, Silvio Micali, and Avi Wigderson. How to play any mental game or a completeness
theorem for protocols with honest majority. In Proc. Nineteenth Annual ACM Symposium on Theory of
Computing, pages 218–229, New York City, 25–27 May 1987.

[34] Oded Goldreich. Foundations of cryptography: Basic applications. Cambridge Univ Pr, 2004.
[35] BernardoA. Huberman,Matt Franklin, and TadHogg. Enhancing privacy and trust in electronic commu-

nities. In Proc. ACM Conference on Electronic Commerce, pages 78–86, Denver, Colorado, November
1999.

[36] Carmit Hazay and Yehuda Lindell. Efficient protocols for set intersection and pattern matching with
security against malicious and covert adversaries. In TCC, pages 155–175, 2008.

[37] Carmit Hazay, Gert Læssøe Mikkelsen, Tal Rabin, and Tomas Toft. Efficient rsa key generation and
threshold paillier in the two-party setting. In CT-RSA, pages 313–331, 2012.

[38] Carmit Hazay and Kobbi Nissim. Efficient set operations in the presence of malicious adversaries. In
Public Key Cryptography, pages 312–331, 2010.

[39] Russell Impagliazzo and Steven Rudich. Limits on the provable consequences of one-way permutations.
In Proc. 21st Annual ACM Symposium on Theory of Computing, pages 44–61, Seattle, Washington, May
1989.

[40] Stanislaw Jarecki and Xiaomin Liu. Efficient oblivious pseudorandom function with applications to
adaptive ot and secure computation of set intersection. TCC, 5444:577–594, 2009.

[41] Stanislaw Jarecki and Xiaomin Liu. Fast secure computation of set intersection. SCN, 6280:418–435,
2010.

[42] Stanislaw Jarecki and Vitaly Shmatikov. Efficient two-party secure computation on committed inputs.
EUROCRYPT, 4515:97–114, 2007.

[43] Adam Kirsch, Michael Mitzenmacher, and Udi Wieder. More robust hashing: Cuckoo hashing with a
stash. In Proceedings of the 16th annual European symposium on Algorithms, pages 611–622. Springer,
2008.

[44] Efficient password-authenticated key exchange using human-memorable passwords. In Advances in
Cryptology - EUROCRYPT 2001, Innsbruck, Austria, May 6–10, 2001, pages 475–494, 2001.

[45] Bala Kalyanasundaram and Georg Schnitger. The probabilistic communication complexity of set inter-
section. SIAM J. Discrete Mathematics, 5(4):545–557, 1992.

[46] Lea Kissner and Dawn Song. Private and threshold set-intersection. In Proceedings of CRYPTO ’05,
August 2005.

[47] Helger Lipmaa. Verifiable homomorphic oblivious transfer and private equality test. In Advances in
Cryptology–ASIACRYPT 2003, pages 416–433, Taipei, Taiwan, November 2003.

[48] Sven Laur and Helger Lipmaa. A new protocol for conditional disclosure of secrets and its applications.
In ACNS, pages 207–225, 2007.

[49] Yehuda Lindell and Benny Pinkas. A proof of security of yaos protocol for two-party computation.
Journal of Cryptology, 22(2):161–188, 2009.

[50] Yehuda Lindell and Benny Pinkas. Secure two-party computation via cut-and-choose oblivious transfer.
J. Cryptology, 25(4):680–722, 2012.

[51] David Mazières. A toolkit for user-level file systems. In USENIX Technical Conference, June 2001.
[52] Silvio Micali and Phillip Rogaway. Privacy preserving data mining. Unpublished manuscript, 576:

392–404, 1991.
[53] Moni Naor and Benny Pinkas. Oblivious transfer and polynomial evaluation. In Proc. 31st Annual ACM

Symposium on Theory of Computing, pages 245–254, Atlanta, Georgia, May 1999.
[54] Moni Naor and Benny Pinkas. Efficient oblivious transfer protocols. In SIAM Symposium on Discrete

Algorithms (SODA), pages 448–457, Washington, D.C., January 2001.
[55] Pascal Paillier. Public-key cryptosystems based on composite degree residuosity classes. In Advances

in Cryptology–EUROCRYPT ’99, pages 223–238, Prague, Czech Republic, May 1999.
[56] Torben Pryds Pedersen. Non-interactive and information-theoretic secure verifiable secret sharing. In

J. Feigenbaum, editor, Advances in Cryptology–CRYPTO ’91, volume 576 of LNCS, pages 129–140.
Springer-Verlag, 1992, 11–15 August 1991.

[57] Anna Pagh and Rasmus Pagh. Uniform hashing in constant time and optimal space. SIAM J. Comput.,
38(1):85–96, 2008.

[58] Rasmus Pagh and Flemming Friche Rodler. Cuckoo hashing. J. Algorithms, 51(2):122–144, 2004.
[59] Mihai Patrascu and Mikkel Thorup. The power of simple tabulation hashing. J. ACM, 59(3):14, 2012.

Efficient Set Intersection with Simulation-Based Security 155

[60] Alexander A. Razborov. Application of matrix methods to the theory of lower bounds in computational
complexity. Combinatorica, 10(1):81–93, 1990.

[61] Martin Raab and Angelika Steger. Balls into Bins - A Simple and Tight Analysis. Randomization and
Approximation Techniques in Computer Science, pages 159–170, 1998.

[62] Berthold Vöcking. How asymmetry helps load balancing. Journal of the ACM (JACM), 50:568–589,
July 2003.

[63] UdiWieder. Balanced allocations with heterogenous bins. In Proceedings of the nineteenth annual ACM
symposium on Parallel algorithms and architectures, page 193. ACM, 2007.

[64] Philipp Woelfel. Asymmetric balanced allocation with simple hash functions. In Proceedings of the
seventeenth annual ACM-SIAM symposium on Discrete algorithm, SODA ’06, pages 424–433, 2006.

[65] Andrew C. Yao. Protocols for secure computations. In 23rd Annual Symposium on Foundations of
Computer Science, pages 160–164, Chicago, Illinois, 3–5 November 1982. IEEE.

	Efficient Set Intersection with Simulation-Based Security
	1. Introduction
	1.1. Background and Related Work
	1.2. Our Contributions
	1.2.1. Protocols for Computing Set Intersection
	1.2.2. Experimental Results
	1.2.3. A Roadmap

	2. Definitions and Tools
	2.1. Secure Two-Party Computation
	2.1.1. The Semi-Honest Setting
	2.1.2. The Malicious Setting

	2.2. Hardness Assumptions
	2.3. Public Key Encryption Schemes
	2.3.1. Building Blocks: Additively Homomorphic PKE

	3. Secure Set Intersection in the Semi-Honest Setting
	3.1. A High-Level Description
	3.2. Using Hashing to Reduce the Computational Overhead
	3.3. The Detailed Protocol
	3.4. Computing Set Intersection Cardinality

	4. Performance Evaluation
	5. Security in the Presence of Malicious Adversaries
	5.1. Properties of Homomorphic PKE
	5.2. Zero-Knowledge Proof of Knowledge for calRPOLY
	5.3. Secure Set Intersection in the Random Oracle Model

	Reference

