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Abstract

We propose the adoption of a vector extrapolation technique to accelerate conver-
gence of correspondence problems under the quadratic assignment formulation for at-
tributed graph matching (QAP). In order to capture a broad range of matching scenarios,
we provide a class of relaxations of the QAP under elastic net constraints. This al-
lows us to regulate the sparsity/complexity trade-off which is inherent to most instances
of the matching problem, thus enabling us to study the application of the acceleration
method over a family of problems of varying difficulty. The validity of the approach is
assessed by considering three different matching scenarios; namely, rigid and non-rigid
three-dimensional shape matching, and image matching for Structure from Motion. As
demonstrated on both real and synthetic data, our approach leads to an increase in per-
formance of up to one order of magnitude when compared to the standard methods.

1 Introduction

Shape matching is a pervasive problem in computer vision. It concerns, in its general form,
the problem of determining a map f: X — Y among two given shapes X and Y in such a
way that their geometrical properties are preserved by the transformation. This problem has
attracted the interest of many researchers over the years, and a large variety of approaches
have been proposed. Arguably one of the most adopted formulations for shape matching
takes form as a NP-hard quadratic assignment problem (QAP), where a quadratic term in
the objective function encodes a measure of pairwise association among a set of putative
matches. This formulation is common in attributed graph matching literature [1, 7, 9, 23],
but it also frequently arises in problems of inlier selection and object recognition [2, 16],
and in minimum distortion correspondence problems under the notion of Gromov-Hausdorff
distance between metric spaces [12, 14, 15]. In this wide variety of scope and objectives, it is
not uncommon for existing methods to provide specifically tailored optimization techniques
for the particular problem they attempt to solve, ranging from dual decomposition [23] to
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Figure 1: Evolution of a correspondence set via projected gradient (left figure) in a problem
of non-rigid matching under elastic net constraints, and its accelerated version using vector
extrapolation with cycling (right figure). Each curve represents the progress of a candidate
match x; € [0, 1] during the optimization process (Eq. (6)). The vertical bars in the second
plot indicate the time steps where extrapolation takes place; the jump occurring at iteration 44
corresponds to a large increase in the objective value (equal to 5% of the final optimum). In
this case, the standard method (left) requires 333 iterations in total to reach a local optimum
with the same level of accuracy of the accelerated solution (total 70 iterations).

first-order Taylor approximations of the objective [7] and even closed form solutions [9]. In
most cases, though, it is difficult to devise a specific technique for reaching a solution, and
thus more general optimization algorithms need to be considered. Our focus in this paper is
on variants of the projected gradient method for convex optimization [10]. These algorithms
tend to be slow, and accelerated approaches attempting to take into consideration the curva-
ture of the objective surface (e.g., parallel tangents [10]) usually bring only limited benefits
in practical scenarios, making their application in large-scale problems often prohibitive.

In this paper, we propose the adoption of a vector extrapolation technique [21] to accel-
erate the numerical solution of QAP-based matching problems. In order to capture a broad
family of matching scenarios, we look at a new family of constraints, namely the elastic
net [24], which allow us to regulate the intrinsic trade-off between accuracy and size of the
correspondence with continuity. In most non-convex matching scenarios, the intermediate
sequence of solutions generated by the optimization algorithm has a tendency to exhibit a
certain degree of smoothness (see Figure 1). This suggests the possibility to infer the general
direction of convergence from previous iterates. Since the main objective of such iterative
process is to reach a fixed point, we propose to determine an approximate solution to it by
estimating, in closed form, the limit value of the sequence as generated by the process. This
approximation can be computed as a linear combination of the last few iterates, with coef-
ficients uniquely determined as the solution to a linear system. While it can be proved that
this approach allows to attain the global optimum in case the considered sequence is linearly
generated, previous attempts at applying the method in nonlinear settings have demonstrated
good convergence properties. Until now, limited attempts have been made to adopt such tech-
niques in computer vision problems; the few examples include isometric embedding [18],
blind deconvolution [3], and Beltrami filtering on images [17].

2 Matching with pairwise constraints

Let X,Y € R? be two given shapes, and let the binary function ¢ : X x ¥ — {0, 1} represent
a point-to-point correspondence among them, such that ¢(x,y) = 1 if and only if x € X is
a corresponding point for y € Y, and vice versa; mapping constraints may additionally be
imposed over ¢, depending on the specific task at hand (e.g., one-to-one, one-to-many). In


Citation
Citation
{Gold and Rangarajan} 1996

Citation
Citation
{Leordeanu and Hebert} 2005

Citation
Citation
{Luenberger and Ye} 2010

Citation
Citation
{Luenberger and Ye} 2010

Citation
Citation
{Smith, Ford, and Sidi} 1987

Citation
Citation
{Zou and Hastie} 2005

Citation
Citation
{Rosman, Bronstein, Bronstein, and Kimmel} 2010

Citation
Citation
{Biggs} 1998

Citation
Citation
{Rosman, Dascal, Sidi, and Kimmel} 2009


RODOLA, HARADA, KUNIYOSHI, CREMERS: SHAPE MATCHING USING VEC. EX. 3

order to give a measure of quality to the correspondence, we evaluate the distortion induced
by the mapping as measured on X and Y according to some predetermined distance function
d : R* x R* — R.. Given two matches (x,y), (x',y') € X x Y, the absolute criterion

8((X’Y)7(xl’yl)) = |d(x’xl)_d(yay/)| (D

provides a measure of cost for the pair of matches. In the particular case where X and Y
are compact metric spaces endowed with a metric d, Equation (1) directly quantifies to what
extent the given correspondence deviates from isometry [12, 14, 15].

Equivalently, one may define a measure s of similarity among pairs of matches [7], as-
signing a large value to low cost pairs, and a small value otherwise. With this definition,
given a correspondence set C C X X Y, we can define its total similarity as the weighted sum

Y cxy)ey)s ((xy), () - )

(x.y), (' y)eC

We are thus interested in determining the correspondence set C maximizing the score above.
Note, however, that the binary constraints on ¢ render this problem NP-hard. For this reason,
it has been proposed [7] to relax the integral constraints by letting the correspondence func-
tion assume a continuum of values in [0, 1], giving rise to a fuzzy notion of correspondence
between shapes [15]. With these changes, the problem can be easily cast as a relaxed QAP:

max x'SX s.t. II(x) <b, 3)
where x € [0, l}m is a vector representation for the correspondence function, S € RICI<IC]
is a symmetric matrix containing the similarity terms appearing in Equation (2), < denotes
element-wise inequality, b € R/l is a fixed vector, and IT is a (possibly nonlinear) function
specifying the mapping constraints on c.

2.1 Elastic net matching

Several attempts at finding good local optima for variants of the QAP have been proposed
in computer vision literature, from graduated assignment [7] for attributed graph matching,
to more recent proposals such as spectral matching [9], pseudo-boolean decomposition [23],
and game-theoretic matching [1]. In [9], it was proposed to solve the modified problem

max X'Sx s.t. [|[x]3=1, xe€[0,1], “)
X

which is then maximized, by Rayleigh’s quotient theorem, by the principal eigenvector of
matrix S. Note that, in this case, the actual mapping constraints between the two shapes
are lost, and they must be imposed a posteriori by a greedy method [9]. As a result, the
method manifests a tendency to assign matches to each point, therefore bringing incorrect
correspondences in the final solution even in presence of moderate noise. The more recent
techniques based on game theory [1, 15] replace the unit norm constraint from (4) by the
L; counterpart ||x||; = 1, with x = 0. The simplex constraint has the effect of promoting
sparse, yet very stable solutions, a characteristic that makes the method particularly effective
in tasks where strong selectivity is a major requirement [2, 16]; nevertheless, this selectivity
may come as a disadvantage in a variety of tasks, and the high locality of the obtained
solutions does not allow, in practice, densification methods to be applied [23].

Most existing formulations for shape matching typically aim at striking a balance be-
tween the two. In order to provide a representative framework for a whole range of different
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methods, we introduce a new family of constraints into the matching problem, namely the
elastic net [24]. The elastic net is a regularization technique that arose in the context of
statistical learning and regression analysis. Its penalty function is defined as a convex com-
bination of L and L, penalties; the first term enforces the sparsity of the solution, whereas
the second term ensures democracy among groups of correlated variables. This particular
behaviour (called the grouping effect) allows to select entire groups of correlated features
when these groups are not known in advance. In the context of shape matching, we expect
the grouping effect to manifest itself as a joint selection of entire clusters of highly similar
matches, i.e., groups of matches with high internal cohesion in terms of the adopted mea-
sure of similarity. This is a desirable feature in most relaxed QAP scenarios, in which one
typically seeks only high-precision correspondences in a situation where there is huge am-
biguity in most correspondences. Conversely, incorrect matches will be unlikely to form
strongly correlated groups, and thus they will be filtered out in a measure that depends on
the penalty incurred by them under the elastic net constraint. This accuracy/sparsity trade-
off is regulated by a single convexity parameter & € [0, 1], leading to the following family of
(non-convex) relaxations for the QAP:

maxy X'Sx ®)]

st.  (I—a)|x|i+a|x3=1,x>0.

This family of problems varies from the highly selective game-theoretic behaviour for o = 0
to the more tolerant L, solution for & = 1. Similarly to the spectral approach, this formula-
tion does not impose any mapping constraint on the correspondence. However, these may be
imposed ex-post by using the same technique of [9], or by any other binarization method.

2.2 Optimization

We determine a local optimum to problem (5) by following a projected gradient approach [10].
The optimization process is governed by the equations

x+) = p, (x(’) +5Sx(’)) ) (6)

where Sx = %VXTSX is an ascent direction for the objective, § > 0 is the step length taken
in that direction, and Py, : RI€l — R/l is a projection operator taking a solution back onto
the feasible set. The computation of Py (X) requires solving a Euclidean projection sub-
problem onto the intersection of the non-negative cone with the boundary of the elastic net
ball, amounting to the minimization:

mxin ||x—§(||% s.t. (1—a)||x]1 +a||x|\% =1,x>0. @)

This is a convex optimization problem, and it has been recently solved by Mairal et al. [11]
in the context of sparse dictionary learning. Their simple algorithm guarantees to find the
unique projection onto the set of constraints, and has expected linear time complexity.

3 Vector extrapolation

In this Section we introduce a technique for accelerating convergence of QAP-based meth-
ods for matching. Our motivations derive from the observation that, in typical non-convex
matching scenarios, the vector sequence {x;} generated by the optimization process gener-
ally exhibits a certain degree of smoothness (see Figure (1), left plot). It seems, indeed, that
the general direction of the convergence process may be inferred from past iterates.
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To this end, we look at a family of techniques coming under the umbrella term of vector
extrapolation. These techniques have found application in the context of fixed-point iterative
methods for solving linear and nonlinear systems of equations, such as those arising in finite-
difference schemes for large-scale computational fluid dynamics problems [20].

3.1 Reduced rank extrapolation
Consider the vector sequence Xg, X1, X, ... as generated by the linear process

Xiy1 = Ax,»+b, (8)

where A is a fixed N x N matrix and b € R is a fixed vector. We assume that neither A nor b
are known, and only the sequence {x;} or the generating process are given. Starting from an
initial point xg, the sequence either diverges to an anti-limit point lim;_,. X;, or converges to
the unique solution to the system s = As+ b, provided that 1 is not eigenvalue of A. In case
of convergence, the fixed point will thus equal s = (I— A)~'b. It is often the case that the
iterative process (8) requires many iterations to reach good accuracy, or that the individual
terms X; themselves are expensive to compute. We are thus looking for a means to give an
estimate of the limit point s using as few terms as possible.

Let us define the difference vectors u; = AX; = X;11 — X; and w; = A%x; = W] —u;
for i =0,1,2,.... By induction, we obtain u;y; = Au; = A*'uy and then w; = (A —Du;.
Construct the N X k matrices

Ui = [wolug|---[w—y], Wi = [wo|wq|---|[wi_i], )

where k is the total number of terms to use for the estimation of s. If Wy is invertible and
k = N, then it follows from the above relations that

I-A)"'=-UW, ', (10)
and then, since u; = (A —I)(x; —s), as it is easy to verify from the definitions, it holds
s=x;+(I-A)'w=x,—-UW 'y, i=01,... k1. (11)

We have thus obtained an expression for s that does not depend on the explicit knowledge of
A, as desired. However, it requires the inversion of a full rank matrix, a very costly operation
in most cases. Following [21], we rewrite (11) as the pair of simultaneous equations

s=x0+Ui&, 0=up+W,&, (12)

with & € R*. Suppose now we choose k < N. Then, according to the equations above, we
seek an approximation s* = xo + Y*~) &u; such that the norm of the residual |juy + Wi&||»
is uniquely minimized by &. Now define ¥ € R**! to be the unique vector of coefficients
suchthat g =1—&y, s =&_1—& for 1 <i<k—1, and % = &_,. With this choice, it is
easy to verify that Zi‘{:o % = 1, and we obtain an alternative expression for our estimate:

*

s =) ¥ViXi, 13)

-

i=0

from which we see that we can determine an approximation to the limit point as a linear
combination of k+ 1 past linearly generated iterates. Now, noting that

k1 k=1 k k
uw+Wi§ =ug+ ) &wi=A (Xo +) éilh‘) =A <Z %Xi> =Y ru;, (14
i—0 i=0 i=0 i=0

14
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we can rewrite Equations (12) as the least-squares problem (MeSina’s algorithm [13])
k
min
’)/GleH

k
yui|| st ) v=1. (15)
0 i=0

i=

2
This amounts to solving an inconsistent linear system Uy = 0 subject to a linear constraint.
A numerically stable solution to this system can be obtained in an efficient manner via
QR factorization. In particular, let Uy = QiR be the QR decomposition of Ug. Then,
the ¥ can be computed by first solving the linear system RfR;d = 1, and finally setting
y=d/ ():i-‘:O d,-) [20]. This optimal estimate for s* can equivalently be obtained [21] by
solving a reduced rank equivalent of Equation (11), namely

S=xXp— UkW};uo ) (16)

where T denotes the Moore-Penrose pseudoinverse. For this reason, Megina’s method is
usually referred to as reduced rank extrapolation (RRE).

Another method, called minimal polynomial extrapolation (MPE) [6], is frequently em-
ployed along with the reduced rank method in many practical problems. The two techniques
are very similar, the essential distinction being how the coefficients y; of Equation (13) are
determined. It has been found that RRE and MPE behave much alike in most circum-
stances [18, 20, 21]. In our experiments, we found MPE to be less numerically stable than
RRE, and thus employed the latter throughout our analysis.

3.2 Nonlinear equations and cycling

The extrapolation technique presented in the previous Section provides a solution when the
input sequence is linearly generated, which is not the case in our present setting (Equa-
tion (6)). Note, however, that this nonlinearity is caused by the presence of norm constraints
on the solution. We thus expect the extrapolation method to still give reasonable estimates of
the limit points, as long as we provide a safeguard to avoid generating unfeasible solutions
for our optimization problem. To this end, we follow an approach known as cycling [21].
Cycling amounts to generating a sequence So,S1,S2,... of approximations to s according
to a simple procedure, which we now describe. A cycle is defined by the following steps:
Given an initial vector X¢ and integers n,k, perform n+k-+ 1 standard projected gradient
iterations (6), and save the last K+ 1 vectors as x; for i = 0, 1,...,k; then, apply RRE to the
X; by constructing matrix Uy and solving (15), as described in the previous Section, and ob-
tain the estimate s, t; finally, due to the mixed norm constraints, s, ; will not in general be a
feasible direction for the relaxed QAP, thus we need to perform an additional projection step
Py (sn ). If the final solution attains a greater objective value than the standard iterate, set
X0 = Py (sn ) and start another cycle, keeping xo = x; otherwise.

The cycling method has been applied with success to accelerate the convergence of non-
linear problems [18, 20]; while an accurate convergence analysis has not been carried out to
date, there is empirical evidence in favour of quadratic convergence [21]. Together with the
limited storage requirements and minimal overhead incurred by its application, this renders
the cycling procedure an attractive solution. In the following section, we will analyse the
behaviour of this approach under different choices of the two parameters n and k.

4 Experimental results

In order to assess the validity of the method, we performed a wide range of experiments
on three related computer vision tasks, namely rigid matching of point clouds, non-rigid
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Figure 2: Sensitivity analysis to parameters n and k for the rigid matching experiments. We
verified the final solutions obtained with and without extrapolation to be equivalent in all the

cases. The bullets in the bottom-right graph indicate the beginning of a new cycle.

matching of three-dimensional shapes, and feature matching for multiple-view stereo. From
an optimization point of view, these matching scenarios differ in their specific definitions
of the similarity function s, and typically exhibit energy landscapes with rather different
characteristics. This allows us to assess to what extent vector extrapolation may be adopted
as a means to accelerate convergence in difficult settings, and whether its introduction into
the matching process may lead to premature convergence and thus poor local optima.

4.1 Sensitivity analysis

The first set of experiments is aimed at analysing the behaviour of the matching process
under different choices of parameters in the extrapolation step (namely, k and n).

The analysis was performed in a rigid setting, with synthetic data. We generated a model
point cloud M of 50 random points in R3, and produced the corresponding data cloud D by
transforming a replica of the model according to a random rigid transformation. The data
points were further perturbed with additive positional noise according to a Gaussian distribu-
tion with standard deviation ¢ = 1073, Finally, 10 additional random points were introduced
in both model and data, thus making approximately 80% of the data points matchable with
low error. This setup simulates a simple, yet realistic scenario for rigid matching. Data
generation was repeated 50 times, producing as many matching instances. In all the cases,
we defined the space of assignments as the whole Cartesian product M x D, leading to a
ground-truth inlier ratio of 1.4%. The similarity function was defined as

min{|[m —m'||s, ||d —d'[l}
max{||m—m'||z, |d —d'l]2}’

s((m,d),(m’,d/)) = 17

withm,m' € M and d,d’ € D. Note that this definition for s enforces rigid isometries between
model and data.
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500 RRE k=5 n=5
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man 3.12 2031 6.01 419 754
dog 0.88 334 9.18 510 7.12
horse | 15.16 3.11 322 2.82 4.61
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Figure 3: Example of correspondence obtained with elastic net matching on deformable
shapes (left). On the right, quantitative results of the non-rigid matching experiments on the
SHREC’ 10 dataset. The table shows the ground-truth geodesic error induced by the final
solutions, for each shape across all deformation strengths. Average number of matches is 50.

For each matching instance, we varied the convexity parameter & at discrete steps in
the range [0.1,0.9], and solved the corresponding QAPs without using vector extrapolation,
and by using extrapolation with cycling for different values of n and k. The results of these
experiments are shown in Figure 2. The graphs in the first row plot the number of iterations
(averaged over the 50 runs) required by the optimization process to reach convergence as a
function of n. We chose as stopping criterion the relative change in the objective value (set
to 10~7). We report these results for = 0.1 (first graph) and & = 0.9 (second graph); as
expected from the elastic net formulation, the former case turned out to be more selective
(30 exact matches on average) than the latter (45 matches). We note that, in general, smaller
values of k attain faster convergence for fixed values of n, and the improvement is almost one
order of magnitude if compared with an optimization carried out with no vector extrapolation
at all. Parameter n seems to have a smaller influence over the convergence rate, with smaller
values yielding faster solutions. This seems to be true for nonlinear problems in general [20].
These results indicate that vector extrapolation is a very inexpensive operation as far as both
time and core memory requirements are concerned. The first graph of the second row shows
the number of iterations versus ¢, for n = 10. We notice how, for larger values of «, the
standard method becomes much faster as it approaches a situation in which the optimal
solution is close to the principal eigenvector of S. In this extreme situation the advantage of
the extrapolation method is less evident, and approximately amounts to a two-fold increase
in performance. The last graph of Figure 2 shows the change in objective value for the
QAP across 140 iterations of the matching process. In this graph the extrapolated solutions
have reached convergence, whereas the standard method is still far from the local optimum,
requiring 600 more iterations to reach the same extremum with the same level of accuracy.

4.2 Non-rigid matching

We now turn to the considerably more challenging scenario in which the two shapes to
be matched are allowed to undergo non-rigid deformations (elastic bendings, topological
changes, scale, and so forth). For this set of experiments, we employed the SHREC’10 [5]
and “Non-rigid world” [4] public datasets. Our similarity function in this case is defined as in
Equation (17), where we replaced the Euclidean metric by an intrinsic diffusion metric [15].
We performed our analysis on quasi-isometric deformations at 5 intensity levels over three
different shapes (man, dog, horse). The set of candidate matches C C X x Y was reduced to
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include only points that are similar enough in terms of heat kernel signature [22].

The main objective of these experiments is to assess how vector extrapolation adapts to
problems of increasing difficulty due to different shapes and deformation strengths. In fact,
it has been recently demonstrated [14] that the difficulty of matching in a non-rigid setting is
directly related to the intrinsic properties of the shapes, resulting in a much more complex en-
ergy landscape if compared to a simpler rigid scenario. Figure 3 gives a qualitative example
of matching obtained with o = 0.92 on two cat models, yielding 340 total matches. Smaller
values for & yielded increasingly sparse correspondences, while larger values brought wrong
matches into the final solution. The bar plot on the right shows the total number of iterations
of the optimization process averaged over the three shapes of the SHREC’ 10 dataset, while
in the table below we report the corresponding average geodesic error with respect to the
ground-truth matches (this is the same measure of error adopted in the SHREC contest [5]).
The large increase in performance evident in the first plot suggests that there is little reason
not to adopt vector extrapolation for this class of problems. In these experiments we used
a = 0.65, and the best values for k and n as determined in the previous Section. Note, from
the table, that this choice of o allows us to obtain state-of-the-art results if compared with
methods yielding the same number of matches (50 on average) on the same data [5, 15].

4.3 Multiple-view stereo

Finally, we considered the problem of multi-view feature matching for Structure from Mo-
tion [8]. This is a scenario in which matching performance has a very direct influence over
the practical applicability of 3D reconstruction methods in real-world tasks. In these ex-
periments we used data from the Middlebury multi-view stereo dataset [19], specifically
the “dino sparse ring” and “temple sparse ring” sequences, and adopted the locally-affine
similarity function of [2] to populate the similarity matrix S. In order to meet the strong
selectivity requirements of this class of problems, we set o = 0.2. Note that setting @ = 0
would yield an equivalent formulation to the one proposed in [2], and in particular we expect
comparable sparsity in both cases; since our main focus is on the increased efficiency of the
matching step, we refer to Albarelli ef al. for quantitative results on the same dataset.

In these experiments, we ran a matching process operating on the 16 successive pairs
of images constituting each dataset, and accumulated the total number of iterations required
by the optimization to reach a local optimum across all matching instances. The total num-
ber of iterations needed to match the whole dino sequence without extrapolation amounted
to 14,328 iterations; using RRE with cycling and k = 5, n = 25 reduced the total number
of iterations to 9,424. Further, we verified the final 3D reconstructions resulting from the
matching process followed by a bundle adjustment step to be geometrically equivalent with
and without vector extrapolation. Similarly, the temple sequence required 15,076 iterations
without using extrapolation, and 10, 122 iterations by using RRE with the same parameters
(a detailed breakdown of this experiment is omitted for space reasons). Observe how, in
this case, vector extrapolation brings comparatively little advantage if compared to the pre-
vious experiments. In particular, choosing n = 5 as in the previous cases lead to premature
convergence of the matching process, an effect that disappeared as we increased the cycling
period to n = 25. This difference in behaviour is probably due to the very nature of this
problem, where the presence of repeated structure and very similar features (as in the temple
sequence) as well as of relatively feature-less objects (the dino sequence) render the whole
setting more unstable and prone to getting stuck at poor local minima. Nevertheless, vector
extrapolation may still be adopted whenever a higher degree of accuracy is required.
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5 Conclusions

In this paper, we proposed the adoption of a vector extrapolation technique for correspon-
dence problems in computer vision. Instances of these problems frequently arise in the areas
of shape analysis and three-dimensional reconstruction, where the matching problem is often
formulated as a quadratic assignment subject to mapping constraints. In order to assess the
validity of the approach, we introduced elastic net constraints as regularizers of the QAP; this
allowed us to regulate the sparsity/complexity tradeoff, and thus to evaluate the acceleration
method over a family of problems of varying difficulty. Experiments on both synthetic and
real data confirmed the effectiveness of the approach, leading to an increase in performance
of up to one order of magnitude when compared to standard projected gradient optimization.
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