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Abstract. Meaningful notions of distance between planar shapes typi-
cally involve the computation of a correspondence between points on one
shape and points on the other. To determine an optimal correspondence
is a computationally challenging combinatorial problem. Traditionally it
has been formulated as a shortest path problem which can be solved
efficiently by Dynamic Time Warping.

In this paper, we show that shape matching can be cast as a problem
of finding a minimum cut through a graph which can be solved effi-
ciently by computing the maximum network flow. In particular, we show
the equivalence of the minimum cut formulation and the shortest path
formulation, i.e. we show that there exists a one-to-one correspondence
of a shortest path and a graph cut and that the length of the path is
identical to the cost of the cut. In addition, we provide and analyze some
examples for which the proposed algorithm is faster resp. slower than
the shortest path method.

1 Introduction

1.1 Metrics for Shapes

The definition of metrics for different classes of objects is a fundamental challenge
in Computer Vision. To quantify how similar two given objects are is of central
importance for object recognition, clustering, classification, retrieval and statis-
tical modeling. The definition of metrics for a given object class is not a trivial
matter, it is typically coupled to the problem of determining a correspondence
between parts of one object and parts of the other. The efficient computation of
an optimal correspondence is generally a hard computational challenge.

In this paper, we are concerned with the definition and efficient computation
of metrics for the class of planar shapes, i.e. closed curves embedded in C. In
order to abstract from location and rotation, in this paper the term shape refers
to the equivalence class of a closed curve in C under the action of the Special
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Euclidean group SE(2). Thus, two curves have the same shape if one can be
transformed into the other by rotation and translation.

Yet, how do we quantify the distance between two shapes if they are not
identical, i.e. if one curve cannot be obtained by rotation and translation of
the other? To merely compute the L2-distance between the two curves (up to
rotation and translation) will generally not lead to a distance that is consistent
with human notions of shape similarity. To mimic human notions of similarity,
one needs to take into account that a shape consists of several parts which may be
dislocated, articulated or missing from one shape to the other. The computation
of the shape distance will then require to robustly match respective points of one
curve to points of the other. To propose a novel framework for shape matching
which allows to efficiently compute this correspondence is the key contribution
of this paper.

1.2 Related Work and Contribution

The study of shape and shape similarity has a long tradition going back to works
of Galilei [8] and Thompson [21]. From a wealth of literature on shape and shape
metrics, we will merely discuss a few more closely related works. A review of
the history of shape research can be found in [5]. A mathematical definition of
shape as the equivalence class under a certain transformation group goes back to
Kendall [13]. A shape metric based on the computation of elastic deformations
between two shapes was developed in [3]. There exist numerous shape descriptors
which capture the local shape by means of differential or integral invariants,
the most commonly considered descriptor being curvature [17]. For a detailed
discussion of different kinds of invariants we refer to [15].

In this work, we are not focused on the introduction of new invariants, but
rather on the question of how to efficiently compute a matching given any local
shape descriptor. Ideally the matching should aim at putting in correspondence
points on each shape that have similar local descriptors, at the same time it
should penalize local stretching or shrinking of one curve with respect to the
other. Traditionally this shape matching has been cast as a shortest path prob-
lem through a two-dimensional planar graph, the edge weights of which incor-
porate the distance of the local descriptors and a penalty for local stretching
[16,10,3,2,9,14,22,19,18]. While a shortest path through the respective graph
can be computed efficiently using Dynamic Time Warping (DTW), one of the
key drawbacks of this approach is that Dynamic Time Warping requires a corre-
sponding point pair for initialization. The most current methods therefore apply
DTW for all possible initial correspondences, and then select the minimum of all
computed shortest paths as the distance between the two shapes. More efficient
formulations were proposed in [19,1].

In this work, we will cast the shape matching problem as a problem of finding
the minimum cut through a graph. In contrast to the shortest path formu-
lation, the graph cut approach does not require a separate optimization over
the initial correspondence. While the graph cut method has recently obtained
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considerable attention in the Computer Vision community, it has been mainly
applied to the problems of image segmentation and stereo reconstruction [11,12].
To the best of our knowledge, the idea of shape matching using graph cuts
is new.

In the next section, we will construct a graph such that the matching of two
shapes is equivalent to a cut through the graph. As a consequence, an opti-
mal matching can be computed by finding the minimal cut. In Section 3, we
show the equivalence of the graph cut formulation with the traditional shortest
path formulation. In Section 4, we present an integral descriptor to approximate
the curvature. This descriptor provides a robust matching with respect to ar-
ticulations and noise as we will show in Section 5. To analyze the runtime, we
compare an example for which the proposed method outperforms the shortest
path method with an example of the opposite property and in Section 6, we
provide a conclusion.

2 Shape Matching Via Graph Cuts

In the following, we will cast the problem of matching two planar shapes as a
problem of cutting an appropriate graph. First, we will present the connection
between continuous matchings and cutting a cylinder into two different surfaces.
Afterwards, we will formulate the cylinder as a graph and the matching problem
as a graph cut problem.

2.1 Connection Between Matchings and Graph Cuts

It is well known that the curvature of a curve c : S
1 → C is invariant under

rigid body motions. Thus, every shape C is uniquely represented by its curvature
function κ : S1 → R. The set of all shapes will form the shape space S which can
formally be defined as the orbit space of all uniform embeddings Embu(S1, C)
under the left action of the Special Euclidian Group SE(2).

Besides rigid body motions, other shape transformations are possible. In most
applications, we want to detect local stretching or contraction. Hence, we are
looking for a direct correspondence mapping which maps the points of one shape
to the correspondent points of the other shape. Since the points of a shape form
an arbitrary subset of the plane C, it is easier to find the correspondence directly
on the parameterization domain S1 (cf. Figure 1).

To avoid self-occlusions during the matching process, a matching can be mod-
eled via an orientation-preserving diffeomorphism m : S1 → S1 that maps points
of the first parameterization domain to the corresponding points of the second
parameterization domain. On the space of these matchings, we will define a func-
tional E : Diff+(S1) → R+ that measures the goodness of a matching. The goal
of a matching algorithm is to find the minum of E which will mainly measure
the L2-distance of the curvature functions. But since any matching m allows to
stretch and to contract a given shape until it fits to another shape, it is possi-
ble that a part of one shape collides to an arbitrary small interval on the other
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Fig. 1. Matching and disparity function. Left hand side: Matching two shapes
amounts to computing a correspondence between pairs of points on both shapes. Right
hand side: Instead of looking for a mapping M : C1 → C2, a matching m : S

1 → S
1 is

defined on the parameterization domain. The distance between s and m(s) defines the
disparity function d : S

1 → R.

shape. To avoid this side effect, the elastic variation of a matching is penalized.
Thus, we are interested in the following energy functional

E(m) :=
∫

S1
[κ1(s) − κ2(m(s))]2

√
1 + m′(s)2 ds + α ·

∫
S1

|1 − m′(s)| ds.

In most applications, we are interested in the disparity function d : [0; 2π] →
R. This disparity d(s) := s − m(s) can be used to denote the displacement of
each point on one contour when mapped to the other. (cf. Figure 1). The energy
functional becomes with respect to d the energy functional that was used in
[15]1:

E(d) :=

2π∫

0

[κ1(s) − κ2(s − d(s))]2
√

1 + (1 − d′)2 ds + α

2π∫

0

|d′(s)| ds. (1)

In the following, the matching problem will be formulated as a disparity problem.
Since a disparity d has the circle S1 as parameterization domain and the real
numbers R as image set, the graph Γ (d) of d is a closed curve on the cylinder
S1 × R. We will call this cylinder the disparity cylinder.

On the other hand, the graph Γ (m) of a matching mapping m : S1 → S1

presents a loop on the torus S1 ×S1. Therefore, the question arises how the loop
Γ (m) on the torus relates to the loop Γ (d) on the cylinder. To illustrate this
connection, we present a geometrical approach to obtain the disparity cylinder.
In Figure 2, the graph of the matching mapping id is represented by a diagonal
loop. If we cut the given torus open along Γ (id), we obtain a cylinder with Γ (id)
as left and right boundary. These boundaries represent the graph of the disparity
1 While the authors of [15] implemented (1), they omitted the scaling factor√

1 + (1 − d′)2 in their formulation. Moreover, they claimed to integrate the L2-
distance of d′ instead of the L1-distance.
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Fig. 2. Disparity cylinder. The two curves C1 and C2 are both parameterized over
S

1. The product space S
1 × S

1 of all possible correspondences forms a torus (left hand
side of the top row). If we cut this torus open along the diagonal, we receive a cylinder
of which a small patch is shown in the top row on the right hand side. Here every
vertical row shows matchings of constant disparity which can be obtained by an s − t-
separating graph cut. To allow the dual edge set of a graph cut to pass through faces
of constant disparity, we use a cylinder of which a small patch is shown in the bottom
row on the right hand side.

function d(s) = 0 and d(s) = 2π respectively. Since we do not like to restrict the
values of any disparity function to the interval [0; 2π], we glue different copies of
this cylinder together to obtain a bigger cylinder. On this cylinder, the former
torus loop Γ (id) becomes the cylinder loop Γ (0). Therefore, disparity loops and
matching loops are directly coupled and any disparity loop provides a boundary
separating cut.

In the next section, we will model the cylinder via an algebraic graph G. In
this construction, we have to take into account that the dual edge set of any
cut will be a sufficient representation of a disparity function and vice versa (cf.
Theorem 3).

2.2 Graph Construction

As we have sketched above, we want to define a cylindrical graph in a way that the
minimal graph cut will separate the two boundaries from one another. Therefore,
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we will place the source and the sink near either of these boundaries. By doing
so, a cut that separates source from sink will also separate the boundaries of the
cylinder. In addition, the cut shall represent a disparity function d : S1 → R.
In this context, the circle S1 represents the points on the first shape and the
disparity d(s) := s−m(s) encodes the shift on the second shape that is necessary
to receive an appropriate match.

One might believe that the cylinder could become arbitrarily long. However
since self-occlusions are not allowed for a matching, the disparity can only vary
within an interval of length 2π. Since the starting disparity starts within the
interval [0; 2π], all disparity functions can be shifted in a way that afterwards,
they are relocated within the interval [−2π; 2π]. Formally, this is stated in the
following theorem.

Theorem 1. Any disparity function d : S1 → R has an equivalent representa-
tion d̂ : S1 → [−2π; 2π].

Proof. Since m has only positive derivatives, the derivative of d is bounded from
above by 1. Therefore, the image set of d can be reduced to a compact interval
[D1; D2] whose length is not bigger than 2π. Since any disparity function starts
at a disparity point d0 ∈ [0; 2π] which is equivalent to a disparity point d̂0 =
d0−2π ∈ [−2π; 0], any disparity function has a representation d̂ : S1 → [−2π; 2π].

�

As illustrated at the right hand side in the top row of Figure 2, the canonical
graph inhibits a path along vertices of constant disparity. Therefore, we choose
a graph G with the property that the dual graph G∗ allows three different
transitions that are sketched on the right hand side in the bottom row of Figure 2.
The explicit construction of this graph is the goal of this section.

According to Theorem 1, it suffices to model a compact cylinder instead of
a cylinder whose boundaries are positioned at infinity. This cylinder shall be
represented by the Cartesian product of an interval I and a circle S:

I :={−(N + 0.5), . . . , −1.5, −0.5, 0.5, 1.5, . . . , N + 0.5}
S :={0, 0.5, 1, . . . , N − 1, N − 0.5}

Note that the circle is represented by a modulo space to assure that by increasing
the points on the circle, we will eventually return to the starting point. Formally,
(N − 0.5) + 0.5 ≡ 0 mod N .

Now, we can construct the cylindrical graph G = (V, E, s, t, c) with vertices
V , edges E ⊂ V × V , source s ∈ V , sink t ∈ V and the capacity function
c : E → [0; ∞]. We define the set of vertices V := Z � {s, t} as the disjoint
union of the cylinder Z := I × S with the set of the source s and the sink t.
Therefore, every vertex v = (vd, vx) ∈ Z consists of a disparity value vd and
a point vx on a circle. Here, vx shall encode a point on the first shape C1 and
vx−vd a point on the second shape C2. Thus, vd encodes the disparity d(vx). Note
that if vd is an integer, the pair (vd, vx) is not an element of Z. Some of these
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integer pairs shall in fact represent the faces of the cylinder. Every graph cut
cuts the cylinder open along these faces and describes a closed path in the dual
graph G∗. Therefore, the pairs (vd, vx) with an integer vd are mainly reserved
for a convenient representation of the graph cut. Let us return to the graph
construction. The edges E shall connect the source s with the left boundary of
the cylinder and the right boundary of the cylinder with the sink t (cf. Figure 2).
Moreover, some direct neighbors on the cylinder are connected in a way that a
structure like a brick wall emerges (cf. Figure 3):

E := {s} × ({−(N + 0.5)} × S) ∪
({N + 0.5} × S) × {t} ∪{
(v1, v2) ∈ Z × Z|v2 − v1 = ±

( 0
0.5

)}
∪{

(v1, v2) ∈ Z × Z|v2 − v1 =
(1
0

)
, v1 +

( 0.5
−0.5

)
∈ (2Z) × Z

}
∪{

(v1, v2) ∈ Z × Z|v2 − v1 =
(1
0

)
, v1 −

(0.5
0

)
∈ (2Z) × Z

}
∪{

(v1, v2) ∈ Z × Z|v1 − v2 =
(1
0

)
, v2 +

( 0.5
−0.5

)
∈ (2Z) × Z

}
∪{

(v1, v2) ∈ Z × Z|v1 − v2 =
(1
0

)
, v2 −

(0.5
0

)
∈ (2Z) × Z

}

With this construction every rectangular patch

Fd,x := [d − 0.5; d + 0.5] ×
[
x − d + 1

2
; x − d − 1

2

]

will carry the disparity information of an appropriate matching. In the next sec-
tion, we show the equivalence of the graph cut approach and the usual shortest
path method. Since the capacity c shall encode the functional (1), we are inter-
ested in the squared curvature difference as a measure of similarity. Therefore, we
may define the curvature similarity function (x, y) 	→ (κ1(x) − κ2(y))2 between
a point x on shape C1 and a point y := x − d on shape C2. Now, this function
can be discretized via a similarity matrix M ∈ RN×N for any given N ∈ N. This
matrix measures the similarity on the vertices of discretized shapes. Since the
capacities of the graph G shall carry the similarity of shape edges, this is done
by integrating the curvature similarity function. Together with the smoothness
term α in (1), we introduce the capacity function:

c(e) :=

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

mx,x−d+mx+1,x+1−(d+1)

2 + α , if e =
(( d+0.5

x−d−1
2

)
,
(
d+0.5
x−d

2

))
mx,x−d+mx+1,x+1−d√

2
, if e =

(( d−0.5
x−d−1

2

)
,
( d+0.5
x−d−1

2

))
mx,x−d+mx,x−(d+1)

2 + α , if e =
((

d−0.5
x−d

2

)
,
( d−0.5
x−d−1

2

))
∞ , else

(2)

In the next section, we will see that the explicit choice of the capacities will in
fact lead to the equivalence of the graph cut approach and the shortest path
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Fd+1,x

Fd,x

Fd−1,x

Fd−2,x

Fd−1,x−1

Fd+1,x+1

Fd+2,x+1Fd,x+1

Fd−2,x−1 Fd+2,x

Fd,x

Fd−1,x Fd+1,x+1

Fd,x+1

Fig. 3. Graph Construction used for Shape Matching. Every rectangle Fd,x

corresponds to a point x on shape one and its disparity d in respect to a point on
shape two. A cut through this graph therefore assigns a disparity to each point on
shape one. The edge weights need to be chosen in such a way that the cut edges
measure the difference of curvatures of corresponding points on both shapes (cf. (2)).
The three arrows on the right hand side indicate permissible transits: the left arrow
amounts to a step along shape two, the right arrow corresponds to a step along shape
one, while the vertical arrow indicates a step along both shapes (thus keeping the
disparity constant).

method. To conclude the construction, we like to define the dissimilarity of two
given shapes in the mean of minimal graph cuts:

Definition 1 (Shape Distance). Given two shapes C1 and C2 with their dis-
cretized curvature dissimilarity matrix M ∈ RN×N . Via this matrix the above
graph G = (V, E, s, t, c) is defined. We will call

dist(C1, C2) := min
V =S�T
s∈S,t∈T

∑
e∈E∩(S×T )

c(e)

the distance between the shapes.

3 Equivalence to Shortest Path Formulation

In this section, we present the equivalence between the graph cut method and
the shortest path method. To this end, we will show that every cut of the graph
represents a disparity function and vice versa. In addition, we will show that
a minimal graph cut of G represents a disparity function that minimizes the
functional (1).
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As we have pointed out, the graph G describes the surface of a closed cylinder
and thus, induces a set F = {Fd,x} of faces. Since every edge e ∈ E separates
a right face fr(e) ∈ F from a left face fl(e) ∈ F , a weighted dual graph G∗ =
(F, E∗, w) can be defined as follows:

e∗ :=(fr(e), fl(e)) w(e∗) :=c(e).

In the following theorem, we will show that any graph cut of G will provide
a cycle in the dual graph G∗ which separates the two boundaries of the cylinder
from one another.

Theorem 2. Let G = (V, E, s, t, c) the cylindrical graph introduced in the last
section and S, T ⊂ V a minimal cut with cut edges X = E ∩ (S × T ). Then, the
dual set X∗ ⊂ E∗ is a cycle in the dual graph G∗. Moreover, X∗ separates the
two boundaries of the cylinder from one another.

Proof. Since G is a planar graph, every cut edge set and especially the minimal
cut edge set X provides a cycle X∗ in G∗ [23]. Because the cut (S̃, T̃ ) with

S̃ :={(vx, vd) ∈ Z|vd < 0} � {s} and

T̃ :={(vx, vd) ∈ Z|vd > 0} � {t}

has finite cut edge costs, there is no edge of infinite capacity in the minimal cut
edge set X . Therefore, the left boundary of the cylinder Z belongs to S, the
right boundary of Z belongs to T and the path X∗ separates the two boundaries
from one another. �

Since every disparity d separates the two boundaries of the cylinder from one
another, d encodes a graph cut in G. According to the possible transits of the
dual cut path X∗ (right hand side of Figure 3), X∗ describes the discretized
graph of a function and not a relation which would imply a movement of a path
to the right or to the left that do not have an upward component. Therefore, we
have proven the following theorem

Theorem 3. Given the graph G, the dual edge set of any cut is a representation
of a disparity function and vice versa. �

Summarized, we have shown that the graph cut method covers the whole space
of disparity functions. Now, we will approach the energy functional (1) itself and
show that the cut edge costs of any cut X is equal to the cost of an equivalent
path according to the shortest path method. To this purpose, we will revisit
this method. It chooses an initial matching (1, y) ∈ S1 × S1 and afterwards,
cuts the image set S1 × S1 open along the two curves {1} × S1 and S1 × {y}.
By doing so, one receives a square and the graph of an arbitrary matching
m : S1 → S1, m(1) = y becomes a path from (0, 0) to (2π, 2π). Discretizing this
square and using the Dynamic Time Warping algorithm, the energy E(m) is
minimized over all mappings fulfilling m(1) = y. By varying now the fixed value
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y ∈ S1, the minimum of E(m) will eventually be found. Therefore the algorithm
can mathematically be summarized as

min
m∈Diff+(S1)

E(m) = min
y∈S1

min
m∈Diff+(S1)

m(1)=y

E(m).

The proposed graph cut approach on the other hand, calculates the minimum
of E directly by exploiting the dual properties of planar graphs. We want to
emphasize that the choice of an initial matching is a challenging task, since a
continuous variation of a shape will lead to discrete jumps in the matching. By
using graph cuts, we solve this problem continously, since the used graph cut
algorithm [4] uses the max-flow minimal-cut theorem [6,7]. In [15] the functional
(1) was represented by a graph with the following edge costs cSP :

cSP ((x, y), (x + 1, y)) =
mx,y + mx+1,y

2
+ α

cSP ((x, y), (x + 1, y + 1)) =
mx,y + mx,y+1√

2

cSP ((x, y), (x, y + 1)) =
mx,y + mx,y+1

2
+ α

In the proposed graph cut approach, we have to translate the notion (x, y) into
the notion (d, x), whereas d := x− y. The graph cut costs cGC become therefore
respectively (cf. Figure 3 and (2)):

cGC(Fd,x, Fd+1,x+1) =
mx,x−d + mx+1,x+1−(d+1)

2
+ α = cSP ((x, y), (x + 1, y))

cGC(Fd,x, Fd,x+1) =
mx,x−d + mx+1,x+1−d√

2
= cSP ((x, y), (x + 1, y + 1))

cGC(Fd,x, Fd−1,x) =
mx,x−d + mx,x−(d−1)

2
+ α = cSP ((x, y), (x, y + 1))

This proves the equivalence of the graph cut algorithm and the shortest path
method to calculate an optimal matching of two given shapes.

4 Integral Invariants and Curvature

The shape matching via graph cuts as introduced above relies on local features
such as curvature. In practice, these need to compute in a robust manner. To this
end, [15] introduced features via integrals. Since these features were invariant
under rigid body motions, they were called integral invariants. One of these
integral invariants approximated the curvature by calculating the intersection of
the shape’s interior and a circle of fixed radius r (cf. Figure 4).

In contrast to [15], we perform a Taylor approximation of the invariant which
is exact up to first order. Therefore, consider c : S1 → C a closed curve with
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r

RAr

Fig. 4. Curvature calculation. The curvature at any point along the curve can be
estimated from the intersection Ar of a ball with radius r centered at the curve point
with the interior of the shape. R = 1

κ
is the radius of the osculating curve (cf. (3)).

its curvature function κ : S1 → R. Near the point c(t), the curve c can be
described via a circle with radius R(t) := 1

κ(t) . This approximation is a sec-
ond order approximation of c. For a radius r, let Ar be the area of the set
{x inside c| ‖x − c(t)‖2 ≤ r2}. Thus, we obtain

Ar ≈
∫ a

−a

√
R2 − τ2 −

[
R −

√
r2 − τ2

]
dτ

=R2 sin−1
( a

R

)
+ r2 sin−1

(a

r

)
− Ra

whereas a =
√

r2 −
(

r2

2R

)2
. Introducing ϕ := sin−1 (

r
2R

)
, we receive

Ar

r2 ≈1
2

(
ϕ

sin(ϕ)2
− cos(ϕ)

sin(ϕ)

)
+

π

2
− ϕ

The linear Taylor approximation of the right hand side leads to the expression
π
2 − 2

3ϕ. Therefore, the curvature κ can be approximated via

κ ≈ 2
r

sin
(

3π

4
− 3Ar

2r2

)
(3)

Note that the quadratic approximation error can be reduced by decreasing
the radius r. Moreover, κ = limr→0

2
r sin

( 3π
4 − 3Ar

2r2

)
. In our implementation, we

used the right hand side of (3) to calculate the curvature function of a given
curve.

5 Experimental Results

In this section, we will present the results of the presented matching method.
by starting with some applications like articulations and noise. In the last sub-
section, we will analyze the runtime of the graph cut method and the shortest
path method. Except for the noise examples, we always used shapes that were
provided by the LEMS laboratory of the Brown University [20].
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Fig. 5. Articulation. The matching is visualized via numbered shape points. Left:
The original shape with 10 selected points. Middle: A shape with an articulated thumb.
Right: A shape with two articulated fingers.

Fig. 6. Gaussian noise. The matching between an original hand and a hand added
with Gaussian noise is visualized. From left to right the standard deviation is σ =
0, 0.5, 1, 3, 4. At σ = 4 a matching starts to collapse (cf. point 4).

5.1 Matching with Articulated Parts

In practice, a shape is the 2D-projection of a given 3D-object. To match two
different images of the same object, we have to take the flexibility of the 3D-
object into account. The simplest way in doing so, is to allow a certain bending
of the given shape. In Figure 5, a matching is visualized by showing some corre-
spondent points on three given shapes. As we can see, the graph cut approach
handles the matching of articulated parts in both cases very well.

5.2 Robustness to Noise

Every task in Computer Vision has to deal with the uncertainty of the observed
data. Thus, any matching method has to handle this task in the best way pos-
sible. Since we are using an integral description of the curvature (cf. Section 4),
this task is handled until we reach a point where even a human has its problems
to recognize the object. In Figure 6, we see a hand with increasing Gaussian
noise which is added in normal direction of every shape point. Until a standard
deviation of σ = 4 is reached, the matching method works accurately. Besides
these generated examples, Figure 7 shows that the matching for real data works
also very well.
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Fig. 7. Matching examples. Horses, cows (incl. one donkey) and jets are matched
accurately.

5.3 Comparison with Dynamic Time Warping

In comparison with the shortest path method using Dynamic Time Warping, it
is not clear whether the Graph Cut method is faster or slower. In fact, there
are examples for which the proposed Graph Cut method is faster and other
examples for which the Dynamic Time Warping method outperforms the Graph
Cut method. In this section, we will analyze two of these examples to make some
performance assumptions.

In Figure 8, we see that for similar shapes the proposed method outper-
forms the DTW method. On the other hand, for different shapes the opposite is
the case. Therefore, it looks like the Graph Cut method handles similar shapes
quite easier than un-similar shapes. It is a known fact that the efficient cal-
culation of a maximum flow within a network depends highly on the edges’
capacities. Unfortunately, this disadvantage of graph cut applications can create
the bottleneck of the shape matching method for some examples. If two shapes
C1, C2 ∈ S are similar to one another, dist(C1, C2) and thus the maximum flow is
quite small. In other words, the maximum flow is close to the initial flow which
is zero. Therefore, the amount of augmented paths that has to be examined by
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Fig. 8. Runtimes of shape matching. Here, the runtime of the proposes graph cut
method and the commonly known shortest path method using DTW is plotted against
the sampling rate of both given shapes. We can see that there are cases where the
graph cut method outruns the DTW method. But that this is not always the case.

the Graph Cut algorithm is rather small and the proposed method works nearly
instantly.

Note that the central advantage of the Graph Cut approach is the fact that
every cut provides a cycle within the dual graph. Therefore the path X∗ that
has been induced by a minimal cut X fulfills always the constraint of being a
closed path. Since this constraint has to be forced on the shortest path method,
the DTW method always need O(N3) calculation steps which is a disadvantage
for similar shapes. For very different shapes, the DTW method does its job
well and outperforms the more sophisticated Graph Cut method in finding the
minimal matching whose semantic in the meaning of matching is of course quite
questionable.

5.4 Graph Cut Algorithm

For the implementation of the shape matching, we used the implementation
presented in [4] which works for segmentation problems in linear time. Unfortu-
nately, this algorithm does not always provide a linear runtime in the size of the
graph for the shape matching context. But as we have seen above, it outperforms
the shortest path algorithm in some cases.

The minimum-cut maximum-flow algorithm of [4] was developed to handle
energy minimization problems in Computer Vision. This algorithm looks for
augmenting paths from source to sink and updates the flow accordingly. To
this end, it constructs a search tree to decide which paths are good candidates
of an augmenting path. Since the method depends highly on the amount of
augmented paths that have to be considered, this method is fast for a shape
matching scenario which starts with a flow that is close to the maximum flow.
This is always the case for similar shapes, i.e. dist(C1, C2) ≈ 0. Because the
method looks for the whole matching in a continuous manner, the difficult task
of finding a starting match is done on the fly by the used method.
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6 Conclusion and Future Work

In this paper, we proposed a polynomial-time algorithm for matching two planar
shapes which is based on casting the matching problem as one of computing the
minimal cut through a 2D graph embedded in R3. We proved that the graph
cut problem is equivalent to the traditional shortest path formulation. How-
ever, in contrast to the previously proposed solution by Dynamic Time Warping
(DTW), the graph cut formulation allows to circumvent the complete search
over an initial correspondence. The minimum cut is computed by solving the
dual maximum flow problem. The matching is by construction invariant to rigid
body motions. In addition, experimental results show that shapes can be re-
liably matched despite articulation of parts and significant amounts of noise.
Runtime comparisons between the proposed graph cut formulation and DTW
indicate that the proposed method outruns the DTW method at least for similar
shapes. Further effort is focused on obtaining additional speed-up, by considering
a more suitable max-flow algorithm. There have been practical improvements of
the DTW method [1,19]. At the same time, we expect that more adapted graph
cut algorithms may lead to similar speedups.
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