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Abstract. We present a new public-key signature scheme and a corresponding 
authentication scheme that are based on discrete logarithms in a subgroup of units 
in E, where p is a sufficiently large prime, e.g., p > 2 slz. A key idea is to use for the 
base of the discrete logarithm an integer ~t in Zp such that the order of ct is a 
sufficiently large prime q, e.g., q > 214~ In this way we improve the E1Gamal 
signature scheme in the speed of the procedures for the generation and the verifica- 
tion of signatures and also in the bit length of signatures. We present an efficient 
algorithm that preprocesses the exponentiation of a random residue modulo p. 
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1. Introduction 

Public-key signature schemes are necessary for the access control to communication 
networks and for proving the authenticity of sensitive messages such as electronic 
fund transfers. Since the invention of the R SA scheme by Rivest et al. (1978) research 
has focused on improving the efficiency of these schemes. In this paper we present 
an efficient algorithm for generating public-key signatures which is particularly 
suited for interactions between smart cards and terminals. 

The new signature scheme minimizes the message-dependent amount of compu- 
tation the smart card has to perform to generate a signature. This is important since 
the computational power of current processors for smart cards is rather limited. 
Previous signature schemes require many modular multiplications for signature 
generation. In the new scheme the main work for signature generation does not 
depend on the message and can be done during the idle time of the processor. The 
message-dependent part of signature generation consists of multiplying a 140-bit 
integer with a 72-bit integer. 

Our signature scheme relies on the interactive protocol of Chaum et al. (1988) 
that proves possession of a discrete logarithm. It combines various ideas from the 
schemes by EIGamal (1985) and Fiat and Shamir (1987). It is derived from an 

i Date received: August 17, 1989. Date revised: March 15, 1991. European patent application 
89103290.6 from February 24, 1989. U.S. patent number 4995082 of February 19, 1991. 
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underlying interactive authentication scheme by replacing the verifier's challenge 
by a hash value. The novel features of our scheme can be incorporated into the Beth 
authentication scheme and into the key distribution scheme by Gfinther (1990). The 
new scheme comprises the following novel features: 

(1) Most of the computational effort for signature generation is done in a pre- 
processing stage that is independent of the message and can be done during 
the idle time of the processor. The preprocessing consists of the exponentia- 
tion of a random number modulo a large prime. Given this exponentiated 
residue a signature can be generated very fast, it requires only the multiplica- 
tion of a 72-bit integer with a 140-bit integer. The idea of preprocessing 
signatures is similar in spirit to the concept of on-line/off-line signatures that 
has been independently proposed by Even e t  al.  (1990). 

(2) We use a prime modulus p with p - 1 having a prime factor q of appropriated 
size (e.g., 140 bits long) and we use a base ~ for the discrete logarithm such 
that ~q = 1 (mod p). All logarithms are calculated modulo q. The length of 
signatures is about 212 bits, it is less than half of the length of RSA signatures. 
The number of communication bits of the authentication scheme is less than 
half of that of other schemes. 

(3) We propose an efficient algorithm for simulating the exponentiation of ran- 
dom numbers. This algorithm is independent of the rest of the paper. If proven 
to be secure our algorithm reduces the amount of computation for generating 
random exponentiated residues by using additional memory for storing some 
statistically independent exponentiated residues. 

The security of the scheme relies on the one-way property of the exponentiation 
y ~ ct r (mod p). We therefore have to assume that discrete logarithms with base 0~ 
are difficult to compute. 

The paper is organized as follows. In Section 2 we present a version of the 
signature scheme and of the underlying authentication scheme that uses exponentia- 
tion of a random integer. The performance of the scheme is exemplified in Section 
3. In Section 4 we propose an efficient algorithm that simulates the exponentiation 
of a random number. 

2. The Authentication and Signature Scheme 

Notation. For n ~ ~ let Z, be the ring of integers modulo n. We identify 7/, with 
the set of integers { 1 . . . . .  n}. 

Initiation by the Key Authentication Center (KAC). The KAC chooses 

�9 primes p and q such that q l P  - 1, q > 214~ p > 2512, 
�9 ~ E 7/p with order q, i.e., ~q = 1 (mod p), ~ r 1, 
�9 a one-way hash function h: Zq x 7 / ~  {0 . . . . .  2' - 1}, 
�9 its own private and public key. 

The KAC publishes p, q, 0t, h and its public key. 



Efficient Signature Generation by Smart Cards 163 

The Security Complexity 2 t. We wish to choose the parameters p, q so that forging 
a signature or an authentication requires about 2 t steps by known methods. For  

this we choose q > 22` and p such that 2 t is about exp~fln p In In p. The security 
number t may depend on the application intended. For  signatures we consider in 
particular t = 72 rather that t = 64, since 264 steps may be insufficient in view of 
the rapid technological progress in computing power and speed. For  p > 2512 and 
q > 214~ the discrete logarithm problem requires at least 272 steps by known 
algorithms. (It may soon be necessary to increase the lower bound p > 2512 due to 
the current progress in computing discrete logarithms.) The restriction that the 
order of~ is a prime much smaller than p provides no advantage in any of the known 
discrete logarithm algorithms provided that q > 214~ The prime q is necessary in 
order to avoid an index calculus attack and a square root attack (see Section 2). A 
lower security level may be sufficient for authentication in particular if the prover is 
requested to respond fast, say within a few seconds. A security complexity 240 for 
authentication requires us to choose t > 40 and q > 28~ 

Registration of Users, Signatures by the KAC. When a user comes to the KAC for 
registration, the KAC verifies its identity, generates an identification number I 
(containing name, address, ID number, etc.), and generates a signature S for the pair 
(I, v) consisting of I and the user's public key v. In our scheme as well as in the RSA 
scheme each user may produce by himself his own private key s and the corre- 
sponding public key v. It is necessary to complete the corresponding public informa- 
tion (I, v) by a signature S of a trusted authority, the KAC. The verification of a 
signature or an authentication with the public key v must also contain a verifica- 
tion of the public key v. This verification can either be done on-line by reading (I, v) 
from a public file or off-line by verifying KAC's signature S for (I, v) using the public 
key of the KAC. In an interaction between two smart cards the verification of v is 
always off-line. 

The KAC can use for its own signatures any secure public-key signature scheme 
whatsoever. For  instance, the KAC can use our scheme which yields short signatures 
that can be verified using about 228 modular multiplications. Alternatively the KAC 
can base its signature S for (I, v) on the identity S 2 = h(j, I, v) (mod N) where N is 
a public RSA modulus, h is a one-way hash function, a n d j  is a small integer. Only 
the KAC can generate such a signature S using the secret factorization of N. The 
verification of this signature S requires only one modular squaring--this  is the same 
amount  of computation that is necessary for the verification of the public key in the 
identity-based Fiat -Shamir  scheme. 

The User's Private and Public Key. A user generates by himself a private key s 
which is a random number in { 1, 2 . . . . .  q}. The corresponding public key v is the 
number v = ~- '  (mod p). 

Once the private key s has been chosen we can easily compute the corresponding 
public key v. The inverse process, to compute s from v, requires computing the 
discrete logarithm with base ~ of v, i.e., s = - log~ v. 
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The following authentication protocol is essentially equal to protocol 1 in Chaum 
et al. (1988). Their protocol 1 is the particular case t = 0 and q = p - 1 of the 
protocol below, which for its part is a parallel variant for t sequential rounds of 
their protocol 1. Chaum et al. prove that their protocol 1 is zero-knowledge, i.e., it 
does not reveal any information on the secret s. The parallel variant of the Chaum 
et al. protocol is not known to be zero-knowledge. 

The Authentication Protocol (prover A proves its identity to verifier B). 

1. Preprocessing (see Section 4). A picks a random number r ~ { 1 . . . . .  q - 1 } and 
computes x := ~' (mod p). 

2. Initiation. A sends to B its identication string I, its public key v, the KAC's 
signature S for (I, v), and x. 

3. B verifies the signature S and sends a random number e E {0 . . . . .  2 t - 1} to 
A. 

4. A sends to B y := r + se (mod q). 
5. Verification. B verifies (I, v) either by checking the signature S or by verifying 

(I, v) on-line. B checks that x =ctrv e (mod p). 

Obviously if A and B follow the protocol, then B always accepts A's proof of 
identity. We next consider the possibilities of cheating for A and B. We call (x, y) 
the proof  and e the exam of the authentication. Let ,4 (resp. B) denote a fraudulent 
A (resp. B). A (resp./7) may deviate from the protocol in computing x, y (resp. e). ,4 
does not know the secret s./~ can spy upon A's method of authentication. 

A fraudulent ,4 can cheat by guessing the correct e and sending, with an arbitrary 
r ~ 7/q, the crooked proof 

x := o~rl) e (mod p), y := r. 

The probability of success for this attack is 2-'. 
By the following theorem this success rate cannot be increased unless computing 

log, v is easy. For this let A be any probabilistic, interactive algorithm (Turing 
machine) that is given the fixed values p, q, ct. Let R A  denote the internal random 
bit string of ,4. Let the success bit Szv (RA ,  e) be 1 if ,4 succeeds with v, RA,  e and 

0 otherwise. The success rate SZ~ of X for v is the average of Szv (RA,  e), where RA,  
e are chosen at random with uniform distribution. We assume that the time 
7~,~(RA, e) of ,4 with v, RA,  e is independent of R A  and e, i.e., 7~,~(RA, e) = TZo. 
This is no restriction since limiting the time to twice the average running time for 
successful pairs (RA, e) decreases the success rate at most by a factor 2. 

Theorem 2.1. There is a probabilistic algorithm A L  which on input (.4, v) computes 
log~ v. I f  the success rate $74,~ of  .4 with v is greater than 2 -t+l, then A L  runs in 
expected time O(Ta,o/Sa,o) where T2,o is the time of  .4 on input v. 

Proof. The argument extends Theorem 5 in Feige et al. (1987). We assume that 
the time TZv also covers the time required for B. 
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Algorithm AL with Input v. 

1. Pick RA at random. Compute  x = x(A, RA, v), i.e., compute x the same way 
as algorithm A does using the coin-tossing sequence RA. Pick a random 
e ~ {0 . . . . .  2 t - 1}. Compute  y := y(.4, RA, v, e) the same way as algorithm .,4. 
I fSz~(RA, e) = 1, then fix RA, retain x, y, e and go to 2. Otherwise repeat step 
1 using an independent RA. 

2. Let u be the number  of probes (i.e., passes of step 1) in the computat ion of RA, 
x, y, e. Probe up to 4u random ~ ~ {0 . . . . .  2 t - 1} whether Sz~(RA _, ~) = 1. If 
some 1 occurs with ~ ~ e, then compute the corresponding y = y(A, RA, ~, v) 
and output log~ v := (y - y)/(~ - e) (mod q). 

Time Analysis. Let S~,v > 2 -t+l. We arrange for fixed A and v the success bits 
Szo(RA, e) in a matrix with rows RA and columns e. A row RA is called heavy if 
the fraction of 1-entries is at least SZv/2. At least half of the 1-entries are in heavy 
rows since the number  of 1-entries in nonheavy rows is at most S~.v" # rows. 
# columns/2. Thus the row RA that succeeds in step 1 is heavy with probability at 
least 1/2. A heavy row has at least two 1-entries. 

We abbreviate ~ = SZv. The probability that step 1 probes ie -1 random RA 
without finding a 1-entry is at most (1 - e) i/* < 2.7 -/. Thus the average number  of 
probes for the loop of step 1 is 

<-- ~ i~.-i2.7 -/+1 = O(e-1) .  
i=1 

We have with probability at least 1/2 that u > e-1/2. The row RA is heavy with 
probabili ty at least 1/2. If these two cases happen, then step 2 finds a successful 
with probabili ty > 1 - (1 - e/2) z/~ > 1 - 2.7 -1, and we have e ~ ~ with probability 
> 1/2. Thus AL terminates after one iteration of steps 1 and 2 with probability 

_>�88 - 2.7-1)�89 > 0.07. 

The probability that AL performs exactly i iterations is at most 0.93/-1. Altogether 
we see that the average number of probes for AL is at most 

This proves the claim. [] 

The above proof  shows that two authentications with the same x and distinct 
challenges e, ~ together reveal the secret s. 

The argument above can be extended to show that the authentication protocol 
is a proof  of knowledge, in the sense of Feige et al. (1987), showing that user A knows 
s = log~ v. 

The verifier B is free to choose the bit string e in step 3 of the authentication 
protocol, thus he can choose e in order to spy upon A's method for authentication. 
The informal (but nonrigorous) reason that A reveals no information is that the 
numbers x and y are random. The random number x reveals no information. It is 
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unlikely that the number y reveals any useful information because y is superposed 
by the discrete logarithm of x, y = log~ x + es (mod q) and the cryptanalyst cannot 
infer r = log~ x from x. The scheme is not zero-knowledge because the triple (x, y, e) 
may be a particular solution of the equation x = ctYv e (mod p) due to the fact that 
the choice of e may depend on x. 

Minimizing the Number of Communication Bits. Using a hash function h we can 
reduce the amount of communication for authentication. A can send in step 2 the 
t bit string h(x) = h(x,  0) instead of x and B computes in step 5 ~ := ~Yv e (mod p) 
and checks that h(x) = h(~). It is not necessary that h is a one-way function because 
x = ~r (mod p) is already the result of a one-way function. To achieve the security 
level 2 t the bit string h(x) must be at least t bits long. No particular attack is known 
for the function h(x) consisting of the t least-significant bits of x. The number of 
communication bits is 2t + 140 plus the bits for (I, v) and S. The corresponding 
authentication scheme is shown in Fig. 1. The pair (y, h(x))  is a signature of the 
empty message with respect to the signature scheme below which is shown in Fig. 2. 

Protocol for Signature Generation. To sign message m with the private key s 
perform the following steps: 

1. Preprocess ing (see Section 4). Pick a random number r ~ { 1 . . . . .  q} and com- 
pute x := ~' (mod p). 

2. Compute e := h(x,  m) ~ {0, . . . ,  2' - 1}. 
3. Compute y := r + se (mod q) and output the signature (e, y). 

Protocol for Signature Verification. To verify the signature (e, y) for message m 
with public key v compute ~ = 0~Yv e (mod p) and check that e = h(~, m). 

A signature (e, y) is accepted if it withstands verification. A signature generated 
according to the protocol is always accepted since we have 

x = 0t" = ct'+~eve = ~xYv e (mod p). 

With t = 72 and q ,~ 214~ the signature (e, y) is 212 bits long. 

I, s, v, (S) 

Pick random r 

x : = ~ '  (modp) 

y := r + se (mod q) 

Prover 

Fig. 1. 

, q, p, h 

l , v , ( S )  

h ( x )  > 

e 

Y 

Check I, v, (S) 

Pick random e 

:= ~Yve (mod p) 

Check that h(x)  = h(~) 

Verifier 

Authentication. 
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I, s, v, (S) 

Pick random r 

x : = a '  (modp) 

e := h(x, m) 

y : = r + s e  (modq) 

Signature generation 

Fig. 2. 

a,q,p,h 
message m 
/ \ 

I.v,(S~ 

e,y 

C h e c k  I ,  v, (S) 

:= ~Yv e (mod p) 

Check that e = h(~, m) 

Signature verification 

Signature generation and verification. 

Efficiency. The work for signature generat ion consists mainly of  the preprocessing 
(see Section 4) and the computa t ion  of  se (mod p) where the numbers  s and e are 
about  140 and t = 72 bits long. The latter multiplication is negligible compared  
with a modular  multiplication in the RSA scheme. 

Signature verification consists mainly of  the computa t ion  of 2 = aYv e (mod p) 
which can be done on the average using 1.51 + 0.25t multiplications modulo  p where 
l = [log 2 q] is the bit length ofq. For  this let y and e have the binary representations 

l - I  l - I  

y =  ~ yi2 i, e =  ~, ei2 i with y, ,ei~{O, 1}, e , = 0  for i > t .  
i = 0  i=0  

We compute  ~v in advance and we obtain ~ as follows: 

1. z : =  1, 
2. z := z2~y'v e' (mod p) for i = I - 1 . . . . .  1, 
3. ~ : = z .  

This computa t ion  requires at most  1 + t - 1 + ~t~= t Yl modula r  multiplications. 
If  half  of the bits yi with i > t are zero, and e~ = y~ = 0 holds for one-fourth of  the 
i < t, then there are at most  1 + 0.5(1 - t) + 0.75t = 1.51 + 0.25t modular  multi- 
plications. 

Coexistence of the Authentication and the Signature Scheme. Some precaution has 
to be taken if the authent icat ion and the signature scheme are both  used with the 
same a and p. In this case it is incorrect to transmit the entire witness x in the 
authent icat ion protocol.  This is because the verifier may  pose as exam e the hashing 
h(x, m) of witness x with any message m. Then the proof  of  identity (x, y) yields a 
signature for message m. This at tack can be thwarted by transmitt ing in the authen- 
tication protocol  instead of  x a hash value (e.g., 72 bits) of  x. 

The Choice of the Prime q. The prime q must  be at least 140 bits long in order  to 
72 sustain a security level of 2 steps. This is because log~(x) e { 1 . . . . .  q} can be found 

in O(,v/q) steps by the baby-step giant-step method.  In order  to compute  u, v < Iv /q]  
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such that log~(x) = u + l-x/~] v we enumerate the sets $1 = {~" (mod p)lO < u < 

~le~mq]e~t and S2x=-~t~d(p~.dPh)~Og-<enVe<t[on~l s ? d n ~  e s~trChe~~ ,a =o~mula n 

multiplications. Sorting and merging $1 and $2 requires more than 272 steps. 
Pollard (1978, 1991) has modified this index calculation method so that it runs in 
small storage. 

More General Groups. It is possible to implement the above signature and authen- 
tication scheme using a finite group G other than the subgroup 7/* of units in Zp. We 
can use any finite group with an efficient multiplication algorithm and having the 
property that the discrete logarithm is infeasible to compute. In the general case we 
have ~ ~ G and the order q of ~ must have some prime factor that is larger than 
214~ In the case where the order q is publicly known the modification of our basic 
scheme is straightforward. If we are only given an upper bound M for q, then we 
choose in the preprocessing phase a random number r in the interval {1, . . . ,  M} 
and we reduce modulo M instead of modulo q in the protocols for authentication 
and signature generation. A specific proposal using the group 7/n with a composite 
modulus n has been made by Girault at Eurocrypt '91. Further examples of suitable 
groups are, e.g., class groups and elliptic curves E(K) over a finite field K. 

The Choice of the Hash Function h. We distinguish two types of attacks: 

(a) Given a message m find a signature for m. 
(b) Chosen message attack. Sign and unsigned message m of your choice. 

We call a function h one-way if for all but a negligible fraction of the output values 
it is infeasible to invert h. The function h is called collision-free if it is infeasible to 
generate two inputs with matching outputs. 

Attack (a) requires solving the multivariate congruence 

h(ctrv e (mod p), m) = e 

in y and e. No method has been found to solve such a congruence since this type 
of congruence came up in connection with the E1Gamal scheme. In order to thwart 
attack (a) the function h(x, m) must be almost uniform with respect to x in the 
following sense. For  every message m, every e e {0 . . . . .  2' - 1 }, and random x e 7/* 
the probability probx[h(x, m) = e] must be close to 2-t. Otherwise, in the case 
where, for fixed m, e, the event h(x, m) = e has nonnegligible probability with respect 
to random number x, the cryptanalyst can compute ~ := 0try e (mod p) for random 
y-values until the equality e = h(~, m) holds. The equality yields a signature (y, e) 
for message m. If h(x, m) is uniformly distributed with respect to random x, then this 
attack requires about 2' steps. 

Attack (b) can be launched if we are given many pairs (yi, el) so that the functions 
h(xi, ") with x i = ctr'v e' (rood p) all coincide. Given (yi, ei) for i = 1 . . . . .  2 t/2 the 
cryptanalyst can generate messages mj for j = 1 . . . . .  2 t/2 and check whether there 
exist i, j such that h(x~, m~) = e~. In this case he has found a signature (y~, e~) for 
message mj. The probability of success is about 2'/22'/22-' = 1. Given the pairs (yi, e~) 
the workload for the attack is about 2 ̀ /2 log(t/2) steps. For this the cryptanalyst 
sorts the sets S1 = {ei for i = 1 . . . . .  2 t/2 } and $2 = {h(xi, mj) fo r j  = 1 . . . . .  2 t/2 } and 
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searches for a joint element by merging the sets $1 and $2. It is important that by 
assumption h(xi, mj) does not depend on i. In order to thwart this attack the function 
h(x, m) must depend on at least 140 bits of the number x. 

In order to thwart the chosen message attack the function h(x, m) must, for all 
but a negligible fraction of x, be one-way in the argument m. Otherwise the crypt- 
analyst can choose y, e arbitrarily, he computes ~ := ctrv e (mod p) and solves 
e = h(~, m) for m. This yields a signature for message m. 

It seems unnecessary that the function h(x, m) is collision-free with respect to m. 
Suppose the cryptanalyst finds messages m and m' such that h(x, m) = h(x, m') for 
some x = ~r (mod p). If he asks for a signature for m', then this signature is based 
on an arbitrary random number x'  and cannot simply be used to sign m. The 
equality h(x, m) = h(x, m') only helps to sign m if a signature (y, e) for m' is given 
using this particular x, i.e., x = ~rve (mod p). If h(x, m) is one-way in m, then it is 
difficult to solve h(x, m) = h(x, m') for given x, m'. 

By the same reason the analyst cannot simply attack using a weak x, where h(x, m) 
is not one-way in m. For  this attack he needs to know a valid signature with x. Since 
the signature protocol generates x as the result of a one-way function it seems to 
be sufficient that the fraction of weak x is negligible. Even though a negligible 
fraction of weak x does not seem to hurt the scheme we strongly recommend using 
a hash-function h(x, m) that is one-way in m for each fixed x. 

Comparison with EIGamal Signatures. An EIGamal signature (y, x) for the mes- 
sage m and keys v, s with v = 0t -~ (mod p) satisfies the equation a m = vXx r (mod p) 
and can be generated from a random number r by setting x := ~" (mod p) and by 
computing y from the equation 

r y - s x = m  ( m o d p -  1). (1) 

We replace x in (1) by the hash value e = h(x, m). Then we can eliminate the 
right-hand side m in (1). We further simplify (1) through replacing the product ry 
by y - r and p - 1 by q. This transforms (1) into the new equation y = r + es 
(mod q). The new signatures are much shorter. 

Relationship to the Beth Authentication Scheme. Beth (1988) proposed an authenti- 
cation scheme in which the user's private key y is part of the KAC's EIGamal 
signature (x, y) for the user's identification number I. The KAC produces the 
signature (x, y) when it registers a legitimate user. Let g, ~ be the KAC's private and 
public EIGamal keys. We have ~ = ~-~ (mod p) and ct* = FXxr (mod p). Now x and 
y are taken for the user's public and private keys. In order to authenticate himself 
to a third party it is sufficient that the user proves knowledge of y. Knowledge of y 
means knowledge of the KAC's signature for the identification number I. Only the 
KAC can produce this signature. According to the EIGamal protocol, y is a 
well-defined discrete logarithm, y = logx(~*~-x). In the Beth scheme a user proves 
knowledge of y using the parallel variant of protocol 1 in Chaum et al. (1988). 

The construction by Beth saves a separate signature by the KAC for the user's 
public key. It also saves a separate transmission of this signature in the authentica- 
tion protocol as well as its separate verification. The penalty for this is twofold. The 
user must reveal its secret key to the KAC. The authentication test is less efficient, 
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the verifier has to perform three exponentiations. Beth does not  consider signatures 
related to his authenticat ion scheme. He works with GF(q), in particular with GF(2") 
instead with 7/p. 

Girault  (1991) has proposed a variant  of our  scheme that  is identity based ar.d 
which does not  reveal the user's secret key to the KAC.  

3. The Performance of the Signature Scheme 

We wish to achieve a security level of 272 operations, i.e., the best -known method 
for forging a s ignature/authenticat ion should require at least 272 steps. In order to 
obtain the security level 272 we choose q > 214~ t = 72, and p > 2512. The number  
of multiplication steps and the length of  the message-dependent part  of the signa- 
tures are independent  of  the bit length of  p. Only the length of  the public key depends 
on p. We compare  the performance of  the new scheme to the F i a t -Shami r  scheme 
(k = 9, t = 8), the RSA scheme, and the G Q  scheme of  Guil lou and Quisquater.  

Number of multiplications 

New scheme Fiat-Shamir 
t = 72 k = 9, t = 8 RSA GQ 

Signature generation 0 44* 750"t 180" 
(without preprocessing) 

Preprocessing 210:~ 0 0 0 
Signature verificationw 228* 44* > 2 108" 

* Can be reduced by optimization. Standard optimizations either use exponents with 
small Hamming weight or use short addition chains. 

t Can be greatly reduced using the preprocessing algorithm of Section 4 provided that 
this algorithm is secure. 

:~ Computing modulo each prime factor of the RSA modulus reduces these modular 
multiplications to multiplications with twice shorter numbers. 

w This does not include the verification of the pair (I, v) consisting of the user's public 
key v and identification string I. 

Fast  algori thms for signature verification exist for the RSA scheme with small 
exponent  and for the Mica l i -Shamir  variant  of  the F i a t - S h a m i r  scheme. The new 
scheme is most  efficient for signature generation. Recently Ong  and Schnorr  (1991) 
have proposed another  variant  of  the Fiat-Shamir  scheme. For  this variant signa- 
tures can be generated using about  13 modular  multiplications. 

Number of bytes for the new scheme 

p 64 (32, resp. see below) 
q 17.5 
Public key v 64 
Private key s 17.5 
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Given the prime q we can choose the prime p so that 

2 255 < 2 512 _ p < 2 256. 

The particular form of p simplifies the arithmetic modulo p and allows us to store 
p with only 32 bytes. The particular form of p provides no advantage in any of the 
known discrete logarithm algorithms. This holds for the number field sieve algo- 
rithm by Lenstra et al. (1990), see Gordon (1990), and for the cubic sieve algorithm 
by Coppersmith et al. (1986). 

Number of Bytes for Complete Signatures. If the KAC also uses the new signature 
scheme, then its signature S for (I, v) is also of the form (e, y) and is 26.5 bytes long. 
Then a complete signature consisting of I, v, S, e, y is only about 127 bytes long: 

Bytes 

Identification string I 10 
Public key v 64 
The KAC's signature S 26.5 
Message-dependent part of signature (e, y) 26.5 

127 

Signatures for the new scheme are much shorter than for other schemes. Fia t -  
Shamir signatures with k = 9, t = 8 are 531 bytes long. A signature consists of 
1 (10 bytes), el. 1 . . . . .  e9. 8 ~ {0, 1} (9 bytes), and Yl . . . . .  Ya E 7/N (8.64 = 512 bytes). 
Signatures in the RSA scheme are 202 bytes long. A signature consists of I (10 bytes), 
the user's modulus (64 bytes), the KAC's signature of the user's modulus (64 bytes), 
and the message-dependent part of the signature (64 bytes). 

The Number of Communication Bytes for Authentication. We consider the parame- 
ters k = 5, t = 4 with security level 2 -2~ 

Bytes 

I 10 
v 64 
S 26.5 
x(h(x)) 64 (9) 
e 2.5 
y 17.5 

184.5 (129.5) 

The amount of communication for the new scheme is much less than for the 
Fiat-Shamir authentication scheme. We compare to the Fiat-Shamir scheme with 
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k = 5, t = 4 and security level 2 -2~ The  F i a t - S h a m i r  authent icat ion requires 
exchanging 524.5 (304.5) bytes of  information.  This informat ion  consists of  I (10 
bytes), Yl . . . . .  Y4 ~ 7/N (256 bytes), el, 1 . . . . .  e4, 5 ~ {0, 1} (2.5 bytes), and xl  . . . . .  
x4 e 7?N (4" 64 = 256 bytes). Using hash values h(xl)  . . . . .  h(x4) the latter par t  of the 
communica t ion  reduces to 4 . 9  -- 36 bytes. 

4. Preprocessing the Random Number Exponentiation 

The preprocessing for authent ica t ion/s ignature  generat ion consists of  an exponen-  
t iation r ~--~ ~" (mod p) of  a r a n d o m  nu mber  r E {1 . . . . .  q}. If q is 140 bits long this 
exponent ia t ion  can be done  using 210 mult ipl icat ions modu lo  p. The  exponent ia-  
t ion of r a n d o m  numbers  consti tutes the core of  other  crypto  schemes as well, e.g., 
the schemes of E1Gamal  (1985), Beth (1988), and Gi in ther  (1990). In this section we 
propose  a very efficient a lgor i thm that  simulates the exponent ia t ion  of a r a n d o m  
n u mber  modu lo  p. If  p roven  to be secure this a lgor i thm can be used in the pre- 
processing phase of our  scheme and in the other  crypto  schemes as well. 

The smar t  card stores a collection of k independent  r a n d o m  pairs (r~, x~) for i = 
1 . . . . .  k such that  xi = 0~" (mod p) where the numbers  rl are independent  r a n d o m  
numbers  in { 1 . . . . .  q}. Initially these pairs can be generated by the KAC. Fo r  every 
s ignature /authent ica t ion the card uses a r a n d o m  combina t ion  (r, x) of these pairs 
and subsequently rejuvenates the collection of pairs by combining  randomly  se- 
lected pairs. We use a r a n d o m  combina t ion  (r, x) in order  to release min imum 
informat ion  on the pairs (r i, xi), i =  1 . . . . .  k. For  each signature generat ion we 
randomize  the pairs (r~, xi) so that  no useful informat ion  can be collected on the 
long run. 

It  is not  necessary to publish the preprocessing algori thm. Each smar t  card can 
have its own secret a lgor i thm for preprocessing. Even though the preprocessing 
a lgor i thm may  be pr ivate  it is impor tan t  to know whether  a cryptographical ly  
secure preprocessing a lgor i thm exists. For  this we propose  a specific example 
algorithm and give some evidence that  it is secure even if the a lgor i thm is public. 
The a lgor i thm performs an internal randomization using a r a n d o m  permuta t ion  of 
the numbers  1 . . . . .  k. After a few rounds  of preprocessing the new pairs (rx, x l )  . . . . .  
(r k, XR) will be quasi - independent  f rom the present  pairs. 

Preprocessing Algorithm 
Initiation. Load  rl, xl for i = 1 . . . . .  k, v := 1 (v is the round number). 

1. Pick a r a n d o m  permuta t ion  a of  { 1 , . . . ,  k}. 
2 (modp) ,  u : = r ,  z : = x  (here v - l e  2. r := rv + 2rv-1 (mod q), x := xvx~_ 1 

{ 1 . . . . .  k} is the residue of v - 1 (mod k)). Keep  r, x for the next signature. 
3. F O R  i = k . . . . .  1 D O  [u := r, ti) + 2u (mod q), z := x,ti)z 2 (mod p)]. 
4. r~ := u, x~ := z, v := v + 1 (mod k), go to 1 for the next round. 

To  simplify subsequent  discussions we denote  a(k + 1) = v and a(k + 2) = v - 1 
(mod k). Then one round  of preprocessing performs 

k + 2  k + 2  

r~ := ~ ra~i)2 i-1 (mod q), x~ := ~ xa~i~2'-' (mod p). 
i = 1  i = 1  
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Remarks.  1. One round ofpreprocessing takes only 2k + 2 multiplications modulo 
p, k + 1 additions modulo q, and k + 1 shifts. 

2. In practical applications the numbers a(1) . . . . .  a(k) are generated by a pseudo- 
random number generator. This does not weaken the cryptographic security pro- 
vided that the random generator is perfect. 

3. It has been shown in Schnorr (1990) that if the initial numbers (r 1 . . . . .  rk) are 
uniformly distributed over { 1 . . . . .  q}, then the uniform distribution of (rl . . . . .  rk) is 
preserved throughout the preprocessing and that any k consecutive r-values, to be 
used for k consecutive signatures, are also uniformly distributed. 

4. The above preprocessing algorithm has been proposed by Schnorr (1990) with 
k = 8 and with arbitrary numbers a(1), . . . ,  a(d) ~ {1 . . . . .  k} and d < k. De Rooij 
(1991) has pointed out that this preprocessing is vulnerable if it is possible to choose 
in round v all numbers a(1) . . . . .  a(k) to be either v or (v - 1) mod k. His attack is 
thwarted by the requirement that the numbers a(1) . . . . .  a(k) form a permutation of 
1 . . . . .  k. 

5. No attack is known that constructs the secret key s from signatures generated 
with the above preprocessing algorithm and which uses less than 272 steps in case 
when k = 8. 
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