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Abstract. This paper proposes a new public key authenticated encryp-
tion (signcryption) scheme based on the Diffie-Hellman problem in Gap
Diffie-Hellman groups. This scheme is built on the scheme proposed by
Boneh, Lynn and Shacham in 2001 to produce short signatures. The idea
is to introduce some randomness into this signature to increase its level
of security in the random oracle model and to re-use that randomness
to perform encryption. This results in a signcryption protocol that is
more efficient than any combination of that signature with an El Gamal
like encryption scheme. The new scheme is also shown to satisfy really
strong security notions and its strong unforgeability is tightly related to
the Diffie-Hellman assumption in Gap Diffie-Hellman groups.
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1 Introduction

The concept of public key signcryption schemes was proposed by Zheng in 1997
([29]). The purpose of this kind of primitive is to perform encryption and signa-
ture in a single logical step in order to obtain confidentiality, integrity, authenti-
cation and non-repudiation more efficiently than the sign-then-encrypt approach.
The drawback of this latter solution is to expand the final ciphertext size (this
could be impractical for low bandwidth networks) and increase the sender and
receiver’s computing time. Several efficient signcryption schemes have been pro-
posed since 1997. The original scheme proposed in [29] was based on the discrete
logarithm problem but no security proof was given. Zheng’s original construc-
tion was only proven secure in 2002 ([3]) by Baek et al. who described a formal
security model in a multi-user setting. In 2000, Steinfeld and Zheng ([27]) pro-
posed another scheme for which the unforgeability of ciphertexts relies on the
intractability of the factoring problem but they provided no proof of chosen ci-
phertext security.

The drawback of the previously cited solutions is that they do not offer easy
non-repudiation of ciphertexts: a recipient cannot prove to a third party that
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some plaintext was actually signcrypted by the sender. Bao and Deng ([5]) pro-
posed a method to add universal verifiability to Zheng’s cryptosystem but their
scheme was shown ([26]) to leak some information about the plaintext as other
schemes like [28]. The latter schemes can easily be modified to fix their prob-
lem but no strong guarantee of unforgeability can be obtained for them since
the unforgeability of ciphertexts relies on the forking lemma ([24],[25]) which
does not provide tight security reductions (see [16] for details). In the discrete
logarithm setting, another scheme was shown in [26] to be chosen ciphertext
secure under the Gap Diffie-Hellman assumption but it was built on a modified
version of the DSA signature scheme which is not provably secure currently.
As a consequence, no proof of unforgeability could be found for that scheme.
An RSA-based scheme was described by Malone-Lee and Mao ([20]) who pro-
vided proofs for both unforgeability under chosen-message attacks and chosen
ciphertext security. Unfortunately, they only considered a security in a single-
user setting rather than the more realistic multi-user setting. Furthermore, the
security of that scheme is only loosely related to the RSA assumption. However,
none of these schemes is provably secure against insider attacks: in some of them,
an attacker learning some user’s private key can recover all messages previously
signcrypted by that user.

In 2002, An et al. ([1]) presented an approach consisting in performing signa-
ture and encryption in parallel: a plaintext is first transformed into a pair (c, d)
made of a commitment c and a de-commitment d in such a way that c reveals no
information about m while the pair (c, d) allows recovering m. Once he completed
the transformation, the signer can jointly encrypt c and sign d in parallel using
appropriate encryption and signature schemes. The de-signcryption operation is
then achieved by the recipient in a parallel fashion: the signature on d is verified
while c is decrypted and the pair (c, d) is then used to recover the plaintext. This
method decreases the computation time to signcrypt a message to the maximum
of the times required by the underlying encryption and signature processes but
the commitment step unfortunately involves some computation overhead. To
improve this parallel approach, Pieprzyk and Pointcheval ([22]) proposed to use
a (2, 2)-Shamir secret sharing as an efficient commitment scheme: a plaintext is
first splitted into two shares s1, s2 which do not individually reveal any infor-
mation on m. s1 is used as a commitment and encrypted while s2 is signed as a
de-commitment. The authors of [22] also gave a construction allowing them to
integrate any one-way encryption system (such as the basic RSA) with a weakly
secure signature (non-universally forgeable signatures in fact) into a chosen ci-
phertext secure and existentially unforgeable signcryption scheme.

Dodis et al. ([11]) recently proposed another technique to perform paral-
lel signcryption. Their method consists in a Feistel probabilistic two-paddings
(called PSEP for short) which can be viewed as a generalization of other exist-
ing probabilistic paddings (OAEP, OAEP+, PSS-R,etc.) and involve a particular
kind of commitment schemes. The authors of [11] showed that their construc-
tion also allows optimal exact security, flexible key management, compatibility
with PKCS standards and has other interesting properties. They also claim that



their scheme outperforms all existing signcryption solutions. We do not agree
with that point since their method, like all other parallel signcryption proposi-
tions, has a significant drawback: the recipient of a message is required to know
from whom a ciphertext emanates before beginning to verify the signature in
parallel with the decryption operation. A trivial solution to this problem would
be to append a tag containing the sender’s identity to the ciphertext but this
would prevent the scheme from satisfying the notion of ciphertext anonymity
formalized by Boyen in [10] (intuitively, this notion expresses the inability for
someone observing a ciphertext to determine who the sender is nor to whom it is
intended) that can be a desirable feature in many applications (see [10] for exam-
ples). Furthermore, by the same arguments as those in [6], one can easily notice
that the probabilistic padding described in [11] does not allow the key privacy
property to be achieved when instantiated with trapdoor permutations such as
RSA, Rabin or Paillier: in these cases, given a ciphertext and a set of public
keys, it is possible to determine under which key the message was encrypted. An
anonymous trapdoor permutation or a repeated variant of the padding PSEP
(as the solutions proposed in [6]) could be used to solve this problem but this
would decrease the scheme’s efficiency.

In this paper, we propose a new discrete logarithm based signcryption scheme
which satisfies strong security notions: chosen ciphertext security against insider
attacks (except the hybrid composition proposed in [17] and the identity based
scheme described in [10], no discrete logarithm based authenticated encryption
method was formally proven secure in such a model before), strong unforgeabil-
ity against chosen-message attacks, ciphertext anonymity in the sense of [10]
(this is an extension of the notion of key privacy proposed in [6] to the signcryp-
tion case). We also prove that it satisfies a new security notion that is related
to the one of ciphertext anonymity and that we call ’key invisibility’. We show
that the scheme’s strong unforgeability is really tightly related to the hardness
of the Diffie-Hellman problem unlike the scheme proposed in [10] whose proof
of unforgeability relies on Pointcheval and Stern’s forking lemma and thus only
provides a loose reduction to a computational problem. In fact, except the hy-
brid construction of [17] (whose semantic security is based on the stronger hash
oracle Diffie-Hellman assumption) our scheme appears to be the first discrete
logarithm based signcryption protocol whose (strong) unforgeabililty is proven
to be tightly related to the Diffie-Hellman problem. About the semantic security
of the scheme, we give heuristic arguments showing that it is more tightly re-
lated to the Diffie-Hellman problem than expressed by the bounds at first sight.
Unlike [1],[11] and [22], our protocol is sequential but it is efficient and does
not require the recipient of a message to know who is the sender before starting
the de-signcryption process. Our scheme borrows a construction due to Boyen
([10]) and makes extensive use of the properties of some bilinear maps over the
so-called Gap Diffie-Hellman groups (in fact, the structure of these groups is also
exploited in our security proofs). Before describing our scheme, we first recall
the properties of these maps in section 2. The section 3 formally describes the



security notions that our scheme, depicted in section 4, is shown to satisfy in the
security analysis presented in section 5.

2 Preliminaries

2.1 Overview of pairings

Let k be a security parameter and q be a k−bit prime number. Let us consider
groups G1 and G2 of the same prime order q. For our purposes, we need a bilinear
map ê : G1 ×G1 → G2 satisfying the following properties:

1. Bilinearity: ∀ P,Q ∈ G1, ∀ a, b ∈ Z
∗

q , we have ê(aP, bQ) = ê(P,Q)ab.
2. Non-degeneracy: for any P ∈ G1, ê(P,Q) = 1 for all Q ∈ G1 iff P = O.
3. Computability: an efficient algorithm allows computing ê(P,Q) ∀ P,Q ∈ G1.

The modified Weil pairing ([8]) and the Tate pairing are admissible maps of this
kind. The group G1 is a suitable cyclic elliptic curve subgroup while G2 is a
cyclic subgroup of the multiplicative group associated to a finite field. We now
recall some problems that provided underlying assumptions for many previously
proposed pairing based cryptosystems. These problems are formalized according
to the elliptic curve additive notation.

Definition 1. Given groups G1 and G2 of prime order q, a bilinear map ê :
G1 ×G1 → G2 and a generator P of G1,

- The Computational Diffie-Hellman problem (CDH) in G1 is, given
〈P, aP, bP 〉 for unknown a, b ∈ Zq, to compute abP ∈ G1.

- The Decisional Diffie-Hellman problem (DDH) is, given 〈P, aP, bP, cP 〉
for unknown a, b, c ∈ Zq, to decide whether ab ≡ c (mod q) or not. Tuples
of the form 〈P, aP, bP, cP 〉 for which the latter condition holds are called
”Diffie-Hellman tuples”.

- The Gap Diffie-Hellman problem (GDH) is to solve a given instance
〈P, aP, bP 〉 of the CDH problem with the help of a DDH oracle that is able
to decide whether a tuple 〈P, a′P, b′P, c′P 〉 is such that c′ ≡ a′b′ (mod q).

As shown in [18], a pairing can implement a DDH oracle. Indeed, in a group
G1 for which pairings are efficiently computable, to determine whether a tu-
ple 〈P, aP, bP, cP 〉 is a valid Diffie-Hellman tuple or not, it suffices to check if
ê(P, cP ) = ê(aP, bP ). This kind of group, where the DDH problem is easy while
the CDH one is still believed to be hard, is called Gap Diffie-Hellman groups in
the literature ([18],[21]).

3 Security notions for signcryption schemes

We first recall the two usual security notions: the security against chosen cipher-
text attacks which is also called semantic security and the unforgeability against
chosen-message attacks. We then consider other security notions that were pro-
posed by Boyen ([10]) in 2003. In the notion of chosen ciphertext security, we



consider a multi-user security model as already done in [1],[3],[11],[22] and [10] to
allow the adversary to query the de-signcryption oracle on ciphertexts created
with other private keys than the attacked one. We also consider the security
against insider attacks by allowing the attacker to choose to be challenged on
a signcrypted text created by a corrupted user (i.e. a user whose private key
is known to the attacker). Indeed, for confidentiality purposes, we require the
owner of a private key to be unable to find any information on a ciphertext
created with that particular key without knowing which randomness was used
to produce that ciphertext. As already considered in [1],[10],[11] and [22], this
also allows us showing that an attacker stealing a private key does not threaten
the confidentiality of messages previously signcrypted using that private key.

Definition 2. We say that a signcryption scheme is semantically secure against
chosen ciphertext attacks (we call this security notion SC-IND-CCA) if no prob-
abilistic polynomial time (PPT) adversary has a non-negligible advantage in the
following game:

1. The challenger runs the key generation algorithm Keygen to generate a pri-
vate/public key pair (skU , pkU ). skU is kept secret while pkU is given to the
adversary A.

2. A performs a first series of queries in a first stage. These queries can be of
the following kinds:

- Signcryption queries: A produces a message m ∈ M and an arbitrary
public key pkR (that public key may differ from pkU ) and requires the
result Signcrypt(m, skU , pkR) of the signcryption oracle.

- De-signcryption queries: A produces a ciphertext σ and requires the result
of the operation De-signcryt(σ, skU ). This result is made of a signed
plaintext and a sender’s public key if the obtained signed-plaintext is valid
for the recovered sender’s public key. Otherwise (that is if the obtained
plaintext-signature pair is not valid for the obtained public key when per-
forming the de-signcryption operation with the private key skU ), the ⊥
symbol is returned as a result.

These queries can be asked adaptively: each query may depend on the answers
to previous ones.

3. A produces two plaintexts m0, m1 ∈M of equal size and an arbitrary private
key skS. The challenger then flips a coin b←R {0, 1} to compute a signcryp-
tion σ = Signcrypt(mb, skS , pkU ) of mb with the sender’s private key skS

under the attacked receiver’s public key pkU . σ is sent to A as a challenge.
4. The adversary performs new queries as in the first stage. Now, it may not

ask the de-signcryption of the challenge σ with the private key skU of the
attacked receiver.

5. At the end of the game, A outputs a bit b′ and wins if b′ = b.

A’s advantage is defined to be Advind-cca(A) := 2Pr[b′ = b]− 1.

In the notion of unforgeability captured by the formal definition below, as in
many other previous works ([1],[3],[10],[11],[17],[22], etc.), we allow a forger at-
tempting to forge a ciphertext on behalf of the attacked user U to know the



receiver’s private key. In fact, the attacker has to come with the intended re-
ceiver’s private key skR as a part of the forgery. The motivation is to prove that
no attacker can forge a ciphertext intended to any receiver on behalf of a given
sender. In particular, no dishonest user can produce a ciphertext intended to
himself and try to convince a third party that it emanates from a honest user.

Definition 3. We say that a signcryption scheme is strongly existentially un-
forgeable against chosen-message attacks (SC-SUF-CMA) if no PPT adversary
has a non-negligible advantage in the following game:

1. The challenger generates a key pair (skU , pkU ) and pkU is given to the forger
F .

2. The forger F queries the oracles SigncryptskU
(., .) and De-signcryptskU

(.)
exactly as in the previous definition. Again, these queries can also be produced
adaptively.

3. At the end of the game, F produces a ciphertext σ and a key pair (skR, pkR)
and wins the game if the result of the operation De-signcrypt(σ, skR) is a tu-
ple (m, s, pkU ) such that (m, s) is a valid signature for the public key pkU such
that σ was not the output of a signcryption query Signcrypt(m, skU , pkR)
made during the game.

Recall that, in the corresponding notion of conventional (i.e. non-strong) unforge-
ability for signcryption schemes, the attacker cannot win if the outputted cipher-
text was the result of any signcryption query. In our context, as in [1],[17],[11],
and many other works, the forger is allowed to have obtained the forged cipher-
text as the result of a signcryption query for a different receiver’s public key than
the one corresponding to the claimed forgery. The only constraint is that, for the
message m obtained by de-signcryption of the alleged forgery with the chosen
private key skR, the outputted ciphertext σ was not obtained as the result of a
Signcrypt(m, skU , pkR) query.

In [10], Boyen also proposed additional security notions for signcryption
schemes. One of the most important ones was the notion of ciphertext anonymity
that can be viewed as an extension to authenticated encryption schemes of the
notion of key privacy already considered by Bellare et al in [6]. Intuitively, in the
context of public key encryption, a scheme is said to have the key privacy prop-
erty if ciphertexts convey no information about the public key that was used to
create them. In the signcryption setting, we say that the ciphertext anonymity
(or key privacy) property is satisfied if ciphertexts contain no information about
who created them nor about to whom they are intended. This notion is a trans-
position into the non-identity based setting of the one presented in [10]. It can
be described like that.

Definition 4. A signcryption scheme is said to satisfy the ciphertext anonymity
property (also called key privacy or key indistinguishability: we call this notion
SC-INDK-CCA for short) if no PPT distinguisher has a non-negligible advantage
in the following game:

1. The challenger generates two key pairs (skR,0, pkR,0) and (skR,1, pkR,1).
pkR,0 and pkR,1 are given to the distinguisher D.



2. D adaptively performs queries Signcrypt(m, skR,c, pkR), for arbitrary recip-
ient keys pkR, and De-signcrypt(σ, skR,c) for c = 0 or c = 1.

3. Once stage 2 is over, D outputs two private keys skS,0 and skS,1 and a
plaintext m ∈ M. The challenger then flips two coins b, b′ ←R {0, 1} and
computes a challenge ciphertext σ = Signcrypt(m, skS,b, pkR,b′) which is
sent to D.

4. D adaptively performs new queries as in stage 2 with the restriction that,
this time, it is disallowed to ask the de-signcryption of the challenge σ with
the private keys skR,0 or skR,1.

5. At the end of the game, D outputs bits d, d′ and wins if (d, d′) = (b, b′). Its
advantage is defined to be Advindk-cca(D) := Pr[(d, d′) = (b, b′)]− 1/4.

Again, this notion captures the security against insider attacks since the distin-
guisher is allowed to choose a set of two private keys among which the one used
as sender’s key to create the challenge ciphertext is picked by the challenger.
The above definition can be viewed as a transposition to the non-identity based
setting of the definition of ciphertext anonymity proposed by Boyen ([10]) as
well as an extension of the definition of key privacy ([6]) to the authenticated
encryption context. We introduce another notion called ’key invisibility’ which
is close to the concept (formalized by Galbraith and Mao in [14]) of invisibility
for undeniable signatures. Intuitively, this notion expresses the impossibility to
decide whether a given ciphertext was actually created using a given particular
sender’s private key and a given particular receiver’s public key.

Definition 5. We say that a signcryption scheme satisfies the key invisibility
(we denote this notion by SC-INVK-CCA for short) if no PPT distinguisher has
a non-negligible advantage in the following game:

1. The challenger generates a private/public key pair (skU , pkU ). pkU is given
to the distinguisher D.

2. D adaptively performs queries Signcrypt(m, skU , pkR), for arbitrary recip-
ient keys pkR, and De-signcrypt(σ, skU ).

3. Once stage 2 is over, D outputs a private key skS and a plaintext m ∈ M.
The challenger then flips a coins b ←R {0, 1}. If b = 0, then the challenger
returns an actual challenge ciphertext σ = Signcrypt(m, skS , pkU ) to D.
If b = 1, then the challenger returns a random σ uniformly taken from the
ciphertext space C.

4. D adaptively performs new queries as in stage 2 with the restriction that,
this time, it cannot require the de-signcryption of the challenge σ with the
private keys skU .

5. At the end of the game, D outputs bits d and wins if d = b. Its advantage is
defined as Advinvk-cca(D) := 2Pr[d = b]− 1.

Again, we allow the distinguisher to choose which private key is used as a part
of the challenge to take insider attacks into account.

Galbraith and Mao ([14]) showed that anonymity and invisibility are essen-
tially equivalent security notions for undeniable signatures. While one can prove



in the same way that key privacy and key invisibility are also essentially equiva-
lent for some particular encryption schemes, such an equivalence turns out to be
unclear in the signcryption case. In fact, one cannot prove that a distinguisher
against the key invisibility implies a distinguisher against the key privacy with
the same advantage (because two random coins are used by the challenger in the
definition of key privacy and a single one for key anonymity). However, we can
prove that, for signcryption schemes satisfying some particular properties (that
is, for a given message and a given sender’s private key, the output of the sign-
cryption algorithm must be uniformly distributed in the ciphertext space when
the receiver’s public key is random), we can prove that key invisibility implies
key privacy. This will be showed in [19]. In the next section we propose a scheme
that satisfies both of them (in addition to the usual notions of semantic security
and unforgeability) in the random oracle model.

4 A Diffie-Hellman based signcryption scheme with key

privacy

This section presents a signcryption scheme whose unforgeability under chosen-
message attacks is tightly related to the hardness of the computational Diffie-
Hellman problem in Gap Diffie-Hellman groups. Our solution relies on the BLS
signature ([9]) whose security is enhanced by a random quantity U which is used
for encryption purposes but also acts as a random salt to provide a tighter secu-
rity reduction to the Diffie-Hellman problem in G1 in the proof of unforgeability.

We assume that both the sender and the receiver agreed on public param-
eters: security parameters k and `, cyclic groups G1 and G2 of prime order
q ≥ 2k such that ` is the number of bits required to represent elements of G1,
a generator P of G1 and a bilinear map ê : G1 × G1 → G2. They also agree
on cryptographic hash functions H1 : {0, 1}n+2` → G1, H2 : G

3
1 → {0, 1}

` and
H3 : {0, 1}` → {0, 1}n+` where n denotes the size of plaintexts (i.e. the message
space is M = {0, 1}n). The scheme consists of the following three algorithms
(we recall that the symbol ⊕ denotes the bitwise exclusive OR).

Keygen: user u picks a random xu ←R Zq and sets his public key to Yu =
xuP ∈ G1. His private key is xu. We will denote the sender and the receiver
respectively by u = S and u = R and their key pair by (xS , YS) and (xR, YR).

Signcrypt: to signcrypt a plaintext m ∈ {0, 1}n intended to R, the sender S
uses the following procedure

1. Pick a random r ←R Zq and compute U = rP ∈ G1.
2. Compute V = xSH1(m,U, YR) ∈ G1.
3. Compute W = V ⊕ H2(U, YR, rYR) ∈ {0, 1}` and then scramble the

plaintext together with the sender’s public key: Z = (m||YS)⊕H3(V ) ∈
{0, 1}n+`.

The ciphertext is given by σ = 〈U,W,Z〉 ∈ G1 × {0, 1}
n+2`.



De-signcrypt: when receiving a ciphertext σ = 〈U,W,Z〉, the receiver R has
to perform the steps below:

1. Compute V = W ⊕H2(U, YR, xRU) ∈ {0, 1}`.
2. Compute (m||YS) = Z⊕H3(V ) ∈ {0, 1}n+`. Reject σ if YS is not a point

on the curve on which G1 is defined.
3. Compute H = H1(m,U, YR) ∈ G1 and then check if ê(YS , H) = ê(P, V ).

If this condition does not hold, reject the ciphertext.

The consistency of the scheme is easy to verifiy. To prove to a third party that the
sender S actually signed a plaintext m, the receiver just has to forward it m and
(U, V, YR). The third party can then compute H as in the step 3 of de-signcrypt
and perform the signature verification as in the same step 3. We note that, in
the signcryption algorithm, the recipient’s public key must be hashed together
with the pair (m,U) in order to achieve the provable strong unforgeability.

As pointed out in [15], in some applications, it is interesting for the origin of
a signcrypted text to be publicly verifiable (by firewalls for example). In some
other applications, it is undesirable: indeed as explained in [10], in some cases, it
is better for a signcrypted text not to convey any information about its sender
nor about its intended receiver. This property, called anonymity of ciphertexts,
is provided by the above scheme as shown in the next section.

From an efficiency point of view, we can easily verifiy that the above scheme
is at least as efficient and more compact than any sequential composition of the
BLS signature ([9]) with any other Diffie-Hellman based chosen ciphertext secure
encryption scheme ([2],[4],[12],[13],[23],etc.): indeed only three scalar multiplica-
tions in G1 are required for the signcryption operation while 1 multiplication and
2 pairings must be performed in the de-signcryption process. A sequential com-
bination of the BLS signature with the encryption scheme proposed in [2] would
involve an additional multiplication at decryption. If we take ` ≈ k ≥ 160 (by
working with an appropriate elliptic curve), we see that ciphertexts are about
480 bits longer than plaintexts. Any combination of the BLS signature with a
CCA-secure El Gamal type cryptosystem would result in longer final ciphertexts.
With the same choice of parameters, a composition of the BLS signature with
the lenth-saving El Gamal encryption scheme ([2]) would result in ciphertexts
that would be 640 bits longer than plaintexts.

5 Security Analysis

In this section, we first show that an adversary against the SC-IND-CCA security
of the scheme implies a PPT algorithm that can solve the Diffie-Hellman problem
in G1 with high probability. This fact is formalized by the following theorem.

Theorem 1. In the random oracle model, if an adversary A has a non-negligible
advantage ε against the SC-IND-CCA security of the above scheme when run-
ning in a time t and performing qSC signcryption queries, qDSC de-signcryption
queries and qHi

queries to oracles Hi (for i = 1, . . . , 4), then there exists an



algorithm B that can solve the CDH problem in the group G1 with a probability
ε′ ≥ ε− qH3

qDSC/22k in a time t′ < t + (4qDSC + 2qH2
)te where te denotes the

time required for one pairing evaluation.

Proof. The algorithm B runs A as a subroutine to solve the CDH problem in
a polynomial time. Let (aP, bP ) be a random instance of the CDH problem in
G1. B simulates A’s challenger in the game of definition 2 and starts it with
Yu = bP ∈ G1 as a challenge public key. A then adaptively performs queries as
explained in the definition. To handle these queries, B maintains lists Li to keep
track of the answers given to oracle queries on Hi for i = 1, 2, 3. Hash queries on
H2 and H3 are treated in the usual way: B first checks in the corresponding list
if the oracle’s value was already defined at the queried point. If it was, B returns
the defined value. Otherwise, it returns a random element from the appropriate
range and updates the corresponding list. When a hash query H1(m,U, YR)
is performed, B first looks if the value of H1 was previously defined for the
input (m,U, YR). If it was, the previously defined value is returned. Otherwise,
B picks a random t←R Zq, returns tP ∈ G1 as an answer and inserts the tuple
(m,U, YR, t) into L1.

Now, let us see how signcryption and de-signcryption queries are dealt with:

- For a signcryption query on a plaintext m with a recipient’s public key YR

both chosen by the adversary A, B first picks a random r ←R Zq, computes
U = rP ∈ G1 and checks if L1 contains a tuple (m,U, YR, t) indicating that
H1(m,U, YR) was previously defined to be tP . If no such tuple is found, B
picks a random t ←R Zq and puts the entry (m,U, YR, t) into L1. B then
computes V = tYu = t(bP ) ∈ G1 for the random t chosen or recovered from
L1. The rest follows as in the normal signcryption process: B computes rYR

(for the YR specified by the adversary), runs the H2 simulation process to
obtain h2 = H2(U, YR, rYR), and then computes W = V ⊕ h2 and Z =
(m||Yu) ⊕ h3 where h3 is obtained by simulation of the H3 oracle on the
input V . (U,W,Z) is then returned as a signcryption of m from the sender
of public key Yu to the recipient of public key YR.

- For a de-signcryption query on a ciphertext 〈U,W,Z〉 and a sender’s public
key YS both chosen by A, B proceeds as follows: it scans the list L2, looking
for tuples (U, Yu, Si, h2,i) (with 0 ≤ i ≤ qH2

) such that Vi = h2,i⊕W exists in
an entry (Vi, h3,i) of L3 and, for the corresponding elements h3,i, (mi, YS,i) =
h3,i ⊕ Z ∈ {0, 1}n+` is such that there exists an entry (mi, U, Yu, h1,i) in
the list L1. If no such tuples are found, the ⊥ symbol is returned to A.
Otherwise, elements (mi, U, Vi, Si, h1,i) satisfying those conditions are kept
for future examination. If one of them satisfies both ê(P, Si) = ê(U, Yu) and
ê(YS,i, h1,i) = ê(P, Vi), then 〈mi, (U, Vi)〉 is returned as a message-signature
pair together with the sender’s public key YS,i.

At the end of the first stage, A outputs two plaintexts m0 and m1 together with
an arbitrary sender’s private key xS and requires a challenge ciphertext built
under the recipient’s public key Yu. B ignores m0 and m1 and randomly picks
two binary strings W ←R {0, 1}

` and Z ←R {0, 1}
n+`. A challenge ciphertext



σ = 〈U,W,Z〉 = 〈aP,W,Z〉 is then sent to A that then performs a second series
of queries at a second stage. These queries are handled by B as those at the first
stage. As done in many other papers in the literature, it is easy to show that A
will not realize that σ is not a valid signcryption for the sender’s private key xS

and the public key Yu unless it asks for the hash value H2(aP, bP, abP ). In that
case, the solution of the Diffie-Hellman problem would be inserted in L2 exactly
at that moment and it does not matter if the simulation of A’s view is no longer
perfect.

At the end of the game, A produces a result which is ignored by B. The latter
just looks into the list L2 for tuples of the form (aP, bP,Di, .). For each of them,
B checks whether ê(P,Di) = ê(aP, bP ) and, if this relation holds, stops and
outputs Di as a solution of the CDH problem. If no tuple of this kind satisfies
the latter equality, B stops and outputs ”failure”.

Now to assess B’s probability of success, let us denote by AskH2 the event
that A asks the hash value of abP during the simulation. As done in several
papers in the literature (see [8] or [10]), as long as the simulation of the attack’s
environment is perfect, the probability for AskH2 to happen is the same as in a
real attack (i.e. an attack where A interacts with real oracles). In a real attack
we have

Pr[b = b′] ≤ Pr[b = b′|¬AskH2]Pr[¬AskH2] + Pr[AskH2] =
1

2
+

1

2
Pr[AskH2]

and then we have ε = 2Pr[b = b′] − 1 ≤ Pr[AskH2]. Now, the probability that
the simulation is not perfect remains to be assessed. The only case where it can
happen is when a valid ciphertext is rejected in a de-signcryption query. It is
easy to see that for every pair (Vi, h3,i) in L3, there is exactly one pair (h1,i, h2,i)
of elements in the range of oracles H1 and H2 providing a valid ciphertext. The
probability to reject a valid ciphertext is thus not greater than qH3

/22k. The
bound on B’s computation time derives from the fact that every de-signcryption
query requires at most 4 pairing evaluations while the extraction of the solution
from L2 implies to compute at most 2qH2

pairings. �

The above security proof makes use of the pairing’s bilinearity to handle de-
signcryption queries and thus avoids the use of constructions such as [2], [23], [13],
[12] that would increase the ciphertext’s length or imply additional computation
in the de-signcryption operation (this is one of the interests in working with
Gap Diffie-Hellman groups). This results in a worst-case bound on algorithm
B’s computation time that seems to be loose: to extract the solution of the CDH
problem, B might have to compute up to 2qH2

pairings ifA only queries oracle H2

on tuples of the form (aP, bP, .). If we allow up to 260 H2-queries, this appears
to be a loose bound at first sight. But we stress that, heuristically, if A asks
many hash queries of tuples (aP, bP, .) that are not valid Diffie-Hellman tuples,
that means it has no better strategy to find information about the challenge
ciphertext than computing the XOR of the ciphertext’s W -component with hash
values of random tuples. Such a strategy would not be more efficient for A than
an exhaustive search of the solution to the Diffie-Hellman instance embedded in



the challenge ciphertext. An attacker having a non-negligible advantage against
the semantic security would ask much less than 260 hash queries of invalid Diffie-
Hellman tuple. We can thus expect that, at the end of the simulation, L2 only
contains a limited number of entries (aP, bP, .).

We note that the bound on B’s probability of success is tight: if we allow
qDSC ≤ 230 and qH3

≤ 260, with k ≥ 160, we obtain qH3
qDSC/22k ≤ 2−230

which is a negligible function of the parameter k.
The following theorem claims the strong unforgeability of the scheme.

Theorem 2. In the random oracle model, if there exists an adversary F that
has a non-negligible advantage ε against the SC-SUF-CMA security of the scheme
when running in a time t, making qSC signcryption queries, qDSC de-signcryption
queries and at most qHi

queries on oracles Hi (for i = 1, . . . , 4), then there exists
an algorithm B that can solve the Diffie-Hellman problem in G1 with a proba-
bility ε′ > ε − qSCqH1

/2k − qDSCqH3
/22k in a time t′ < t + 4qDSCte where te

denotes the time required for a pairing evaluation.

Proof. given in the full paper ([19]). �

This time, we obtain bounds that are explicitly tight. With k ≥ 160, if we
allow qH3

< 260 and qH1
< 250, qDSC < 230 we have qSCqH1

/2k < 1/280 and
we still have qDSCqH3

< 2−230. We thus have a negligible degradation of B’s
probability of success when compared to the adversary’s advantage. The bound
on B’s running time is also reasonably tight for qDSC < 230.

The theorem below claims the ciphertext anonymity property of the scheme.

Theorem 3. In the random oracle model, assume there exists a PPT distin-
guisher D that has a non-negligible advantage against the SC-INDK-CCA se-
curity of the scheme when running in a time t, performing qSC signcryption
queries, qDSC de-signcryption queries and qHi

queries to oracle Hi (for i =
1, . . . , 4). Then there exists an algorithm B that solves the CDH problem with
an advantage ε′ > ε − 1/2n+`−1 − qDSCqH3

/22k when running in a time t′ <
t+(4qDSC+2qH2

)te where te denotes the time required for one pairing evaluation.

Proof. given in the full paper ([19]). �

Again, the bound on B’s computation time might seem to be meaningless but,
as for the proof of theorem 1, we can argue that a distinguisher performing many
H2 queries on invalid Diffie-Hellman tuples would have no better strategy than
an exhaustive search for Diffie-Hellman instances embedded in the challenge-
ciphertext. However, if we look at the proofs of semantic security and ciphertext
anonymity for the scheme described in [10], although no bound is explicitly given
for the running time of solvers for the bilinear Diffie-Hellman problems, these
bounds are not tighter than ours. Furthermore, the proof of ciphertext anonymity
provided in [10] leads to a significant degradation of the solver’s advantage when
compared to the distinguisher’s one.

We close this section with the following theorem related to the key invisibility.



Theorem 4. In the random oracle model, if there exists a distinguisher D hav-
ing a non-negligible advantage ε against the SC-INVK-CCA security of the scheme
when running in a time t and performing qHi

queries to oracles Hi, for i =
1, . . . , 4, qSC signcryption queries and qDSC de-signcryption queries, then there
exists an algorithm B that solves the CDH problem with an advantage ε′ >
ε− 1/2n+`−1− qDSCqH3

/22k in a time t′ < t + (4qDSC + 2qH2
)te where te is the

time required for a pairing evaluation.

Proof. given in the full paper ([19]). �

6 Conclusions

We proposed a new Diffie-Hellman based signcryption scheme satisfying strong
security requirements. It turns out to be the discrete log based signcryption
protocol whose unforgeability is the most tightly related to the Diffie-Hellman
problem (except the construction in [17], all provably secure solutions are built
on signatures having a security proof relying on the forking lemma ([24],[25]) and
the CCA-security of [17] relies on stronger assumptions than the present scheme).
By heuristic arguments, we argued that the reduction from an adaptive chosen
ciphertext adversary to a solver for the Diffie-Hellman problem is also efficient.
We also introduced a security notion called ’key invisibility’ that can be shown
to imply ’key privacy’ in some cases (see [19] for details).
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