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What are Time Series?What are Time Series?
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A time series is a collection of 
observations made sequentially in time. 
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Data Mining Applications of Data Mining Applications of 
Time SeriesTime Series

Classification: Classify patients based on their ECG patterns

Clustering: Group patients together with similar irregularities in 
their ECGs

Association Rules: a peak followed by a plateau implies a 
downward trend with a confidence of 0.4 and a support of 0.2

Query by Content: Find other patients with similar 
abnormalities in their ECG patterns
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What is Similarity Search?What is Similarity Search?
(In the Context of Time Series)

Query Q Database S

Given a query Q, a 
reference database S and 
a distance measure, find 
the sequence in S that best 
matches Q and return its 
position.

Which is the 
best match?
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Two Categories of Similarity MatchingTwo Categories of Similarity Matching

Best matching 
subsection.

1: Whole Matching 2:Subsequence Matching

Best matching 
same length 
sequence
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How do we measure similarity?How do we measure similarity?

Euclidean Distance between two time series
Q = {q1…qn} and  S = {s1…sn} is defined as:
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Desired properties of similarity measures:

D(A,B) = D(B,A)   Symmetry 

D(A,A) = 0    Constancy of Self-Similarity

D(A,B) = 0, Iff A=B   Positivity (Separation)

D(A,B) 

�

D(A,C) + D(B,C)   Triangular Inequality

All measures for indexing require the 
triangular inequality to hold.
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Three Types of Similarity QueriesThree Types of Similarity Queries

• Nearest Neighbor Query – Find the nearest 
Starbucks to LAX

• Range Query – Find all Starbucks that are within 5 
miles of LAX

• All-Pairs Query (spatial joint) – Find all Starbucks 
that are within 5 miles of a Burger King
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Why an Approximate Why an Approximate 
Representation of the Data? Representation of the Data? 

• One Hour of ECG data: 1 Gigabyte.

• Typical Web-Log: 5 Gigabytes per week.

• Space Shuttle Database: 158 Gigabytes and growing.

• Macho Database: 2 Terabytes, updated with 3 gigabytes per day.

We need a representation of the data that we 
can efficiently manipulate.

In most cases, patterns, not individual points, 
are of interest.
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DFTDFT: Discrete Fourier Transform : Discrete Fourier Transform 
• Basic Idea: Represent the time series as a linear combination 

of sines and cosines, but keep only the first n/2 coefficients

• Why n/2 coefficients? Because each sine wave requires 2 

numbers, for the phase and amplitude
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Most popular implementation : Fast Fourier Transform (FFT) - O(nlogn)
• Actually O(nlogn) if n is a power of two, otherwise O(n2).
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Trivial solution: Search every item in the 
database (Sequential search)

Problem: Do not scale well to large datasets

A better solution…

How do we search in a large database How do we search in a large database 
to find the best match to a query?to find the best match to a query?
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Trivial solution: Search every item in the 
database (Sequential search)

Problem: Do not scale well to large datasets

A better solution…

How do we search in a large database How do we search in a large database 
to find the best match to a query?to find the best match to a query?

We can index the database using a multidimensional 
index structure, allowing efficient similarity search



18

Outline of TalkOutline of Talk

• Background on similarity search in time series
• Distance measures
• Dimensionality reduction
• Indexing

• Proposed method
• Experiments and results
• Conclusion



19

We can project time series 
of length n into n-
dimension space.

The first value in S is the 
X-axis, the second value 
in S is the Y-axis, etc.

One advantage of doing 
this is that we have 
abstracted away the 
details of “time series”, 
now all query processing 
can be imagined as 
finding points in space...

n-dimensional space

Indexing Time SeriesIndexing Time Series
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…we can also project the query Q
into the same n-dimension space 
and simply look for the nearest 
points.

Q

…the problem is that we have to look at 
every point to find the nearest neighbor..

Solution? We can use Spatial 
Access Methods (SAMs). Of 
which R-tree is the most 
famous example…
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R1
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We can group clusters of 
datapoints with “boxes”, called 
Minimum Bounding Rectangles 
(MBR).

We can further recursively group 
MBRs into larger MBRs…. 



22

R10   R11  R12

R1   R2  R3 R4   R5  R6 R7   R8  R9

Data nodes containing points

R10 R11

R12

…these nested MBRs are organized 
as a tree (called a spatial access tree 
or a multidimensional tree). 

Examples include R-tree, X-tree, 
Hybrid-tree etc.

R13

R13
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Projecting query Q into the same 
n-dimensional space

R7   R8  R9

R10   R11  R12

R1   R2  R3 R4   R5  R6

Data nodes containing points

R13R10 R11

R12

R13
query Q
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We can define a function, MINDIST(point, MBR), which tells 
us the minimum possible distance between any point and any 
MBR, at any level of the tree.

R7   R8  R9

R10   R11  R12

R1   R2  R3 R4   R5  R6

Data nodes containing points

R13R10

Q R1

R2

R3

MINDIST(Q,R3)

MINDIST(Q,R1)

MINDIST(Q,R2)
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We can define a function, MINDIST(point, MBR), which tells 
us the minimum possible distance between any point and any 
MBR, at any level of the tree.

R7   R8  R9

R10   R11  R12

R1   R2  R3 R4   R5  R6

Data nodes containing points

R13R10

Q R1

R2

R3

MINDIST(Q,R3)

MINDIST(Q,R1)

MINDIST(Q,R2)

This allows us to search through the database efficiently
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Once the query is completedOnce the query is completed……

Post-process the answer set :

• Compute the actual distance between the 
query and each sequence from the answer 
set, in the time domain

• Prune sequences that are greater than ε
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Obtain coefficients of DFT 
for every sequence in the 
database

Build the multidimensional 
index using the first few 
Fourier coefficients of 
every sequence in the 
database

We can project the Fourier 
coefficients into 
n’-dimension space.
(n’ = # of Fourier coefficients used)

n’-dimensional space

FF--IndexIndex
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And then we use DFT to 
transform query Q into 
frequency domain and 
uses the first few Fourier 
coefficients to project into 
the same n’-dimensional 
space.

Again, we can use Spatial 
Access Methods to 
perform the similarity 
search.

Q

Querying in Querying in 
FF--IndexIndex
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Experimental SetupExperimental Setup

Dataset: Random Walk

Compare F-index and sequential scanning

Perform range and all-pairs queries

# of Fourier coefficients used: 1 - 4
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Search in 
R*-tree

Post-
processing
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What does the results show us?What does the results show us?

If we increase the number of Fourier 
coefficients (fc)…

dimensionality of R*-tree,
(each additional fc will increase dimensionality of R*-tree by 2)

search time in the tree,

false hits, less post-processing time
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F-Index

Sequential             
Scanning
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• Proposed indexing method for similarity 
search in time series

• Used DFT to reduce the dimensionality of 
the data for indexing

• Displayed significant performance gain over 
sequential scanning

ConclusionConclusion
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• This paper did not use symmetry property of DFT 
(Davood Rafiei pointed this out in 1997)

Developments in the last ten yearsDevelopments in the last ten years
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symmetry 
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• There have been some advances in SAM’s, so instead of 1-
4 dimensions, we can now use 10-16.

• There is now a widespread belief that Euclidean distance 
may be too brittle for real world problems, some people are 
using DTW  (Dynamic Time Warping) instead.

• The authors only used one dataset to test on! It turn outs 
the data can have a major impact on the performance.

Developments in the last ten yearsDevelopments in the last ten years
(continue)(continue)
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Questions??Questions??
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Triangular InequalityTriangular Inequality

• Querying cost is expensive

• Using the Triangular Inequality property allows us to 
reduce the number of calls

D(A,B) 

�

D(A,C) + D(B,C)

Q

B

C

A
2

5
1

If we know: 

D(Q,A) = 2 (best so far)

D(Q,B) = 5 and D(B,C)=1

By Triangular Inequality, we do not 
need to look at C because:

D(Q,B) - D(B,C) 

�

D(Q,C)

4 

�

D(Q,C)
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Dimensionality CurseDimensionality Curse
(in indexing)

• To search, we have to examine its neighbors
– 1 dimension, need to search 2 MBRs
– 2 dimension, need to search 8 MBRs
– etc…

• When dimensionality increases, MBRs in non-
leaf nodes increase in size, resulting in a 
decreased fan-out. 

• Could become worst than sequential scanning
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RR--treetree

• R-tree is a dynamic B-tree like structure 
– has the self-balancing property (all the leaf nodes 

appear at the same level)

• Achieves an average of about 50% node 
utilization. 

• Spatial objects can be represented in their 
original data space 
– Objects are represented by the MBRs in which they 

are contained.

referenced from: 
http://goanna.cs.rmit.edu.au/~santhas/research/paper1/node4.html
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R*R*--treetree

• Two improvements over the R-tree
– new node splitting policy

• results in minimized overlap and better storage 
utilization

• reduce dead space in bounding rectangles and 
their perimeter. 

– Forces some aging objects to be re-inserted, 
• changing the shape of the tree dynamically
• results in better search performance. 

referenced from: 
http://goanna.cs.rmit.edu.au/~santhas/research/paper1/node4.html
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