
1

Efficient Similarity Search In Efficient Similarity Search In
Sequence DatabasesSequence Databases

Rakesh Agrawal, Christos Faloutsos, Arun Swami

Selina Chu
University of Southern California

Fall 2003

CSCI 599: Multidimensional Databases

2

Outline of TalkOutline of Talk

• Background on similarity search in time series
• Distance measures
• Dimensionality reduction
• Indexing

• Proposed method
• Experiments and results
• Conclusion

3

What are Time Series?What are Time Series?
18.1750
18.2180
18.1800
18.1800
18.2750
18.3180
18.3500
18.3500
18.4000
18.4000
18.3180
18.2180
18.2000
18.1750

..

..
17.6180
17.6750
17.6750
17.6180
17.6180
17.6180
17.6750
17.7500

A time series is a collection of
observations made sequentially in time.

0 1 0 0 2 0 0 3 0 0 4 0 0 5 0 0 6 0 0 7 0 0 8 0 0 9 0 0 1 0 0 0
0

5

1 0

1 5

2 0

2 5

3 0

3 5

4

Data Mining Applications of Data Mining Applications of
Time SeriesTime Series

Classification: Classify patients based on their ECG patterns

Clustering: Group patients together with similar irregularities in
their ECGs

Association Rules: a peak followed by a plateau implies a
downward trend with a confidence of 0.4 and a support of 0.2

Query by Content: Find other patients with similar
abnormalities in their ECG patterns

5

What is Similarity Search?What is Similarity Search?
(In the Context of Time Series)

Query Q Database S

Given a query Q, a
reference database S and
a distance measure, find
the sequence in S that best
matches Q and return its
position.

Which is the
best match?

6

Two Categories of Similarity MatchingTwo Categories of Similarity Matching

Best matching
subsection.

1: Whole Matching 2:Subsequence Matching

Best matching
same length
sequence

7

Outline of TalkOutline of Talk

• Background on similarity search in time series
• Distance measures
• Dimensionality reduction
• Indexing

• Proposed method
• Experiments and results
• Conclusion

8

How do we measure similarity?How do we measure similarity?

Euclidean Distance between two time series
Q = {q1…qn} and S = {s1…sn} is defined as:

() ()∑ −≡
=

n

1i

2
ii sqSQ,D Q

S
Desired properties of similarity measures:

D(A,B) = D(B,A) Symmetry

D(A,A) = 0 Constancy of Self-Similarity

D(A,B) = 0, Iff A=B Positivity (Separation)

D(A,B)

�

D(A,C) + D(B,C) Triangular Inequality

All measures for indexing require the
triangular inequality to hold.

9

Three Types of Similarity QueriesThree Types of Similarity Queries

• Nearest Neighbor Query – Find the nearest
Starbucks to LAX

• Range Query – Find all Starbucks that are within 5
miles of LAX

• All-Pairs Query (spatial joint) – Find all Starbucks
that are within 5 miles of a Burger King

10

Outline of TalkOutline of Talk

• Background on similarity search in time series
• Distance measures
• Dimensionality reduction
• Indexing

• Proposed method
• Experiments and results
• Conclusion

11

Why an Approximate Why an Approximate
Representation of the Data? Representation of the Data?

• One Hour of ECG data: 1 Gigabyte.

• Typical Web-Log: 5 Gigabytes per week.

• Space Shuttle Database: 158 Gigabytes and growing.

• Macho Database: 2 Terabytes, updated with 3 gigabytes per day.

We need a representation of the data that we
can efficiently manipulate.

In most cases, patterns, not individual points,
are of interest.

12

DFTDFT: Discrete Fourier Transform : Discrete Fourier Transform
• Basic Idea: Represent the time series as a linear combination

of sines and cosines, but keep only the first n/2 coefficients

• Why n/2 coefficients? Because each sine wave requires 2

numbers, for the phase and amplitude

∑−

=

−=
1

0

/21
n

t

nftj
tnf exX π 110 −= nf �,,

)sin()cos(θθθ je j +=

Most popular implementation : Fast Fourier Transform (FFT) - O(nlogn)
• Actually O(nlogn) if n is a power of two, otherwise O(n2).

13

0 20 40 60 80 100 120 140

S 0.4995
0.5264
0.5523
0.5761
0.5973
0.6153
0.6301
0.6420
0.6515
0.6596
0.6672
0.6751
0.6843
0.6954
0.7086
0.7170
0.7412
0.7595
0.7780
0.7956
0.8115
0.8177
0.8345
0.8407
0.8431
0.8423
0.8387
…
…

Example of Example of
Dimensionality Dimensionality

Reduction Using DFTReduction Using DFT Raw
Data

14

0 20 40 60 80 100 120 140

0.4995
0.5264
0.5523
0.5761
0.5973
0.6153
0.6301
0.6420
0.6515
0.6596
0.6672
0.6751
0.6843
0.6954
0.7086
0.7170
0.7412
0.7595
0.7780
0.7956
0.8115
0.8177
0.8345
0.8407
0.8431
0.8423
...

0.2464 1.4810
0.4231 0.7142
0.2423 0.4611
0.2179 0.3449
0.2020 0.2428
0.1805 0.1992
0.1818 0.1556
0.1745 0.1337
0.1922 0.0964
0.1716 0.0629
0.1748 0.0520
0.1683 0.0294
0.1817 0.0211
0.1817 0.0211
0.1683 0.0294
0.1748 0.0520
0.1716 0.0629
0.1922 0.0964
0.1745 0.1337
0.1818 0.1556
0.1805 0.1992
0.2020 0.2428
0.2179 0.3449
0.2423 0.4611
0.4231 0.7142
0.2464 1.4810
...

S

.

Example of Example of
Dimensionality Dimensionality

Reduction Using DFTReduction Using DFT Raw
Data

Fourier
Coefficients

15

0 20 40 60 80 100 120 140

0.4995
0.5264
0.5523
0.5761
0.5973
0.6153
0.6301
0.6420
0.6515
0.6596
0.6672
0.6751
0.6843
0.6954
0.7086
0.7170
0.7412
0.7595
0.7780
0.7956
0.8115
0.8177
0.8345
0.8407
0.8431
0.8423
...

S

Example of Example of
Dimensionality Dimensionality

Reduction Using DFTReduction Using DFT Raw
Data

Fourier
Coefficients

0.2464 1.4810
0.4231 0.7142
0.2423 0.4611
0.2179 0.3449

Reduced set
of Fourier

Coefficients

S’

We have

discarded

of the data
10

9

0.2464 1.4810
0.4231 0.7142
0.2423 0.4611
0.2179 0.3449
0.2020 0.2428
0.1805 0.1992
0.1818 0.1556
0.1745 0.1337
0.1922 0.0964
0.1716 0.0629
0.1748 0.0520
0.1683 0.0294
0.1817 0.0211
0.1817 0.0211
0.1683 0.0294
0.1748 0.0520
0.1716 0.0629
0.1922 0.0964
0.1745 0.1337
0.1818 0.1556
0.1805 0.1992
0.2020 0.2428
0.2179 0.3449
0.2423 0.4611
0.4231 0.7142
0.2464 1.4810
...

16

Trivial solution: Search every item in the
database (Sequential search)

Problem: Do not scale well to large datasets

A better solution…

How do we search in a large database How do we search in a large database
to find the best match to a query?to find the best match to a query?

17

Trivial solution: Search every item in the
database (Sequential search)

Problem: Do not scale well to large datasets

A better solution…

How do we search in a large database How do we search in a large database
to find the best match to a query?to find the best match to a query?

We can index the database using a multidimensional
index structure, allowing efficient similarity search

18

Outline of TalkOutline of Talk

• Background on similarity search in time series
• Distance measures
• Dimensionality reduction
• Indexing

• Proposed method
• Experiments and results
• Conclusion

19

We can project time series
of length n into n-
dimension space.

The first value in S is the
X-axis, the second value
in S is the Y-axis, etc.

One advantage of doing
this is that we have
abstracted away the
details of “time series”,
now all query processing
can be imagined as
finding points in space...

n-dimensional space

Indexing Time SeriesIndexing Time Series

20

…we can also project the query Q
into the same n-dimension space
and simply look for the nearest
points.

Q

…the problem is that we have to look at
every point to find the nearest neighbor..

Solution? We can use Spatial
Access Methods (SAMs). Of
which R-tree is the most
famous example…

21

R1

R2
R5

R3

R7
R9

R8

R6

R4

We can group clusters of
datapoints with “boxes”, called
Minimum Bounding Rectangles
(MBR).

We can further recursively group
MBRs into larger MBRs….

22

R10 R11 R12

R1 R2 R3 R4 R5 R6 R7 R8 R9

Data nodes containing points

R10 R11

R12

…these nested MBRs are organized
as a tree (called a spatial access tree
or a multidimensional tree).

Examples include R-tree, X-tree,
Hybrid-tree etc.

R13

R13

23

Projecting query Q into the same
n-dimensional space

R7 R8 R9

R10 R11 R12

R1 R2 R3 R4 R5 R6

Data nodes containing points

R13R10 R11

R12

R13
query Q

24

We can define a function, MINDIST(point, MBR), which tells
us the minimum possible distance between any point and any
MBR, at any level of the tree.

R7 R8 R9

R10 R11 R12

R1 R2 R3 R4 R5 R6

Data nodes containing points

R13R10

Q R1

R2

R3

MINDIST(Q,R3)

MINDIST(Q,R1)

MINDIST(Q,R2)

25

We can define a function, MINDIST(point, MBR), which tells
us the minimum possible distance between any point and any
MBR, at any level of the tree.

R7 R8 R9

R10 R11 R12

R1 R2 R3 R4 R5 R6

Data nodes containing points

R13R10

Q R1

R2

R3

MINDIST(Q,R3)

MINDIST(Q,R1)

MINDIST(Q,R2)

This allows us to search through the database efficiently

26

Once the query is completedOnce the query is completed……

Post-process the answer set :

• Compute the actual distance between the
query and each sequence from the answer
set, in the time domain

• Prune sequences that are greater than ε

27

Outline of TalkOutline of Talk

• Background on similarity search in time series
• Distance measures
• Dimensionality reduction
• Indexing

• Proposed method
• Experiments and results
• Conclusion

28

Obtain coefficients of DFT
for every sequence in the
database

Build the multidimensional
index using the first few
Fourier coefficients of
every sequence in the
database

We can project the Fourier
coefficients into
n’-dimension space.
(n’ = # of Fourier coefficients used)

n’-dimensional space

FF--IndexIndex

29

And then we use DFT to
transform query Q into
frequency domain and
uses the first few Fourier
coefficients to project into
the same n’-dimensional
space.

Again, we can use Spatial
Access Methods to
perform the similarity
search.

Q

Querying in Querying in
FF--IndexIndex

30

Outline of TalkOutline of Talk

• Background on similarity search in time series
• Distance measures
• Dimensionality reduction
• Indexing

• Proposed method
• Experiments and results
• Conclusion

31

Experimental SetupExperimental Setup

Dataset: Random Walk

Compare F-index and sequential scanning

Perform range and all-pairs queries

of Fourier coefficients used: 1 - 4

32

|S| = 50

|S| = 100

|S| = 200

|S| = 400

1 2 3 4

81

42

21

11

Number of Fourier Coefficients

T
ot

al
 E

xe
cu

tio
n

T
im

e
(m

se
c)

Time per query vs. # Fourier coefficientsTime per query vs. # Fourier coefficients
(For range queries)

S = # of
sequences

33

Search in
R*-tree

Post-
processing

Total

1 2 3 4

80

63

16

5

Number of Fourier Coefficients

T
im

e
(m

se
c)

Breakdown of the execution timeBreakdown of the execution time
(For range queries, |s|=400)

34

What does the results show us?What does the results show us?

If we increase the number of Fourier
coefficients (fc)…

dimensionality of R*-tree,
(each additional fc will increase dimensionality of R*-tree by 2)

search time in the tree,

false hits, less post-processing time

35

50 100 200 400

178

80

21
11

Sequence Set Size

T
ot

al
 E

xe
cu

tio
n

T
im

e
(m

se
c)

Time per query vs. # Sequences per datasetTime per query vs. # Sequences per dataset
(For range queries, # of Fourier coefficients=2)

42

F-Index

Sequential
Scanning

36

F-Index

Sequential
Scanning

186 512 1017

175

75

18

Sequence length

T
ot

al
 E

xe
cu

tio
n

T
im

e
(m

se
c)

Time per query vs. Sequence lengthTime per query vs. Sequence length
(For range queries, # of Fourier coefficients=2)

118

37

• Proposed indexing method for similarity
search in time series

• Used DFT to reduce the dimensionality of
the data for indexing

• Displayed significant performance gain over
sequential scanning

ConclusionConclusion

38

• This paper did not use symmetry property of DFT
(Davood Rafiei pointed this out in 1997)

Developments in the last ten yearsDevelopments in the last ten years

0 50 100 150 200 250
-20

-15

-10

-5

0

5

10

15

DFT with
symmetry
property

DFT

Raw data

39

• There have been some advances in SAM’s, so instead of 1-
4 dimensions, we can now use 10-16.

• There is now a widespread belief that Euclidean distance
may be too brittle for real world problems, some people are
using DTW (Dynamic Time Warping) instead.

• The authors only used one dataset to test on! It turn outs
the data can have a major impact on the performance.

Developments in the last ten yearsDevelopments in the last ten years
(continue)(continue)

40

Questions??Questions??

41

Triangular InequalityTriangular Inequality

• Querying cost is expensive

• Using the Triangular Inequality property allows us to
reduce the number of calls

D(A,B)

�

D(A,C) + D(B,C)

Q

B

C

A
2

5
1

If we know:

D(Q,A) = 2 (best so far)

D(Q,B) = 5 and D(B,C)=1

By Triangular Inequality, we do not
need to look at C because:

D(Q,B) - D(B,C)

�

D(Q,C)

4

�

D(Q,C)

42

Dimensionality CurseDimensionality Curse
(in indexing)

• To search, we have to examine its neighbors
– 1 dimension, need to search 2 MBRs
– 2 dimension, need to search 8 MBRs
– etc…

• When dimensionality increases, MBRs in non-
leaf nodes increase in size, resulting in a
decreased fan-out.

• Could become worst than sequential scanning

43

RR--treetree

• R-tree is a dynamic B-tree like structure
– has the self-balancing property (all the leaf nodes

appear at the same level)

• Achieves an average of about 50% node
utilization.

• Spatial objects can be represented in their
original data space
– Objects are represented by the MBRs in which they

are contained.

referenced from:
http://goanna.cs.rmit.edu.au/~santhas/research/paper1/node4.html

44

R*R*--treetree

• Two improvements over the R-tree
– new node splitting policy

• results in minimized overlap and better storage
utilization

• reduce dead space in bounding rectangles and
their perimeter.

– Forces some aging objects to be re-inserted,
• changing the shape of the tree dynamically
• results in better search performance.

referenced from:
http://goanna.cs.rmit.edu.au/~santhas/research/paper1/node4.html

45

This paper was extended by the following:
• Faloutsos, C., Ranganathan, M., & Manolopoulos, Y. (1994). Fast subsequence matching in time-series databases. In Proceedings of the

SIGMOD. (Gemini)
• Loh, W., Kim, S & Whang, K. (2000). Index interpolation: an approach to subsequence matching supporting normalization transform in

time-series databases. Proceedings 9th International Conference on Information and Knowledge Management.
• Chu, K & Wong, M. (1999). Fast time-series searching with scaling and shifting. Proceedings of the 18th ACM Symposium on Principles

of Database Systems, Philadelphia.
• Refiei, D. (1999). On similarity-based queries for time series data. Proc of the 15th IEEE International Conference on Data Engineering.

Sydney, Australia.

Papers on some other dimensionality reduction techniques:

Discrete Wavelet Transform (DWT):
• Chan, K. & Fu, W. (1999). Efficient time series matching by wavelets. Proceedings of the 15th IEEE International Conference on Data

Engineering.
• Wu, Y., Agrawal, D. & Abbadi, A.(2000). A Comparison of DFT and DWT based Similarity Search in Time-Series Databases. Proceedings

of the 9th International Conference on Information and Knowledge Management.
• Kahveci, T. & Singh, A (2001). Variable length queries for time series data. Proceedings 17th International Conference on Data

Engineering. Heidelberg, Germany.
Singular Value Decomposition (SVD):
• Korn, F., Jagadish, H & Faloutsos. C. (1997). Efficiently supporting ad hoc queries in large datasets of time sequences. Proceedings of

SIGMOD, Tucson, AZ, pp 289-300.
Piecewise Polynomial Approximations:
• Keogh, E,. Chakrabarti, K,. Pazzani, M. & Mehrotra (2001) Dimensionality reduction for fast similarity search in large time series

databases. Knowledge and Information Systems. Volume 3, Number 3, August.
• Yi, B,K., & Faloutsos, C.(2000). Fast time sequence indexing for arbitrary Lp norms. Proceedings of the 26th International Conference on

Very Large Databases, Cairo, Egypt.
Piecewise Linear Representation
• Keogh, E., Chu, S., Hart, D., Pazzani, M. (2001) An Online Algorithm for Segmenting Time Series. Keogh, E., Chu, S., Hart, D.,

Pazzani, M. In The IEEE International Conference on Data Mining (ICDM), 2001.
Inner Product Approximation
• Egecioglu, O., & Ferhatosmanoglu, H. (2000). Dimensionality reduction and similarity distance computation by inner product

approximations. Proceedings of the 9th ACM International Conference on Information and Knowledge Management (CIKM), pp. 219-226.

About using different types of data:
• Keogh, E. and Kasetty, S. (2002). On the Need for Time Series Data Mining Benchmarks: A Survey and Empirical Demonstration. In the

8th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. July 23 - 26, 2002. Edmonton, Alberta, Canada.
pp 102-111.

datasets:
http://kdd.ics.uci.edu/
http://wwwmacho.mcmaster.ca/Project/Overview/status.html

