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Abstract

We consider the problem of implementing simple and efficient Markov chain Monte Carlo
(MCMC) estimation algorithms for state space models. A conceptually transparent derivation
of the posterior distribution of the states is discussed, which also leads to an efficient simulation
algorithm that is modular, scalable, and widely applicable. We also discuss a simple approach
for evaluating the integrated likelihood, defined as the density of the data given the parameters
but marginal of the state vector. We show that this high-dimensional integral can be easily
evaluated with minimal computational and conceptual difficulty. Two empirical applications in
macroeconomics demonstrate that the methods are versatile and computationally undemand-
ing. In one application, involving a time-varying parameter model, we show that the methods
allow for efficient handling of large state vectors. In our second application, involving a dynamic
factor model, we introduce a new blocking strategy which results in improved MCMC mixing
at little cost. The results demonstrate that the framework is simple, flexible, and efficient.
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stochastic volatility, among others. Extensive reviews of state space models and their applications

in time series analysis are given in Kim and Nelson (1999) and Durbin and Koopman (2001). In

this paper we consider the linear Gaussian state space form in which, for t = 1, . . . , T , the n × 1

vector of observations yt is assumed to depend on the q × 1 latent state vector ηt according to the

hidden Markov structure

yt = Xtβ + Gtηt + εt, (1)

ηt = Ztγ + Ftηt−1 + νt, (2)

where (2) is initialized with η1 ∼ N (Z1γ, D), and
(

εt

νt

)
∼ N

(
0,

(
Ω11 0
0 Ω22

))
.

Equation (1) is often referred to as the measurement or observation equation, while (2) is called the

transition or evolution equation. Define y = (y′1, . . . , y
′
T )′ and η = (η′1, . . . , η

′
T )′, and let θ represent

the model parameters (i.e. β, γ, {Gt}, {Ft}, and the unique elements of Ω11, Ω22, and D). The

covariates {Xt} and {Zt} are treated as given and will be suppressed in all conditioning sets below.

Despite the availability of tractable conditional posterior distributions for the model unknowns

in (1) and (2), estimation of state space models by Markov chain Monte Carlo (MCMC) methods

can in many instances be rather challenging. The usual complications due to high dimensionality

imply that estimation algorithms should be scalable in the key dimensions of the model (n, q, or T ).

Moreover, because the model unknowns enter equations (1) and (2) additively or multiplicatively,

MCMC algorithms using full conditional sampling may suffer from slow convergence and poor

mixing. This problem can be further exacerbated by the intertemporal correlation in η due to

its dynamic behavior. To improve MCMC performance, special care is needed in grouping the

parameters in blocks that can be sampled jointly, rather than conditionally on each other.

One important advance in this regard involves the sampling of the latent states. Carter and

Kohn (1994) and Früwirth-Schnatter (1994) demonstrate that joint sampling of the entire vector η ∼

π (η|y, θ) in one step results in important efficiency improvements relative to one-at-a-time Gibbs
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sampling from π (ηt|y, θ, {ηj}j 6=t). Their techniques build upon a traditional two-pass procedure.

In the forward filtering pass, conducted for t = 1, . . . , T , the Kalman filter iterations produce the

predictive mean and variance of ηt given only the observations up to period t. At the conclusion

of the forward filtering pass, the states are drawn in reverse time order ηt ∼ π (ηt|y, θ, {ηj}j>t) for

t = T, . . . , 1, which gives draws from the joint distribution π (η|y, θ). A similar approach was also

developed by Chib (1996, 1998) for hidden Markov models. The sampling techniques have been

applied in other settings such as seemingly unrelated regression (SUR) models with serial correlation

and time varying parameters (Chib and Greenberg, 1995) and stochastic volatility models (Jacquier

et al., 1994; Shephard and Pitt, 1997; Kim et al., 1998). The methods are carefully reviewed in

Kim and Nelson (1999) and Durbin and Koopman (2001), and the basic recursions are briefly

summarized in Appendix A. Important further refinements of the simulation approach are offered

in de Jong and Shephard (1995), using the distribution of the errors in the model, and in Durbin

and Koopman (2002), using auxiliary data samples. Another sampling improvement was recently

introduced by Chib et al. (2006), who suggested that because Gt and ηt enter multiplicatively

in (1), they should be sampled jointly. Their approach builds upon a Metropolis-Hastings (MH)

algorithm in which, given the remaining unknowns in the model, the parameters in Gt are sampled

marginally of the states, which is followed by sampling of the latent states conditioned on Gt.

The additional computational costs of that algorithm pay off through a dramatic improvement in

MCMC performance relative to full conditional sampling.

Motivated by the aforementioned considerations, we pursue several main goals in this paper.

First, we discuss a simple derivation of the joint density of the states, π (η|y, θ), conditional on the

data and the parameters. A key feature of this derivation is its conceptual clarity, which significantly

facilitates subsequent aspects of the analysis. In comparison, the reliance of existing methods on

multiple loops through time, though effective in many instances, may limit their transparency.

Second, we show how density evaluation and simulation of draws η ∼ π (η|y, θ) can be achieved

efficiently using block-banded and sparse matrix algorithms working with the precision matrix of
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that distribution. The techniques are scalable in the dimension of the model and do not involve

the Kalman filtering and smoothing recursions. The approach builds upon techniques that have

been heavily used in nonparametric regression (e.g. Silverman, 1985; Fahrmeir and Lang, 2001;

Chib and Jeliazkov, 2006; Chib et al., 2009), spatial models (Rue, 2001; Knorr-Held and Rue,

2002), and smooth coefficient models (Koop and Tobias, 2006), and although the applicability of

these methods to state space models has been recognized (Fahrmeir and Kaufmann, 1991; Asif and

Moura, 2002, 2005; Knorr-Held and Rue, 2002), they have not yet gained prominence in time-series

analysis despite their versatility. Third, we show that the integrated likelihood f(y|θ), which gives

the density of the data conditional on the parameters but integrated over the state vector η, can

be obtained very easily. This is useful in estimation, maximization, and Bayesian and frequentist

model comparison. Work on approximate state space models (Chin, 2001) and integrated likelihoods

f(y|θ) (Bell, 2000) has also relied on the computational advantages of sparse and banded matrices,

but in contrast to those approaches, our methods are exact because bandedness emerges as a feature

of the precision matrix of π (η|y, θ) and is not just an approximation. Finally, we use the preceding

developments to propose and implement a new blocking scheme for analysis of state space models

that relies on collapsed MCMC sampling (Liu, 1994; Liu et al., 1994) and allows not only Gt, but

also β, to be sampled marginally of the states η. An application involving a dynamic factor model

of the U.S. economy shows that our approach leads to important improvements in estimation.

The remainder of the paper is organized as follows. In Section 2, we discuss several aspects of

the inferential framework. Specifically, Section 2.1 offers a simple and conceptually clear derivation

of the joint distribution π (η|y, θ). We build upon that derivation in Section 2.2 and discuss meth-

ods that can be used to sample the states jointly using efficient algorithms for banded matrices.

Section 2.3 shows that the integrated likelihood can be evaluated easily without involving high-

dimensional integration over η. Section 3 provides two empirical applications in macroeconomics

which demonstrate the performance of the algorithms and the benefits conveyed by the new MCMC

blocking scheme for fitting factor models. The paper concludes with a summary in Section 4.
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2 Methodological Framework

2.1 A Simple Derivation

We begin by writing the joint sampling density f(y|θ, η) implied by (1). In particular, stacking (1)

over the T time periods, we have

y = Xβ + Gη + ε,

where

X =




X1
...

XT


 , G =




G1

. . .
GT


 , ε =




ε1
...

εT


 ,

with ε ∼ N (0, IT ⊗ Ω11), which implies that f(y|θ, η) is Gaussian with mean Xβ + Gη and covari-

ance matrix (IT ⊗ Ω11), i.e.

f (y|θ, η) = fN (y|Xβ + Gη, IT ⊗ Ω11) . (3)

Turning attention to the distribution of η, we note that the directed conditional structure for

π (ηt|θ, ηt−1) in (2) implies a joint density for η, which can be obtained, following Fahrmeir and

Kaufmann (1991), by defining

H =




Iq

−F2 Iq

−F3 Iq

. . . . . .
−FT Iq




and S =




D
Ω22

Ω22

. . .
Ω22




,

so that (2) can be written as Hη = Zγ + ν, where

Z =




Z1
...

ZT


 and ν =




ν1
...

νT


 ∼ N (0, S) .

A simple change of variable from ν to η implies that

[η|θ] ∼ N (
η̃,K−1

)
, (4)
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where η̃ = H−1Zγ (which can equivalently, and more efficiently, be obtained by iterating (2) in

expectation) and the Tq × Tq precision matrix K is given by K = H ′S−1H, i.e.,

K =




F ′
2Ω

−1
22 F2 + D−1 −F ′

2Ω
−1
22

−Ω−1
22 F2 F ′

3Ω
−1
22 F3 + Ω−1

22 −F ′
3Ω

−1
22

. . . . . . . . .
−Ω−1

22 FT−1 F ′
T Ω−1

22 FT + Ω−1
22 −F ′

T Ω−1
22

−Ω−1
22 FT Ω−1

22




. (5)

In the preceding derivation, of foremost significance is the fact that the precision matrix K is

block-banded and contains only a small number of non-zero elements concentrated in a narrow

band around the main diagonal. This observation, together with the fact that K is symmetric,

implies that storage costs are low and that the computational benefits of working with banded or

sparse matrix algorithms can be exploited in this setting. This will be discussed in Section 2.2.

In addition, this approach to deriving the joint distribution of η makes it easy to accommodate

(by simply changing H and S) versions of the model where (2) is specified so that ηt follows a

second or higher order dynamic process. This is important for avoiding the degeneracies that result

when a higher order dynamic process for ηt is written as a first order process by enforcing a set

of identities in (2). Another point is that because of their modularity, the methods discussed here

can be adapted to settings where Gt and Ft depend on a small number of parameters through a

hierarchical structure; of course, the methods trivially accommodate the case where those parameter

matrices are time-invariant, which is typically the case in applications.

Given the densities f (y|θ, η) and f (η|θ) in (1) and (2), a simple application of Bayes’ theorem

implies that the conditional distribution f (η|y, θ) ∝ f (y|η, θ) f (η|θ) is immediately available and

the derivations can be found in standard references such as Zellner (1971), Poirier (1995), Koop

(2003), Gelman et al. (2003), or Greenberg (2008). In particular, upon combining the Gaussian

likelihood in (3) with the Gaussian prior in (4), the conditional posterior is also Gaussian

[η|y, θ] ∼ N (
η̂, P−1

)
, (6)
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where the precision P and mean η̂ are given by

P = K + G′ (I ⊗ Ω−1
11

)
G, (7)

η̂ = P−1
(
Kη̃ + G′ (I ⊗ Ω−1

11

)
(y −Xβ)

)
. (8)

Since G′ (I ⊗ Ω−1
11

)
G is banded, it follows that P is also banded, thus affording the aforementioned

computational benefits that will be reviewed shortly. We mention that when D is finite, the

distribution of η is proper. If D is diffuse, then K is of reduced rank. This is easily handled by

redefining H (simply by excluding the first q rows) and S (excluding the first q rows and columns).

As a result, the method works with both proper and improper prior distributions.

2.2 Efficient Estimation of the Latent States

We begin by discussing an efficient simulation method for the density π(η|y, θ) given in (6)–(8).

Since the precision matrix P is banded, one should note that sampling of [η|y, θ] need not include

an inversion to obtain P−1 and η̂ in (8). Instead, the mean η̂ can be found by computing the

(banded) Cholesky factor C of P such that C ′C = P and solving

C ′Cη̂ = Kη̃ + G′ (I ⊗ Ω−1
11

)
(y −Xβ) , (9)

which is done in O(Tq2) operations by first solving (9) for Cη̂ by forward substitution and then

using the result to solve for η̂ by back substitution. Similarly, to obtain a random draw from

N (η̂, P−1) efficiently, sample u ∼ N (0, I), and solve Cx = u for x by back-substitution. It

follows that x ∼ N (
0, P−1

)
. Adding the mean η̂ to x, one obtains a draw η ∼ N (η̂, P−1). It

is worth mentioning that because K and P are not only banded (which eliminates large numbers

of zeros from consideration), but they are also block-banded (i.e. even within the bands, there

are blocks of zeros), the Cholesky factors will also have zero entries in the same location. For

this reason additional computational savings can be generated in operations such as multiplication,

forward and back-substitution, and Cholesky factorization by using block-banded or sparse matrix

algorithms that take those zeros into account. We summarize the above procedures as follows.
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Algorithm 1 Efficient State Smoothing and Simulation

1. Compute P in (7) and obtain its Cholesky factor C such that C ′C = P .

2. Smoothing: Solve (9) by forward- and back-substitution to obtain η̂.

3. Simulation: Sample u ∼ N (0, I), and solve Cx = u for x by back-substitution and take

η = η̂ + x, so that η ∼ N (η̂, P−1).

Several remarks about Algorithm 1 can be made. First, this method is very efficient and has

been widely used in nonparametric regression (see, for example, Silverman, 1985; Fahrmeir and

Lang, 2001; Chib and Jeliazkov, 2006). Computational efficiency aspects of banded matrix oper-

ations are discussed in Golub and van Loan (1983), Knorr-Held and Rue (2002), Rue and Held

(2005) and McCausland et al. (2009). In the examples in Section 3, this algorithm generated 20-40%

faster run times than the Kalman filter and smoother recursions. Second, compared with existing

algorithms, Algorithm 1 is transparent and requires trivial effort to program. Its applicability is

further facilitated by the inclusion of banded and sparse matrix algorithms in standard statistical

programming packages such as Gauss (Aptech Systems, Inc., Black Diamond, WA) and Matlab

(The MathWorks, Inc., Natick, MA). Third, because the method does not require any auxiliary

simulation (c.f. Durbin and Koopman, 2002), it is scalable as the size of yt grows. Finally, compu-

tation of the density ordinate π(η|y, θ) is also very efficient because banded matrix multiplications

and determinant evaluations are inexpensive. This observation, together with the integrated like-

lihood approach that is discussed next, allows for more efficient blocking in the construction of

MCMC algorithms such as those considered in Section 3.

2.3 Integrated Likelihood Evaluation

The integrated likelihood f(y|θ), defined as

f(y|θ) =
∫

f(y|θ, η)π(η|θ)dη, (10)
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where f(y|θ, η) is the likelihood and π(η|θ) represents the prior, is often used in likelihood evaluation

for classical and Bayesian problems involving optimization and model comparison. Evaluating the

integrated likelihood via the multivariate integration in (10) is computationally intensive and often

impractical. The derivation of the full conditional density [η|y, θ] discussed in Section 2.1, however,

provides a simple way to evaluate f(y|θ) without invoking (10) and instead using the approach

in Chib (1995). By Bayes’ theorem, we can write the integrated likelihood as

f(y|θ) =
f(y|θ, η)π(η|θ)

π(η|y, θ)
, (11)

where π(η|y, θ) denotes the full conditional posterior density of η given (y, θ). Due to the banded

nature of prior and posterior precision matrices (K and P , respectively), evaluation of this quantity

can be done very efficiently by simply evaluating the terms in (11) at a single point such as

the posterior mean or mode as suggested by Chib (1995). Note, in particular, that the choice

η = η̂ eliminates the need to compute the exponential part of the pdf in the denominator density.

Also note that this approach to evaluating the integrated likelihood is exact and does not require

approximations (such as the Laplace approximation whose applicability is studied, for example, in

?, and Bell, 2000). In conjunction with the results in Section 2.2, the method provides a platform

for Bayesian model comparison (Chib, 1995; Chib and Jeliazkov, 2001, 2005) and allows efficient

MCMC blocking as discussed in our examples.

3 Empirical Applications

In this section we apply the techniques discussed thus far to estimate two models in empirical

macroeconomics. The data set consists of T = 229 quarterly observations (1948:Q1 to 2005:Q1)

on n = 4 macroeconomic series: output (GDP) growth, unemployment rate, interest rate, and

inflation. A popular model for empirical analysis in macroeconomics is the vector autoregression

(VAR) model, which has traditionally been employed to capture the evolution and interdependence

among the time series. In our examples we extend the traditional VAR specification in two ways. In

Section 3.1 we consider a time-varying parameter vector autoregressive (TVP-VAR) model which
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allows us to study the issue of structural instability, possibly due to evolving technology, expec-

tations, or institutional settings. The regression parameters in the model follow a random walk,

which permits the economy to evolve differently over time, while maintaining that such changes in

dynamic behavior should occur smoothly. Section 3.2 considers a dynamic factor VAR (DF-VAR)

model that is useful in studying macroeconomic shocks and business cycles. The model specifica-

tion allows the vector of macroeconomic variables to depend on its past realizations as well as on a

systematic unobserved factor that evolves dynamically over time. The proposed MCMC sampler for

this model involves a new collapsed blocking scheme, made possible by the techniques of Section 2,

that significantly improves the convergence and mixing of the Markov chain.

In both applications, we report the inefficiency factors for the sampled parameters. The in-

efficiency factors approximate the ratio of the numerical variance of the posterior mean from the

MCMC chain relative to that from an independent sample of equal size, and hence provide a useful

measure of the mixing of the Markov chain. Inefficiency factors are related to an alternative metric,

known as the effective sample size, which gives the size of an independent sample giving the same

numerical variance as the MCMC sample (Robert and Casella, 2004).

3.1 Time-varying parameter model

In this section we consider the analysis of a time-varying parameter VAR (TVP-VAR) model in

order to study the extent to which structural instability may be a feature in this type of macroe-

conomic model. Specifically, for t = 1, . . . , T , we consider the first-order TVP-VAR model

yt = µt + Γtyt−1 + εt, εt ∼ N (0, Ω11), (12)

where yt is a vector containing measurements on the aforementioned n = 4 economic variables

(output growth, unemployment, income, and inflation), µt and Γt contain time-varying parameters,

and Ω11 is an unknown n × n positive definite covariance matrix. The analysis is performed

conditionally on the initial data point and consequently our sample consists of T = 228 observations.
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For estimation purposes, equation (12) will be written in SUR form (Zellner, 1962) as

yt = Xtβt + εt, (13)

where Xt is given by 


(
1, y′t−1

)
(
1, y′t−1

)
. . . (

1, y′t−1

)


 (14)

and βt is a vector containing the corresponding parameters from µt and Γt ordered equation by

equation, i.e., βt ≡ vec ([µt : Γt]′), where the vec(·) operator stacks the columns of a matrix into a

vector. The evolution of the vector of parameters βt for t = 2, . . . , T is governed by

βt = βt−1 + νt, (15)

with β1 ∼ N (0, D), where νt ∼ N (0, Ω22), and Ω22 = diag(σ2
1, . . . , σ

2
q ) is an unknown q × q

diagonal matrix with q = n(n+1). The transition equation (15) allows the elements of βt to evolve

gradually over time by penalizing large changes between successive values, thus a priori favoring the

simple VAR model with time-invariant parameters. The joint distribution of the entire vector β =

(β′1, . . . , β
′
T )′ can be determined in a straightforward fashion following the derivations in Section 2.1.

Chib and Greenberg (1995) have considered a TVP-SUR model using a hierarchical setup in which

the evolution of βt is related to a random walk in a lower-dimensional latent factor, and estimation

proceeds by forward-filtering backward-sampling methods. In contrast, using the block-banded

matrix methods discussed in Section 2.2, here we sample the entire sequence β = (β′1, . . . , β
′
T )′

consisting of 228 20-dimensional vectors βt in a single step. Specifically, stacking the observations

in (13) over t, and using the derivations in Section 2.1, we have

y = Xβ + ε, ε ∼ N (0, IT ⊗ Ω11)

where

y =




y1
...

yT


 , X =




X1

. . .
XT


 , ε =




ε1
...

εT


 ,
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and for β = (β′1, . . . , β
′
T )′, we have

[β|Ω22] ∼ N (
0,K−1

)
,

where K is a simplification of (5) with {Ft} being replaced by identity matrices. Once written in

this form, the model becomes conceptually simple and estimation can proceed as in Section 2.2.

Our analysis of the U.S. macroeconomic data is carried out under the following prior distribu-

tions: Ω11 ∼ IW(ν0
1 , S0

1) and σ2
i ∼ IG(ν0

i2/2, S0
i2/2), for i = 1, . . . , q, with ν0

1 = n + 3, S0
1 = I,

ν0
12 = · · · = ν0

q2 = 6, S0
12 = · · · = S0

q2 = 0.01, and D = 5× I, where IW(·, ·) and IG(·, ·) denote the

inverse-Wishart and inverse-gamma distributions, respectively. Posterior inference is based on an

MCMC sampler that sequentially draws from π(β|y, Ω11, Ω22), π(Ω11|y, β,Ω22) and π(Ω22|y, β,Ω11).

The techniques we present are also applicable to similar models such as the smooth coefficient mod-

els of Koop and Tobias (2006). We summarize the MCMC approach as follows.

Algorithm 2 MCMC Estimation of the TVP-VAR Model

1. Sample [β|y, Ω11, Ω22] ∼ N (β̂, P−1), with precision P = K + X ′ (I ⊗ Ω−1
11

)
X and mean

β̂ = P−1X ′ (I ⊗ Ω−1
11

)
y, which is done efficiently via Algorithm 1.

2. Sample [Ω11|y, β] ∼ IW
(
ν0
1 + T, S0

1 +
∑T

t=1(yt −Xtβt)(yt −Xtβt)′
)
.

3. Sample [Ω22|y, β] from q independent inverse-gamma distributions of the form

[σ2
i |y, β] ∼ IG

(
ν0

i2 + T − 1
2

,
S0

i2 +
∑T

t=2(βt,i − βt−1,i)2

2

)
, i = 1, . . . , q,

where βt,i is the ith element of βt.

Estimation of the TVP-VAR model for the post-war U.S. data was based on a sample of 20000

MCMC draws following a burn-in of 1000 draws. The results were verified by a forward-filtering

backward-sampling algorithm, but the run time of Algorithm 2 was approximately one third less

than that of the alternative approach.
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The results for the main parameters of interest βt are presented in Figure 1. The figure reveals

that all effects in the GDP growth equation appear to have drifted towards zero in the latter part

of the sample. This supports the contention that economic growth has become more stable over

time due to lower dependence on past outcomes. Indeed, there has been much debate among

economists about the existence, sources, and ramifications of a “Great Moderation” in U.S. output

growth volatility based on comparisons of data before and after the mid-1980s (Stock and Watson,

2003). The unemployment equation parameters appear to be more stable over time relative to

the parameters in the other three panels. The interest and inflation rate equations also exhibit

some strong instability in the early part of the sample and the late 70s/early 80s; however, the

broader trends that are especially visible in those equations concern the behavior of the time-varying

intercepts, which have risen in recent years relative to the levels in the aftermath of World War II.

1960 1980 2000
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−0.5

0

0.5

1
GDP growth equation

1960 1980 2000
−1

0

1

2
Unemployment equation

1960 1980 2000
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0

1

2

3

4
Interest rate equation

1960 1980 2000
−0.5

0

0.5

1

1.5
Inflation rate equation

 

 

µ
t−1

GDP
t−1

unemp
t−1

interest
t−1

inflation
t−1

Figure 1: Evolution of the parameters βt in the TVP-VAR model.

As an illustration of the mixing properties of the MCMC sampler in this application, Figure 2

presents boxplots of the inefficiency factors. The inefficiency factors show that despite the size of

the latent state vector, the MCMC sampler performs very well. We note that, as in most latent

variable models, parameters that depend on observed data are better estimated than parameters
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that depend on latent outcomes, and for this reason the inefficiency factors for the elements of Ω11

are lower than those for Ω22.
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35

Ω
11

                 Ω
22

Figure 2: Inefficiency factors in the estimation of the TVP-VAR model of the U.S. economy.

3.2 Dynamic factor model

In our second application, we consider a dynamic factor VAR (DF-VAR) model given by

yt = µ + Γyt−1 + Aft + εt, εt ∼ N (0, Ω), (16)

where Ω = diag(ω11, . . . , ωnn), and

ft = γft−1 + νt, νt ∼ N (0, σ2), (17)

is a dynamic economy-wide factor which reflects unobserved sources of macroeconomic volatility.

Equation (17) is initialized with f1 distributed according to the steady state distribution f1 ∼

N
(
0, σ2/

(
1− γ2

))
. Inclusion of the factor f = (f1, . . . , fT )′ in empirical models in economics and

finance is often motivated by theoretical considerations, but it also serves as a parsimonious way

of modeling the co-movement in the series. The joint distribution π
(
f |γ, σ2

)
can be easily derived

following Section 2.1, whereby

[f |γ, σ2] ∼ N (
0, σ2F−1

0

)
, (18)
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and the precision involves

F0 =




1 −γ
−γ 1 + γ2 −γ

. . . . . . . . .
−γ 1 + γ2 −γ

−γ 1




.

Since neither the vector of loadings A nor the factor f is known, there are two identification

problems that relate to the scale and sign of A and f because Aft = (cA) (ft/c) for any c 6= 0.

Both the scale and sign problems are resolved by fixing the first element of A at 1, i.e. A = (1, a′)′,

and only the vector of unrestricted loadings a needs to be estimated. Although estimation of a

DF-VAR model with more than one factor poses no conceptual or computational difficulties (see

Sections 2 and 3.1) and all factors can still be sampled jointly in one step, identification in those

models requires additional constraints. In particular, to prevent the possibility for simultaneous

permutation of the factors and the columns of A, the latter matrix is typically restricted so that

A[i, j] = 0 for j > i and A[i, i] = 1. For the purposes of estimation the model is written in the form

yt = Xtβ + Aft + εt, t = 1, . . . , T, (19)

where Xt is given in (14) and β = vec ([µ : Γ]′). Stacking the equations in (19) over t, we have

y = Xβ + (IT ⊗A)f + ε, ε ∼ N (0, IT ⊗ Ω), (20)

where

y =




y1
...

yT


 , X =




X1
...

XT


 , ε =




ε1
...

εT


 .

Given the distribution [f |γ, σ2] ∼ N (0, σ2F−1
0 ) in (18) and the priors β ∼ N (β0, B0), a ∼ N (a0, A0),

ωii ∼ IG(νi0/2, ri0/2) for i = 1, . . . , n, σ2 ∼ IG(s0/2, δ0/2), and γ ∼ T N (−1,1)(γ0, G0), where

T N (a,b)(·) represents a truncated normal distribution on the interval (a, b), all full conditional

posterior distributions are tractable and in principle estimation could proceed by simulation from

those densities. This gives rise to MCMC Scheme 1, which uses the following parameter blocking

(conditioning on parameters that do not enter the full-conditional distributions is suppressed).
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Scheme 1 Full-Conditional MCMC Blocking

1. [β|y, A, f,Ω]

2. [a|y, β, f,Ω], where A = (1, a′)′

3. [f |y, β,A,Ω, γ, σ2]

4. [Ω|y, β, A, f ]

5. [γ|f, σ2]

6. [σ2|f, γ]

The main benefit of Scheme 1 is that the full-conditional distributions are straightforward and

tractable, and hence MCMC simulation is very simple. For this reason, samplers based on such

blocking have appeared in various contexts (e.g. Jacquier et al., 1994; Geweke and Zhou, 1996;

Aguilar and West, 2000; Kose et al., 2003; Hogan and Tchernis, 2004). Unfortunately, the MCMC

output produced under Scheme 1 often suffers from slow convergence and poor mixing. For this

reason, Chib et al. (2006) suggest an alternative blocking scheme where the loadings A and the

factors f are sampled in a single step by simulating A marginally of f , followed by drawing f from

its full-conditional distribution. This reduces the inefficiency factors of the sampler and justifies

the additional costs of sampling [a|y, β,Ω] by an MH step. This scheme is presented next.

Scheme 2 Sampling A and f in One Block

1. [β|y, A, f,Ω]

2. [a, f |y, β,Ω, γ, σ2], which is done using

(a) [a|y, β,Ω, γ, σ2], which does not depend on f

(b) [f |y, β, A,Ω, γ, σ2]

3. [Ω|y, β, A, f ]

4. [γ|f, σ2]

5. [σ2|f, γ]

Two key considerations motivate our proposed extensions of these techniques. First, the model

in (19) involves two components, Xtβ and Aft, both of which involve unknown quantities and enter
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additively to determine the conditional mean of yt. This feature has typically caused slow MCMC

mixing in other settings, such as panel data models (Chib and Carlin, 1999), and has required some

care in the construction of Markov chains. While it is not practical to integrate both A and f in

the sampling of β, we show that a collapsed MCMC algorithm (Liu, 1994; Liu et al., 1994) that

simulates both β and A marginally of f can be constructed easily, sampled efficiently, and can lead

to substantial improvements in performance by reducing the conditional dependence in the Markov

chain. Second, while the approach to marginalizing f suggested in Chib et al. (2006) works well

in static factor models, extensions to models with dynamic factors are more difficult. However, we

show that the methods in Section 2.3 allow efficient evaluation of the density of a marginally of f

in both dynamic and static settings. We present this sampling scheme next.

Scheme 3 Collapsed MCMC Sampling of β and A

1. [β|y, A,Ω, γ, σ2], which does not depend on f

2. [a, f |y, β,Ω, γ, σ2], which is done using

(a) [a|y, β,Ω, γ, σ2], which does not depend on f

(b) [f |y, β, A,Ω, γ, σ2]

3. [Ω|y, β, A, f ]

4. [γ|f, σ2]

5. [σ2|f, γ]

The main difference between Schemes 2 and 3 is that in Scheme 3, β is sampled marginally of f .

In anticipation of the summary in Algorithm 3, we present the computational details in this step.

In order to sample β marginally of f , we begin by integrating f out of (20) using the distribution

in (18) to obtain

y = Xβ + ν, ν ∼ N (0, Σ),

where Σ = [(IT ⊗ Ω) + (IT ⊗ A)σ2F−1
0 (IT ⊗ A)′] is a dense Tn × Tn covariance matrix. This

representation is conceptually convenient because the conditional posterior is of known form

[β|y, A,Ω, γ, σ2] ∼ N (β̂, B),
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with mean and variance given by

B = (B−1
0 + X ′Σ−1X)−1 and β̂ = B(B−1

0 β0 + X ′Σ−1y). (21)

However, in order for the approach to be practical, we must find a way to obtain X ′Σ−1X and

X ′Σ−1y that does not involve brute-force inversion of Σ. Fortunately, Woodbury’s formula yields

Σ−1 =
[
(IT ⊗ Ω) + (IT ⊗A)σ2F−1

0 (IT ⊗A)′
]−1

=
(
IT ⊗ Ω−1

)− (
IT ⊗ Ω−1

)
(IT ⊗A)×

× [
σ−2F0 + (IT ⊗A)′

(
IT ⊗ Ω−1

)
(IT ⊗A)

]−1 (IT ⊗A)′
(
IT ⊗ Ω−1

)

=
(
IT ⊗ Ω−1

)− (
IT ⊗ Ω−1A

) [
σ−2F0 + IT

(
A′Ω−1A

)]−1 (
IT ⊗A′Ω−1

)
.

Note that the matrix P =
[
σ−2F0 + IT

(
A′Ω−1A

)]
in the last line above is banded since F0 is

banded and A′Ω−1A is a scalar. Letting ỹt = A′Ω−1yt, X̃t = A′Ω−1Xt, ỹ = (ỹ′1, . . . , ỹ
′
T )′, and

X̃ = (X̃ ′
1, . . . , X̃

′
T )′, the mean and variance in (21) can be written as

B =

(
B−1

0 +
T∑

t=1

X ′
tΩ
−1Xt − X̃ ′P−1X̃

)−1

, β̂ = B

(
B−1

0 β0 +
T∑

t=1

X ′
tΩ
−1yt − X̃ ′P−1ỹ

)
, (22)

which can be easily evaluated because P , as defined in the previous sentence, is banded.

We use the results in Section 2.3 to extend the approach of Chib et al. (2006) to the case of a

dynamic factor and efficiently sample [a|y, β, A,Ω, γ, σ2] marginally of f . Similarly to (11), which

gives the density of y marginally of f , we can find the conditional density of a marginally of f :

π(a|y, β,A,Ω, γ, σ2) ∝ π(a|y, β, f,Ω, γ, σ2)
π(f |y, β,A,Ω, γ, σ2)

, (23)

which holds for any value of f and is easy to evaluate because the full-conditional densities in the

model are known. Note, moreover, that typically we will not need to include π(f |y, β, Ω, γ, σ2)

because it does not involve A, and can be absorbed in the constant of proportionality – the kernel

of the density is all that is needed in optimization and MH steps (because any constants cancel in

the probability of acceptance ratio). With these derivations, we are now ready to proceed with a

formal statement of the MCMC estimation algorithm.
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Algorithm 3 MCMC Sampler for the DF-VAR model

1. Sample [β|y,A, Ω, γ, σ2] ∼ N
(
β̂, B

)
where β̂ and B are given in (22).

2. Sample [a, f |y, β,Ω, γ, σ2] in one block as follows

(a) Sample [a|y, β,Ω, γ, σ2] marginally of f by MH with tailored proposal a† ∼ q(â, V ), and

accept the proposed draw a† with probability

αMH(a, a†) = min
{

1,
π(a†|y, β,A,Ω, γ, σ2)q(a|â, V )
π(a|y, β,A,Ω, γ, σ2)q(a†|â, V )

}

(b) Sample [f |y, β, A,Ω, γ, σ2] ∼ N (f̂ , F ), where f̂ = F (IT ⊗A)′
(
IT ⊗ Ω−1

)
(y − Xβ)

and F =
(
F0/σ2 + (IT ⊗A)′(IT ⊗ Ω−1)(IT ⊗A)

)−1, which is done efficiently via Al-

gorithm 1.

3. Sample [Ω|y, β, A, f ] by drawing ωii ∼ IG((νi0 + T )/2, (ri0 + e′iei)/2) for i = 1, . . . , n, where

ei is a T -vector of residuals from the ith observation equation.

4. Sample [γ|f, σ2] by MH with proposal γ† ∼ N (γ̂, G), where G = (G−1
0 + f ′1:T−1f1:T−1/σ2)−1

and γ̂ = G(G−1
0 γ0 + f ′1:T−1f2:T /σ2), and the proposed value γ† is accepted with probability

αMH(γ, γ†) = min
{

1,
fN (f1|0, σ2/(1− γ†2))
fN (f1|0, σ2/(1− γ2))

}
.

5. Sample [σ2|f, γ] ∼ IG
(

s0+T
2 , δ0+(f∗−f̂)′(f∗−f̂)

2

)
, where f∗ = (f1

√
1− γ2, f2, . . . , fT )′ and f̂ =

(0, γf1, . . . , γfT−1)′.

Several clarifications about Algorithm 3 are in order. First, the tailored proposal density for

sampling a is typically taken to be a multivariate Student’s t density with low degrees of freedom

to ensure heavy tails, and â and V are the mode and inverse of the negative Hessian at the mode

of π(a|y, β,Ω, γ, σ2) as in Chib et al. (2006). The ordinate π(a|y, β, Ω, γ, σ2), when required, is

efficiently determined by (23) as discussed earlier. Second, the MH algorithm for sampling γ is

adapted from Chib and Greenberg (1994), and as a result the generalization studied in that paper
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(e.g. longer lags or ARMA dynamics) can also be applied in our context. Third, applications of

Algorithm 3 can also be extended to similar models estimated by Bayesian MCMC methods such

as those presented in Belviso and Milani (2006).

We applied Algorithm 3 to study the post-war macroeconomic data for the United States.

The estimated dynamic macroeconomic factor is shown in Figure 3, together with the timing

of officially announced U.S. recessions. Figure 3 reveals that the factor captures the timing of

these recessions quite well, but also gives an idea of the relative severity and dynamic evolution

of each recession. Moreover, while the last two officially announced recessions (during the “Great

Moderation” following the mid-1980s) were shorter, shallower, and further apart than recessions in

earlier parts of the sample, the estimated dynamic factor does suggest that their end might have

been announced a bit prematurely. The ability of the model to capture these features is notable

because what followed the officially announced end of the 1990-1991 recession was a period of jobless

growth when unemployment actually increased and remained elevated for several years. Recovery

from the 2001 recession was stymied by the immediate aftermath of the 9/11 attacks, which affected

consumer behavior, investor sentiment, and demand in key industries. Data limitations, however,

make it difficult to draw definitive conclusions about recent macroeconomic trends. For instance,

because macroeconomic data are revised for several years after their initial release, our sample does

not include the latest U.S. recession which started in December 2007.

To demonstrate the efficiency gains of MCMC sampling by Scheme 3, in Figure 4 we present

boxplots of the inefficiency factors of algorithms constructed under the three sampling schemes

discussed earlier. The inefficiency factors were obtained from samples of length 100000 MCMC

draws for each scheme, following a burn-in of 10000 draws. The figure reveals that the proposed

collapsed MCMC sampler (S3) implemented by Algorithm 3 significantly improves MCMC mixing

for several key parameters, most notably for β. Improvement is also visible in the draws for σ2 and

γ, while the savings are less pronounced in the case of Ω and A.
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Figure 3: Estimated factor in the dynamic factor VAR model of the U.S. economy together with
the timing of officially announced U.S. recessions (shaded regions).
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Figure 4: Inefficiency factors for the three sampling schemes (S1, S2, S3) in the DF-VAR model.

4 Concluding Remarks

The paper has examined the problem of estimating state space models by MCMC techniques. We

have presented a straightforward derivation of the posterior distribution of the states, which is

appealing not only for its conceptual simplicity, but also because it allows for efficient simulation

of the states and efficient blocking in this class of models. We have also discussed a simple ap-

proach for evaluating the integrated likelihood which can be obtained easily and does not rely

on approximations. The applicability of the proposed techniques is examined in two applications

in economics, where a time-varying parameter and a dynamic factor model are used to analyze

macroeconomic data for the post-war United States. The first of these applications shows that the
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methods are viable in high-dimensional problems. In the second application, these methods allow

us to provide a new MCMC blocking scheme that can significantly improve MCMC performance.

While our discussion in this paper has focused on time-series analysis, the techniques in this paper

are modular and can easily be applied in cross-sectional and spatial analysis. We intend to study

their usefulness in those settings in future work.

Appendix: The Basic Kalman Filter and State Smoother

The forward filtering pass, conducted for t = 1, . . . , T , involves a prediction and an updating step

for each period. The prediction step computes conditional forecasts using the predictive distribution

for ηt given information up to time t− 1:

ηt|t−1 = Ztγ + Ftηt−1|t−1, Pt|t−1 = FtPt−1|t−1F
′
t + Ω22,

εt|t−1 = yt −Xtβ −Gtηt|t−1, ft|t−1 = GtPt|t−1G
′
t + Ω11.

The recursions are initialized with the moments of the distribution of η1. The quantities computed

in this step are then updated to incorporate information up to time t:

Kt = Pt|t−1G
′
tf
−1
t|t−1, ηt|t = ηt|t−1 + Ktεt|t−1, Pt|t = Pt|t−1 −KtGtPt|t−1.

Upon completion of the forward filtering pass, a smoothing recursion is initiated in reverse time

order to produce moments based on information from the entire sample. Starting with ηT |T and

PT |T from the last updating step, for t = T − 1, . . . , 1 one computes

ηt|T = ηt|t + St

(
ηt+1|T − Ft+1ηt|t − Ztγ

)
, Pt|T = Pt|t − St

(
Pt+1|T − Pt+1|t

)
S′t,

where St = Pt|tF ′
t+1P

−1
t+1|t. The two pass procedure underlies many of the forward-filtering backward-

sampling methods referenced in the paper. In those approaches, ηT is sampled given ηT |T and PT |T

computed at the conclusion of the forward filtering pass, while the remaining states are simulated

in reverse time order by replacing the conditional mean ηt+1|T in each smoothing recursion with

the value ηt+1 that has already been simulated.
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