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ABSTRACT
This work introduces a modified version of the Spectral Projected Gradient method that can be used for simulating
dynamical systems with complex joints and frictional contacts. The proposed method is able to solve for unknown
reactions in systems with large number of colliding shapes and articulated mechanisms. This method couples the
ability of solving complementatity constraints, typical of fixed point iterations used in real-time applications, with
the superior convergence of Krylov iterations for linear problems, hence making it attractive as a general purpose
solver for both linear and non linear problems.
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1 INTRODUCTION

Motion of rigid parts with frictional contacts and
impacts can be described by Measure Differential
Inclusions (MDI), where the non-smooth equations
of motion include set-valued forces [Mor99]. The
non-smooth approach is expecially appreciated in
applications that call for efficient and real-time per-
formances, such as in video games, virtual reality,
etc.

Among the methods to perform the time integration of
MDI problems, we refer to the approach of [AT10], that
expresses the problem as a sequence of Variational In-
equalities (VI) to be solved at each time step.

The problem of Variational Inequalities (VI) is stated as
the problem of findingx subject to:

x ∈ K : 〈g(x),y−x〉 ≥ 0 ∀y ∈ K (1)

whereK ⊂ R
n is a closed and convex set, andg(x) :

K → R
n is a continuous function.
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publish, to post on servers or to redistribute to lists, requires
prior specific permission and/or a fee.

Alternatively, Eq.(1) can be formulated using normal
cones:

x ∈ K , g(x) ∈ −NK (x) (2)

We recall the definition of a normal conesNK (x) to the
setK at the pointx as:

NK (x) = {y ∈ R
n : 〈y,x− z〉 ≥ 0,∀z ∈ K } (3)

A special VI of particular interest in mechanics happens
when g(x) is an affine linear mappingg(x) = Ax+ b
and when, introducing primal variablesy∈R

m and dual
variablesx, we can write:

{

0
g(x)

}

=

[

W J
JT E

]

·

{

y
−x

}

−

{

k
c

}

(4)

Furthermore we introduce the Schur complement

A =
[

JTW−1J−E
]

(5)

b =−c+ JTW−1k (6)

for the termg(x) = Ax+b in the VI of Eq.(1).

Following the approach of [AT10], in Eq.(4) theW ma-
trix is the mass matrix,y represents changes in general-
ized velocities during∆t, x are impulses in contacts,k
contains applied impulses,c is a stabilization term, and
E represents compliance, if any. In this class of prob-
lems, one solves a VI at each step, whereK in Eq.(4) is
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the Cartesian product ofn f second-order Lorentz cones
K = (×n f

k=1Fk); each being a Coulomb-Amontons
friction coneFk ⊂ R

3. If n j bilateral constraints are
added too (as in mechanical joints), one still has a VI,
and the cones associated to the single scalar constraints
are justR, thusK = (×n f

k=1Fk)×R
n j . Details can be

found in [TA11].

We remark that, as special case, one might haven j bi-
lateral joints only: this would lead to a simple linear
problem becauseK = (×n j

k=1R) =R
n j , andNK (x) =

{ /0}. For this type of problems, one could use iterative
solvers of Krylov type, such as CG or MINRES, that
have very fast convergence; however these solvers do
not work in case of unilateral and frictional constraints.

On the other side, there are not so many options for the
full VI problem. In most cases, projected-Jacobi fixed
point iterations are used, as in [TA11, NTM12]. These
solvers are very robust, easy to implement, and fit well
in real-time scenarios and GPU parallel versions, but
their convergence is very poor, especially when one has
to simulate articulated shapes and odd mass ratios.

We found that a type of Spectral Projected Gradient
(SPG) method can offer the benefits of Krylov iterations
and yet retain the broad applicability of the projected-
Jacobi fixed point iterations. We will discuss this in the
paper.

First, note that the convex setK is a Cartesian product
of low-dimensional convex sets. This means that the
projection of a valuex onto theK set is relatively easy
to implement as a sequence of simple projections onto
its subsets.

Moreover, with affineg(x), one can see that Eq.(2)
is the first order optimality condition of a Quadratic
Program (QP) with convex constraints, whereg(x) =
∇x f (x):

min f (x) =
1
2

xT Ax+xT b (7)

s.t. x ∈ K (8)

This means that, in order to solve VIs with affineg(x)
and convexK , one can leverage on SPG methods; the
attractive feature of the recent SPG methods is that they
provide fast enough convergence yet relying only on
three computational primitives: product of matrix by
a vector, inner products, and projection on convex sets.

Spectral-gradient (SG) methods originated from
[BB88] as iterative solvers for unconstrained QPs. A
globalization strategy was added in [Ray97] for solving
generic non-linear optimization problems. A further
advancement was the projected version of solver, that
is the SPG presented in [BMR99]. The SPG method
solves convex-constrained optimization problems
by performing a gradient projection at each step of

Barzilai-Borwein iterations. A line search with the
Grippo-Lampariello-Lucidi (GLL) strategy can handle
the non-monotone nature of the method [GLL86].

We report here our implementation of a preconditioned
P-SPG method, similar to the scheme introduced in
[BR05], with few modifications. The method requires
the following parameters: two safeguardsαmin and
αmax for the spectral step length (respectively 10−9 and
109 in our tests), two safeguards for the line search
0 < σmin < σmax < 1, an integerNGLL (a value about
10 works well in most cases), the Armijo decrease pa-
rameterγ ∈ (0,1), and a small valueτg.

ALGORITHM P-SPG-FB(A, b, x0,
K , P 7→ x)

x0 := ΠK (x0), xFB = x0,
α̂0 ∈ [αmin,αmax]
g0 := Ax0 + b, f (x0) =

1
2xT

0 Ax0 +

xT
0 b, w0 = 1029

for j := 0 to Nmax

p j = P−1g j

d j = ΠK (x j − α̂ jp j)−x j

if
〈

d j,g j
〉

≥ 0
d j = ΠK (x j − α̂ jg j)−x j

λ := 1
while line search

x j+1 := x j +λd j

g j+1 := Ax j+1+b
f (x j+1) = 1

2xT
j+1Ax j+1 +

xT
j+1b

if f (x j+1)> max
i=0,..,min( j,NGLL)

f (x j−i)+

γλ
〈

d j,g j
〉

define λnew ∈
[σminλ ,σmaxλ ] and
repeat line search

else
terminate line search

s j = x j+1−x j

y j = g j+1−g j

if j is odd

α̂ j+1 =
〈s j ,Ps j〉
〈s j ,y j〉

else
α̂ j+1 =

〈s j ,y j〉
〈y j ,P−1y j〉

α̂ j+1=min(αmax,max(αmin, α̂ j+1))
w j+1=

∣

∣

∣

∣

[

x j+1−ΠK (x j+1− τgg j+1)
]

/τg
∣

∣

∣

∣

2
= ||ε ||2
if w j+1 ≤ min

k=0,.., j
wk

xFB = x j+1

return xFB

This algorithm adds preconditioning, alternate spectral
step sizes and a safe fallback strategy to the original
SPG method presented in [BMR99].
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A preconditioned SG is discussed in [LRGH02], and
a preconditioned SPG method is presented in [BR05].
By adopting a left-right symmetry-preserving precondi-
tioning with HermitianP = LLT , exploitingL−T LT = I
and recallingg = Ax+b, we havêg = Âx̂+ b̂ with

Â = L−1AL−T , b̂ = L−1b, x̂ = LT x, ĝ = L−1g
(9)

One can rewrite the original SG method usingÂ, b̂ and
x̂, substituting terms in (9) and alternating two differ-
ent formulas for the computation of the spectral step
size, as suggested in [Fle05]:αBB1 = 〈s,s〉/〈s,y〉 and
αBB2 = 〈s,y〉/〈y,y〉. In the preconditioned case:

α̂BB1 =
〈ŝ, ŝ〉
〈ŝ, ŷ〉

=
sT LLT s

sT LL−1y
=

sT Ps
sT y

(10)

α̂BB2 =
〈ŝ, ŷ〉
〈ŷ, ŷ〉

=
(LT s)T (L−1y)
(L−1y)T (L−1y)

=
sT y

yT P−1y
(11)

This has the beneficial effect of partially smoothing the
non-monotone descent as shown in Fig.1.

The continuous nonexpansive projection operatorΠ(·)
is a mapping that satisfiesΠ(x)K = argmin

z∈K

||z − x||.

For the preconditioned iteration we use a custom di-
agonal preconditionerP = diag(A), where the diagonal
elements relative to the same sub-set are averaged.

Finally, a fallback strategy is needed because the
method, being non monotone, might experience wild
oscillations before settling to a stationary point; if one
wishes to truncate prematurely the iteration because of
real time requirements, as in Fig.2 or in video games,
the last computed valuex j might be really bad. It
is wiser to resort to the vector that performed better
among those computed; a metric of good performance
is
∣

∣

∣

∣x j+1−Π(x j+1−g j+1)
∣

∣

∣

∣

2.

2 RESULTS
We implemented the preconditioned P-SPG-FB method
in our C++ library for multibody simulation, in order to
solve the dynamic problems with bilateral constraints
and frictional contacts. We tested it in various bench-
marks and we obtained remarkable convergence prop-
erties, as shown in Figs.3,4,5,6.

3 CONCLUSION
In this work we presented the P-SPG-FB method and
we discussed its performance in relation to typical scn-
earios that are found in complex real-time simulations.
The fallback strategy cured the problem of the non-
monotone nature of the classical SPG method, and pre-
conditioning made it more robust in case of bad condi-
tioning. A remarkable feature is that in case of simple
linear problems SPG converges as fast as state-of-the-
art CG or MINRES methods. Also, it fits on GPU pro-
cessor architectures.
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Figure 1: Non-monotone behavior of the SPG method
(in benchmark B4).

     

Figure 2: Real-time simulation of a tracked vehicle
moving on slabs with rigid frictional contacts.
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Figure 3: Convergence of benchmark B1: network of
3500 bilateral constraints between 1000 parts.
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Figure 4: Convergence of benchmark B2: network
of 3525 unilateral constraints between 1000 smooth
spheres of equal mass.

0 10 20 30 40 50 60
0

0.05

0.1

0.15

0.2

iteration n.

||ε
|| 2

 

 

Proj.Jacobi
Active sets
PCG
SPG-FB
P-SPG-FB

Figure 5: Convergence of benchmark B3: Vertical
stack of 20 steel plates, with odd mass ratio.
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Figure 6: Convergence of benchmark B4: Wrecking
ball impacting masonry.

     

Figure 7: Snapshots from benchmark B4. Simulation of 750 bricks being impacted by a wrecking ball.
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