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Abstract. Let K(m) denote the smallest number with the property that every m-state finite automaton

can be built as a neural net using K(m) or fewer neurons. A counting argument shows that K(m) is at

least ~((m log m)’ 13), and a construction shows that K(m) is at most 0(m3/4). The counting

argument and the construction allow neural nets with arbitrarily complex local structure and thus may

require neurons that themselves amount to complicated networks. Mild, and in practical situations

almost necessary, constraints on the local structure of the network give, again by a counting argument

and a construction, lower and upper bounds for K(m) that are both linear in m.
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1. Introduction

It has been known since 1954 (see Minsky [9, 10]) that any (deterministic) finite

automaton can be realized or simulated by a neural net of the original type

specified by McCullough and Pitts [7]. The simulation is quite simple: A finite

automaton with m states is replaced by a network containing 2 m + 1 neurons.
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However, if one considers that a network containing n neurons is capable of

2 n states, one might wonder whether a more efficient simulation is possible. In

particular, it might be expected that an arbitrary n-z-state automaton could be

simulated by a neural net having O(log m) neurons. This turns out to be very

far from the truth. Counting arguments developed here show that in general one

cannot expect to use fewer neurons than some low-order fractional power of m,

along with a logarithmic factor. Depending on what restrictions are placed on

the network, one might do no better than 0(( m log m) 1/3). With mild restric-

tions the exponent changes to 4. Finally, applying the kind of restrictions that

would typify a realistic hard-ware implementation of a network, we find

ourselves back in linear territory.

The final result is somewhat disappointing since it means that parallel

hardware inspired by this somewhat primitive neural model is unlikely to host

arbitrary finite automata with uniform high efficiency: Some automata will

require networks that require about as many neurons as the automata have

states ! On the other hand, certain automata may be simulable by networks

having a logarithmic number of neurons. A careful reading of this paper may

produce the impression that more complicated neural network models will

suffer from the same inherent inefficiency. We see nothing to contradict this

impression at the present time, see also the conclusions section in this paper. As

one of the referees put it: “The paper gives the impression of establishing the

disturbing result that there may have to be as many neurons in our head as there

are possible states to our mind”. Although it is totally unclear how to define the

“state” of our mind, and also while the neurons in our brains may very well be

more complicated than the “neurons” in this paper, we can not help but agree

that this is the kind of conclusion our findings lead up to.

The finite state machines studied in this paper are of the type called “Mealy

Machines, ” see Mealy [8] or Hopcroft and Unman [4]. Section 3 contains a

self-contained brief discussion of Mealy machines. In order to prevent confu-

sion with the closely related “Neural Nets, ” as currently defined in Cognitive

Psychology and Artificial Intelligence (see Rumelhart and McClelland [1 1]), we

have renamed Neural Nets and Neurons (as used in this paper) “Threshold

Machines” and “Threshold Cells, ” respectively. Definitions will be given in

Section 4. It will be seen that classical AND, OR, and NOT gates are special

cases of the threshold cells used in this paper, so that the negative results in this

paper carry over to machines based on such classical gates. It is not clear

whether this is also true for the positive (constructive) results.

The problem addressed thus becomes: How many threshold cells may be

needed to build a threshold machine which acts “exactly like” a prespecified

m-state machine,

The exact formulation of this question of course depends on the definitions as

given in the Sections 3 and 4 and on a convention, to be given in Section 3, for

when two machines are said to be acting the same. A more intuitive description

might be as follows:

At each point in time t (t = O, 1, . . . . time is discrete) each of the threshold

cells or neurons of the threshold machine is in one of two states: either it does,

or it does not, fire. If the machine has K cells then, since each of the cells is in

one of two states, the whole machine has 2 K possible states. Hence, every

K-cell threshold machine is a finite state machine with 2 k states.
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On the other hand, every m-state Mealy machine can be built as a threshold

machine (see Minsky [9, 10] or Section 5 in this paper). Clearly, there exist

m-state machines which can be built using only log m (take m = 2 ~ ) threshold

cells. Would this be almost true for every m-state machine? Unfortunately, the

answer is negative. The actual number of threshold cells needed to build a

specific machine depends on how complicated individual cells are allowed to be

(this is expressed in the size of their weight alphabet, their threshold alphabet,

and their Fan-in and Fan-out, see Section 4). With more complicated cells, the

same machine can be built with fewer cells. Typical results are:

THEOREM 1.1. (see Dewdney [1]). There exists a Cl >0 such that as long

as there are no restrictions on how complicated individual cells can be,

every m-state Mealy Machine can be built with

at most C, “ mBlb threshold cells. (1.1)

THEOREM 1.2. There exists a Cz >0 such that even if there are no

restrictions on how complicated individual cells can be, for every suffi-

ciently large m there exists an m-state Mealy Machine which in order to be

built needs

at least Cl “ (mlog m)’/’ threshold cells. (1.2]

The lower bound in (1.2) becomes higher when restrictions are placed on

how complicated the individual cells can be.

Even with only mild restrictions on those cells, the number of cells needed to

build a m-state machine can become linear in m.

For example:

THEOREM 1.3. If either there is a limit on the Fan-in of individual cells,

or there are simultaneous limits on the Fan-out of cells, the weight

alphabet, and the threshold alphabet, then there exists a Cy >0 such that

for every sufficiently large m there exists an m-state Mealy Machine which

in order to be built as a threshold machine satisfying those restrictions

needs

at least C3 “ m threshold cells. (1.3]

The following result shows that at least for the second set of conditions

Theorem 1.3 is about as sharp as possible.

THEOREM 1.4. Every m-state Mealy machine can be built as a threshold

machine that contains only 2 m -t 1 threshold cells. This threshold machine

has a fixed weight alphabet { – 1, 0, 1J and a fixed threshold alphabet

{1, 2} (both independent of m). This threshold machine also has the

property that all cells have a Fan-out of either 2 or 3.

The proof of Theorem 1.4 is by construction. The construction in Section 5 is

essentially the construction in Minsky [9], modified because we have binary

input. The threshold machine constructed in the proof need not have bounded

fan-in for its cells. This means that we can not exclude the possibility that a
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restriction on the fan-in of cells leads to m-state machines which in order to be

built need a superlinear (in m) number of cells.

Section 2 describes the idea of the proof of Theorems 1.2 and 1.3. Section 3

discusses Mealy Machines and Section 4 discusses threshold machines and

proves Theorems 1.2 and 1.3. Theorems 1.1 and 1.4 are known results (see

Dewdney [1]). Section 5 gives an outline of the proofs of these theorems. The

proofs are based on constructions. Not surprisingly, the construction in the

proof of Theorem 1.1 uses weight alphabets and threshold alphabets that depend

on tn.

2. The Lower Bound

Definition 2.1. For each natural number m. K(m) is the smallest number

such that every Mealy Machine with m or fewer states can be built as a

threshold machine using K(m) or fewer threshold cells. Theorems 1.1 and 1.2

say that

The proof of the lower bounds in (2.1) works by counting the number of

“really different” m-state Mealy Machines and the number of “really differ-

ent” Mealy Machines that can be built as a threshold machine using K or

fewer cells. We still need to define when two Mealy Machines are “really

different” (the definition actually used will be given in Section 3), but for any

reasonable definition we trivially have:

Let L(m) be the number of “really different” Mealy Machines with m or

fewer states. Let U(K) be the number of different Mealy Machines that can be

built as a threshold machine using K or fewer cells. Then:

U(K(rn)) a L(m). (2.2)

In Section 3, we define when machines are “really different” and we derive a

lower bound for L(m). In Section 4, we derive an upper bound for U(K), and

we combine the lower and upper bounds to obtain bounds for K(m). In Section

4, we also obtain alternative bounds for U(K), with additional restrictions on

what kind of threshold machines are allowed, and use these to obtain stronger

lower bounds for K(m), based of course on stronger requirements.

3. Mealy Machines

An m-state, binary Mealy Machine is a deterministic finite automaton which at

each point in time t (t = O, 1, ...: time is discrete) is in a state S(t) c

{1,2,..., nz} ({1,2,..., m} is the state-space) and which at each point in

time t receives an input 1(t) G {O, 1} ({O, 1} is the input alphabet) and

generates an output 0(t) ~ {O, 1} ({O, 1} is the output alphabet).

The output 0(t) depends on the state S(t) and the input 1(t) through maps

g,: {1,2 7 ..., m}+ {0,1} (Oe{o,l}), (3.1)

where

o(f) = ‘%(,)(w)). (3 .2)
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FIGURE 1

The new state S( t + 1) depends on the old state S(t) and the input 1(t) through

the maps

f,: {1,2,..., m}~{l,2, m}., m} (i={ Ojl})j (3.3)

where

S(t + 1) =f,(,)(s(t)). (3 .4)

A Mealy Machine is entirely determined by its state space {1,2, . . . . m}, the

input alphabet, the output alphabet, and the maps f,, g,. Throughout this paper,

both input alphabet and output alphabet always are {O, 1} (’‘one bit input, one

bit output”).

The input alphabet can of course be replaced by any other two symbols, for

example {solid, dotted}, and in the same way the output alphabet can be

replaced by {bell, whistle}. Thus, the m-state Mealy machine can be thought of

as a directed graph with m nodes, where every node has two outgoing arcs: one

“solid” and one “dotted,” and where each of the 2 m arcs is labeled

with either a “bell” or a “whistle.” An example, with m = 3, is shown in

Figure 1.

If, at time t, the machine is in state s and the input is “solid,” then the

machine moves along the solid outgoing arc from state s to the new state, and

the output is either a bell or a whistle, depending on the label of that arc.

A very interesting problem is how to decide whether two Mealy Machines are

the same or not. For example, we could say that two Mealy machines, say

machine 1 with m(l), f)k), gjl) and machine 2 with m(2), f:), g~3) are “the

same” only if

m(l) = m(2) (3.5)

and

f:l)(s) = fy)(s) , g:l)(s) = g;z)(s) , (3.6)

both for all s and all i.

This very simple definition leads to the obvious conclusion that there are

exactly (2 m)2 ~ different m-state machines. (3.7)

This definition clearly is not acceptable. For example, a relabeling of the m

states certainly does not produce a different machine, while with high probabil-

ity it changes some f,(s) or g,(s). According to this train of thought,
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(2m)”n “ (m!)-l is an appealing approximation for the number of different

m-state machines. For a more rigorous treatment, we ask ourselves the

question: When is machine 2 an implementation of machine 1? In other words,

when is it true that any copy of machine 1 can be replaced by a copy of machine

2?

Definition 3.1. Machine 2, with m(z), f}2), g}2), is an implementation of

machine 1 with m(l), f; 1), g~l) whenever there exists a map (called the

canonical map) Can: { 1, 2, . . . . m(l)} s { 1, 2, . . . . mL2)} with the property

that whenever machine 1 starts in any state ,s(l) e { 1, 2, . . . . m(l)} (S(l)(0) =

s(l)) and machine 2 starts in state s(z) = Can (,s(l)) (S(2)(0) = ,s(z) = Can(s(l)))

then for every common input sequence (1( t))~= ~, as long as both machines

receive that input sequence (1(1)( t) = 1(2)(t) = 1(t) for all t) both machines

generate the same output sequence ( 0(1~( t) = 0(2)(f) for all t). (It is some-

times preferable to define Can as a point-to-set map that assigns to each

S(1) 6 {1,2,..., W$l)} a nonempty subset Can(S(l)) of {1, 2, . . . . m(z)}. This

does not change anything in any essential way.)

This paper does not need a solution to the problem of how to determine, for a

given pair of machines, whether one is an implementation of the other, and of

how to find the canonical map. However, it is easy to find the following

characterization:

Machine 2 is an implementation of machine 1 if and only if there exists a

‘1) e {1,2, . . . . m(l)} a nonemptypoint-to-set map Can that assigns to each ,s

subset Can(s(l)) of {1, 2, . . . . m(2)} and that satisfies

g:’)(s(’~) = g:2)(@) for all S(2) E Can(s(l)),

and

“ {fy)(@ )} C Can(f/l)(s(l))).

S%can(s(’))

The requirement in the following definition is probably slightly stronger than

necessary. It is chosen to facilitate the argument in Section 4. It formalizes the

notion of “really different” used in Section 2:

Definition 3.2. Two machines, say with m(~), f~~), g~~) (j = 1, 2) are

“divergent” if for every pair (S(l), S(2)), s(]) c { 1, 2, . . . , n7(J)}, there exists a

common input sequence 1(t) such that if machine j starts in state S(J)

(S(J)(0) = S(J)) and both machines get input sequence (1(t));= ~, then for some

f>()

@(~) # @2)(f) (3.8)

Suppose we have three machines, with rn(~), f} J), g~~). Suppose that the

machines 1 and 2 are “divergent” (in the sense of Definition 3.2) and that

machine 3 is an implementation of both machines 1 and 2. We thus have two

canonical maps Can~: {1,2, . . . , m(~)} ~ {1,2, . . . , m(3)} (j = 1, 2).

Clearly, CanJ({ 1,2, . . . . m(~)}) is a subset of { 1, 2, . . . . m(3)}. Equally

clearly, the fact that the machines 1 and 2 are divergent means that these two

subsets of { 1, 2, . . . , m(3)} are disjoint.
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By repeating this argument we prove:

LEMMA 3.1. Suppose there exists a set of U Mealy Machines that are

pairwise divergent, and suppose there exists an m-state machine which is

an implementation of all those U machines. Then

U5m. (3.9)

We are now ready to proceed to the main topic of this section and obtain two

lower bounds for the number of (pairwise) divergent m-state Mealy Machines

that can be found.

The first lower bound is weaker than the second. We present it because its

proof nicely illustrates the concepts involved.

THEOREM 3.1. For every m >1, there exists a system of 2 m ( pairwise)

divergent m-state Mealy Machines.

PROOF. The proof consists of establishing a system of 2 n (pairwise) diver-

gent m-state Mealy Machines. This is done by describing the maps f,, g, that

are allowed. We only allow maps f, for which

f,(s) = s + lmod m forall 1 SsSm, alli. (3.10)

Pictorially (see Figure 2) this means that the m states are arranged in a circle

and, independent of the inputs, the state of the system moves around the circle.

Further, we only allow maps go for which

go(S) = ~,.. (JQonecker delta), (3.11)

and finally, we do not put any restrictions on the map g 1( o). Since, for each S,

there are two possible values of gl(s), this gives us exactly 2 ‘n machines. All

we need to do is prove that these 2 ~ machines are pairwise divergent. This will

be done by contradiction.

Suppose that two of these machines, say machine 1 and machine 2, are not

“divergent.” Then there exist states S(J), j = 1, 2, such that if machine j starts

in state S(J) and both machines get the same (arbitrary) input sequence, then

both get the same output sequence.

First, give both machines input sequence (O, O, . ..) (zeros only). At time t,
. . .

machme J 1s m state S(J) + t mod m and, by (3.11), has output 61,~~Jj+t~Od~.

Hence, S(l) = S(2) = so. Next, choose any T={ 1,2, . . . . m} and let d = T – so

mod m (O s d < m – 1). Give both machines as input d zeros followed by a
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one. At time t = d, both machines arein state ~ and since their outputs are the

same we have g 11)(T) = g~)( ~). Since ~ was arbitrary, the two machines

therefore have identical maps gl(. ). This completes the proof. ❑

THEOREM 3.2. If m is prime, then there exists a system of (2 m) m

(2 m – 2)/m ( pairwise) divergent m-state Mealy Machines.

PROOF. Our constraints on the maps f,, g, now are as follows:

f,(s) =s+ lmodm, (3.12)

go(s), fors= 1,2, . . . , m, are not all the same, (3.13)

f,(”): arbitrary, (3.14)

g,(”): arbitrary. (3.15)

The constraints (3. 12) - (3. 15) define a class of Mealy machines. Clearly, there

are (2 m)m(2 m – 2) machines in this class. The factor m-1 will be introduced,

and the theorem will be proven, by showing that if any two machines in this

class are not divergent then one is a rotation of the other, in the sense that there

exists a d, O < d < m – 1, such that if the states of machine 2 are relabeled:

state s is relabeled as state s + d mod m, then after the relabeling the

machines 1 and 2 have identical f,(”) and gl(. ), see also Figure 3.

Suppose two machines, say machines 1 and 2, from the class are not

(1) s(z) such, that if machine j starts indivergent. That means there are states s ,

state s(~) and both machines receive the same, but arbitrary, input stream then

their output streams are identical. By doing a rotation or relabeling of the

nodes, this time for both machines, we can ensure that s(l) = s(c) = 1.

First, give both machines input stream (O, O, . ..) (zeros only). Both

machines, at time t, are in state 1 + t mod m and the outputs at time t are

g~)(l + t mod m) and g$)(l + t mod m), which must be equal. Hence:

A&(s) = d?(s) = go(s) for all s. (3.16)

Next, give as input s – 1 zeros followed by a one. At time s – 1, both

machines are in state s and the outputs are g \J)(s), which must be equal, so that

gp(s) = ‘!+)(s) = g,(s) for all s. (3.17)

Finally, choose any so, 1 5 so s m and give as common input so – 1 zeros,

then a one, and then further only zeros. At time so – 1, both machines are in

state so. At time so, machine j is in state f fJ)( so), and at time so + t (t > O)
machine ~ IS in state ( fjJ)(so) + t) mod m. We need to prove that f ~’ ‘(so) =

f ?)(SO). Let

s] = ffJJ(,so) (3.18)

and let

d=sz–slmodm, ()~d~m-1 (3.19)

It will turn out that d = O.

Because of the way f. is defined,

go(sl + t mod m) = go(sl + d + tmod m) for all taO, (3.20)
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In particular:

gO(Sl)= gO(sl+cfmod m)=gO(sl+2clmod m)= “.” (3.21)

and in fact

go(sl) ‘gO(sl+kdmodm) for allintegerk. (3.22)

Since mis prime, d#Oin(3.22) implies that go(s) =go(s,) for all s, which

contradicts (3.13). Hence, d = O, that is, f{l)(sO) = f~)(sO), which completes

the proof. ❑

4. Threshold Machines

A K-cell Threshold machine has K+ lthreshold cells, numbered O, 1>. ..> K,

interconnected by lines of various weights as explained below. At each point in

time t = O, 1,. ... each cell either does or does not fire. We use variables

Xi(t) to describe this:

1 cell i fires at time t,
(4.1)‘i(t) = { 0 cell i does not fire at time t,

XO(t) = 1(t),the input at time t,and this variable is externally given: Cell zero

is the input cell. For j > 1, the value of Xj( t) depends on (x,( t – l))~o

through weights w, ~, O<i<K, l<j<K, and thresholds 19J, lsj <K.

Many authors require those weights and thresholds to be integer. In this paper

we do not put any restrictions on the weights and thresholds (apart from the fact

that they must be real). The dynamics of the threshold machine is given by

[

xJ(t + 1) = 1 if E :0 xl(t)~l., = ~,
7 (4.2)

o else,

hence, the names threshold machine and threshold logic. Clearly, every AND,

OR, or NOT gate can be implemented by a single threshold cell (or threshold

gate), while every threshold cell can be implemented using a (possibly large)

number of AND, OR, and NOT gates. Hence, all the negative results in this

paper translate into negative results about the power of machines based on

AND, OR, and NOT gates. The positive (constructive) results do not necessar-

ily carry over in the same way. Outputs are given by

o(t) = xK(t), (4.3)
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i.e., cell K is chosen to be the output neuron or output cell. This definition

shows that the input cell is not really a threshold cell: There are no inputs into

this cell and no threshold associated with this cell.

With this description, it is clear that every threshold K-machine indeed is a

2 ~-state Mealy Machine. It is easily seen (see Section 5) that on the other hand

every m-state Mealy Machine can be built as a threshold machine with 2 m + 1

cells.

A threshold machine is entirely described by K and its weights W,,j and

thresholds 19J. On the other hand, two different sets of weights and thresholds

can easily generate the same machine. Suppose we have the machines 1 and 2

with the same numbers of cells and with weights and thresholds w} ~), (3;’),

v = 1, 2. We define these machines to be the same if for every j e

{1,2,..., K}, for every sequence (8., 61, . . . . 6~)e{0, 1}~+1,

(4.4)

Clearly, two machines are the same under this definition if and only if they

have the property that for every subset So of{ 1,2, . . . . K} and for every input

sequence (1( t));= o, if for both machines at time t = O exactly the neurons in

SO fire, and both machines receive the same input sequence (1( t))~= o, then at

every point in time t > 0 the two machines have exactly the same set S~ of

firing neurons. Also, with this definition, “being the same” defines an equiva-

lence relation on the set of all K-cell threshold machines. Machines not in the

same equivalence class can still be “the same” in some weaker sense than

defined above (see Section 3). However, the total number of equivalence

classes certainly gives an upper bound for the number of in any reasonable

sense different K-cell machines. We have the following result:

LEMMA 4.1. The number of equivalence classes in the relation above is

less than 2(K+ l) ’K+K.

PROOF. We choose a specific j, 1 s j s K, and study the number of ways

we can choose ( W,,J ) ~=~ and 0,. Any hyperplane

(4.5)

generates two such ways: WO, . . , WK; 8 and –wo, . . . , – w~; –8. Two

such hyperplanes are different (in the sense of the definition above) if they split

the 2K+ 1 points in {O, 1} ‘+1 in two different ways into two subsets. A result

by Harding [2] shows that a set of n points in Rd can be divided by a

hyperplane into two subsets in at most

(4.6)

different ways. For N > 1, fixed, we easily prove by induction to L that

~;=o(’”-’) < 2NL. H ence, for j fixed, we can choose ( W,,J, 19j) in at most

2%’(2’+;-11‘2(K+’)2+’ (4.7)
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effectively different ways. Since we can do this for j = 1, 2 ,. ... K, we

immediately have that the total number of effectively different ways to choose

the Wi ~, (3J is at most (2(~+1)’+1)~ = 2(~+’)’~+~.

Each K-cell threshold machine is a 2 K state Mealy machine which by Lemma

3.1 implements at most 2 K (pairwise) divergent machines. With Lemma 4.1,

this leads to:

THEOREM 4.1. The set of all Mealy machines that can be implemented by

a K-cell threshold machine can not contain more than 2(’~ 1)3 pairwise

divergent machines.

Namely, in the language of Section 2, we have

U(K) < 2(K+1)2K . 2~K < Z(K+1)3 (4.8)

Combining, as promised eq. (4.8) with Theorem 3.1, we get

2fK(rn)+l)3 ~ ~(K(m)) > L(m) = 2m, (4.9)

or

K(m) > m113 – 1. (4.10)

This result is not quite as good as promised in Theorem 1.2. To prove Theorem

1.2, we must combine Theorem 4.1 with Theorem 3.2. Let p(m) be the largest

prime < m. Clearly, any Mealy machine with p(m) or fewer states can be

implemented as a threshold machine with K(m) or less cells. Hence

2~K(m)+lJ3 ~ U(K(m)) > L(P(m))

2P(m) _ ‘2

a (2p(m) )p(~)
p(m) ‘

or for m sufficiently large:

(K(m) + l)310g2 > (p(m) - 1)(log4 + log p(m)),

( (
log p(m)

))

1/3

K(m) > (p(m) - 1) “
log 2

+2

Since it is well known (see, e.g., Hardy and Wright [3]) that

(4.11)

1. (4.12)

(4.13)

this proves Theorem 1.2.

Theorem 4.1 puts no restriction on the set of weights that are allowed, the set

of thresholds that are allowed, or the Fan-in or Fan-out of cells. This means

that it is very hard, probably impossible, to “mass produce” one standard

generic threshold cell that then can be used to build all desired threshold

machines.

Next, we investigate the consequences of being restricted to a prespecified set

of weights, independent of the number of cells or the number of states in the

machine.
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THEOREM 4.2. Consider a prespecified set W = { WI, . . . . w~} and con-

sider the family of threshold machines that have weights from W only. We

call W the weight alphabet of this family of machines. On this family, the

function U satisfies:

U(K) SI w/K(K+’) “ (2K+1 + l)K2~. (4.14)

By combining this with Theorem 3.2, we get exactly as in (4. 11)-(4. 13):

K(m) > Cl(mlogm)”z. (4.15)

PROOF. We only need to prove (4. 14). In constructing the threshold ma-

chine, for each of the K( K + 1) weights there are I W I possible choices, this

gives the factor I W I ~(~+l). For each j, El 61WZJ ((8., 8,, . . . . b~) e

{0, 1}‘+ 1) has at most 2(K+’) different values so that there are at most

2‘+ 1 + 1 effectively different values for /31. This gives the factor (2’+ 1 + 1)’.

Finally, the factor 2 K comes from Lemma 3.1.

A further practical restriction on threshold machines is the Fan-in and the

Fan-out of cells (see, e.g., Savage [12]). The Fan-in of cell j is defined as

l{i:w, J#O}l, (4.16)

and the Fan-out of cell i is defined as

l{j:w,,J#o}l. (4.17)

The following two results show that a constraint on the fan-in of cells is much

more restrictive than a constraint on the fan-out of cells:

THEOREM 4.3. Suppose there exists a prespecified number F and cells

i > 1 are only allowed to have Fan-out s F (the input cell is allowed

unlimited fan-out). Then:

()
K

U(K) s : . 2~2(F+l)2 . z2K
(4.18)

and there exists a C~ >0 such that for every sufficiently large m there

exists an m-state machine which ( with the restriction on Fan-out above) in

order to be built as a threshold machine needs

at least C~ [ m log m ] ~12 threshold cells. (4.19)

PROOF. For each cell i > 1, choose ~ cells j for which w, ~ is allowed to

be nonzero. This gives the factor (~)’. Given these choices,’ let Aj be the

maximal possible Fan-in of cell j. Clearly,

A~ >0, ~AJ=KF+K=K(F+ l), (4.20)
J=l

so that

(4.21)
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By the same argument as in the proof of Lemma 4.1, we see that for any j the

weights Wi, j and the threshold t~ can be chosen in less than 2‘~ + 1 different

ways. This, with (4.2 1), gives the factor 2 ‘2(F+ 1)2‘K, and Lemma 3.1 adds

another factor 2‘. This completes the proof of (4. 18). The proof now is

completed by combining (4. 18) with Theorem 3.2, using the fact that (~) K s

(F’!)-K oKFK. ❑

The following two results show that under certain circumstances the number

of cells needed to build an m-state machine may grow linearly in m.

THEOREM 4.4. Suppose there exists a prespecified number F, and only

threshold machines where all the cells have a Fan-in < F are allowed. Then

U(K) s
(( K:1)2F2+’)K”2K

(4.22)

and there exists a Cb >0 such that for every sufficiently large m there

exists an m-state machine that (with the restriction on Fan-in above) in

order to be built as a threshold machine needs

at least C6 - m threshold cells. (4.23)

PROOF. First, we prove (4.22). For any cell j > 1, choose a set of F cells i

for which Wi, j is allowed to be nonzero. This gives the factor (K;’). For that j,

the same argument as used in Lemma 4.1 shows that 19j and the nonzero w, ~

can be chosen in at most 2”+ 1 effectively different ways. We can do this for

every j (this gives the power K). The factor 2 K follows from Lemma 3.1. This

proves (4.22). The bound (4.23) is obtained by combining (4.22) with Theorem

3.2. ❑

THEOREM 4.5. Suppose we only allow threshold machines that satisfy the

following three restrictions:

(i)

(ii)

(iii)

and

Each cell i (1 < i s K) has Fan-out s F (the input cell has unlimited

Fan-out).

There exists a prespecified finite set T, and all thresholds 6j must be

from that set (T is the threshold alphabet that is allowed).

There exists a prespecified set W = {O, WI, Wz, . . . . w~}, and all

weights Wi,j must be from that set. Then:

‘(K)<((:MF)KIWIKTK2K(4.24)

there exists a CT >0 such, that for every sufficiently large m there

exists an m-state machine that ( with the restrictions above) in order to be

built as a threshold machine needs

at least CT “ m threshold cells. (4.25)

PROOF. For each cell i 2 1, choose F cells j for which W,J is allowed to be

zero. This gives the factor ($) ‘. Each of these w,~ can have I W I different
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values, this gives the factor I Wll~. The factor I Wl~ is dueto the freedom

in choosing WO,~ (1 = ~ < k), the factor TK is due to the freedom in choosing

the thresholds Oj, and the factor 2K follows from Lemma 3.1. This proves

(4.24). The bound (4.25) is obtained by combining (4.24) with Theorem 3.2.

It is somewhat surprising that a restriction on the Fan-in of cells leads to a

strong increase in K(m), while a similar restriction on the Fan-out needs

additional conditions before it leads to the same result. In an attempt to explain

this asymmetry, we define the Fan-in and Fan-out of a state in a Mealy

Machine:

The Fan-in of state .s is the number of pairs (i, s’) with ~l(s’) = S.

The Fan-out of state s is the number of states in { ~Z( S): i = O, 1}.

Clearly, each state has Fan-out either 1 or 2, while the Fan-in can be

anywhere between zero and 2 m (both included). This observation may explain

the asymmetry in the powers of restrictions on the Fan-in and Fan-out. An

interesting question therefore is: Given that all states of an m-state Mealy

machine have Fan-in < F, how many cells may be needed to build it as a

threshold machine? An interesting related question is: How many (pairwise)

divergent m-state Mealy machines can be found, if we allow only machines for

which all states have Fan-in < F?

In Theorem 1.4, which will be proved in the next section, we promised a

construction that builds every m-state Mealy machine using exactly 2 m + 1

cells. In light of the question raised above, it is interesting to observe that in

that construction, for every state ,s with Fan-in F., the construction uses two

cells (S, O) and ( .s, 1), which each have Fan-in equal to F. + 1. In addition,

there is an output cell of which the Fan-in may be as high as 2 rn.

5. Constructing Efficient Neural Nets

The fewer neurons that we are allowed in constructing a network that simulates

an m-state Mealy machine, the more difficult the job becomes. For a Mealy

machine on m states, there is no problem constructing a simulating network

that has 2 m + 2 neurons. This includes the input neuron and, in the language

of Section 4, it is therefore a 2 m + 1 cell machine.

In this construction, each state is represented by two neurons. State s

(1 < s s m) is represented by the neurons (s, O) and (s, 1) and we build the

threshold machine in such a way that at time t neuron (s, i) fires if and only if

the original Mealy machine at time t is in state s and receives input i. The

construction is illustrated in Figure 4. In addition to the input neuron and the

2 m neurons obtained as above there is a (2 m + 1)th neuron called the output

neuron. .

First, we describe the weights. For any two states x and S, W( ~ ,, ~~,0) =

W(,,lj,(~,,, e {O, 1}, and this equals 1 if and only if in the original finite state

machine state x with input i leads to the next state s (in the language of Section

3: f,(x) = s). For inputs, wO,(~,O) = – 1 and wO,(~,l) = + 1 for all s. For

outputs , ~(s,,),2m+ 1 = g,(S) (g,(S) as in Section 3). All weights not yet

mentioned are equal to zero. The thresholds are defined by 6(S,~, = 2, O(So, = 1,

and 192~+1 = 1.

It is clear that if at time t = O exactly one of the neurons (s, i), 1 s s < m,

O s i s 1, fires then at any time t 2 1 exactly 1 of those neurons will fire, and

the dynamics is exactly the same as that for the Mealy machine. It is not clear
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Inputs

k
w--l W=l

t=2 a, 1

s, 1

‘A a’0

\
outputs

outputs
(b)

FIG. 4. (a) In-state machine. (b) Neural net

whether, if by accident multiple neurons fire simultaneously, we ever reach the

situation where exactly one neuron fires. The outputs of the threshold machine

just constructed lag one time unit behind the outputs of the Mealy machine.

Of the 22n states defined by the neurons ( .s, i), only 2 m are used to

implement the m-state machine. This enormous redundancy suggests that it

must be possible to implement the machine using much fewer than 2 m neurons.

Indeed, we know that some m state machines can be built using only log m

neurons, and Theorem 1.1 shows that there always is a significant improvement

available over the number 2 m + 1. However, the Theorems 1.2, 1.3, 4.2, 4.3,

4.4, and 4.5 also show that often we can not get at all close to the ideal of log

m, and in particular when there are limits on the nature of the threshold cells

that can be used, the possible improvement over 2 m + 1 may be quite limited.

Even when there is no restriction on the type of threshold cell that can be

used, it requires effort to do better than a linear number of neurons. Take, for

example, the construction about to be given. It represents the best result so far

in this direction: We begin with a Mealy machine &f which has m states.

There are no restrictions on the structure of A4. We show that any such Mealy

machine can be implemented using at most 0( m314) neurons. This construction

uses neurons with two different functionalities: there are state-neurons and

transition neurons. The simulating network will have 2 k state-neurons where

k = Fm1J21 . These state neurons fire in pairs, in accordance with the scheme

laid out in Figure 5.

The state neurons are labeled al, . . . . ak; b,, . . . . b~, the a-set representing

rows of an implicit matrix, the b-set representing columns. A given state q is

simulated when one of the pairs (al, b~) fires. In Figure 5, for example, the

state q corresponds to the simultaneous firing of az and b ~. This is the easy

part of the construction. Now we must make sure that whenever the Mealy

machine is in a particular state the correct two state neurons fire. This we do by

building, for each state neuron, a “black box” of transition neurons that

make sure that the state neuron fires if and only if the Mealy Machine is in one

of the states in the row or column of the state neuron. The threshold machine

thus becomes periodic. By periodic, we mean that the threshold machine

alternates between two phases: a transition phase, during which only transition
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neurons fire, followed by a state phase, during which only state neurons fire.

The state phase is exactly one time unit long, the transition phase will be seen to

be exactly two time units long. To simpli~ comparison between the Mealy

Machine and the Threshold Machine, we allow cells to fire at time t for t

integer (at those times only state neurons can fire) and for t = ~ mod 1 or t =

$ mod 1 (at those times only transition neurons can fire). The transition neurons

will be organized in two layers. We also introduce an output neuron that can

fire at time t integer only, and outputs of the threshold machine lag behind

outputs of the Mealy Machine by one time unit. We now describe the

construction of the black boxes. In fact, there are two black boxes for each state

neuron: One to be used if the previous input was zero, the other if the previous

input was one. To simplify the language, we only describe the black box for a

“row” state neuron (say state neuron aX), to be used when the previous input

was zero. Let S( x, O) be the set of states with the property that if at time t – 1

the Mealy machine is in one of those states and the input is zero, then at time t

the Machine is in one of the states in the row of x. S( x, O) is a set of states and

hence k x k incidence matrix, or a set of pairs (a,, b,). The black box must

have the property that at time t neuron a, fires if and only if at time t – 1 for

some pair (a,, b~) in S( x, O) both a, and bj fired. The black box is a network

that recognizes whether a pair in S( x, O) just fired and is accordingly called the

recognition network for cell aX, for input zero.

We now discuss some easily recognizable special incidence matrices. A set U

of pairs (a,, bj) is called simple if there exist nonnegative vectors

(Al, ..., Ak) and (Bl, ..., B~ ), and a positive threshold T, with the prop-

erty that

(a,, b,) E u if and only if A, + B, > T. (5.1)

As long as exactly one row state neuron a, and exactly one column state

neuron b~ fire, any simple set U can be recognized by a single neuron or cell

Cu, with weights and threshold

w
a[, U

=A,, – B],
‘b,, U – 19U= T. (5.2)

This cell recognizes set U by firing if and only if a state in U just occurred.
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A set U of pairs (a,, bi), i.e., a k x k incidence matrix U, is called a

“Northwest corner” matrix if there exist indices u ~,

k>ul>a,>..->a~~(),

with

qJ=l if and only if j < u,.

Equivalently, we could have required that there exist indices

k>D,>~z>...>(3~>0,

with

q,, = 1 if and only if i < ~,

(5.3)

(5 .4)

b J’

(5.5)

(5.6)

(with CYi = max{ ~: ~,, = 1} and OJ = max{ i: ~,j = l}). Similarly, we could

define “NE”, “SW”, and “SE” corner matrices. Instead, we define a k x k

incidence matrix U to be a ‘‘ proto corner-matrix ‘‘ if there exist permutations a

and ~ of { 1, 2, . . . , k} such that U~(lj,T(~) is a (NW) corner matrix.

It is easily verified that every k x k NW corner matrix is simple, and that

the weights A,, BJ and the threshold T all can be chosen in {O, 1, . . . . k} and

such that

AI>AZ> --- >A~~(), Bl>Bz>.-.>B~zO. (5.7)

Hence, also every proto corner matrix is simple. In fact, it is easily seen that an

incidence matrix is simple if and only if it is a proto corner matrix. (Once

Al, ..., A~and Bl, ..., B~ are known, use permutations o and ~ such that

(5.7) holds for the reordered matrix.) A set Q of pairs (a,, b,) is called

semi-simple if it is the intersection of two simple sets U and V. Clearly, any

semi-simple set Q can be recognized using three neurons or cells: Cells Cu

and Cv as above, and a cell C~ with weights and threshold

WU, Q = WV,Q = 1, 8Q = 2, (5.8)

so that cell C~” ANDs” the cells Cu and Cv. Cell C~ fires if and only if two

time units ago a pair ( ai, b~) in Q fired simultaneously. Now suppose we can

write

S(x, o) = ~ Sl, (5.9)
[=1

where SI, Sz, . . ., S~ (which need not be disjoint) are semi-simple in the sense

above. In that case, we can recognize S( x, O) using 3 L neurons. Of these, the

2L “V” and “U” neurons can fire at time t = ~ mod 1 only, and the L

neurons for SI, Sz, . . . . S~ can fire at time t = ~ mod 1 only. Between the S1

neurons and neuron aX we have weights and threshold

~s,,ax = 1> O.,=l, (5.10)

so that neuron aX ‘ ‘ORS” the neurons c~,, . . . . c~~. By this construction,

neuron aX fires at time t if and only if at time t – 1 a pair (al, b~) in S( x, O)

both fired. In order to complete the proof of Theorem 1.1, we need an upper

bound for the number of semi-simple sets (or semi-simple incidence matrices)
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needed to cover a set (or incidence matrix) S. As in Dewdney [1], we define a

line matrix to be an incidence matrix that either is a subset of some row (all

ones are in that row), or is a subset of some column (all ones are in that

column) or is a transversal, i.e., no two or more ones in any row or column. It

is easily seen that every line matrix is either simple or semi-simple: Any

incidence matrix that is a subset of some row or column is simple, while every

transversal is the intersection of two proto corner matrices and therefore is

semi-simple. Dewdney [1] proved that any set S of pairs (a,, b~) can be

covered by a set of L line matrices, with

(5.11)

The proof is based on “greedily” covering S by a sequence of line matrices

B,, Bz, . . . and applying Konig’s theorem (Konig [6]) to the matrices B,

individually, see Dewdney [1] for details. Equation (5.11) gives an upper bound

for the number of line matrices that may be needed to cover S, and therefore an

upper bound for the number of semi-simple matrices that may be so needed.

The remainder of the proof shows that any improvement in (5. 11) produces an

improvement in the final result. It seems likely that an improvement is indeed

possible by using more general intersections of pairs of proto corner matrices

than just line matrices.

Let nX = I S( x, O) 1. Since each state q is in the set S( x, 0) for exactly one

a ,, we have

~n., =m, 05nysm for all x. (5.12)

.Y=l

This shows that

The total number of transition neurons in the black boxes for the row state

neurons, for input zero, is at most of the order 3 “ m3iJ. The same argument

holds for transition neurons for column state neurons, and for input 1. We still

must make sure that the ‘‘ V‘’ and “U” neurons in the black box to be used

with input zero do not fire when the input is one (and vice versa). This is done

in the same way as in the construction of the 2 m + 1 cell machine, earlier in

this section. Finally, for the output neuron, we also build two black boxes; one

for input zero, one for input one. Each of these black boxes contains at most 3k

neurons. In the construction above, the a; and bj neurons can have Fan-out at

least as high as 2 k (probably more if the sets U and V for different transversals

are not disjoint ), and that the “U” and ‘‘ V‘’ cells can have Fan-in as high as

2 k. From Dewdney [t] or the argument preceding (5.7) above it is clear that

the weights A,, By take values in {O, 1, . . . . k} and that the thresholds T for

the “U” and ‘‘ V‘’ cells take values in {1,2, . . . . k}. The construction above

clearly, and not surprisingly. violates the conditions of Theorems 1.3, 4.2, 4.3,

4.4, and 4.5.

A final note concerns possible improvements to this construction. It would

seem that one may build recognition networks (to drive each state neuron) that

are far more efficient than the ones described here.
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Can one, for example, “recognize” an arbitrary pattern of n 1’s by using no

more that O(log n) neurons in the recognition network? If so, the overall

complexity for a network simulating an m-state Mealy machine would drop to

0(ml/210g m). Asoften happens intheclosely related field oflogicoptimiza-

tion (see, for example, Savage [1 1]), there may be a trade-off between depth

and overall complexity: In other words, one may have to accept recognition

subnetworks that have a nonconstant depth, which slowly increases as m gets

large.

Another possibility involves a construction that uses a 3-dimensional state

matrix gov&ned by 3 k neurons, where

k=~%~.

But, according to Theorem 1.2, we can hardly

since it implies a construction having

0(m’1310g m)

(5 .14)

expect to do better than this

neurons, quite close to the lower bound of Cz “ ( m log m) 1‘3 neurons.

It is intriguing, nevertheless, that we apparently cannot usefully employ a

construction that implies a dimension higher than three!

6. Conclusion

The results in this paper amount to a limitation on the power of neural nets. In

spite of the current climate of optimism, and in spite of successes in limited

categories of computation, one cannot look to neural networks as the parallel

panacea of the future.

The limitations demonstrated here for the classic McCullough- Pitts networks

apply with some force, obviously, to the case of connectionist mission. For

example, a Hopfield-style network (see Hopfield and Tank, [5]), having as its

goal a solution of the traveling salesman problem amounts to a finite automaton

in which all states (hopefully) lead to one or just a few states.

We saw that while some m-state machines can be built using very few (in the

order of log m) neurons, some need many more (namely, K(m)) neurons to be

built. A naturally arising question is whether there are any interesting classes of

finite automata that can be efficiently built as neural nets; namely, with a

number of neurons that is very small compared with the size of the automata.

Preliminary research by two of the authors of this paper indicates that while

there are classes of finite state machines that can be efficiently simulated in this

sense, all really interesting classes considered so far are too rich in structure

and size. This research is continuing.

In addition, there is a large number of technical questions about the bounds

presented in this paper. For example, we suspect (see Theorem 4.4) that a

limitation on the Fan-in of neurons may lead to m-state machines that can be

simulated only by a superlinear (in m) number of neurons.
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