
Abstract - This paper presents an efficient method, based on the
transfer function simulation method, for the transient analysis of
lossy and dispersive transmission lines terminated by nonlinear
circuits. This method combines the efficiency provided by ratio-
nal function approximation with the accuracy of using modal
decomposition. For the task of computing the convolution inte-
gral, the transfer function simulation method was found to be
more straightforward for implementation and more efficient than
the recursive convolution method, thus providing further
improvement in simulation efficiency. A robust and efficient
method for the analysis of frequency dependent (dispersive)
transmission lines is also reported. This method has been imple-
mented in AS/X, IBM production circuit simulator, and has been
used routinely for the analysis of practical lossy and dispersive
coupled transmission lines.

1. Introduction
Today it is well known that accurate and efficient simulation of lossy
multiconductor transmission lines with general nonlinear termina-
tions is necessary in the design of high speed integrated circuits and
systems. For high speed packaging and interconnect designs, it is also
important to take into account the frequency dependence of the line
parameters due to skin effect and proximity effect [3][4]. The conven-
tional approach is to use Fast Fourier Transform (FFT) [5] or numeri-
cal inversion of Laplace Transform (NILT) [6] to convert the line
description from the frequency domain to the time domain. Then
numerical convolution is employed to compute the responses at the
boundaries of the lines during the transient analysis in the time
domain. These approaches are, therefore, very costly in terms of both
CPU and memory usage. These problems obviate the need for an effi-
cient method that can still ensure the accuracy for the transient simu-
lation of lossy and dispersive transmission lines.

It has been recognized that rational function approximation can pro-
vide the answers to the above problems [1][2]. First, rational function
approximation eliminates the need to use FFT or NILT. Secondly, this
type of approximation allows an efficient evaluation of the convolu-
tion integral in the time domain. In the context of transmission line
analysis, there are two different, but related, approaches to the com-
putation of the convolution integral using rational function approxi-
mation. The first method was called ‘‘recursive convolution’’, and
was first reported in [2]. The other method was called ‘‘transfer func-
tion simulation’’, and was first reported in [1]. Although recursive
convolution significantly reduce the cost of numerical convolution in
the time domain, simulation efficiency can be further improved by
using the transfer function simulation method. Recent works
[7][8][9][10] seem to concentrate on the recursive convolution
method and overlook the transfer function simulation method. It is
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the goal of this paper to compare the two methods and to point out the
advantages of the transfer function simulation method.

The task of computing the rational function approximations for the
line parameters is of paramount importance in ensuring the accuracy
of simulation results. This problem is especially difficult for fre-
quency dependent transmission lines. For lossy lines with constant
parameters, Pade approximation has proven to be an efficient way to
compute the rational function approximations. However, Pade
approximation can not be directly applied to the case of frequency
dependent lines. For these dispersive lines, the rational function
approximations are usually obtained by nonlinear least square fit. The
next section of the paper will briefly review the modal decomposition
model for coupled transmission lines. Modal decomposition is
employed for the extraction of the ideal mode delays to ensure simu-
lation accuracy. Section 3 discusses the computation of rational func-
tion approximations. Section 4 provides a detailed derivation of the
transfer function simulation method in comparison to the recursive
convolution method. The proposed method has been used extensively
in production for the design of packages and interconnects. Practical
examples are presented in Section 5 to substantiate the efficiency and
accuracy of the proposed approach.

2. Modal Decomposition for Coupled
Transmission Lines

The differential equations for a lossy (n+1) conductor transmission
line (n signal lines plus a reference conductor) can be expressed in
matrix form as

(1)

where V is the (nx1) vector of line voltages with respect to the refer-
ence conductor, I is the (nx1) vector of the line currents,

, ;
are nxn real symmetric matrices of per unit length line resistances,
inductances, capacitances, and conductances.  may be
functions of frequency, but independent of x. The solution of the
above differential equations can be written as
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(4)

, , and
.  is a diagonal matrix of the eigenvalues of

Q, and B is the matrix of the left eigenvectors of Q. The port currents
and voltages are given by

(5)

with  being the length of the transmission line.

Note that each product in (2), (3), and (4) corresponds to a convolu-
tion computation in the time domain. At each time point during the
transient simulation, the currents  and  represent past values,
which have been computed at previous time points. The admittance
matrix stamp of the transmission line can be computed from (2). This
matrix stamp is then employed in the formulation of the linearized
equation of the global circuit, that contains the nonlinear terminations
as well as the transmission line, for the Newton iterations. Conse-
quently, for transient simulation, the time domain description of ,

, , and  must be computed. These time domain descrip-
tions can be obtained in a straightforward manner from the rational
function approximations of these matrices in the frequency domain.

3. Computation of Rational Function
Approximations

For lossy lines with constant parameters, Pade approximation has
proven to be an efficient method for obtaining the rational function
approximations [7][8][9][10][11]. Typically, Pade approximation is
used in conjunction with modal decomposition in the frequency
domain. Modal decomposition is employed for the extraction of high
frequency delays in order to ensure simulation accuracy. Moreover,
the extraction of mode delays helps keep low orders of approximation
for the remaining terms. Otherwise, generalized moment matching
method must be used to obtain very high order approximations of the
delay terms [12]. High order rational function approximations will
generally degrade simulation efficiency because the order of the ratio-
nal function approximation directly affects the cost of the convolution
computation, which lies at the very heart of a transient analysis. This
problem becomes more pronounced as the number of coupled lines
increases.

For transmission lines with frequency dependent parameters, the
rational function approximations must be able to approximate the line
parameters over a range of frequency. It is tempting to simply use
high order Pade approximations to compute the rational function
approximations. However, it should be noted that Pade approxima-
tion is numerically unstable in the sense that it is difficult to compute
stable high order approximations [12][13]. In addition, even though
Pade approximation has good extrapolation properties, it is still a
local approximation based on the series expansion about some fre-
quency. What is required is a “global” approximation over a range of
frequency. For lossy lines with constant parameters, with the extrac-
tion of mode delays, low order approximations (2 to 6) are usually
sufficient to ensure simulation accuracy. For the dispersive case, the
orders of the rational approximations are higher, and the approxima-
tions are usually obtained by nonlinear optimization.
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The work reported in this paper employs modal decomposition in the
frequency domain, and fits rational function approximations to the
frequency dependent eigenvalues, eigenvectors, and admittance
matrices. The simple procedure proposed in [1] was used to match the
eigenvalues and eigenvectors at different frequencies. Basically, if the
frequency data points are sufficiently close (at least one point per
decade), the dot product of the two eigenvectors corresponding to the
same eigenvalue at two different frequencies should be close to one.
Otherwise, the dot product should be close to zero. It was found that
this simple procedure works well in practice.

For the fitting of frequency data, polynomial fit can theoretically be
used to obtain the rational function approximations. Although poly-
nomial fit is efficient, it does not impose constraints on the pole loca-
tions, thus can not guarantee the stability of the computed models. In
order to ensure stability, the following form of the rational function
for nonlinear least square fit is used

Note that the pole locations are constrained to be in the left half plane
during the optimization process. Strictly speaking, this function is
complex, and both the phase and the magnitude of the function must
be fitted. However, if the function isminimum phase,then only the
magnitude characteristic need to be approximated; the approximating
function will give a good fit for the phase characteristic as well [16].
A minimum phase function is a function all the zeros of which are in
the left half of the complex plane. This is true for impedance/admit-
tance functions of physical networks. This assumption is not true for
eigenvectors and exponential propagation functions. However, in
practice, it was found that fitting the magnitude is adequate for a
majority of cases.

In this work, the Levenberg-Marquardt algorithm [17] is employed
for the nonlinear least square fit. However, a simple implementation
of this algorithm usually does not work robustly, especially for atten-
uation (the magnitude of the propagation) data, which is dependent
on the line length. In this case, a more general procedure, such as the
frequency partitioning scheme proposed in [18], is required. In this
scheme, the frequency range of interest is divided into a number of
smaller intervals. Then the approximation is computed in each inter-
val. Since the range of frequency is reduced, low order models and
fewer iterations are required to yield a good approximation. The
result is then screened for extraneous roots. An extraneous root (pole
or zero) is the one with magnitude much greater than the maximum
frequency. Pole zero cancellation occurs when the relative difference
between a pole and zero is less than 5% [18]. A root is also consid-
ered extraneous if its value is close to another root in a neighboring
interval. The resulting poles and zeros for all the intervals are then
used as the initial guess for the optimization over the whole fre-
quency range of interest. This frequency partitioning scheme also
provides a means for determining the order of the approximation.

In addition, a modified version of the incremental procedure proposed
in [1] is also employed to provide better efficiency. In essence, this
approach is an automation of the procedure for obtaining the rational
function approximation from the Bode plot [19]. Basically, one pole
or zero is added incrementally as the frequency data are scanned. The
location of the poles and zeros are then adjusted locally using first
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order sensitivity information to minimize the fitting errors. This
method was found to work well for a good number of cases in prac-
tice. When this method fails to produce a satisfactory approximation,
its results can be used as the initial guess for the Levenberg-Mar-
quardt method described above.

Finally, it should be noted that for long lines, the attenuation may
vary significantly over the frequency range of interest. It is, therefore,
necessary to break up the lines into a number of shorter sections. In
practice, it was found that high order poles are usually required to
obtain a good fit for propagation data, especially at high frequencies
where the skin effect comes into play.

4. Transfer function simulation and numerical
convolution

This section discusses the scalar time domain convolution,

(6)

or, equivalently,

(7)

where , , and  are scalar functions of frequency;
, , and  are the equivalent time domain functions. In

general, the computation of  using the convolution integral (6)
is a computationally expensive operation both in terms of CPU and
memory usage. The direct evaluation of (6) at each time point during
a transient simulation would require the storage of the entire past his-
tory of the simulation and the integral must be summed over the
entire simulation interval.

However, if  can be represented by a rational function in the s
domain as

(8)

where , the computation of  can be performed effi-
ciently without storing the entire history of . In the recursive
convolution method, the rational function is expanded in partial frac-
tion form as

(9)

where  is the j-th pole,  is the order of the j-th pole, and ’s
are the associated residues. The time domain equivalent of this ratio-
nal function can be expressed as a sum of polynomial weighed expo-
nential terms. Hence, the transformation results can be obtained
directly without using Fast Fourier Transform (FFT) or numerical
inversion of Laplace Transform (NILT). In addition, this form of
approximation allows the computation of the convolution integral
given by (6) to be performed in a recursive and efficient manner. Note
that complex conjugate pole pairs usually occur in the computation of
the Pade approximation for constant RLGC coupled lines. The case
of repeated real poles can also occur in dealing with the problem of
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positive poles for Pade approximation [14], but usually arises in fit-
ting the attenuation data of frequency-dependent lines.

The transfer function simulation method, on the other hand, directly
employs the polynomial form of (8). In this method, the frequency
domain representation given by (8) is converted to a time domain rep-
resentation using the state space method. The resulting state equation
can then be solved by any standard numerical integration technique.
The advantages of the transfer function simulation method as com-
pared to the recursive convolution method are twofold. First, it does
not require the computation of poles and residues. Hence, it is not
necessary to distinguish between the various cases of (repeated) real
poles or complex conjugates. The implementation is, therefore, sim-
pler and more straightforward. Secondly, in many cases, the transfer
function method is significantly more efficient than the recursive con-
volution method, especially for the case of complex conjugate or
repeated real poles. The reason for this improvement is that the trans-
fer function method does not require the evaluation of sine and cosine
functions for complex conjugate pole pairs and it does not require
some extra computation for repeated real poles. However, the numer-
ical integration of the state equation will introduce an extra error term
compared to the recursive convolution method and, therefore, would
require more time steps. Overall, numerical experiments have shown
that the transfer function method is more efficient and should be pre-
ferred. The reason is that the convolution computation is at the heart
of a transient analysis of transmission lines and is usually performed
in the innermost loop of the analysis. Therefore, the overall simula-
tion efficiently depends greatly on the efficiency of the convolution
computation.

The derivation of the transfer function simulation method is started
by rewriting (8) as

(10)

where the intermediate variable  has been
introduced. Taking the inverse Laplace transform of (10) yields

(11)

where  denotes the  derivative of . Introduce the fol-
lowing intermediate state variables

Then

and the state space representation of the system can be written as
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The solution of the state equation in (12) can be written as

(13)

Note that in a transient simulation, some form of interpolation will be
inevitably employed to compute x(t). This interpolation will intro-
duce errors into the computation of  and . Secondly, an
exact evaluation of the exponential matrix  would require
the computation of the eigenvalues of , or equivalently the poles
given in (9). In this sense, the computation of  using an exact
evaluation of the exponential matrix is equivalent to the recursive
convolution discussed above. However, the state equation can be
solved numerically using standard integration methods such as the
Backward-Difference Formula (BDF) or Gear method without having
to evaluate the exponential matrix. The numerical integration will be
more efficient but will also introduce extra error terms. In order to
simplify the following discussion, consider the well known trapezoi-
dal rule for numerical integration. In other words, approximate the
“excitation”  as

(14)

where , , and  is the
remainder term. Substitution of (14) into (13) and performing the
integration yields

(15)

where

and

Note that  is the error due to the interpolation for . An esti-
mate for this error term can be derived in a similar manner to the error
derivation for the recursive convolution [15]. The error due to the
numerical integration can be derived as follows. Rewrite (15) as

The trapezoidal approximation is then obtained by using the first two
terms of the Taylor expansions for the two exponential matrices. In
other words,
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Hence, the error term due to the numerical integration can be written
as

(16)

The total error in the computation of (13) is then given by

Note that  for the recursive convolution method. This error is
due to the numerical integration. The above derivation can be
extended to general BDF formula of order  using the techniques dis-
cussed above. In practice, numerical stability limits the maximum
interpolation order to . Finally, one important point that should
be noted is that the matrix  has very simple structure. Consequently,
the matrix inversion  can be computed efficiently.
In fact, the LU factorization and backward substitution for this
method requires the same storage as the recursive convolution
method. However, no sine or cosine computations are required.

5. Examples
All the examples in this section are simulated using the production
circuit simulator AS/X on an IBM RS6000 Model 520 workstation.
For verification purpose, the simulation results are compared with
measurements for the dispersive case, and with the brute force
approach of treating lossy coupled lines as cascaded series of 50 sec-
tions for the constant lossy case. Each section contains a lossless cou-
pled line connected to a lumped network. The lumped network is
used to model the line loss as represented by the  and  matrices

Example 1:This example is taken from [20]. The circuit schematic is
shown in Fig. 1. All the transmission lines are lossy but independent

of frequency. All the nonlinear elements are described by the equa-
tion . The parameters of the single line are ,

, , . The parameters of the
two coupled lines are
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Fig. 1: An interconnection circuit with lossy transmission lines and
nonlinear terminations.
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The parameters of the four coupled lines are

The length of the single line is 0.2m. The length of the two conductor
line is 0.3m. The length of four conductor line is 0.4m. The excitation
is a pulse of 2 volt amplitude and 10ns pulse width with 1ns rise and
fall times. The output waveforms at node V3 of the longest path are
shown in Fig. 2 for both the proposed method and the brute force

method. The results are almost identical. The proposed method, using
the transfer function simulation method, took only 132s of CPU time
while the brute force method required 2134s. For a comparison, the
recursive convolution method required 214s, about 62% more than
the transfer function simulation method.

Example 2: This is a practical example used to demonstrate the capa-
bility of AS/X to simulate dispersive coupled lines. The physical
structure of the transmission line is shown in Fig. 3. The length of the
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Fig. 2: Voltage responses at node V3 of the circuit in Fig. 1 for both the
proposed and the brute force methods
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Fig. 3: The physical structure of a three conductor line in Example 2

line is 7.62cm. The equivalent circuits of the measurement setup and
the test structure include lumped elements to model the output induc-
tance and resistance of the pulse generator, the scope connection, the
probe inductance, and the test line pad capacitance. Lossless trans-
mission lines are used to model the rigid as well as the flexible coax-
ial cables. The complete equivalent circuit consists of 52 lump
elements and 3 ideal transmission lines in addition to the three con-
ductor line under test. In this experiment, one outer conductor was
excited by the pulse generator and the coupled noises on the other
two quiet conductors are measured.

For simulation, the line capacitance matrix was computed using C2D
[21], a two dimensional capacitance calculation tool. The frequency
dependent resistance and inductance matrices were obtained using
Z2D [4], a two dimensional skin effect tool. The values of these
matrices are shown below,

where the frequency dependence of the inductances and resistances
are given in Table 1 and Table 2,

Table 1: The frequency dependent inductance matrix

Freq
(GHz)

L11 L22 L12 L13

0.01 3.915 3.640 0.2379 -0.8566

0.03 3.399 3.382 0.2201 -0.3792

0.10 2.819 2.823 0.2357 0.0218

0.30 2.582 2.572 0.2836 0.0806

1.00 2.404 2.390 0.2773 0.0804

3.00 2.214 2.198 0.2436 0.0678

10.0 2.051 2.036 0.2175 0.0588

30.0 1.960 1.945 0.2047 0.0546

100. 1.912 1.897 0.985 0.0526

300. 1.891 1.876 0.1960 0.0518

Table 2: The frequency dependent resistance matrix

Freq
(GHz)

R11 R22 R12 R13

0.01 2.076 2.064 0.2405 0.2170

0.03 2.176 2.142 0.2411 0.1392

0.10 2.361 2.350 0.2153 0.0734

0.30 2.627 2.622 0.2029 0.0741

1.00 3.664 3.678 0.3731 0.1416

3.00 6.524 6.551 0.8709 0.3193

C
2.017 0.0564– 0.0069–

0.0564– 2.022 0.0564–
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R
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The waveforms for the coupled noise on the passive conductors are
obtained from both measurement and simulation. For example, the
measurement and simulation results for the input waveforms (at the
output connector of the pulse generator) and the waveforms at the far
end of the adjacent quiet line are shown in Fig. 4. Note that the mea-

surement input waveform (VA) and the output waveform (VB) are
plotted using different voltage scale. As shown in this figure, the mea-
surement and the simulation results are in good agreement. The simu-
lation of this circuit took only 23s of CPU time.

6. Summary
An efficient method for the transient analysis of lossy and dispersive
transmission lines has been reported in this paper. Practical examples
have been presented to demonstrate the efficiency and accuracy of the
proposed method. This capability has been incorporated into AS/X,
the IBM production circuit simulator, and has been used routinely in
the design of packages and interconnects.
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