
Efficient Single-Pass Index Construction for Text
Databases

Steffen Heinz and Justin Zobel
School of Computer Science and Information Technology, RMIT University GPO Box 2476V, Melbourne 3001,
Australia. E-mail: jz@cs.rmit.edu.au

Efficient construction of inverted indexes is essential to
provision of search over large collections of text data. In
this article, we review the principal approaches to inver-
sion, analyze their theoretical cost, and present experi-
mental results. We identify the drawbacks of existing
inversion approaches and propose a single-pass inver-
sion method that, in contrast to previous approaches,
does not require the complete vocabulary of the indexed
collection in main memory, can operate within limited
resources, and does not sacrifice speed with high tem-
porary storage requirements. We show that the perfor-
mance of the single-pass approach can be improved by
constructing inverted files in segments, reducing the
cost of disk accesses during inversion of large volumes
of data.

Introduction

The size and growth rate of today’s text collections bring
new challenges for index construction. Building an index
for a large text collection may involve the management of
millions of distinct words, and of billions of occurrences of
words in the text.

Most approaches to inversion are well suited to index a
text collection in the megabyte range. For a small collection,
the vocabulary and all postings (that is, representations of
word occurrences) can be accumulated in main memory
allowing fast index construction within the capabilities of a
standard workstation. However, for large volumes of text,
only a few techniques are practical. Some avoid high mem-
ory requirements by storing postings temporarily on disk;
hence, trading main memory with temporary disk space at
the expense of costly random disk accesses that penalize
severely their performance. More advanced approaches
bound temporary storage requirements, but require an abun-
dance of main memory. On the other hand, the performance

of standard workstations has increased dramatically over the
last decades. It could be inferred from these improvements
that index construction could eventually be performed com-
pletely in main memory. However, the volume of data to be
indexed may well grow with our capacity to store it. For
example, a small text collection of documents drawn from
the Web might contain 100 Gb of data. An efficient repre-
sentation of the index might be 20 Gb; the distinct index
terms alone may require 200–400 Mb of memory. Because
the size of such databases is growing rapidly, it is reason-
able to assume that in-memory indexing remains impracti-
cal for large collections in the future even if the perfor-
mance of standard workstations continuous to improve at
the current rate.

The topic of this article is the efficient index construction
for text collections. The fastest approach previously de-
scribed in the literature is sort-based inversion (Moffat &
Bell, 1995; Witten, Moffat & Bell, 1999). It uses a single
pass over the input, in which uncompressed postings are
accumulated in main memory, sorted, compressed, and
written out to disk in runs that are later merged to obtain the
final index. An alternative is a two-pass method (Fox & Lee,
1991; Moffat & Bell, 1995), where temporary space re-
quirements are small due to application of efficient com-
pression schemes but the entire input must be processed
twice, at significant cost. Both approaches are scalable, that
is, can operate within fixed memory limits, but both require
that the complete vocabulary of the collection be kept
permanently in main memory, which may be not possible if
resources are limited since the vocabulary of a collection
increases approximately linearly with collection size (Wil-
liams & Zobel, 2001).

We investigate in this article an inversion approach that
has several advantages over these techniques: it performs
only one pass over the input; does not require that the
complete vocabulary of the indexed text collection be held
in main memory; can operate within limited volumes of
memory; and does not need large amounts of temporary
disk space. It is faster than existing approaches, as shown by
our analysis based on a computational model as well as our

Received May 10, 2002; revised November 22, 2002; accepted November
22, 2002

© 2003 Wiley Periodicals, Inc.

JOURNAL OF THE AMERICAN SOCIETY FOR INFORMATION SCIENCE AND TECHNOLOGY, 54(8):713–729, 2003



experiments on reference text collections. The approach is
essentially a combination of standard methods described
previously—in-memory construction of runs that are saved
to disk and then merged—but we show that, with careful
design and key innovations, it significantly outperforms the
alternative methods. We have constructed a word-level in-
verted file for a 20-Gb collection of Web documents on a
Pentium III with 700 MHz using not more than 256 Mb of
main memory in around 155 minutes, which is approxi-
mately 8 minutes per gigabyte of text. Document-level
inverted files can be built at a rate of less than 5 minutes per
gigabyte of text.

Inverted Files

An inverted index (Frakes & Baeza-Yates, 1992; Salton
& McGill, 1983; Witten et al., 1999), also known as post-
ings file, or simply inverted file, maintains the set of distinct
terms of a text collection in a lexicon. The lexicon keeps for
each index term a pointer to an inverted list on disk, which
comprises a list of postings that describe all of the term’s
occurrences in the collection.

For many ranking applications, a document-level in-
verted file offers the best trade-off between evaluation ef-
ficiency and index size (Witten et al., 1999). In a document-
level inverted file, the inverted list for each term t is of
postings of the form (d, fd,t) where d is a document number
and fd,t is the document frequency, that is, the number of
occurrences of t in d. The postings are usually stored in an
ascending order by their document numbers. Hence, an
inverted list of a document-level inverted file for a term t is
of the form

�ft; �d1, fd1,t�, �d2, fd2,t�, . . . ,�dft, fdft,t
��

with di � dj for 1 � i � j � ft, where ft is the number of
documents containing t. Figure 1 gives an overview of the
structure of a document-level inverted file.

A fine-grained word-level inverted file additionally in-
cludes in each posting the ordinal word positions of a term

in a document in ascending order to facilitate query evalu-
ation. Hence, the form of an inverted list of a word-level
inverted file for a term t is

�ft; �d1, fd1,t, lt,d1,1, . . . , lt,d1,fd1
,t�, . . . �dft

, fdft,t,
lt,dft,1

, . . . ,lt,dft,fdft,t
��

where lt,d,i are the ordinal word positions of t in document d
and lt,d,j � lt,d,j for 1 � i � j � fd,t.

Inverted lists are usually stored contiguously on disk in a
compressed format, with each list individually accessible.
Compression reduces the storage required for an inverted
file and can also reduce the time required to evaluate a query
(Moffat & Zobel, 1996). The main insight that leads to
efficient compression of inverted lists is that the document
numbers and word positions in inverted lists are ascending
sequences of integers. It is then necessary to store only the
differences, or gaps, between document numbers, rather
than the numbers themselves, which can be efficiently rep-
resented by Elias codes (Elias, 1975) or Golomb codes
(Golomb, 1966). In practice, good compression of docu-
ment-sorted inverted files is achieved by representing the
gap-coded document numbers, or d-gaps, in Golomb codes,
and the within-document frequencies fd,t and the word-
position gaps in Elias codes (Bell, Moffat, & Witten,
1994; Moffat & Bell, 1995; Witten et al., 1999). In recent
work it has been shown that byte-wise coding schemes
result in slight losses of compression efficiency, but greatly
reduce decoding time (Scholer, Williams, Yiannis, & Zobel,
2002).

There are several proposed approaches for inverted file
construction (Fox & Lee, 1991; Harman & Candela, 1990;
Moffat & Bell, 1995; Rogers, Candela, & Harman, 1995). A
recent survey on inversion approaches (Witten et al., 1999)
shows that only two of them are scalable: one, a two-pass
in-memory approach by Fox & Lee (1991), which has been
further improved by Moffat and Bell (1995); and the other,
a single-pass sort-based inversion approach proposed by
Moffat and Bell (1995). These approaches are applicable to
text collections of any size and work within limited volumes
of main memory and temporary disk space. In the next
section, we discuss both schemes in detail and briefly re-
view simple approaches that are only applicable to small-
and medium-sized collections due to their high resource
requirements. However, before we proceed to our review,
we describe a computational model for index construction.

Computational Model

To estimate the running times of inversion approaches,
we use the computational model as shown in Table 1. The
model describes the computational costs of basic operations
performed during inverted file construction on a single
workstation with a local disk. Similar models have been
used elsewhere (Frakes & Baeza-Yates, 1992; Moffat &
Bell, 1995; Witten et al., 1999).

FIG. 1. Structure of a simple inverted file. The lexicon maintains for each
index term a reference to an inverted list on disk. An inverted list contains
document numbers in ascending order.

714 JOURNAL OF THE AMERICAN SOCIETY FOR INFORMATION SCIENCE AND TECHNOLOGY—June 2003



The parameter values are based on the performance of a
Pentium III 700 MHz with 512 Mb of main memory run-
ning Linux. We measured on this machine, for example, the
virtual running time to parse a collection into terms and
derived an average cost estimation tp. We also empirically
determined the average cost ti to look up a term in a lexicon
that is implemented as a fast variant of a standard hash table
with 220 slots (Zobel, Heinz, & Williams, 2001). The time
costs for tc and tw were estimated in a similar way. The
disk-related parameters are based on the vendor’s specifi-
cation of a standard 40-Gb hard disk with a 2-Mb buffer and
7,200 rpm spindle speed.

The aim of the computational model is to derive cost
formulae for inversion approaches and to calculate their
running times on reference collections. However, the model
is not precise enough to calculate exact running times,
because caching effects, costs for memory allocation and
freeing, and other work done by the operating system are
not taken into account. Nevertheless, these performance
estimates allow comparison of inversion approaches.

We use three reference collections with the statistics
shown in Table 2 to determine the resource requirements of
inversion approaches. The first collection, of 4.4 Mb, is the
King James version of the Bible, where each verse is taken
as a document; book names, chapter numbers, and verse
numbers are removed. This collection was chosen because it
is readily available and can be meaningfully divided into a
reasonable number of documents. The other two reference

collections are drawn from the large Web track in the TREC
project (Harman, 1995), and are typical of the text indexed
by current search engines. The smaller collection Web V is
5 Gb and the larger one Web XX is 20 Gb; both are
collections of Web documents in several languages. The
Web collections have large vocabularies, consisting of al-
most three million and seven million distinct terms, respec-
tively. These collections feature the skewed distribution of
terms that is typical for natural language text. For example,
Web V has around 324 million term occurrences, of which
just around 3 millions are distinct terms. The most frequent
terms in the collection are “the,” “of,” and “and,” respec-
tively; the word “the” occurs in on average one in 27
occurrences, almost twice as often as the second most
frequent term. On the other hand, around 45% of all distinct
terms occur only once.

We derived these statistics by parsing the collections into
index terms without applying stemming, stopping, or case-
folding. We took as a term every sequence of characters, up
to a maximum of 64, that contained no more than two digits
and did not start with a digit. We imposed these restrictions
to prevent long lists of page numbers or other enumerations
from being included in the index. However, we note that
such numbers may well be indexed in practical systems. We
also excluded during parsing any XML or HTML tags,
special characters, and punctuation.

Existing Approaches to Inversion

Simple In-Memory Inversion

Consider a document-level inverted file for a text collec-
tion. Viewing the inverted file not as a collection of inverted
lists but as an inversion matrix is the main idea of a simple
inversion approach. Each column in the matrix represents a
document and each row an inverted list. The entries of the
matrix represent postings. Hence, assuming a cell of the
matrix at position (m, n) consists of the frequency fm,n of the
nth term of the collection in document m.

The inversion matrix is constructed by two passes over
the text. In the first pass, the set of index terms and the

TABLE 1. List of symbols used in the analysis of the inversion ap-
proaches and performance parameters.

Parameter Symbol Value

Main memory size (Mb) M 256
Average disk seek time (seconds) ts 9 � 10�3

Disk transfer time (second/byte) tt 5 � 10�6

Time to parse one term (seconds) tp 8 � 10�7

Time to compress a byte (seconds) tc 5 � 10�7

Time to lookup a term in the lexicon (second) tl 6 � 10�7

Time to compare and swap two 12 byte records
(seconds) tw 1 � 10�7

TABLE 2. Statistics of three reference text collections.

Symbol Bible Web V Web XX

Size (Mb) S 4.4 5,120 20,480
Distinct terms n 13,569 2,964,428 6,837,589
Term occurrences (� 106) C 0.8 323.9 1,261.5
Documents N 31,101 928,113 3,560,951
Postings (d, fd,t) (� 106) P 0.6 140.6 543.2
Avg. number of term occurrences per document Cavg 26 348 354
Avg. number of index terms per document Wavg 21 151 153
Percentage of words that occur once only H 33 45 44
Size of compressed document-level inverted file (Mb) I 0.64 180 697
Size of compressed word-level inverted file (Mb) Iw 1.27 672 2,605

The inverted file sizes are based on a compression scheme where d-gaps are Golomb-coded and within-document frequencies fd,t as well as word
positions are represented in gamma-codes.

JOURNAL OF THE AMERICAN SOCIETY FOR INFORMATION SCIENCE AND TECHNOLOGY—June 2003 715



number of documents in the collection are determined. Then
an empty matrix is allocated that has one row for each
distinct term and a column for each document. In the second
pass over the collection, the documents are processed in turn
and the matrix is filled column by column. For each term
parsed from the current document d, the corresponding row
r is found and the document frequency counter in the matrix
cell at position (d, r) is incremented. After all documents
have been processed, we traverse the matrix in inverted
order. Row by row, we obtain an inverted list by compress-
ing the row entries and write the inverted list for the corre-
sponding term to disk.

If we allow only 2 bytes to store a document frequency
(which is enough for the small Bible collection since no
index term occurs in a document more than 216 � 1 times),
the inversion matrix for the 4.4-Mb Bible collection would
occupy more than 800 Mb of main memory. The larger Web
collections need 4 bytes for a document frequency, so more
than 10 Tb of main memory would be required for the
inversion matrix of collection Web V and almost 89 Tb for
collection Web XX. However, because the distribution of
terms in text is skewed, rows are only sparsely populated on
average. For example, a document of collection Web V
contains on average 151 distinct terms, accounting for less
than 1% of the vocabulary size.

Space savings can be achieved by storing a row of the
matrix as a linked list that grows dynamically, yielding a
list-based in-memory inversion approach (Bertino et al.,
1997; Moffat & Bell, 1995; Witten et al., 1999). Each list
node represents a (d, fd,t) posting and comprises 12 bytes
because, apart from the 8 bytes of the posting, a 4-byte
pointer that refers to the next list node is also kept. With the
list representation of a matrix row less than 8 Mb are needed
for the Bible. However, around 1.6 Gb is required for
collection Web V, and around 6 Gb for collection Web XX.
In practical systems, word positions are essential, and thus
even more space would be required.

Where maintaining the linked lists requires more main
memory than is available, it is tempting to rely on virtual
memory and to let the operating system map the lists to
disk. Accesses to the lists, respectively rows, are, how-
ever, in random order. Thus, if only every tenth access
requires a random disk access, taking around 9 millisec-
onds, more than 35 hours would be needed for random
disk accesses during the inversion of collection Web V,
for example.

We assume that the input to the inversion approaches
consists of a stream of (t,d, fd,t) postings or (t,d, fd,t : l1, . . . ,
lfd,t

) in case word positions are included. These postings are
delivered by a process that parses the collection document
by document into index terms. For each document, its index
terms, their word positions and within-document frequen-
cies are gathered. We have identified efficient data struc-
tures for per-document vocabulary accumulation in previ-
ous work (Heinz & Zobel, 2002).

Disk-Based Inversion

The main idea of the single-pass inversion approach by
Harman and Candela (1990) is to accumulate postings in a
posting file on disk and not in main memory. Postings that
belong to the same term are linked together in the file, which
consists of multiple linked lists, one for each index term.
After all postings have been accumulated, a new file is
allocated on disk to accommodate the final inverted lists and
the lists are processed in lexicographical order. Each list is
traversed, then the retrieved postings are compressed and
written to disk as a compressed inverted list.

For efficiency reasons, it is necessary to maintain for
each index term the file address of its previous posting in an
in-memory lexicon. For each posting (t, d, fd,t) from the
parsing stream, the lexicon is queried for term t. The file
address p of the terms’ previous posting is retrieved and a
new posting (dfd,t, p) is appended to the posting file. Then
the lexicon entry for t is updated. However, the postings for
a term are not stored adjacently in the posting file and the
lists are not stored in lexicographical order, as is required in
the final inverted file. Hence, after all documents have been
processed, a postprocessing step is needed in which all lists
in the posting file are traversed.

The postprocessing step starts by allocating a second file
on disk, then a lexicon traversal outputs the index terms in
lexicographical order. Because for each index term the file
address of its last posting is maintained in the lexicon and
each posting is linked to its predecessor, the postings for a
term are retrieved in reverse order and accumulated. Then,
the inverted list for the term is computed and appended to
the second file. The approach can straightforwardly be gen-
eralized to include word positions in the postings (Rogers et
al., 1995).

Compared to the simple in-memory inversion schemes,
the disk-based approach uses only one pass over the collec-
tion, but still requires that a lexicon be kept in main mem-
ory. If the lexicon is implemented as a splay tree, each tree
node uses 4 bytes for storing the file address (and even more
bytes if the posting file exceeds 2 Gb), at least 2 bytes for ft,
8 bytes for the two references to other tree nodes, and 4
bytes for a term pointer. Assuming that storing a term needs
on average a further 8 bytes, the lexicon occupies around 74
Mb for collection Web V and 170 Mb for collection Web XX.

On the other hand, the savings in main memory come at
the expense of large volumes of temporary disk space. A
posting occupies 4 bytes for the document number, 2 bytes
for the fd,t components, and 4 bytes for the reference to the
previous posting of the term. Thus, a posting comprises 10
bytes and the posting files for collection Web V and collec-
tion Web XX exceed 1.3 and 5 Gb. This space cannot be
released until the end of the postprocessing step as it is not
possible to write inverted lists back into the posting file.
Additional temporary space is needed if word positions are
indexed as well, adding say 6 bytes per posting on average.
More seriously, accesses to the posting file are in random
order during the postprocessing step. Due to the large num-

716 JOURNAL OF THE AMERICAN SOCIETY FOR INFORMATION SCIENCE AND TECHNOLOGY—June 2003



ber of random disk accesses required, the running times
reported are not practical. For example, index construction
for a 276 Mb collection of Wall Street Journal articles is
reported to have taken more than 2 days (Rogers et al.,
1995); the Sparcstation 2 used in that instance is outper-
formed by current workstations, but disk characteristics, the
main bottleneck, have only moderately improved since the
work was undertaken.

To improve performance, Rogers et al. (1995) propose to
reduce the number of random disk accesses by employing
several posting files each of which is small enough to be
fully mapped into main memory during the postprocessing
step. Each posting file corresponds to a disjunctive range of
terms and accumulates only postings of terms that fall
within that range. The term ranges are chosen to produce
evenly sized posting files. However, the division into sep-
arate posting files increases disk activity during the pass
over the collection and the keeping of data on disk reduces
opportunities for optimizing disk accesses. Reducing the
size of the posting file by applying compression techniques
to the postings is also difficult, because each node must be
individually accessible during the postprocessing step.

In terms of the performance figures and parameters given
in Tables 1 and 2, the predicted inversion time of the
disk-based inversion approach is

T �

Stt � C�tp � ti� � 10Ptt �
(read, parse, lookup lexicon, write postings)

Pts/v � 10Ptt � (traverse lists)
I�tc � tt� (compress, write out inverted file) (1)

seconds. In the event that the size of the posting file exceeds
available main memory size, that is, M � 10P � L, a
complete mapping of the posting file to disk is impossible.
We therefore denote the number of postings that are re-
trieved within one random disk access with v.

For inversion of collection Web V, around 9 minutes are
spent reading and parsing the collection into index terms. A
further 3 minutes are required for looking-up the lexicon.
Writing the postings to disk and writing out the final in-
verted lists takes together less than 4 minutes. The major
component of the overall running time is the traversal time
for the posting file when mapping is impossible. For exam-
ple, if only half of the posting file can be mapped into
memory and hence v � 2, around 7 days are spent seeking
postings on disk yielding a total predicted running time of
around 7.3 days to construct a document-level inverted file
for collection Web V and 28.3 days for collection Web XX.
For small collections that can be fully mapped into memory,
however, the disk-based inversion approach is suitable, be-
cause no random disk accesses are required during the
traversal of the lists. The posting file for the Bible, for
example, comprises less than 6 Mb and the predicted run-
ning time for the inversion is around 3 seconds. Including
word positions in the index leads to larger posting files but
the overall increase in predicted running time due to coding
word positions is small.

Two-Pass In-Memory Inversion

A drawback of the disk-based inversion approach is that
large volumes of temporary space are needed during index
construction. Fox and Lee (1991) propose an in-memory in-
version approach that uses compression to limit temporary disk
space usage. The approach is discussed in detail elsewhere
(Frakes & Baeza-Yates, 1992) and improvements are proposed
by Moffat and Bell (1995) to make the approach applicable to
collections of any size. This approach uses two passes over the
input and we refer to it as the two-pass approach in this article.

In the first pass, the vocabulary and statistics of the text
collection are gathered. The number of documents N, the
number of distinct index terms n, and the within-collection
frequency ft for each index term in the collection are deter-
mined and the vocabulary is stored in an in-memory lexi-
con. Prior to the second pass over the collection, an in-
memory bitvector is allocated to store postings. The vector
is divided into n partitions with one partition per index term;
since the number of postings per term was determined
during the first pass over the collection, the boundaries of
the individual partitions and the overall size of the in-
memory bitvector are easily precalculated based on the
gathered statistics. During the second pass, the partitions are
filled up with corresponding postings.

In comparison to the disk-based inversion approach,
space is saved because postings that belong to the same
index term do not have to be linked together, because they
are adjacent in a partition. However, without compression,
storing the postings for collection Web V and collection Web
XX would require around 1 or 4 Gb of main memory,
respectively, which is too large in practice.

A further reduction in main memory usage is possible
when the first pass over the text collection also determines
the maximum number of bits that are needed to store the
postings for each term directly as a compressed inverted list
in a partition. The exact number of bits required depends on
the actual document numbers, but these cannot be gathered
during the first pass. Since a partition is not easily extended
if the compressed document numbers do not fit into the
preallocated space, a strict upper bound must be calculated.
For Golomb coding, choosing parameter b � 2log2((N�ft)/f1)

leads to an upper bound on the size of the codes (Witten et
al., 1999) and guarantees that inverted lists do not overflow
their corresponding preallocated partitions. In practice, the
compression leakage is reported to be around 5% of the
compressed inverted file size (Witten et al., 1999).

The predicted running time to build an inverted file with
the two-pass approach is, in terms of the parameters used in
Tables 1 and in 2,

T �

Stt � C�tp � tl� �
(first pass to gather statistics)

Stt � C�tp � tl� � I�tc �
(second pass, in- memory compression)

I�tc � I�tc � tt�
(decompress, recompress, write out

inverted file)

(2)

JOURNAL OF THE AMERICAN SOCIETY FOR INFORMATION SCIENCE AND TECHNOLOGY—June 2003 717



seconds, where I� 	 1.05 I. For construction a word-level
inverted file for a collection, the compression leakage is
likely to be much less than 5% when the same nonparam-
eterized coding scheme for the word positions is used in the
in-memory vector as well as in the final inverted file.

The assumption underlying this approach is that main mem-
ory is large enough to accommodate the preallocated vector of
size I together with the lexicon of size L and hence M � L 
 I.
For M � 256 Mb, we assume that the lexicon and the vector
for the two smaller reference collections can be accommodated
in main memory. The first pass over collection Web V takes 12
minutes. During the second pass, the collection is read again
taking an additional 12 minutes. The in-memory compression
of the postings and the decompression of the vector to obtain
the inverted lists requires a little over 3 minutes. Writing the
inverted lists to disk and encoding them on the fly requires
around 2 minutes. The total predicted running time to construct
a document-level inverted file for collection Web V is 29
minutes, of which the bulk of the time is spent parsing the
collection. For the inversion of the Bible collection, we calcu-
late a predicted running time of less than 4 seconds. However,
due to the in-memory vector size of around 730 Mb that would
be needed, collection Web XX cannot be indexed within 256
Mb of main memory.

A way to improve the scalability of the two-pass approach
is to preallocate the partitioned vector not in main memory but
on disk and to subdivide the text into several loads (Moffat &
Bell, 1995; Witten et al., 1999). The size of each load is chosen
to be small enough to invert in main memory as described
above. When main memory is exhausted, the current load is
merged into the disk vector. The disk vector is read sequen-
tially, that is block by block, into main memory and the blocks
are written back in-place after new entries from the current
load have been added. After all loads have been processed, the
unused space between inverted lists is compacted in a final
sequential pass over the file. In the last step, each inverted list
is also decompressed and recompressed using the final com-
pression scheme of the inverted file.

For this text-partitioned scheme, more information has to
be gathered during the first pass over the text collection than
is needed for the simple two-pass approach. For each load,
the number of documents and within-load frequencies of the
terms are determined. Based on these statistics, the in-
memory vectors of the loads are divided into partitions and
the partition boundaries are calculated. The statistics of each
load are stored compressed in a description file on disk
requiring only a few megabytes each.

The predicted running time to build an inverted file with
the improved two-pass approach in terms of the parameters
in Tables 1 and 2 is

T �

Stt � C�tp � tl� �
(first pass to gather statistics)

Stt � C�tp � tl� � 3I�tc � 2lI��ts/b � tt� �
(second pass, invert in-place)

�I � I��ts/b � tt � tc�
(compact inverted file) (3)

seconds, where l denotes the number of loads into which the
text is divided and b denotes the size of the data blocks that
are transferred within one disk access. The number of loads
is computed by l � I� / (M � L).

To estimate the running time to build a document-level
inverted file for collection Web XX, we make the simplify-
ing assumption that main memory is used only to invert
each load, thus ignoring memory consumed by the lexicon.
Three loads are processed for collection Web XX. The first
pass over the collection takes a little over 47 minutes. The
second pass also requires around 47 minutes to read, parse,
and look up the terms. Each load is processed in around 11
minutes. Compacting the inverted file in the last step of the
algorithm takes 17 minutes, assuming that an input buffer of
at least b � 64 kb is available. Thus, the total predicted
inversion time is around 144 minutes for collection Web XX.

Sort-Based In Situ Inversion

Moffat and Bell (1995) propose a sort-based inversion
approach to inverted file construction that is applicable to
text collections of any size. This single-pass approach is
intended to operate with limited amounts of main memory
and does not require large temporary disk space. In this
article, it is referred to as the sort-based approach. It oper-
ates as follows. First, the available main memory is filled
with postings from the incoming parsing stream. Each time
a main memory threshold is reached, the postings are sorted
and compressed, and this run is written to a temporary file.
These two steps as depicted in Figure 2 are repeated as long
as there are postings delivered from the parsing process.
Then, in the last step, the runs on disk are combined by a
multiway merge and the final inverted lists are computed. A
careful in situ merge allows writing of the inverted lists
gathered during the merge back into the same file. In mem-
ory, efficient coding of the term components in the postings
is achieved by replacing the string representation of a term
t by a unique term number t̂; thus the lexicon maintains for
each index term a unique term number. The assignment of
integers to terms is not based on the lexicographical order of
the terms but on their order of first appearance. The form of
the postings is (t̂,d, fd,t), and each is 12 bytes.

When main memory is full, prior to processing postings
from the next document, the postings are sorted in ascend-
ing order of their term number as the primary key and then
ascending by their document number as the secondary key.
The run can then be compressed as it is written to disk using
gap coding. Note that the number of postings accumulated
in a run is not fixed because the main memory is shared
between the array and the lexicon, which grows with the
number of distinct terms parsed from the collection.

When all the documents have been processed, the K runs
that have been accumulated on disk are merged to obtain the
final inverted list for each index term. A K-way merge
requires only one merging pass over the runs. To avoid
excessive disk costs, an in-memory input buffer is assigned
to each of the K runs. A request for the next compressed

718 JOURNAL OF THE AMERICAN SOCIETY FOR INFORMATION SCIENCE AND TECHNOLOGY—June 2003



inverted list from a run checks the corresponding input
buffer first. If the data in it has been consumed, the next
chunk of data from the run is read from disk into the input
buffer and processed. Thus, filling a buffer requires only
one random access to disk followed by several sequential
accesses, depending on the block size of the disk and the
input buffer size u. The optimal size u of an input buffer
depends on the available main memory, the number of runs,
the size of inverted lists, and on the disk characteristics such
as block size and transfer rate.

During merging, we have to find repeatedly among the K
runs the smallest temporary inverted lists, that is, the list
with the smallest term number that starts with the lowest
document number. To find efficiently the smallest list, a
priority queue such as a heap is maintained to retrieve the
smallest list at a cost of [log2K] comparisons and swaps
(Sedgewick, 1998). The lists are then decompressed, recom-
pressed, and merged into the final inverted list for the
current term number.

The merged lists can straightforwardly be written to a
new file. However, the sort-based approach would then need
temporary disk space more than twice the size of the final
inverted file. Moffat and Bell (1995) describe a technique to
write the final inverted lists back in-place into the temporary
file. At the start of the K-way merge, each of the input
buffers is loaded with a block from the temporary file. Thus,
the first K output blocks that are accumulated during the
merging process can be written back into these blocks. At
that stage, at least one of the K runs must have already read
its second block into its input buffer, making one more page
available. Due to the more efficient coding scheme used in
the final inverted lists and because of omission of t̂-gaps, the
output stream during merging is likely to be smaller than the
input stream. In rare cases, an output block might not find a

vacant block on disk due to switching from a delta-code or
gamma-code to Golomb coding of the final inverted lists. To
resolve this problem, an output block is simply appended at
the end of the temporary file.

After all runs have been merged, the block table is used
to permute the blocks to ensure that the physical order of the
inverted lists corresponds to their logical order of the term
numbers. The in-place permutation process requires an in-
memory buffer of two blocks of b bytes each. Each block is
read and written exactly once without any additional cod-
ing.

The predicted running time of the sort-based approach to
construct a document-level inverted file is, in terms of the
parameters in Tables 1 and 2,

T �

Stt � C�tp � tl� �
(read, parse)

K�1.2k log2k�tw � I��tt � tc� �
(sort, compress, write runs)

P� log2Ktw � �I� � I��ts/u � tt � tc� �
(merge, recompress)

2I��ts/b � tt�
(permute)

(4)

seconds, where K is the number of runs that are processed,
k is the number of postings that can be kept in main
memory, u is the size of the input buffer assigned to each
run during merging, and the block size during the merging
phase is b. We calculate k � (M � L)/12, where L denotes
the size of the lexicon, and derive K � P/k. The size of the
temporary inverted file is denoted by I� and P� is the number
of tuples that are inserted into the heap.

Based on the results of preliminary experiments, we
assume here that I� 	 1.2 I, since the runs are compressed

FIG. 2. Constructing sorted and compressed runs during the sort-based approach.

JOURNAL OF THE AMERICAN SOCIETY FOR INFORMATION SCIENCE AND TECHNOLOGY—June 2003 719



with a less efficient nonparameterized coding scheme com-
pared to the coding scheme used in the final inverted file.
However, larger runs due to having more memory yield
smaller I� because the t̂-gaps are likely to become smaller on
average. It is difficult to calculate P� exactly, because it
depends on M and the characteristics of the particular text
collection. For a skewed distribution of terms, for example,
it is likely that frequent terms occur more than one run. In
that case, fewer than P tuples are inserted into the heap.
However, each distinct term number appears only once in
each of the K runs. Thus, we have the upper bound P� � nK.

According to Formula 4, the predicted running time for
collection Web XX is around 105 minutes, ignoring as
before memory requirements for the lexicon. The predicted
time is approximately 47 minutes for reading, parsing, and
querying the lexicon and a little over 27 minutes for sorting
the 25 runs. Compressing and writing out the runs account
for around 9 minutes. Managing the heap takes about 2
minutes. Around 18 minutes are spent on merging the
temporary inverted lists including decompression and re-
compression time for each list. The block permutation at the
end requires less than 2 minutes. Similar relative cost fig-
ures are calculated for the other reference collections. The
predicted running time for collection Web V is about 28
minutes and the inversion of the Bible is performed hypo-
thetically in less than 5 seconds.

As with the other approaches, the inclusion of word
positions during index construction leads to only small
modifications to the algorithm. The main modification is to
include in each posting a reference to an array of word
positions, enlarging a posting by a 4-byte pointer p. Hence,
the form of a posting becomes (t̂,d,fd,t,p) using 16 bytes. The
array that is referred to by the pointer p contains fd,t word
positions and comprises additionally 4fd,t bytes. The word
positions are compressed when a run is written out to disk.

If a posting contains only one word position, space is
saved by storing the single word position in the memory
space that is allocated for the pointer p. In preliminary
experiments, we calculated the average byte size of a post-
ing plus its corresponding array of word positions. We
parsed collection Web V into (t̂,d,fd,t,p) postings and accu-
mulated them in main memory. For postings where fd,t � 1,
we additionally allocated an array of 4fd,t bytes to store the
word positions of term t in document d. The accumulation
of postings stopped when a memory threshold of 100 Mb
was reached. Over 30 runs with pair-wise disjunctive sets of
documents parsed from the collection Web V, we observed
that 1.61 array slots were used per posting on average with
a standard deviation in the runs of 0.21. We conclude that
the average size of a posting and its associated array of word
positions is around 22 bytes. We therefore expect that the
number of runs generated by the sort-based approach would
increase by approximately 80% if we consider building a
word-level inverted file instead of a document-level in-
verted file for a fixed amount of main memory. Hence, by
calculating k � (M � L)/22 and setting I � Iw, we can apply

Formula 4 to calculate the predicted running time to build a
word-level inverted file with the sort-based approach.

Comparison of Inversion Approaches

The simple inversion approaches accumulate postings in
main memory but use no compression. They are suitable for
small collections when main memory is large enough to
accumulate all postings in the form of an inversion matrix or
dynamic linked lists.

The disk-based approach by Harman and Candela (1990)
needs merely to maintain a lexicon in main memory because
postings accumulate on disk. However, retrieval of the
postings in the second stage is a performance bottleneck, as
there are too many random disk accesses. Efficient com-
pression cannot be applied to the postings, so temporary
disk space is typically 50–100% of collection size. Thus,
the disk-based approach is not scalable and not suitable for
large collections.

The sort-based approach and the two-pass approaches
write accumulated index data in a compressed format to
disk, yielding low temporary space overheads. They can
both operate within limited amounts of main memory for
postings but require the entire vocabulary of the collection
in memory. In the sort-based approach, an in-memory array
is used to accumulate the postings. When memory runs out,
the sorting step ensures that postings that belong to the same
term are adjacent. Mapping terms to term numbers has two
advantages. First, sorting requires only integer comparisons.
Second, main memory is utilized more efficiently, since
using a 4-byte integer for a term number in each postings is
more space-efficient than storing the string representations.
We observed in experiments on the Web collections that the
size of the compressed runs is typically around 15–20%
larger than the size of the final inverted file if 100 Mb of
main memory is used to accumulate postings. The leakage
is caused by the different coding schemes that are used in
the compressed runs and the final inverted file. We also
noticed that, with increase in the size of the runs, the
leakage becomes smaller.

A disadvantage of the sort-based approach is that it
constructs inverted files that do not support range queries
well, due to the order in which the inverted lists are stored
in the final inverted file. If the lists, however, were stored
according to the lexicographical order of the terms, as it is
done by the two-pass approach, only one random access is
needed to locate the first inverted list and the subsequent
lists can be retrieved by sequential accesses.

A smaller compression leakage is reported for the two-
pass approach (Witten et al., 1999). In contrast to the
sort-based approach, postings are stored compressed as
soon as they are accumulated in main memory. However,
the compression leakage comes at the cost of an additional
first pass over the collection. Performing a pass over a
collection has three major cost factors: transfer costs, costs
for decompressing in case the collection is compressed, and
parsing costs. Temporary disk space can be traded against

720 JOURNAL OF THE AMERICAN SOCIETY FOR INFORMATION SCIENCE AND TECHNOLOGY—June 2003



parsing time by storing the output of the first parsing pro-
cess and to use the parsed version of the text in subsequent
passes. Hence, in that case, only transfer costs and com-
pression costs are incurred during subsequent passes.

The predicted running times of the approaches are pre-
sented in Table 3 together with the predictions for our
single-pass in-memory inversion approach, which we dis-
cuss in the following section. As shown, the sort-based
approach outperforms the two-pass approach in terms of
predicted running times. Whereas the difference between
the two approaches with regard to their predicted running
time is only small for constructing document-level inverted
files, the margin increases when we compare their perfor-
mance in constructing word-level inverted files. The advan-
tage of the two-pass approach is that it requires less tem-
porary disk space than the sort-based approach during the

construction of document-level inverted files. However, the
opposite is true if we consider building word-level inverted
files, where the two-pass approach needs slightly more
temporary disk space because of the descriptions files of the
loads.

The sort-based approach and the two-pass approach al-
low a trade-off between main memory and running time.
Greater availability of main memory, for example, yields
fewer runs and loads. It is therefore interesting to consider
the performance of inversion approaches when the available
main memory size is varied. Even for large volumes of main
memory, the sort-based approach outperforms the two-pass
approach by a margin of around 40% as shown on the
left-hand side of Figure 3. For constructing a word-level
inverted file, the performance gap is much wider. When
main memory is limited, the predicted running time of the

TABLE 3. Predicted running times in minutes of inversion approaches to construct inverted
files on the sample Web collections with the statistics as shown in Table 2.

Web V Web XX

Constructing a document-level inverted file
Disk-based approach 10,561 (1,341) 40,803 (5,180)
Two-pass approach 29 (10) 144 (43)
Sort-based approach 28 (66) 105 (140)
Single-pass in-memory approach 23 (59) 91 (230)

Constructing a word-level inverted file
Disk-based approach 10,567 (2,145) 40,826 (8,288)
Two-pass approach 73 (41) 396 (158)
Sort-based approach 41 (34) 162 (130)
Single-pass in-memory approach 37 (61) 143 (234)

The predicted size in megabytes of the peak amount of temporary disk space is given in
parentheses next to the predicted running time of each run. The volumes of disk space do not
include the final inverted file sizes. The times are calculated in terms of the parameters given in
Tables 1 and 2. 256 Mb of main memory is assumed to be available.

FIG. 3. Predicted running times in minutes to construct a document-level inverted file on the left and a word-level inverted file on the right-hand side
for collection Web XX with varying main memory sizes, for the inversion approaches.

JOURNAL OF THE AMERICAN SOCIETY FOR INFORMATION SCIENCE AND TECHNOLOGY—June 2003 721



two-pass approach increases dramatically as shown on the
right-hand side of Figure 3, whereas the running times of the
sort-based approach do not vary much, and increase only
slightly for very limited volumes of main memory. Note that
Figure 3 also depicts the performance of the single-pass
in-memory inversion approach that we propose later.

It is also interesting in that context to consider the
performance of the algorithms for asymptotically large-text
collections. If we assume, for the sake of simplicity, that S,
C, and I grow as P grows, and L remains constant, then the
predicted running time of two-pass approach is limited by
C(P2/M 
 P), whereas the sort-based approach is bound by
C(P2/M2 
 P/M logP) with small constant factors preceding
the P2 factors. For P3 �, the sort-based approach is more
efficient, although sorting is required. Due to its scalability,
its good asymptotic behaviour in theory, and its good per-
formance in practice, the sort-based approach is used in
several approaches to distributed inverted file construction
(Melnik, Raghavan, Yang, and Garcia-Molina, 2001; Ri-
beiro-Neto, de Moura, Neubert, & Ziviani, 1999).

However, the sort-based approach requires as do the
other approaches that we have reviewed, the maintenance of
an in-memory lexicon. Because the number of index terms
increases with collection size more or less linearly (Wil-
liams & Zobel, 2001), the size of the lexicon increases with
the number of documents processed. Thus, if main memory
is fixed and storage space for the lexicon increases, less
memory becomes available for accumulating postings in
main memory. Given a skewed distribution of text, how-
ever, a large number of index terms are never accessed
again after they have been inserted into the lexicon. Ap-
proaches such as the sort-based approach or the two-pass
approach suffer from this inefficient memory use, since with
the increasing number of runs or loads, overall running time
increases, too. In the next section, we propose an inversion
approach that does not rely on maintaining the vocabulary
of the text collection in main memory.

Witten et al. (1999) also review several inversion ap-
proaches including the sort-based approach and the two-
pass approach. Based on a similar computational model,
Witten et al. (1999) predict that the sort-based approach
outperforms the two-pass approach in practice, confirming
our theoretical results. However, the focus there is solely on
the construction of document-level inverted files and in
contrast to our work word-level inversions are not discussed
nor are empirical results presented. A further difference to
the work by Witten et al. (1999) is that we have considered
the performance of the inversion approaches on a range of
reference collections for varying volumes of available main
memory.

Single-Pass In-Memory Inversion

The single-pass in-memory approach that we propose
uses only one pass over the collections, while requiring only
small amounts of temporary disk space due to an efficient
in-memory compression scheme. Although it shares fea-

tures with other approaches that we have discussed, there
has not been any publication of a thorough discussion nor of
any experimental results regarding this approach to date.
We refer to it as the single-pass approach in this article.

The basic idea of the single-pass approach is to assign to
each index term in the lexicon a dynamic in-memory bitvec-
tor that accumulates their corresponding postings in a com-
pressed format. Because no statistics of the index terms are
known, only nonparameterized coding schemes can be em-
ployed. We use a coding scheme identical to that employed
for the compression of sorted runs in the sort-based ap-
proach, that is, Elias codes represent the d-gaps, word-
position gaps, and document frequencies. The gap coding of
document numbers requires that the last-inserted document
number is known when the next posting is inserted into a
bitvector, so we keep for each term the last document
number that has been inserted into it as an uncompressed
integer. In contrast to the compression scheme used in the
sort-based approach, no representation of a term is stored in
a bitvector and no mapping of terms to term numbers takes
place.

With the use of these bitvectors, the main steps of the
single-pass approach are as follows. An empty temporary
file is allocated on disk. For each posting delivered from the
parsing stream, a search for its corresponding term is made
in the lexicon. If the search is unsuccessful, the term is
inserted into the lexicon and the corresponding bitvector is
initialized. The posting is inserted into the bitvector and
compressed on the fly. This process is iterated as long as
main memory is available. When main memory is used up,
the index terms and their bitvectors are processed in lexi-
cographical term order. Each index term is appended to a
temporary file on disk and front coding is used to represent
the terms efficiently. Each bitvector is padded, that is,
aligned to the start of the next byte, and appended to the
temporary file. The lexicon is freed and the process repeats
until all documents have been processed. When all docu-
ments have been processed, the compressed runs are merged
to obtain the final inverted file. A similar approach was used
for the CAFE genomic retrieval system (Williams, 1998).

Merging is as in the sort-based approach: that is, a
multiway merge is applied to the compressed runs to give
the final document-sorted inverted file. We can employ the
in situ variant of the multiway merge, so we have to permute
disk blocks at the end of the merge. Because the inverted
lists are merged in lexicographical order, the inverted file
stores, after the permutation of blocks, all inverted lists in
that order. Thus, range queries are supported efficiently
because inverted lists that belong to a range of terms in
lexicographical order are stored contiguously.

An advantage of the single-pass approach is that we
avoid keeping index terms permanently in memory, in par-
ticular those that are never accessed after they have been
inserted into the lexicon, because we flush out the lexicon
when main memory is exhausted. On the other hand, as-
signing a bitvector to each index term in the lexicon in-
creases the size of the lexicon. In our implementation, a

722 JOURNAL OF THE AMERICAN SOCIETY FOR INFORMATION SCIENCE AND TECHNOLOGY—June 2003



bitvector requires 32 bytes to keep some associated counters
and variables and, on initialization of a bitvector, further
bytes are dynamically allocated for its byte array. On an
overflow of a byte array, the array size is dynamically
doubled. Hence, for terms that occur only once during a run,
the scheme uses more main memory to store the single
posting of 12 bytes than the sort-based approach does.
However, if a term occurs frequently during a run, storing
its postings compressed in a bitvector is more efficient than
accumulating the postings in an array. It is difficult to
predict the space savings in practice, because we have to
take into account main memory size and the skewed distri-
bution of terms, but we surmize that the single-pass ap-
proach performs fewer runs than the sort-based approach.

A disadvantage of the single-pass approach is that we
have to include index terms in the runs. However, because
the terms are processed in lexicographical order, adjacent
terms are likely to have a common prefix, and a front-coding
scheme can be used to reduce storage space. For a large
number of sorted terms, adjacent terms typically share a
prefix of three to five characters and only 1 byte is needed
to store that value. However, front-coding of a terms is less
space-efficient than using coded term numbers as in the
sort-based approach. Hence, transfer costs increase and
more temporary disk space is used by the compressed runs
compared to the runs of the sort-based approach.

We have to process the index terms in lexicographical
order when we write a compressed run to disk, otherwise
merging of temporary inverted lists is not possible. If we
implement the lexicon with a sorted data structure, such as
a binary search tree or a splay tree, an in-order traversal
processes the terms and their bitvectors in lexicographical
order and no sorting is needed. However, these tree struc-
tures are typically slower than hash tables, where term
lookups are fast but there are sorting costs when a run is
written out.

The predicted running time to construct an inverted file
with the single-pass approach is, in terms of the parameters
in Table 1 and 2,

T �

Stt � C(tp � t�l) �
(read, parse)

I��tc � tt� �
(in-memory compression, write)

P� log2Ktw � �I� � I��tg/u � tt � tc� �
(merge, recompress)

2I��ts/b � tt�
(permute)

(5)

seconds, where I� is the size of the temporary inverted file, K
is the number of runs, u with u � M/K is the size of each
input buffer assigned to each run, and P� denotes the number
of tuples inserted into the heap. We calculate the number of
runs as K � I�/(M � L� ), where L� denotes the size of a lexicon
during a run. We assume as before that P� � nK and u � b
� 64 kb. We further estimate a slower lexicon lookup time

per term, that is, t�l � 1.5tt, because we assume that the
lexicon is implemented as a data structure that keeps terms
in lexicographical order, which offers slower lookup times
compared to a fast hash table implementation.

Based on some preliminary experiments, we further as-
sume that I� 	 1.33 I for constructing a document-level
inverted file and I� 	 1.09 Iw in the case of considering the
inclusion of word positions in the inverted file. The com-
pression leakage is larger compared to that achieved by the
sort-based and the two-pass approach, due to the front-
coded terms included in the runs.

The predicted running time for the single-pass approach
to build a document-level inverted file for collection Web V
is around 23 minutes, and around 91 minutes are required
for the inversion of collection Web XX. The predicted run-
ning time for the document-level inversion of collection
Web XX is as follows. Around 54 minutes are spent on
reading, parsing, and looking up the index terms in the
lexicon. The in-memory compression of postings in the
bitvectors accounts for a further 9 minutes. Around 2 min-
utes are spent on comparing strings and performing swap
operations in the string heap. Merging the inverted lists
from the 4 runs including the decompression and recom-
pression time takes approximately 20 minutes. The time
taken to permute the blocks accounts for another 6 minutes.

Table 3 presents the predicted running times for the
single-pass approach on the reference Web collections. The
single-pass approach outperforms the other approaches in
terms of speed for all main memory limits and its perfor-
mance only slightly depends on the volumes of available
memory, as shown in Figure 3.

The asymptotic costs of the single-pass approach for P
3 � under the simplistic assumption that S, C, and I grow
as P grows, and L remains constant, are C(P/M 
 P/M
log(P/M)) with a small factor in front of P. Thus, the
single-pass approach is also asymptotically more efficient
than the sort-based and the two-pass approach for fixed M.

Implementation

To implement single-pass inversion efficiently, first we
have to consider which in-memory data structure to use for
the accumulation of index terms and their statistics. All
practical inversion approaches require an in-memory lexi-
con to maintain index terms and their corresponding statis-
tics such as frequency counters and postings. The overall
performance of an inversion approach is therefore depen-
dent on the performance of the underlying lexicon data
structure. This is also evident in the formulae predicting
running times; tt1, the time to lookup an index term in a
lexicon, is a major cost factor. Apart from speed, the mem-
ory requirements of a lexicon also affect the overall perfor-
mance of inversion approaches. In general, the more mem-
ory is used by the lexicon, the more runs have to be
generated during the inversion of a collection.

In other work we explored and developed a variety of
data structures that can be used for this task (Heinz & Zobel,

JOURNAL OF THE AMERICAN SOCIETY FOR INFORMATION SCIENCE AND TECHNOLOGY—June 2003 723



2002; Heinz, Zobel, & Williams, 2002; Zobel et al., 2001).
We found that the fastest approach is an appropriately
implemented hash table; conventional tries are slower and
use six times as much space, while trees are both slightly
larger and several times slower. The only lexicographically
sorted structure that approaches the hash table in perfor-
mance is one we developed in the course of this work, called
the burst trie, a variant of trie in which leaves are small
buckets or containers of strings that share a common prefix.
By replacing a bucket with a trie node and a collection of
child buckets whenever it becomes too large (say 100
strings), the burst trie can grow smoothly and provides fast
access: common, short strings are entirely represented in the
trie, while longer strings, accessed more rarely, are kept in
a space-efficient structure. For a large collection of strings,
a burst trie is no larger than a hash table and only about 25%
slower. For small collections of strings, the burst trie is the
fastest of the many structures we have tested.

In contrast to burst tries, hash tables do not maintain
index terms in sort order. Hence, hashing requires an addi-
tional sorting step before a run can be compressed and
written out to disk. Although hashing outperforms sorted
data structures for overall vocabulary accumulation (Heinz
et al., 2002), these intermediate sorting steps decrease the
performance of hashing, as observed in our experiments on
per-document vocabulary accumulation (Heinz & Zobel,
2002). In particular, if only small volumes of main memory
are available and hence sorting occurs frequently, a sorted
data structure such as the burst trie might be more suitable.
Intermittent splay trees, where the tree is only reorganized at
every kth access for some small fixed k, are another option;
however, we anticipate that they are slower than hash tables
and burst tries given the outcome of our previous experi-
ments (Heinz et al., 2002).

The performance of the single-pass approach also de-
pends on the data structure employed for the task of per-
document accumulation of index terms and their statistics.
Per-document data is merged into the lexicon whenever a
document has been fully parsed and processed. The corre-
sponding index term of each posting is searched for in the
lexicon, and new index pointers are inserted into the term’s
bitvector. In our previous work (Heinz et al., 2002) we
found that burst tries are the fastest data structure for per-
document vocabulary accumulation, and we use this tech-
nique in all our experiments on inverted file construction.

When postings are delivered in lexicographical order,
implementing a lexicon with a burst trie has another bene-
ficial effect: a stable access path during the merge of per-
document data into the lexicon. When the vocabulary of a
document is sufficiently large, it is likely that subsequent
lexicon accesses terminate in the same subtrie or even in the
same container. Hence, nodes that have been visited previ-
ously are likely to be kept in the CPU cache where access is
fast. In contrast, the access path of an intermittent splay tree
is not stable due to the tree reorganizations. CPU caching is
also less effective when a hash table implements a lexicon,
since terms are randomly distributed over slots.

For the sort-based approach, a key issue is how to accu-
mulate postings in memory. We use an in-memory array
whose size depends on the available main memory size.
When a document-level inverted file is constructed, each
array slot keeps a (t, d, fd,t) posting. However, when a
word-level inverted file is constructed, a different approach
is required to accumulate variable-size (t,d, fd,t : l1, . . . ,lfd,t

)
postings. In our implementation, we store in each slot an
additional pointer to a dynamic array to keep the fd,t word
positions of a posting. Such a scheme is likely to suffer from
high costs of invoking the system calls used for memory
allocation and freeing. To reduce these costs, we allocate
space for the word positions block-wise and maintain the
blocks with a size of 512 kb in a linked list. Further costs are
saved if a posting contains only a single word position. In
that case, the word position is stored in the storage space of
the pointer itself.

The question of how to implement the lexicon for the
sort-based approach deserves careful consideration. The
lexicon’s purpose is to map terms to term numbers. Moffat
and Bell (1995) suggest using a hash table as a fast-lookup
lexicon, since maintaining the terms in sort order is not
necessary. We employ a hash table with move-to-front in
chains, a table size of 220 slots, and a bit-wise hash function.
According to the results of our previous experiments on
vocabulary accumulation (Heinz et al., 2002; Zobel et al.,
2001), this hashing scheme is the best choice.

Experiments

In our experiments, we explore the performance of the
single-pass and the sort-based approaches for the task of
inverted file construction, considering the construction of
document-level and word-level inverted files. However, we
do not apply in situ merging in either approach. It should be
noted that this does not affect their relative performance.
The purpose of our experiments is to identify the most
efficient variant of the single-pass approach and compare it
with the sort-based approach in terms of speed and tempo-
rary disk space usage. A further goal is to explore how both
approaches perform and scale when available main memory
is limited.

The test data used in these experiments are three Web
collections, Web V and Web XX with the statistics shown in
Table 2, and a third Web collection Web X. Web X is 10 Gb,
contains 1,780,983 documents with about 631 million term
occurrences of 3,604,125 distinct terms. The elapsed pars-
ing time for collection Web V is 788 seconds, for Web X
1,544 seconds, and for Web XX 3,088 seconds. In the
experiments we report elapsed running times, which include
any time spent waiting for disk accesses. The time taken to
parse the collections into terms is included as well. All
programs were implemented in C. We use a Pentium III 700
MHz with 512 Mb of main memory running a standard
version of the Linux operating system. Prior to each exper-
imental run, the internal buffers of our machine were
flushed to ensure a nonbiased test environment. We report

724 JOURNAL OF THE AMERICAN SOCIETY FOR INFORMATION SCIENCE AND TECHNOLOGY—June 2003



experimental results over single runs as we have observed
almost no variance between times over multiple runs.

One aim of our empirical comparison is to test the
scalability of inversion approaches, that is, how they per-
form when only a limited amount of main memory is
available. We therefore must keep track during inversion of
how much memory is consumed. In general, we do not take
into account memory usage of small support structures such
as buffers and temporary structures used for sorting, for
example. For the single-pass approach, we count the total
size of the in-memory data structure including bitvectors. If
this size reaches a given memory limit, a run is generated,
the lexicon is traversed and freed, and the process continues
as described earlier.

It is less straightforward, however, to decide how to
count the memory usage of the sort-based approach. This
approach maintains a hash table lexicon for mapping terms
to term numbers. In addition, memory is consumed by the
dynamic array that accumulates postings. The three main
cost factors are therefore the lexicon, the array, and the
postings (including the dynamic arrays to store word posi-
tions). Instead of restricting the total memory usage for the
lexicon, the array, and the postings, we only limit the
amount of main memory for the postings and do not take
into account the additional memory usage of temporary
arrays and other structures. Hence, in the case of construct-
ing a document-level inverted file, runs contain the same
number of postings for a fixed memory limit. A similar
approach to limit the total main memory for the sort-based
approach is considered elsewhere (Moffat & Bell, 1995).
For constructing a word-level inverted file with the sort-
based approach, we also take into account the memory
requirements of the word positions. As a result, individual
runs usually do not contain the same number of postings.
Alternatively, we could additionally take into account the
storage cost of the lexicon. However, the lexicon grows
over time and in extreme cases, the lexicon alone may
eventually approach the given memory limit leaving no
memory left over for the postings. Choosing a specific
memory limit for the lexicon may discriminate against this
method, so we ignore its requirements but note that many
more runs would be required in practice.

To ensure a fair comparison of the sort-based and the
single-pass approach, we use the same coding scheme for
the final document-level inverted files: d-gaps are Golomb-
coded, whereas gamma-codes are used for an efficient rep-
resentation of fd,t and ft frequencies. However, the interme-
diate runs generated by both approaches use slightly differ-
ent compression schemes due to the requirement to store
either term numbers or terms, respectively.

To facilitate disk accesses during the inversions, we use
an in-memory buffer to write runs to disk and read blocks of
512 kb from runs during the merge phase in all experiments.
For small main memory limits and large text collections, it
may be necessary to use smaller buffer sizes to accommo-
date a buffer for each run in main memory. Our experiments
with a main memory limit of 40 Mb use a buffer size of 512

kb, which yield a better result than if smaller buffers had
been used to stay strictly within the main memory limit.

Results

In the first set of experiments, we measure the elapsed
time and temporary disk space requirements of the single-
pass approach. Three variants of this approach were tested.
The first, uses as a lexicon a burst trie, the second uses an
intermittent splay tree, and the third uses a hash table.

For single-pass inversion, the hash table was the fastest,
but the speed margin was surprisingly small. For example,
for a memory limit of 256 Mb on Web X, times were about
4,650 seconds for a hash table, 4,700 seconds for a burst
trie, and 4,950 seconds for a splay trie. Detailed results for
inversion with the hash table are shown in Table 4, dis-
cussed below.

Total disk requirements were extremely consistent be-
tween the methods, but dropped as memory limits were
increased. With a 40-Mb memory limit, total disk usage was
about 115% of the size of the final inverted file, falling to
around 108% for a memory limit of 300 Mb. A smaller
memory limit increases, in addition to the number of runs,
the amount of storage space required to accommodate the
runs on disk. The reason for this is twofold. First, each run
contains the set of distinct index terms observed since the
last run was written to disk. Hence, many index terms are
included in multiple runs, increasing temporary storage
space. In addition, if runs are short due to small volumes of
available main memory, front-coding becomes less efficient
and compression leakage increases. For these reasons, we
observe that the amount of temporary disk space during the
construction of a word-level inverted file with the single-
pass approach accounts for around 8% of the size of the
overall final inverted file, for main memory volumes well
within the capabilities of modern workstations. For the

TABLE 4. Elapsed time in seconds to construct inverted files with the
single-pass and sort-based inversion approaches for the reference collec-
tions, with different main memory limits in megabytes.

Memory Limit (Mb) Web V Web X Web XX

Single-pass inversion
40 1,510/2,433 2,970/4,786 5,961/9,625

100 1,475/2,384 2,893/4,668 5,782/9,370
150 1,479/2,377 2,898/4,650 5,763/9,307
256 1,483/2,375 2,930/4,659 5,811/9,291
300 1,484/2,374 2,925/4,656 5,833/9,328

Sort-based inversion
40 1,791/2,702 3,496/5,291 6,993/10,695

100 1,820/2,726 3,558/5,328 7,097/10,710
150 1,837/2,739 3,592/5,361 7,158/10,749
256 1,884/2,759 3,727/5,411 7,722/11,021
300 2,041/2,805 4,088/5,500 8,955/12,048

Note that, for the sort-based method, the memory limits do not include
the space required to store the vocabulary. The times for constructing
document-level inverted files are shown in each column to the left, the
times for constructing word-level inverted files to the right.

JOURNAL OF THE AMERICAN SOCIETY FOR INFORMATION SCIENCE AND TECHNOLOGY—June 2003 725



construction of document-level inverted files, additional
temporary disk space of approximately 26% of the final
inverted file size is required, since front-coded index terms
account for a larger part of the runs.

Another trend is that running times are largely indepen-
dent of the volume of available main memory. Even 40 Mb
gives good running times and performance improves only
slightly with the amount of available main memory. The
main reason why small memory limits yield higher running
times is the increase in the number of runs generated, which
leads to more random disk seeks and transfer costs during
the merge phase. For a memory limit of 300 Mb, nine runs
are generated by the single-pass approach for collection
Web X. For a limit of 40 Mb, with a hash table lexicon 84
runs are constructed. Restricting memory usage from 300
Mb to 40 Mb increases inversion times by only around 2%.

Figure 4 shows the break-up of the running time for
word-level inversion with a hash table lexicon on collection
Web V. Typically around 35% of the total time is spent
merging runs. Parsing the collection into index terms is also
a major cost confirming that multiple-pass inversion ap-
proaches are not likely to perform well. The cost of sorting
the hash tables prior to generating a sorted run amounts only
to a tiny fraction of the total elapsed time. For a memory
limit of 40 Mb, 43 runs are processed and for a limit of 300
Mb only four sorting steps are required for the construction
of a word-level inverted file for collection Web V. These
sorting costs affect the overall performance but a hash table
still outperforms a burst trie by a small margin.

Table 4 presents the running times for the construction of
document-level and word-level inverted files using both
inversion techniques. For a fixed memory limit, the running
times of the single-pass approach appear to increase linearly
with collection size. On our standard machine using 256 Mb

of main memory, it takes, on average, less than 5 minutes to
construct a document-level inverted file for 1 Gb of text, and
less than 8 minutes when word positions are included in the
index.

When compared to the single-pass approach, the sort-
based approach is significantly slower. The fastest running
times of the sort-based approach are around 15% slower
than the fastest running times of the single-pass approach
for constructing a word-level inverted file. For building
document-level inverted files, the performance gap is larger
and the sort-based approach is typically around 20% slower.
For the single-pass approach, the best times are observed
with memory limits of 100–150 Mb; including lexicon size
as explained below, for the sort-based approach the best
times are observed when 106–198 Mb of memory is used.

An interesting trend in our experiments is that large
volumes of available main memory do not decrease running
times for the sort-based approach; rather, they affect the
performance adversely. We surmize that the increase in
running time is caused by the fact that longer runs must be
sorted. (However, for memory limits significantly below 40
Mb, inversion times rise dramatically due to merging costs.)
On the other hand, as fewer runs are generated, there is a
corresponding decrease in merge time, but these savings do
not compensate for the higher sorting costs, as Figure 5
illustrates. With a limit of 40 Mb, 77 runs are required for
building a word-level inverted file for collection Web V, and
146 runs for collection Web X, but for 300 Mb, the number
of runs is only 11 and 21, respectively; running times
increases by around 4%. The running times for constructing
document-level inverted files increase similarly with higher
main memory limits.

As discussed earlier, the sort-based approach maintains
in main memory a lexicon to map terms to term numbers,
which grows with collection size. These additional memory

FIG. 5. Breakup of the total elapsed time in seconds for constructing a
word-level inverted file for Web V, with the sort-based inversion approach,
for different main memory limits. The total elapsed time consists of the
time to parse, lookup, and compress postings, the time spent sorting the
accumulated postings, and the time to merge the runs. The total elapsed
time for the parsing process is approximately 778 seconds.

FIG. 4. Breakup of the total elapsed time in seconds for constructing a
word-level inverted file for Web V, with the single-pass inversion approach
and a hash table lexicon, for different main memory limits. The total
elapsed time consists of the time to parse, lookup, and compress postings,
the time spent sorting the hash tables to create a sorted run, and the time
to merge the runs. The total elapsed time for the parsing process is
approximately 778 seconds.

726 JOURNAL OF THE AMERICAN SOCIETY FOR INFORMATION SCIENCE AND TECHNOLOGY—June 2003



requirements are not included in the main memory limits in
our experiments. Around 66 Mb is required for the lexicon
of collection Web V, approximately 82 Mb for collection
Web X, and more than 148 Mb for Web XX. Hence, the
sort-based approach achieves its fastest running times on
collection Web V, not with 40 Mb, but effectively with
around 106 Mb of main memory.

As shown in Figure 5, sorting is a major cost of the
sort-based approach. We use the standard quicksort package
under the Linux operating system to sort accumulated post-
ings. It may be contended that a custom-built sorting algo-
rithm or an optimized implementation of the quicksort al-
gorithm could do better. We tried other sorting algorithms,
and a fast quicksort implementation based on work by
Bentley and McIlroy (1993), but achieved no gains in speed.
However, even if two-thirds of the sorting costs could be
saved—in our opinion an unlikely achievement—the sort-
based approach would still be slower than the single-pass
approach.

We also observe that, in common with the single-pass
approach, large volumes of main memory reduce the addi-
tional temporary disk space needed to store the sorted runs,
due to less compression leakage. In our experiments, the
sort-based approach requires for the construction of a word-
level inverted file around 5% more disk space than the final
inverted file. The size of the temporary storage space is
largely independent from the amount of available main
memory. Even with only 40 Mb of memory, temporary
storage space accounts for only around 6% of the final
word-level inverted files. Relatively more temporary stor-
age space is required for the construction of document-level
inverted files with an additional storage requirement of
around 16%.

Overall, the results of the single-pass approach are prom-
ising. For moderate volumes of main memory and the
construction of word-level inverted files, the single-pass
approach outperforms the sort-based approach in terms of
running time, by around 15%. The main reason why the
single-pass approach outperforms the sort-based approach is
the more efficient use of main memory and the avoidance of
sorting a large array of postings. Instead of accumulating
uncompressed postings in an array, then sorting and com-
pressing them when memory is filled up, postings are di-
rectly stored and compressed in bitvectors managed by the
lexicon. Each bitvector requires in our implementation 40
bytes for internal counters and variables alone, that is,
without storing any postings, but these additional costs are
offset by storing postings compressed in main memory. As
a result, significantly fewer runs are constructed and
merged—typically less than half compared to the sort-based
approach.

Each run contains the set of index terms that have oc-
cured since the last run, leading to higher storage require-
ments compared to the sort-based approach. However, for a
skewed distribution, the majority of index terms occur only
once throughout the collection and, as a result of emptying
the lexicon occasionally, main memory is not permanently

filled up by index terms that are never accessed again; thus,
main memory is used efficiently.

The empirical results of the inversion approaches do not
quite match the predicted times calculated earlier. The pre-
dicted times are faster than the measured times in our
experiments by around 10%. Given our basic computational
model, some inaccuracy is not surprising. However, the
relative performance of the inversion approaches in our
experiments matches the predictions: for a fixed memory
limit, the single-pass approach outperforms the sort-based
approach by a significant margin.

Improvements

We suggest that efficiency of the single-pass approach
can be improved by partitioning the index into b logical
buckets such that each is of roughly the same size and is
small enough to fit into main memory. Each bucket contains
a lexicon that is responsible for a range of lexicographically
adjacent index terms. The ranges Ri are nonoverlapping,
that is, Ri � (�i, �i) with Ri � Rj � 0 for 1 � i � j � b.
During index construction, each lexicon accumulates post-
ings of those index terms that belong to its corresponding
term range. To identify the corresponding bucket for a
posting, an in-memory data structure is queried that returns
the range into which a posting is to be inserted. We refer to
this structure as a range selector.

When main memory is exhausted, a bucket is chosen and
flushed to disk as a run. Runs are written into a file of
contiguous disk pages. This file is partitioned into b seg-
ments, one segment for each bucket. Each segment is de-
signed to accommodate all runs that are constructed by its
corresponding bucket, but if a segment overflows, addi-
tional storage space is allocated at the end of the file. To
construct the final inverted file, the segments are processed
one after the other and the runs from the current segment are
merged by an in-place multiway merge. Because the seg-
ments are designed to fit individually into main memory
and, because they are stored on contiguous disk pages, the
retrieval costs during merging are low.

Arranging runs in segments has potential advantages for
large volumes of text. Consider, for example, the inversion
of a text collections in the terabyte range on a workstation
with 1 Gb of main memory. For such a collection, a large
number of runs, say 1,000, would be generated by the
single-pass approach and the runs would be scattered among
a large temporary file whose size far exceeds that of main
memory. Input buffers help to decrease retrieval costs, but
to fill input buffers, we have to seek to file locations. In
contrast, a multiway merge of runs from a segment involves
more local disk activity and therefore disk accesses that are
less costly. Further, by choosing small segment sizes, the
number of runs to be merged can be kept small decreasing
costs for the heap management of runs. We surmize that, for
large volumes of text, these savings could amount to sub-
stantial gains.

JOURNAL OF THE AMERICAN SOCIETY FOR INFORMATION SCIENCE AND TECHNOLOGY—June 2003 727



The maximum size of an individual segment should be
limited by the volume of available main memory M. The
number of segments (and therefore also buckets), b, must be
chosen at the start of the inversion such that each segment
is smaller than M when merging starts. Since the exact size
of the temporary inverted file to be merged is not known for
a text collection a priori, b can only be approximated. For
this, we must take into account the size and characteristics
of the collection, the granularity of the inversion and the
compression scheme used, and the results of previous in-
versions of similar data. In our experiments on word-level
inversions of Web documents, we observed that the size of
the inverted file prior to the merge is typically around 15%
of the collection size S. For each of the b buckets, we have
to assign at the start of the inversion a fixed term range Ri.
Our approach is to build an in-memory inverted index for a
snapshot of documents of the collection. We then divide the
accumulated vocabulary into b term ranges such that each
range corresponds to a set of inverted lists of roughly the
same memory size.

There are several alternative ways to select buckets to be
written out to disk when main memory is full. One is to
write out the buckets that consume the most main memory.
However, this ignores the physical layout of the segments
on disk. Our approach is to maintain a list of buckets sorted
by the next write position in each bucket. We circle through
the list choosing the bucket that is closest to the last write
location.

We then tested the efficiency of single-pass inversion
using segmented inverted files of b in-memory buckets. The
aim is to optimize disk accesses, in particular when runs are
merged and when updates are migrated into a large inverted
file. Due to data and hardware limitations, however, instead
of inverting a 1 Tb collection with 1 Gb of available main
memory, which would result in a large number of runs to be
merged, we use in our experiments 64 Mb to build word-
level segmented inverted files for the 10 Gb collection Web
X. For this collection, we estimate that the size of the
segmented temporary inverted file is around 1.5 Gb and
preallocate for the b segments a large chunk of disk pages of
this size on disk. To minimize disk seeks during merging,
we employ for each run in a segment an input buffer of at
most 2.5 Mb resulting in a total memory requirement of the
input buffers below the memory limit. The term ranges are
determined by building an in-memory inverted file for the
first 1,000 documents in the collection and partitioning the
vocabulary into b ranges such that the sets of inverted lists
that belong to the term ranges are of roughly the same size.
No action is taken to limit the length of delimiter terms. We
use a burst trie in each bucket to accumulate the vocabulary
of its term range. We do not use hashing to organize buckets
because the storage requirements for b hash tables would
amount to a significant portion of the available main mem-
ory degrading overall performance.

Table 5 summarizes our experimental results. As shown,
using multiple buckets slightly decreases overall inversion
times compared to inversion with a single bucket. The best

results are achieved with 36 buckets; using more buckets
degrades performance, presumably because the overall
number of runs increases and higher costs for the construc-
tion of runs and memory management occur. Interestingly,
we observed that the time gains for b � 36 are achieved
during the merging phase. Merging the 36 segments takes
1,566 seconds, whereas 1,636 seconds are required to merge
the runs that are scattered among the temporary file when
only one segment is used. We surmize that these gains are
due to less disk activity during the merge phase. The results
confirm our design decisions for the multiple-bucket single-
pass approach. We anticipate that for larger inversions, the
performance gap between the segment-wise construction
and the nonsegment-wise construction of inverted files will
widen. Thus, from this preliminary work, we have shown
that segmented inverted files are fast to construct, and we
surmize that index maintenance of segmented inverted files
is a promising avenue to explore in future research.

Conclusions

We have surveyed existing approaches to inversion of
text databases. The main approaches described in the liter-
ature have significant drawbacks, in particular that the entire
lexicon must be held in memory. Previous comparisons
have shown that, of these approaches, sort-based inversion
is the most efficient. Our cost estimates confirm these re-
sults, which are substantially because the main alternative
approach requires two passes over the input data, and pars-
ing the input is a major cost.

We have proposed a new single-pass method that does
not require that the whole lexicon be in memory, and which
appears to be innately faster than the sort-based method. In
outline, this approach is based on simply constructing in-
memory inverted files for sequences of documents, continu-
ing until is memory is full, then flushing the inverted file and
its lexicon to disk. By making appropriate implementation
choices—choice of lexicon data structure, use of list and
lexicon compression, and choice of merging strategy—this
elementary approach yields excellent performance. Further

TABLE 5. Elapsed time and time spent on merging in seconds to con-
struct a segmented word-level inverted files with the multiple-bucket
single-pass inversion approach for the reference collection Web X for
different values of b using burst tries to organize the in-memory buckets.

b Total time Merge time

1 4,755 1,636
12 4,694 1,578
24 4,695 1,572
36 4,688 1,566
48 4,703 1,564
60 4,712 1,566
72 4,806 1,594

The first table entry with b � 1 refers to the times measured with the
original single-pass inversion approach. Main memory usage is limited to
64 Mb and the maximal size of each input buffer during merging is 2.5 Mb.

728 JOURNAL OF THE AMERICAN SOCIETY FOR INFORMATION SCIENCE AND TECHNOLOGY—June 2003



gains are made by treating the lexicon as a collection of
lexicographic partitions, to give good disk locality during
merging.

Overall, our single-pass approach is 15 to 20% faster
than the sort-based approach for small to large main mem-
ory limits on all tested collections from 5 to 20 Gb. This is
despite the fact that we allow the sort-based approach to
maintain its lexicon outside the memory limit; were the
limit enforced, the sort-based approach would not be prac-
tical for larger collections. The speed gains are achieved at
the expense of an increase in storage requirements, which,
however, is small. Our results show that the single-pass
inversion approach is the preferred method for inverted file
construction.

Acknowledgments

We thank Hugh Williams for his contributions to this
work. The project is supported by the Australian Research
Council.

References

Bell, T.C., Moffat, A., & Witten, I.H. (1994). Compressing the digital
library. In Proc. of the First Annual Conference on the Theory and
Practice of Digital Libraries, (pp. 41–46). College Station, TX.

Bentley, J.L., & McIlroy, M.D. (1993). Engineering a sort function. Soft-
ware—Practice and Experience, 23(11), 1249–1265.

Bertino, E., Ooi, B.C., Sacks-Davis, R., Tan, K.-L., Zobel, J., Shidlovsky,
B., & Catania, B. (1997). Indexing techniques for advanced database
systems. Boston, MAS: Kluwer Academic Press.

Elias, P. (1975). Universal codeword sets and representations of the inte-
gers. IEEE Transactions on Information Theory, IT-21(2), 194–203.

Fox, E.A., & Lee, W.C. (1991). FAST-INV: A fast algorithm for building
large inverted files, Technical Report TR 91-10, Virginia Polytechnic
Institute and State University, Blacksburg, VA. England Cliffs, NJ.

Frakes, W.B., & Baeza-Yates, R. (Eds.) (1992). Information retrieval: Data
structures and algorithms. Prentice-Hall.

Golomb, S.W. (1966). Run-length encodings. IEEE Transactions on Infor-
mation Theory, IT-12(3), 399–401.

Harman, D. (1995). Overview of the second text retrieval conference
(TREC-2). Information Processing and Management, 31(3), 271–289.

Harman, D.K., & Candela, G. (1990). Retrieving records from a gigabyte
of text on a minicomputer using statistical ranking. Journal of the
American Society for Information Science, 41(8), 581–589.

Heinz, S., & Zobel, J. (2002). Practical data structures for managing small
sets of strings. In M. Oudshoorn, (Ed.), Proc. Australasian computer
science conf., Melbourne, Australia (pp. 75–84).

Heinz, S., Zobel, J., & Williams, H.E. (2002). Burst tries: A fast, efficient
data structure for string keys. ACM Transactions on Information Sys-
tems, 20(2), 192–223.

Melnik, S., Raghavan, S., Yang, B., & Garcia-Molina, H. (2001). Building
a distributed full-text index for the Web. In Proc. of the tenth interna-
tional conference on World Wide Web. ACM, (pp. 396–406). Orlando,
FL.

Moffat, A., & Bell, T.A.H. (1995). In situ generation of compressed
inverted files. Journal of the American Society of Information Science,
46(7), 537–550.

Moffat, A., & Zobel, J. (1996). Self-indexing inverted files for fast text
retrieval. ACM Transactions on Information Systems, 14(4), 349–379.

Ribeiro-Neto, B.A., de Moura, E.S., Neubert, M.S., & Ziviani, N. (1999).
Efficient distributed algorithms to build inverted files. In ‘SIGIR ’99:
Proceedings of the 22nd annual international ACM SIGIR conference on
research and development in information retrieval, August 15–19, 1999,
(pp. 105–112). Berkeley, CA, ACM.

Rogers, W., Candela, G., & Harman, D. (1995). Space and time improve-
ments for indexing in information retrieval. In Proc. of 4th annual
symposium on document analysis and information retrieval (SDAIR
’95). University of Nevada at Las Vegas.

Salton, G., & McGill, M.J. (1983). Introduction to modern information
retrieval. New York: McGraw-Hill.

Scholer, F., Williams, H.E., Yiannis, J., & Zobel, J. (2002). Compression
of inverted indexes for fast query evaluation. In Proc. ACM-SIGIR Int.
conf. on research and development in information retrieval, (pp. 222–
229). Tampere, Finland, August 2002.

Sedgewick, R. (1998). Algorithms in C, 3rd ed. Reading, MA: Addison-
Wesley.

Williams, H.E. (1998). Indexing and retrieval for genomic databases. PhD
thesis, Department of computer Science, RMIT University, Melbourne,
Australia.

Williams, H.E., & Zobel, J. (2001). Searchable words on the Web. Inter-
national Journal of Digital Libraries. To appear.

Witten, I.H., Moffat, A., & Bell, T.C. (1999). Managing gigabytes: Com-
pressing and indexing documents and images, 2nd ed., San Francisco,
CA: Morgan Kaufmann.

Zobel, J., Heinz, S., & Williams, H.E. (2001). In-memory hash tables for
accumulating text vocabularies. Information Processing Letters, 80,
271–277.

JOURNAL OF THE AMERICAN SOCIETY FOR INFORMATION SCIENCE AND TECHNOLOGY—June 2003 729


