
 Open access Journal Article DOI:10.14778/1920841.1920996

Efficient skyline evaluation over partially ordered domains — Source link

Shiming Zhang, Nikos Mamoulis, David W. Cheung, Ben Kao

Institutions: University of Hong Kong

Published on: 01 Sep 2010 - Very Large Data Bases

Topics: Skyline

Related papers:

 The Skyline operator

 Shooting stars in the sky: an online algorithm for skyline queries

 Topologically Sorted Skylines for Partially Ordered Domains

 Efficient Progressive Skyline Computation

 Stratified computation of skylines with partially-ordered domains

Share this paper:

View more about this paper here: https://typeset.io/papers/efficient-skyline-evaluation-over-partially-ordered-domains-
15zaamj1l9

https://typeset.io/
https://www.doi.org/10.14778/1920841.1920996
https://typeset.io/papers/efficient-skyline-evaluation-over-partially-ordered-domains-15zaamj1l9
https://typeset.io/authors/shiming-zhang-2ph5z7vksg
https://typeset.io/authors/nikos-mamoulis-13ouii2wij
https://typeset.io/authors/david-w-cheung-2rh94k5ohw
https://typeset.io/authors/ben-kao-5byw9qyv1d
https://typeset.io/institutions/university-of-hong-kong-1m2nmkpy
https://typeset.io/conferences/very-large-data-bases-hqmyzr0f
https://typeset.io/topics/skyline-2v5aynet
https://typeset.io/papers/the-skyline-operator-15cu1bh0ds
https://typeset.io/papers/shooting-stars-in-the-sky-an-online-algorithm-for-skyline-4rx1em92uh
https://typeset.io/papers/topologically-sorted-skylines-for-partially-ordered-domains-1jjendf8nx
https://typeset.io/papers/efficient-progressive-skyline-computation-15ja2bilzo
https://typeset.io/papers/stratified-computation-of-skylines-with-partially-ordered-4bdr2l99ok
https://www.facebook.com/sharer/sharer.php?u=https://typeset.io/papers/efficient-skyline-evaluation-over-partially-ordered-domains-15zaamj1l9
https://twitter.com/intent/tweet?text=Efficient%20skyline%20evaluation%20over%20partially%20ordered%20domains&url=https://typeset.io/papers/efficient-skyline-evaluation-over-partially-ordered-domains-15zaamj1l9
https://www.linkedin.com/sharing/share-offsite/?url=https://typeset.io/papers/efficient-skyline-evaluation-over-partially-ordered-domains-15zaamj1l9
mailto:?subject=I%20wanted%20you%20to%20see%20this%20site&body=Check%20out%20this%20site%20https://typeset.io/papers/efficient-skyline-evaluation-over-partially-ordered-domains-15zaamj1l9
https://typeset.io/papers/efficient-skyline-evaluation-over-partially-ordered-domains-15zaamj1l9

Efficient Skyline Evaluation over Partially Ordered Domains∗

Shiming Zhang, Nikos Mamoulis, David W. Cheung, and Ben Kao
Department of Computer Science,The University of Hong Kong

Pokfulam Road, Hong Kong

{smzhang, nikos, dcheung, kao}@cs.hku.hk

ABSTRACT

Although there has been a considerable body of work on skyline
evaluation in multidimensional data with totally ordered attribute
domains, there are only a few methods that consider attributes with
partially ordered domains. Existing work maps each partially or-
dered domain to a total order and then adapts algorithms for totally-
ordered domains to solve the problem. Nevertheless these methods
either use stronger notions of dominance, which generate false pos-
itives, or require expensive dominance checks. In this paper, we
propose two new methods, which do not have these drawbacks.
The first method uses an appropriate mapping of a partial order to a
total order, inspired by the lattice theorem and an off-the-shelf sky-
line algorithm. The second technique uses an appropriate storage
and indexing approach, inspired by column stores, which enables
efficient verification of whether a pair of objects are incompatible.
We demonstrate that both our methods are up to an order of magni-
tude more efficient than previous work and scale well with different
problem parameters, such as complexity of partial orders.

1. INTRODUCTION
Research on skyline evaluation [3, 18, 22, 25, 31] is generally re-

stricted to dimensions with totally ordered domains (TODs) relying
on the natural correspondence of user preferences to value ordering
in such domains. However, in real applications, data may include
attributes that are categorical and partially ordered in nature, such
as interval data (e.g., temporal data), type/class hierarchies (e.g., se-
mantic ontologies), and set-valued domains (e.g., DNA segments).
Furthermore, preferences may be indirectly (i) induced from con-

ditional preference networks (CP-nets) [4]; (ii) mined by prefer-
ence learning [16]; or (iii) derived as aggregated preferences in sub-
spaces [21]. In most cases, such indirectly derived preferences can
only be modeled as partial orders. Skyline evaluation for objects
having attributes with partially ordered domains (PODs) is compu-
tationally expensive due to the index-resistance of PODs and the
increased cost of dominance checks in them.

Previous work [6, 24, 25, 31] relies on partial-to-total order map-
ping schemes. A single value in the POD is mapped to a set of

∗Work supported by grant HKU 715509E from Hong Kong RGC.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee. Articles from this volume were presented at The
36th International Conference on Very Large Data Bases, September 1317,
2010, Singapore.
Proceedings of the VLDB Endowment, Vol. 3, No. 1
Copyright 2010 VLDB Endowment 21508097/10/09... $ 10.00.

values in a two-integer domain; then, a dominance check translates
to a set of comparisons in the transformed space. The first work
in this direction (i.e., SDC [6]) considers static (i.e., pre-defined)
PODs. TSS [24] defines the partial-to-total ordering based on a
topological ordering, while extending at the same time the ideas
of [6] to verify dominance among incomparable attributes in the
partial order. These solutions suffer from a large number of false
positives/misses, which are produced by the partial-to-total order
mapping and have to be checked explicitly.

This paper identifies some uninvestigated properties of partially
ordered preferences and exploits them to optimize skyline evalua-
tion on data with PODs. Two approaches are proposed to solve this
problem, namely CPS (Chain-Product decomposition Skyline) and
SCL (Strata Cyclic Linked skyline). Our first method (i.e., CPS)
is inspired by the lattice theorem [17, 30]: any partially ordered

set can be embedded into a product of chains. Formally speaking,
for a partially ordered set (poset) p there exists a mapping function

φ : p 7→
∏d(p)

i=1 [ci] (where [ci] = {0, 1, . . . , ci − 1} and d(p) is
the intrinsic dimensionality of p) that embeds p into the product
of d(p) chains. A chain [ci] is a totally ordered set, meaning that
all original dominance relationships in the poset p can be entirely
preserved in a chain-product decomposition scheme. Thus, any ef-
ficient skyline algorithm for totally ordered domains can directly
be applied to compute the skyline in the transformed space, with-
out the need of defining any strong or special dominance conditions
like the m-dominance in [6] or the t-dominance in [24].

Our second method (i.e., SCL) accelerates the dominance test
between two objects o and o′ by identifying a pair i, j of conflict-

ing dimensions, such that o[i] dominates o′[i] and o′[j] dominates
o[j]. The main observation is that on the average, an incompa-

rability test is much cheaper than a dominance test in the com-

plete set of dimensions. A good algorithm should identify a pair
of conflicting dimensions by applying less than d comparisons (in
a d-dimensional problem). To facilitate incomparability checking,
SCL employs a column-store style storage, where objects having
the same value in a (partially ordered) domain are stored together
in a chunk; incomparability can then be verified by fetching a small
number of column segments. To avoid expensive joins for locating
objects in different columns, SCL connects the columns using a
cyclic link data structure. Our empirical evaluation shows that CPS
and SCL outperform the competitors (i.e., SDC and TSS) by a wide
margin in response time and I/O and they exhibit better scalability.

2. RELATED WORK
This section reviews related work on skyline evaluation, for TODs

and PODs. We also discuss some advanced preference models,
which involve preference elicitation and optimization.

1255

2.1 Skyline evaluation in TODs
The skyline query (also known as maximal vector computation)

retrieves objects that are not dominated by others in a multidimen-
sional space. [3] was the first work on this problem within the
database community, which compared a basic divide and conquer

(D&C) approach against an algorithm that works in a block nested

loop (BNL) fashion. BNL is better on the average case, however,
it may not scale well because it may require a large number of data
passes until the complete skyline is computed. In view of this, [10]
proposed sort filter skyline (SFS), which sorts the whole dataset us-
ing a monotone function (e.g., sum of normalized coordinates or
entropy), before applying BNL. Sorting guarantees that an object
cannot be dominated by objects that follow in the order. Optimized
versions of SFS (i.e., LESS and SaLSa) were later proposed in [14]
and [1]. Finally, the object-based space partitioning (OPS) sky-
line algorithm [31] operates in a similar fashion, but organizes the
skyline found so far in a left-child/right-sibling tree, which accel-
erates the checking of whether the currently read point is already
dominated by the found skyline.

The above scan-based approaches do not rely on any predefined
index over the data. A set of other techniques [3, 18, 19, 22, 27]
require that the data are already indexed before skyline evaluation.
The branch and bound skyline (BBS) algorithm introduced in [22]
is an optimized approach that operates on an R-tree. BBS iden-
tifies the skyline points progressively, prioritizing node and ob-
ject accesses according to distance to the best point in the search
space. BBS is shown to be I/O optimal and superior to previous ap-
proaches. [19] proposed a ZBtree that indexes the objects with the
help of a Z-order curve, which is compatible with the dominance
relation. This way, redundant dominance checks are avoided and
the ZBtree is found more appropriate than the R-tree.

A thorough space and time complexity analysis for skyline com-
putation was conducted in [14]; besides, skyline cardinality estima-
tion has been studied in [32]. Skylines in high dimensional spaces
tend to be large and hard to interpret and use. For this reason, sky-
line definitions that consider dimensional subspaces [7, 28] have
been proposed. Moreover, efforts have been devoted to dynamic
skyline search [12, 8], probabilistic skyline computation [23] and
skyline computation over uncertain data [20].

2.2 Skyline evaluation in PODs
While most of the research has focused on totally ordered do-

mains, there has been a number of proposals [6, 24, 25] for sky-
line evaluation over partially ordered domains involving nominal
dimensions. SDC (Stratification by Dominance Classification) is
the first approach in this direction. For each partially ordered do-
main (POD), SDC computes a minimum spanning tree of the lattice
that defines the partial order and encodes the dominance relation-
ships implied by this tree in a two-integer domain. The transformed
domain can be indexed and algorithms like BBS [22] can be applied
to compute the skyline. However, this partial-to-total order domain
mapping mechanism does not entirely preserve all dominance re-
lationships in the original domain; as a result, false positives may
be included in the skyline of the transformed space. To alleviate
this problem, SDC distinguishes two different domain values in the
POD: completely covered values of which all dominating paths to
other values are included in the spanning tree; and partially covered

ones. This approach can be extended to organize objects into dif-
ferent disjoint strata based on their covered values in the spanning
tree, and the intermediate skyline points can be maintained into two
strata on-the-fly: the completely covered skyline points (stratum 1)
and the partially covered ones (stratum 2). Skyline points in stra-
tum 1 can directly be output, but those in stratum 2 could be false

positives, so they need to be cross-examined against all skyline
points in both strata. SDC+ is an optimized version of SDC that
further distinguishes partially covered objects into multiple strata
and organizes them in separate indexes to improve efficiency and
progressiveness. STARS (Streaming Arrangement Skyline) [25]
is an extension of SDC+ for streaming data. TSS (Topologically

Sorted Skyline) [24] avoids the overhead of SDC+ for managing
and checking false positives; in addition, skyline points are com-
puted progressively. TSS applies topological sorting on the poset,
generating a total order. However, directly computing the skyline
using this order may miss some skyline points, as two incomparable
values are now ordered. To alleviate this problem, TSS employs an
efficient, t-dominance check, which is based on an encoding using
a minimum spanning tree on the poset.

TSS has significantly lower cost compared to SDC because it
directly verifies misses using the encoded poset, at the expense of
increasing the space and I/O overhead, since quadratic space (in the
domain size) is required to encode the information of the topologi-
cal order, which is incompatible with the original partial order. The
performance of TSS is sensitive to the size of the skyline and the
density of the original poset, as verified by our experiments.

2.3 Preference querying processing
Skyline queries can be viewed as a special case of the Pareto

preference operator [9, 13]. The latter is based on a more general
dominance definition, which is not necessarily derived by consider-
ing preference orders on well-defined object dimensions, while the
skyline query explicitly considers total or partial orders at different
dimensions to define dominance. A straightforward way to solve
a Pareto preference problem is to indirectly define dimensions for
each Pareto preference function and treat the problem as a skyline
query on top of these custom-based dimensions. Preference frame-
works tailored to standard database systems have been introduced
in [9, 13]. These models are based on strict partial orders and they
are semantically rich, easy to handle, and flexible in representing
complex preferences which are ubiquitous in real-life applications.
Modeling and reasoning with such complex preferences has been
studied well in the AI community; a common model is the CP-
net [4] and its extensions [5]. Meanwhile, several operators were
proposed to evaluate preference queries (e.g., winnow operator and
best matches [9]) for the more general preference model. Another
interesting line of work addresses the problem of identifying a set
of attributes, for which an object is part of the skyline (e.g., the fa-

vorable facet in [21]). This problem can be viewed as the reverse
problem of computing the skyline for a given set of preferences.

3. PRELIMINARIES
Consider a set of objects O = {o1, o2, . . . , on} and a set of

preferences for them. Assume that each preference is expressed
by a partial or total order on an attribute domain. In other words,
given a set of d preferences, each preference pi is applied on a
different dimension i, considering each object as a d-dimensional
vector o = (o[1], o[2], . . . , o[d]). Di denotes the domain of the ith

dimension (which can be partially or totally ordered). We use this
simplified definition for simplicity. In general, preferences can be
defined by combining different attributes in a non-trivial manner
(e.g., in a CP-net [4]) to derive partial orders; this way, implicit
dimensions can be defined.

A partial order is a binary relation � over a domain Di , denoted
by (Di,�), satisfying reflexivity (i.e., a � a), asymmetry (i.e., if
a � b, then b � a cannot hold unless a = b), and transitivity (i.e.,
a � b and b � c implies a � c). If the binary relation ≺ holds in
the set Di, (Di,≺) is a strict partial order (a � b ⇔ a ≺ b ∨ a =

1256

b). A total order over a domain Di is a special case of partial order,
where a ≺ b or b ≺ a, ∀a, b ∈ Di, a 6= b. A domain with partial
(total) order is a partially (totally) ordered domain POD (TOD).

Given a partial order pi = (Di,�), ∀o, o′ ∈ O, o �pi o′ ⇔
o[i] � o′[i] can be interpreted as “o is better than or as good as o′

in the ith dimension w.r.t. pi”. By aggregating all preferences in
all dimensions P = {p1, p2, · · · , pd}, we can determine whether
an object is preferable over another. Specifically, an object o ∈ O
dominates o′ ∈ O with respect to P , denoted by o ≺P o, if and
only if o is better than or as good as o′ in all dimensions and strictly
better than o′ in at least one dimension, i.e., o ≺P o′ ⇔ {∀i ∈
[1, d], o �pi o′} ∧ {∃j ∈ [1, d], o ≺pj o′}. If o ⊀P o′ and o′ ⊀P

o, we say that o and o′ are incomparable, denoted by o ∼ o′. The
skyline of O over P , denoted by S(O,P), is the superior subset of
O containing all objects that are not dominated by any others in O
with respect to P , i.e., S(O,P) = {o ∈ O|∄o′ ∈ O\o, o′ ≺P o}.

As for any value v ∈ Di in a partial order pi, the set of superiors

(resp. inferiors) of v is defined by sup(v) = {u ∈ Di|u ≺pi v}
(resp. inf(v) = {u ∈ Di|v ≺pi u}). Similarly, the parents (resp.
sons) of v are par(v) = {u ∈ Di|u ≺pi v, ∄z ∈ Di, u ≺pi

z ≺pi v} (resp. son(v) = {u ∈ Di|v ≺pi u, ∄z ∈ Di, v ≺pi

z ≺pi u}). The set of incomparable pairs inc(pi) of pi is de-
fined by inc(pi) = {(v, u)|v, u ∈ Di, v ∼ u in pi}. inc(pi) is
an irreflexive and symmetric binary relation on Di w.r.t. pi, i.e.,
(v, u) ∈ inc(pi) implies that (u, v) ∈ inc(pi). The dominance

level l(v) of value v in a partial order pi is defined as l(v) = 0
if par(v) = ∅; otherwise, l(v) = max{l(u)|u ∈ par(v)} + 1.
Therefore, v ≺pi u implies l(v) < l(u), l(v) = l(u) implies
v ∼ u, and the dominance level defines a topological order for pi.
Finally, a total order of size c can be isomorphically represented by
a chain of the first c non-negative integers {0 < 1 < · · · < c− 1},
denoted by [c]. A table is included in Appendix A to denote the
most frequently used notation throughout the paper.

4. CHAINPRODUCT APPROACH
In this section we describe our first method: chain-product sky-

line (CPS). We first discuss how a partial order can be embedded
into a product of chains. Then, we adapt an efficient skyline algo-
rithm over TODs to operate on the transformed space.

4.1 Embedding into Products of Chains
The lattice theorem in combinatorics [29, 30] states that the sub-

set of the Cartesian product of some chains is a partial order and
that any partial order can be embedded into a chain product, dually.
Figure 1 shows an exemplary product of two chains (i.e., [3]× [4])
as a lattice. A subset of this lattice (shown with solid lines) consists
of 8 elements {a, b, c, d, e, f, g, h} in a partial order; there are also
four nodes of the lattice (i.e., 0, 1, i and j) which do not correspond
to any data element. Conversely, the partial order defined by the
solid arrows in this figure can be embedded into the product of two
chains, such that each element is represented by a tuple in the 2D
space (e.g., a ↔ (0, 1), f ↔ (2, 2)).

(2,0)i

(2,3)1

(2,1)e

(1,0)d

(0,0)0

(0,1)a

(0,2)b

(0,3)j

(1,3)c

(1,1)h

(2,2)f

(1,2)g 0

1

2

3

0

1

2

Figure 1: Partial order and a [3]×[4] Chain product

Formally, there exists a bijective mapping φ : Di 7→
∏mi

j=1[cj]

that embeds a partial order pi = (Di,�) into a product of mi

chains. Each element v ∈ Di is encoded as an mi-tuple (i.e.,
φ(v) = (v[1], v[2], · · · , v[mi]), such that ∀j ∈ [1,mi], v[j] ∈
[cj]). Then, for any pair of elements (v, u) ∈ Di, it holds that v �
u ⇔ φ(v) � φ(u) (i.e., v � u ⇔ {∀j ∈ [1,mi], v[j] ≤ u[j]}).

Therefore, the embedding of partial order into a chain product is
an isomorphic mapping, and the dominance relationships between
values in the poset are preserved by the embedding. The minimum
number of chains that tightly embed the given partial order pi is
the dimensionality of pi, denoted by d(pi). Finding d(pi) is NP-
complete when d(pi) ≥ 3, while detecting whether d(pi) ≤ 2 can
be done in polynomial time [29, 30]. Thus, there have been efforts
in finding an approximate optimal embedding based on heuristics
[29, 30]. In this paper, we adopt the embedding method proposed
in [30]. This approach is formally presented in Appendix B. Here,
we give a high-level intuitive view of the algorithm.

In a nutshell, given pi, the chain decomposition method gener-
ates a sequence of chains. Each value v ∈ pi is mapped to value
v[j] in chain [cj]. Each chain preserves a topological order of pi.
Given two incomparable objects u and v in pi (i.e., u ∼ v), the
method makes sure that there exist two chains [cj] and [ck] such
that u[j] < v[j] and u[k] > v[k].

If we consider pi as a directed graph (e.g., Figure 2(a)), then a
chain, which is a total order, can be constructed by adding some
edges between incomparable values in the graph. For example, in
Figure 2(a), a chain has to “include” either the edge (a, d) or the
edge (d, a) for the incomparable values a and d. Note that some
edges are redundant and need not be added. For example, if we
have added edge (d, a) then we need not add (d, b), since the order
d ≺ b is implied by d ≺ a and a ≺ b. Thus, when constructing a
chain, those redundant edges need not be considered. Figure 2(b)
shows a graph G(pi) which captures redundancy between incom-
parable value pairs inc(pi) of pi. When constructing the chains,
we only consider vertices in G(pi) without any incoming edges.

Obviously, the total order given by a chain [cj] should not con-
flict with the partial order pi. This restricts what edges should be
added to pi to obtain a chain. For example, we should not add both
(d, a) and (b, d) because that induces the cycle d → a → b → d.
The two edges are thus incompatible. We represent such conflicts
by a graph G∗(pi) in which incompatible pairs are connected by
an edge. Figure 2(c) shows an example. By coloring G∗(pi), we
can identify sets of pairs, which, when added to pi, define a total
order (i.e., a chain). For example, the graph in Figure 2(c) can be
colored using two colors (0 and 1). The corresponding total orders
(chains) are shown in Figure 2(d). The reader can verify that if the
ordered pairs colored 0 in Figure 2(c) are included in pi, this would
imply total order C0. Note that graph coloring guarantees that for
each pair of inc(pi) in a chain, there will be another chain, where
the order of this pair is reversed. The next step is to minimize the
domains of the chains (see Figure 2(e)). We start a counter 0 for
the first value of a chain (e.g., a = 0 in C0). Then we increase the
count only if the relationship with the next element is not implied
by another chain. For example, since a ≺ b is implied by C1, we
set b = a = 0 in C0, but b ≺ d is not in C1, so d = b + 1 = 1.
This process encodes the coordinates of each value of pi in the cor-
responding chain. Figure 2(f) shows the coordinates of all values
after the chain-product embedding of pi.

4.2 Intuitive Skyline Framework
After converting each partial order into a product of totally or-

dered domains, we can easily transform a hybrid d-dimensional
space ℜd (over totally and partially ordered domains) into a pure to-
tally ordered isomorphic space NΦ(d) through a set of isomorphic

1257

a

b

c

d

e

f

(c,f)
(a,d)

(d,b)
(e,b)

(d,a) (b,d)
(b,e)

(c,e)

(f,c)
(e,c)

(f,c)

(c,e)

(a,d)

(d,a)
(b,d) (e,b)

0

1

0

0

1

1

(a) pi = (Di,�) (b) G(pi) (c) G∗(pi)

C0:(a b d c e f)

C1:(d a e b f c)

0 1 2 3 4 5

0 1 2 3 4 5

C0:(a b d c e f)

C1:(d a e b f c)

0 0 1 1 2 2

0 1 1 2 2 3

a:(0,1) d:(1,0)

b:(0,2) e:(2,1)

c:(1,3) f:(2,2)

(d) strict embedding (e) tight embedding (f) final encoding

Figure 2: An example on φ : Di 7→ [3]× [4]

mapping functions Φ = {φi|i ∈ [1, d]}, where N denotes the do-
main of integers, φi the isomorphic mapping function over partial
order pi, and Φ(d) the resulting dimensionality (obviously, Φ(d) =∑d

i=1 d(pi)). (For clarity, we assume each total order pi can be iso-
morphically mapped to a single chain.) Then, each object o ∈ O
is simply represented as a tuple (φ1(o[1]), φ1(o[2]), · · · , φd(o[d]))

in the isomorphic space NΦ(d).
With this representation, we can directly apply any off-the-shelf

skyline algorithm for totally ordered data (see Section 2.1) to NΦ(d)

to derive the skyline in ℜd. We use CPS (for Chain-Product de-

composition Skyline) to denote this framework. In order to perform
a fair comparison between CPS and the previous proposals (i.e.,
SDC and TSS) for partially ordered domains, we index the data in
the transformed space NΦ(d) using a R-tree and we use an adapta-
tion of BBS [22] to compute the skyline. Note that SDC and TSS
also use R-trees and BBS during skyline evaluation. In order to
minimize dominance checks we embed some ideas of the OSP al-
gorithm [31] in BBS. The skyline points found so far during BBS
traversal are organized in a left-child/right-sibling (LSRS) skyline
tree (as in OSP), which supports efficient dominance checking with
the help of bitwise operations. When a candidate point needs to be
checked against the current skyline points, we use the LSRS tree to
perform the dominance test. In addition, when an intermediate R-
tree entry e is accessed we access the LSRS tree to check whether
the lower-left corner point e− of e’s MBR is dominated by any of
the current skyline points. If yes, then e (and the corresponding
R-subtree) is pruned; otherwise, the contents of the R-tree node
pointed by e are inserted in the BBS search heap.

5. STRATA CYCLIC LINKED APPROACH
In this section, we propose a new skyline technique over PODs,

based on a specialized data storage organization. From Section 3
recall that the dominance level l(v) is a function applied on the val-
ues v in a partial order pi to define a topological order of pi (i.e.,
v ≺pi u implies l(v) < l(u) and l(v) = l(u) implies v ∼ u). If,
for a pair of objects o and o′, there are at least two distinct dimen-
sions i and j, where l(o[i]) > l(o′[i]) and l(o[j]) < l(o′[j]), then
o and o′ must be incomparable. This observation inspired us to
employ a special storage scheme which facilitates incomparability
tests between objects; to prove that a pair of objects is incompara-
ble, it suffices to find two dimensions where they are incomparable.
The storage scheme, inspired by column-stores [26, 15], organizes
the objects in different columns based on their values in the differ-
ent dimensions. Each column corresponds to a dimension (i.e., a
POD or a TOD). This allows checking for incomparability between
objects by comparing their values in the different dimensions, but
without having to fetch the entire set of attribute values for two
objects that are compared.

The basic column-store architecture has the drawback of requir-
ing expensive joins, when it comes to finding the value of a given
object in different dimensions. In order to alleviate this problem,
we develop a special strata cyclic linking structure, which links all
columns, as shown in Figure 3. Each column is stored in a separate
file, where all objects are grouped by their values in the correspond-
ing dimension. Each group c in a column is called a chunk and
corresponds to a value c.val in the corresponding domain. In a col-
umn Di, the chunks are physically ordered according to dominance
level of their values in dimension i. In each chunk c of a POD, we
encode c.val using the chain-product decomposition encoding (cf.
Section 4). This allows for efficient dominance checking between
values in the domain; otherwise, traversal of the poset graph might
be required. In addition, for each column Di, we store in a hash ta-
ble Mi the addresses of its chunks; given a value v in dimension i,
Mi returns in O(1) time the address of chunk c, where c.val = v.

Each chunk consists of multiple strata, where objects are grouped
based on their value in the next linked dimension. That is, objects in
the same chunk, which also have the same domain value in the next
linked column, are grouped into the same stratum with a pointer
storing the address of the corresponding chunk in the next column.
Each stratum is identified by its locating chunk-id and a stratum-id
within the chunk (i.e., ci and sk in Figure 3). Note that there are
links only between every column and the next one in order. Simi-
larly, the last column links back to the first one. The strata in the
same chunk are ordered based on the dominance level of their link-
ing chunks at the next column. Appendix C provides details on the
construction and maintenance of this data structure.

1D iD dD

s1 1, 2,o o

3, 5,o o

Chunk

Stratum

link
sk

ci

O1,O2,···s1

ci

······

O1,O8,···s1

cm

······

O1,O3,···
s1

cz

······

2D

O1,O5,···s1

ct

······
O2,O4,···sk

······

Figure 3: Storage Scheme and Strata Cyclic Links

5.1 Data Strip and Data Strip Level
Now, we define the concepts of data strip and data strip level,

which are used by our algorithm.

DEFINITION 1. The data strip St(o) and data strip level lS(o)
of an object o ∈ O are defined as:

St(o) =

d⋃

i=1

{c ∈ Di|o[i] ⊀pi c.val}

lS(o) =

d∑

i=1

l(o[i])

St(o) is the set of chunks in all dimensions corresponding to
values that are not inferior to the values of o, and lS(o) is the sum
of dominance levels of o across columns; lS(o) defines a global
topological order for the objects. We construct a new column L
which stores the objects and their data strip levels to facilitate in-
comparability validation. For each object o, L stores lS(o) and a
file pointer linking to the chunk storing o and having the minimal
dominance level across columns. L is not cyclically linked with
other columns. Consequently, the values of any object o can be ac-
cessed by following the link from L to a chunk that contains o and

1258

then follow the stratum pointers to all columns cyclically. Mean-
while, within each chunk/stratum c we keep track of the lower and
upper bound of the strip levels of its containing objects as l−S (c)
and l+S (c), i.e., lS(o) ∈ [l−S (c), l+S (c)], ∀o ∈ c. These values help
to prune the search space during skyline evaluation. The following
example illustrates the details of the storage organization.

l=0

l=1

l=2

D2

c5(2,1)

s1

s2

O9

O7

c6(2,1)

s1

s2

O6

O1

c4(2,0)

s1

s2 O8

O2
c3(1,1)

s1 O3

c1(0,1)

s1

s2 O5

O0

c2(1,0)

s1 O4

D1

c2(0)

s1 O3

c3(1)

s1 O2

c1(0)

s1

s2 O1O6

O7

c4(2)
s1

s2 O9

O4

c5(2)
s1

s2 O8

O0O5

D3

c2(0)

s1 O3

c4(2)

s1

s2 O8O5

O1O7

c1(0)

s1 O2

c3(1)

s1

s2

O6

s3 O0

O4O9

L

O0 3

O1 4

O2 2

O3 1

O4 3

O5 4

O6 3

O7 4

O8 5

O9 5

D1.c2

D3.c1

D2.c1

D2.c1

D1.c1

D1.c1

D1.c1

D2.c1

D2.c4

D3.c3

Figure 4: An example of strata cyclic linked column stores

Consider a dataset including 10 objects with 3 PODs, as shown
in Figure 4. There are 5, 6 and 4 chunks stored in dimensional
columns D1, D2 and D3, respectively. For example, chunk c1
in D1, denoted as D1.c1, contains two strata containing {o7} and
{o1, o6}, respectively. The dashed arrows indicate the dominance
relations in the three domains. The links from strata to chunks in
other domains are omitted, but they can easily be deduced, e.g., the
first stratum in the chunk c1 of D1 links to chunk c5 in D2, due
to object o7. The labels on the left (e.g., l=1) indicate the domi-
nance levels in the three partial orders. The embedding code of the
domain value for a chunk is shown in a bracket over it (e.g., (2, 1)
for chunk c5 of D2). For each object in L there is a link to its con-
taining chunk with the smallest dominance level among the three
columns. For instance, o3’s link points to c2 in D1.

5.2 Skyline Evaluation over Columnstores
The Strata Cyclic linked Skyline (SCL) algorithm is based on the

following lemmas.

LEMMA 1. For any object s in the skyline S(O,P), strip St(s)
includes all objects in S(O,P); i.e., S(O,P) ⊆ St(s).

LEMMA 2. For a given object o ∈ O, let Λi(o) = {o′ ∈

O\o|o′[i] ∈ sup(o[i]) ∨ o′[i] = o[i]}. If
⋂d

i=1 Λi(o) = ∅, then

o must be in the skyline; otherwise, o must be dominated by any

surviving objects (except o’s duplicates).

Lemma 1 defines a search space for skyline evaluation. SCL
should first pick a skyline object τ , whose strip St(τ) covers a
small volume of chunks in all columns. The objects having the
minimum lS(o) value are guaranteed to be in the skyline and their
St(o) should be small. For example, τ = o3 in Figure 4 is a skyline
object and the chunks in data strip St(o3) (shaded in the figure)
include all skyline objects (these are {o0, o2, o3, o4, o6, o7}).

Lemma 2 implies that we can apply an intersection operator over
columns to verify the dominance relationships among a set of ob-
jects against a given object o, and in turn detect whether o is in the
skyline. Algorithm 1 summarizes the procedure for computing the
skyline using our storage organization.

After finding the pivot skyline point τ with minimal lS(τ), the
algorithm sets St(τ) as the search space. St(τ) can be determined
easily if we know the value τ [i] of τ in each dimension i; for each
value v, such that τ [i] ⊀ v, hash table Mi is used to find the
address of chunk c for which c.val = v. Chunks in St(τ) are
accessed in an increasing order of their l(c) values (line 5); this
order helps identifying the skyline objects earlier, which are used

Algorithm 1: Strata Cyclic Linked Skyline (C)

Input: C = {D0,D1, · · · ,Dd−1,L}–Strata cyclic linked columns
Output: S – Skyline object ids in C
Initialize priority queues H and T to be empty ✄priority on lS(·)1

Put all top objects of L into S ✄ initial skyline2

τ := an object from S3

while St(τ) is not empty do4

Remove the chunk c with minimal l(c) from St(τ) and push its5

contents into T
Remove all known skyline/non-skyline objects from T ; push all6

skyline ones to H and erase non-skyline objects from c
if T is not empty then7

Di := c’s locating column in C, j := (i+ 1) mod d8

Collect all strata s ∈ sup(c) in Di, s.t. l−S (s) < l+S (c), to H9

while T is not empty ∧ j 6= i do10

Remove {h ∈ H|∄t ∈ T , h ≺ t over Dj} from H11

Push {t ∈ T |∄h ∈ H, h ≺ t over Dj} into H and S; Remove12

them from T
Update each stratum in H and T with its linked strata in Dj13

j = (j + 1) mod d ✄next linked column14

if H is not empty then15

Erase all remaining objects in T from the top chunk c in Di16

Clear H17

else Move all objects from T to S18

to prune objects in later chunks faster. Assume that c is the next
chunk of St(τ) accessed in this order, and that c is contained in
column Di. Objects in c that are in the skyline are pushed to a heap
H. Others that are not marked as non-skyline objects, are pushed to
another heap T (line 6). In addition, all strata in superior chunks of
c are pushed to H; these are candidate skyline objects which may
dominate those in T (line 9).

While T is not empty, the next column is accessed (i.e., Dj ,
where j = (i + 1) mod d). The key module of the algorithm is
to validate the incomparabilities among objects in the two heaps T
and H across columns (lines 10–14). First, all strata in H, which
cannot dominate any strata in T at the next column Dj , are re-
moved from H. Dually, the algorithm evaluates whether there exist
some strata in T which cannot be dominated by any strata in H over
Dj . All these objects are confirmed to be in the skyline (i.e., they
pass the incomparability test), so they are moved to the skyline set
S. In addition, they are inserted into H, since they may dominate
some remaining candidates in T (lines 11–12). The dominance
among a pair of strata in T and H can be determined using their
chain-product embedding codes. In addition, the priority of T and
H on the lower bound of the strip levels can further accelerate dom-
inance checking, since a stratum can only be dominated by strata
with strip level smaller than its data strip level.

All surviving strata in T and H are intersected with their linked
strata in the next column to derive the new T and H for the next
loop (line 13). After crossing all columns, all objects that remain in
T must be in the skyline if H is empty; otherwise, they should be
dominated by some remaining skyline objects in H (lines 15–18).

Let us see how SCL operates on the example of Figure 4. First,
SCL finds τ = o3, the object with the smallest lS(o), and adds it to
the skyline S. Strip St(τ) (all shaded chunks in Figure 4) covers
all skyline candidates. The chunks in St(τ) are ordered based on
l(c) and l−S (c). The top chunk in St(o3) (i.e., D1.c2) is first picked
(line 5). For this, T is empty (line 7), as o3 ∈ D1.c2 is already
in the skyline. SCL proceeds to pick the next chunk in St(τ) (i.e.,
D3.c2) in the second loop, for which the same case applies (i.e.,
T is empty). The next chunk is D3.c1, which contains o2. Since
Lambda3(o2) = ∅, by Lemma 2, o2 is added to the skyline S. In
the next loop, D2.c2 is picked and o4 is added in S for the same

1259

reason. The next loop examines D1.c1 and directly adds o7 to the
skyline since it is the only object in the top stratum s1 of the top-
level chunk D1.c1; o7 is also added to H (since it may prune other
objects in D1.c1). Objects in D1.c1.s2 (i.e., o1 and o6) cannot be
confirmed so they are moved to T . By looking at the linked chunks
of o7 and T = {o1, o6} (i.e., D2.c5 and D2.c6), SCL sees that
o7 cannot dominate any objects in T since D2.c5 and D2.c6 are
incomparable. Hence, o7 is removed from H. Then, T is split
into two strata (i.e., s1, s2 in D2.c6). SCL proceeds to the next
column D3 to confirm o6 as a skyline object and prune o1, which is
dominated by o6 in D3, since a complete evaluation loop is finished
across three columns. Next, SCL will start a new loop from D2.c1,
and continue in this fashion until all chunks in St(o3) have been
examined, reporting the final skyline S = {o3, o2, o0, o4, o7, o6}.

6. EXPERIMENTAL EVALUATION
We experimentally evaluate the performance of the proposed al-

gorithms against two competitors: SDC+ [6] and TSS [24], us-
ing both synthetic and real datasets. The tested algorithms, listed
in Table 1, were all implemented in C++ with gcc 4.3.3 and the
experiments were conducted on a Linux 2.6.28-15-server with In-
tel(R) Core(TM)2 Quad 2.66GHz CPU and maximal 4GB RAM.
The page size on the server is fixed to 4KB and unless otherwise
stated, it uses a memory buffer of 512MB. We evaluate the algo-
rithms in terms of overall response time and page faults starting
with a cold buffer.

Algorithm Description

SDC+ Stratification by Dominance Classification [6] with OSP
TSS Topologically-sorted Skyline [24] with OSP
CPS Chain Product Skyline with OSP (Section 4)
SCL Strata Cyclic Linked Skyline (Section 5)

Table 1: Description of the algorithms

SDC+, TSS, and CPS operate on top of an R*-tree [2]. For each
partial order domain, a minimal spanning tree is computed and used
by SDC+ and TSS to index the data. This is consistent with the ex-
perimental settings in [6, 24]. For CPS, a tight embedding of each
partial order into chain products has been computed, as explained
in Section 4. Then, an R*-tree is used to index the transformed
data incorporating with the chain products; in addition, the OSP
scheme of [31] is used to maintain the skyline points, as explained
in Section 4.2. For fairness, we use the OSP scheme in the im-
plementation of SDC+ and TSS for maintaining skyline candidates
during BBS. On the other hand, SCL uses a different storage and
indexing scheme, based on column-wise decomposition.

6.1 Description of Data
We conducted our experimental evaluation using both synthetic

and real data. Three types of synthetic datasets, anti-correlated

(AC), uniform and independent (UI) and correlated (CO) distribu-
tions, were generated to model different scenarios according to the
methodology in [3]. All datasets are hybrid over partial order (PO)
and total order (TO) domains. For totally-ordered attributes, we
used integer values from the normalized domain [1,10000]. Each
partially ordered domain is generated as a random directed acyclic
graph (DAG), using two parameters: the width (ω) and density (ρ).
Given a pair of ω and ρ values, the complete lattice G is generated
by the product of ω 4-length chains (i.e., [4] = {0 < 1 < 2 < 3}),
which contains 4ω nodes. Then, each node is randomly removed
from G with a probability (1-ρ). The resulting graph is returned
as the final partial order, consisting of ρ22ω nodes on the average.
Obviously, d(G) ≤ ω, that is, the derived partial order can be em-
bedded into a product of at most ω chains. Table 2 enumerates the

parameters involved in our evaluations and their default values (in
bold face), e.g., the data cardinality (n) varies from 100 thousand
to 10 million, with a default data size of one million objects.

Parameters Values

Data Cardinality (n) 100K, 500K, 1M, 5M, 10M
of PO dimensions (|PO|) 2, 3, 4
of TO dimensions (|TO|) 2, 3, 4

Width per POD (ω) 2, 4, 6, 8
density per POD (ρ) 0.2, 0.4, 0.6 , 0.8, 1.0

Table 2: Parameters and Setting Values

To test the effect of the ω and ρ values to the complexity of the
resulting poset, we randomly generated 100 partial orders for ω =
6 and different values of ρ. Figure 5(a) shows the distribution of
d(G) in the resulting graphs. For example, for ρ = 0.4 more than
50% of the generated graphs have intrinsic dimensionality 3, even
though they were generated by a lattice of ω = 6 chains. In our
experiments, for each (ω, ρ) pair, we used only the partial orders
of the most frequent intrinsic dimensionality (e.g., for ω = 6 and
ρ = 0.4 we used the generated posets of dimensionality 3).

0.2 0.4 0.6 0.8 1.0
0

20

40

60

80

100

Density (�)

P
e
rc

e
n
ta

g
e
 (

%
)

1

2

2
2

2

3

3

3

3

4

4

4

5

5

5
4

6
6

6

2(0.6) 4(0.6) 6(0.2) 6(0.4) 6(0.6) 6(0.8) 6(1.0) 8(0.6)
10^1

10^2

10^3

10^4

10^5

10^6

Width (Density) per POD

P
a
g
e
s

 SDC
+ TSS CPS SCL

(a) Dimension w.r.t. density (ρ) (b) Space Requirement

Figure 5: Dimension Distribution & Data Space Consumption

We also used three real datasets in our evaluation, denoted by
Netflix, Household and Darpa1. Netflix contains more than 100
million timestamped movie ratings performed by 480,189 anony-
mous customers on 17,770 movies between Dec 31, 1999 and Dec
31, 2005. Household has about 614,092 tuples between 2000 and
2007 from IPUMS USA census data system. Each tuple records
the cost of an American family on six types of expenditures (e.g.,
electricity, gas, phone, etc) in different groups of families. Darpa is
extracted from KDD CUP’99 and contains 4,898,431 examples on
fraud and intrusion detection data to distinguish between bad and
good normal connections. Although there were not explicit par-
tial orders in the attribute domains of these datasets, we conducted
some analysis to derive dimensions with meaningful partial orders.
Table 3 shows the original dimensionality of the datasets and the
number of derived total and partial orders for each of them. The
details of the derivation are in Appendix E.

Parameters Household Darpa Netflix

Cardinality(n) 614,092 4,898,431 100,480,507
|Skyline| 24,896 47,121 13,772

Dimensionality

Orig. 7 31 5

(d)

|TO| 6 0 1
|PO| 1 3 3
Φ(d) 8 10 7

Table 3: Real Datasets

Due to space limitations, a comparison of the data preprocessing
costs of the different methods is included in Appendix F. In the sub-
sequent experiments, we do not include this cost when measuring
the performance of the algorithms, assuming that the partial orders
are mostly static. Thus, domain preprocessing costs are one-time,

1Collected from www.netflixprize.com, www.ipums.org, and
kdd.ics.uci.edu/kddcup99, respectively.

1260

while object updates (and skyline updates) are independent and can
be efficiently incorporated by all indexing schemes (cf. Appendices
C.2 and D). Before the skyline evaluation experiments, we present
some statistics about the size that the indexes occupy on disk in
Figure 5(b), for uniform datasets with different ω and ρ values and
default values for the other parameters. The bars are split into two
segments: the space for encoding the spanning tree (for SDC+ and
TSS) and the chain decomposition (for CPS and SCL) is shown at
the bottom and the index size on disk (R*-tree for SDC+, TSS, and
CPS, column-store for SCL) is shown at the top. Naturally, partial
order encoding occupies negligible space compared to the indexes
and is easily stored in memory. TSS occupies less space than the
SDC+ and CPS because it uses a single tree of |PO| + |TO| di-
mensions (as opposed to multiple trees by SDC+), while CPS uses
a single tree of higher dimensionality, i.e., d(|PO|) + |TO|. SCL
occupies less storage than all indexes because (i) it uses linear space
to the number of objects and (ii) it “compresses” objects having the
same value in a dimension using the chunk representation.

6.2 Experiments on Synthetic Datasets
We investigate the performance of our proposed methods against

SDC+ and TSS over varying data sizes (n=100K up to 10M), as
shown in Figure 6. The response time and I/O cost of all algo-
rithms increases with data cardinality. SCL and CPS are substan-
tially faster than SDC+ and TSS (up to two orders of magnitude).
The I/O overhead of all methods increases fast with data cardinality
on AC datasets, while the effect is lower for UI and CO datasets.
This is due to the fact that the skyline size is close to the database
size on AC data and cannot be managed well in the available mem-
ory buffer (512M) for large datasets. The effect is smaller for TSS
and CPS because they use an effective data structure to manage the
currently found skyline and even smaller for SCL, which does not
require to hold the whole skyline in memory, but only the points
of the skyline which affect the accessed strata during search. SCL
also performs best in terms of computational cost, as its effective
incomparability testing mechanism avoids accessing and compar-
ing a large proportion of the data. CPS is more efficient than SDC+

and TSS because of its simplicity; the competitors spend more time
on validating candidates and on dominance checks for poset values.
For example, SDC+ and TSS could not terminate within the maxi-
mum allowed time (105 sec.) for the 10M AC dataset.

10

100

1000

10000

100000

1

10

100

1000

10000

E
la

p
s
e

d
 T

im
e

 (
s
e

c
)

100K 500K 1M 5M 10M
0.1

1

10

100

1000
5000

SDC
+ TSS CPS SCL

AC

UI

CO

2K
3K

5K

10K

20K
30K

1K

5K

10K

P
a

g
e

fa
u

lt
s

100K 500K 1M 5M 10M
1K

2K

5K

SDC
+ TSS CPS SCL

AC

UI

CO

10K

15K

Cardinalilty (n) Cardinalilty (n)

(a) Elapsed Time (b) I/O Cost

Figure 6: Scalability w.r.t. Data Cardinality (n)

The next set of experiments is conducted on AC, UI, and CO
datasets of size one million and investigate the effect of the data
dimensionality varying the number of PODs and TODs (Figure 7).
Each quadruple of bars indicates the total processing time or page-
fault hits of the four algorithms. The x-axis of each plot indicates
the setting: the first (resp. second) number corresponds to the num-
ber of TODs (resp. PODs) in the correspondind dataset. The over-

all (and I/O) costs of all methods grow with the number of TODs
or PODs due to the increasing problem size. When dimensionality
is fixed, the cost grows when more PODs exist (e.g., compare the
case of (4,2) against (2,4)), since PODs induce more incompara-
bilities among domain values and increase the skyline cardinality
and the problem complexity. Among algorithms, SCL is the best
performing one and scales best with respect to data dimensionality.

100

1000

10000

100000
200000

1
10

100

1000

10000

100000

E
la

p
s
e
d
 T

im
e
 (

s
e
c
)

(4,2) (3,2) (2,2) (2,3) (2,4)
1

10

100

1000

10000

100000

SDC
+ TSS CPS SCL

AC

UI

CO

200000
5K

10K

50K

100K

5K

10K

50K

P
a

g
e

fa
u

lt
s

(4,2) (3,2) (2,2) (2,3) (2,4)
2K

10K

SDC
+ TSS CPS SCL

AC

UI

CO

100K

50K

Dimensionality (|TO|, |PO|) Dimensionality (|TO|, |PO|)

(a) Elapsed Time (b) I/O Cost

Figure 7: Scalability w.r.t. Dimensionality (|TO|, |PO|)

We now study the effect of the PO structure on UI datasets with
1M tuples, two TODs and two PODs (other data distributions show
similar trends). In Figure 8, the width (ω) per PO varies from 2 to
8, resulting in an exponential cost increase for all methods and a
significant increase in I/O. SCL is on the average 100 times faster
than SDC+, which is the slowest method. In general, SCL has a
significant performance difference compared to other methods in
all settings. Figure 9 evaluates performance, varying node density
from 20% to 100%. The cost of all methods increases with grow-
ing density. For SDC+ and TSS, the spanning tree covers fewer
edges while the topological order is a weaker approximation of the
partial order, as density grows. This increases the number of false
positives, and negatively affects their CPU and I/O cost. As a result,
these methods scale worse than CPS and SCL.

2 4 6 8
0.01

0.1

1

10

100

1000

6000

E
la

p
s
e
d
 T

im
e
 (

s
e

c
)

SDC

+ TSS CPS SCL

2 4 6 8
0

5K

10K

15K

20K

25K

30K

P
a

g
e

fa
u

lt
s

SDC
+ TSS CPS SCL

Width per PO (ω) Width per PO (ω)

(a) Elapsed Time (b) I/O Cost

Figure 8: Scalability w.r.t. Width per PO (ω)

0.2 0.4 0.6 0.8 1.0
0.1

1

10

100

1000

3000

E
la

p
s
e

d
 T

im
e

 (
s
e

c
)

 SDC
+ TSS CPS SCL

0.2 0.4 0.6 0.8 1.0
1K

5K

10K

15K

20K

25K

P
a

g
e

fa
u

lt
s

 SDC
+ TSS CPS SCL

Density per PO (ρ) Density per PO (ρ)

(a) Elapsed Time (b) I/O Cost

Figure 9: Scalability w.r.t. Density per PO (ρ)

1261

6.3 Experiments on Real Datasets
Table 3 lists the intrinsic parameters of the three real datasets.

The row labeled Orig. shows the original number of dimensions
(e.g., 31 attributes in Darpa). The next two rows show the derived
dimensions, as explained in Appendix C. The last row shows the di-
mensionality after converting the partial orders to chain products.
Note that the chain-product decomposition models each partial or-
der with a relatively small number of chains (i.e., 2 to 4).

Figure 10 shows the costs of all methods on the real datasets.
The relative performance of the algorithms is consistent with what
we observed on the synthetic data. In terms of response time, SCL
is several times to 1-2 orders of magnitude faster than SDC+ and
TSS and CPS is worse than SCL but better than SDC+ and TSS. In
terms of I/O the difference is smaller, but still significant. The re-
sults on Darpa, in specific, demonstrate that our proposed methods
(i.e., SCL and CPS schema) scale better than the SDC+ and TSS
schemes in massive complex PO structures.

Household Darpa Netflix
10

1

10
2

10
3

10
4

10
5

E
la

p
s
e
d
 T

im
e
 (

s
e
c
)

SDC

+ TSS CPS SCL

Household Darpa Netflix
5K

10K

50K

100K

200K
250K

P
a
g
e
fa

u
lt
s

 SDC
+ CPS TSS SCL

(a) Elapsed Time (b) I/O Cost

Figure 10: Performance on Real Datasets

7. CONCLUSIONS
In this paper we proposed two new algorithms for skyline evalua-
tion over data with partially ordered domains. CPS is based on a
simple, but intuitive framework; the embedding of posets into chain
products followed by skyline evaluation using an off-the-shelf algo-
rithm for totally ordered domains. SCL goes one step further. It ex-
ploits the fact that incomparability tests between objects are faster
than dominance checks and employs a column-wise storage orga-
nization for the data, which facilitates fast incomparability check-
ing. Our experimental evaluation shows that both these methods
outperform the state-of-the-art techniques by a wide margin, with
SCL being the most efficient method. In the future, we will study
the efficient update of the indexing schemes in the case of dynamic
partial orders. In addition, we will adapt SCL to apply on arbitrary
dimensional subspaces. The column-wise decomposition scheme it
uses favors such an adaptation, as opposed to the R*-trees indexes
used by other approaches.

8. ACKNOWLEDGMENTS
We would like to thank N. Sarkas, C.Y. Chan, and D. Sacharidis
for sharing their codes on SDC, SDC+ and TSS, Hao Li for help-
ing with the implementation, and J. Montero for providing clarifi-
cations on the chain-product embedding method.

9. REFERENCES
[1] I. Bartolini, P. Ciaccia, and M. Patella. Efficient sort-based

skyline evaluation. TODS, 33(4):1–49, 2008.
[2] N. Beckmann, H.-P. Kriegel, R. Schneider, and B. Seeger.

The r*-tree: An efficient and robust access method for points
and rectangles. In SIGMOD, 1990.

[3] S. Börzsönyi, D. Kossmann, and K. Stocker. The skyline
operator. In ICDE, 2001.

[4] C. Boutilier, R. I. Brafman, H. H. Hoos, and D. Poole.
Cp-nets: A tool for representing and reasoning with

conditional ceteris paribus preference statements. J. Artif.
Intell. Res., 21:135–191, 2003.

[5] R. I. Brafman and C. Domshlak. Introducing variable
importance tradeoffs into cp-nets. In UAI. Morgan
Kaufmann, 2003.

[6] C. Y. Chan, P. K. Eng, and K. L. Tan. Stratified computation
of skylines with partially-ordered domains. In SIGMOD,
2005.

[7] C. Y. Chan, H. V. Jagadish, K. L. Tan, A. K. H. Tung, and
Z. Zhang. On high dimensional skylines. In EDBT, 2006.

[8] L. Chen and X. Lian. Dynamic skyline queries in metric
spaces. In EDBT, 2008.

[9] J. Chomicki. Preference formulas in relational queries.
TODS, 28(4):1–40, 2003.

[10] J. Chomicki, P. Godfrey, J. Gryz, and D. Liang. Skyline with
presorting: Theory and optimizations. In Int. Inf. Sys., 2005.

[11] H. S. Christopher D. Manning, Prabhakar Raghavan.
Introduction to Information Retrieval. Cambridge Univ.
Press, 2008.

[12] E. Dellis and B. Seeger. Efficient computation of reverse
skyline queries. In VLDB, 2007.

[13] M. Endres and W. Kießling. Transformation of tcp-net
queries into preference database queries. In ECAI, 2006.

[14] P. Godfrey, R. Shipley, and J. Gryz. Algorithms and analyses
for maximal vector computation. VLDB J., 16(1), 2007.

[15] P. Hasso. A common database approach for oltp and olap
using an in-memory column database. In SIGMOD, 2009.

[16] B. Jiang, J. Pei, X. Lin, D. W. Cheung, and J. Han. Mining
preferences from superior and inferior examples. In
SIGKDD, 2008.

[17] B. Korte and J. Vygen. Combinatorial Optimization: Theory
and Algorithms. 4th Edition, Springer, 2007.

[18] D. Kossmann, F. Ramsak, and S. Rost. Shooting stars in the
sky: an online algorithm for skyline queries. In VLDB, 2002.

[19] K. C. K. Lee, B. Zheng, H. Li, and W. C. Lee. Approaching
the skyline in z order. In VLDB, 2007.

[20] X. Lian and L. Chen. Monochromatic and bichromatic
reverse skyline search over uncertain databases. In SIGMOD,
2008.

[21] D. Mindolin and J. Chomicki. Discovering relative
importance of skyline attributes. PVLDB, 2(1):610–621,
2009.

[22] D. Papadias, Y. Tao, G. Fu, and B. Seeger. Progressive
skyline computation in database systems. TODS,
30(1):41–82, 2005.

[23] J. Pei, B. Jiang, X. Lin, and Y. Yuan. Probabilistic skylines
on uncertain data. In VLDB, 2007.

[24] D. Sacharidis, S. Papadopoulos, and D. Papadias.
Topologically sorted skylines for partially ordered domains.
In ICDE, 2009.

[25] N. Sarkas, G. Das, N. Koudas, and A. K. H. Tung.
Categorical skylines for streaming data. In SIGMOD, 2008.

[26] M. Stonebraker, D. J. Abadi, A. Batkin, X. Chen,
M. Cherniack, M. Ferreira, E. Lau, A. Lin, S. Madden, E. J.
O’Neil, P. E. O’Neil, A. Rasin, N. Tran, and S. B. Zdonik.
C-store: A column-oriented dbms. In VLDB, 2005.

[27] K. L. Tan, P. K. Eng, and B. C. Ooi. Efficient progressive
skyline computation. In VLDB, 2001.

[28] Y. Tao, X. Xiao, and J. Pei. Subsky: Efficient computation of
skylines in subspaces. In ICDE, 2006.

[29] W. T. Trotter. Combinatorics and partially ordered sets:
Dimension theory. John Hopkins Press, 2001.

[30] J. Yáñez and J. Montero. A poset dimension algorithm. J.
Algorithms, 30(1):185–208, 1999.

[31] S. Zhang, N. Mamoulis, and D. W. Cheung. Scalable skyline
computation using object-based space partitioning. In
SIGMOD, 2009.

[32] Z. Zhang, Y. Yang, R. Cai, D. Papadias, and A. K. H. Tung.
Kernel-based skyline cardinality estimation. In SIGMOD,
2009.

1262

APPENDIX

A. NOTATION USED IN THE PAPER
Table 4 lists the notations used in this paper.

Symbol Interpretation

O, o object-set, object
d, n dimensionality, cardinality of O
Di domain of ith dimension

P, pi preferences in all dimensions, ith dimension
S(O,P) skyline of O w.r.t P
o �pi o′ o is not worse than o′ in ith dimension w.r.t. pi
o ≺P o′ o dominates o′ w.r.t. P
o ∼ o o and o′ are incomparable w.r.t. P or pi

sup/inf/dup(v) superiors/inferiors/duplicates of v in pi
par/son(v) parents/sons of v in pi

[c] a chain with c elements (0<1< · · · <c−1)
inc(pi) the set of incomparable pairs of pi
d(pi) intristic dimensionality of partial order pi

φ : pi 7→
∏d(pi)

i=1 [ci] a mapping function from pi to
∏d(pi)

i=1 [ci]
φ(v), φ(u) image of v and u using mapping function φ

l(v) dominance level of the element v in pi
G(pi) the directed consistency digraph of pi
G∗(pi) the compatibility graph of pi

ℜd,NΦ(d) hybrid d-dimensional, transformed space
α, β, γ incompatible ordered value pairs in inc(pi)
γ∂ the inverse ordered pair of γ

α → β including α in pi induces β in pi
α∼β α and β are incompatible

crit(pi) critical pairs of pi
Ks

pi
strict hypergraph of pi

G(Ks
pi
) induced hypergraph of pi

χ(G) chromatic number of a graph G = (V,E)
St(o) the data strip of o
lS(o) the data strip level of o
ω, ρ width, density of a generated sublattice

Table 4: Table of symbols

B. CHAINPRODUCT DECOMPOSITION
Here, we describe the details of the chain-product decomposition

algorithm of [30]. Given a poset pi, the objective is to generate
a sequence of chains which are all topological orders of pi. In
addition, if in a chain [cj], v < u (implying that v ≺ u), while v
and u are incomparable in the original pi, there should be at least
one chain [ck], in which u < v.

We first define some concepts on pi. An alternating cycle is
a sequence {(vj , uj) ∈ inc(pi)|uj �pi v(j+1)%k, j ∈ [1, k]},
where k is the length of the cycle. The transitive closure of pi is
defined as tr(pi) = {(v, u)|v �pi u, ∀v, u ∈ Di}.

DEFINITION 2. Given a partial order pi = (Di,�), its con-

sistency digraph is a directed graph G(pi) = (inc(pi), E(pi)),
where nodes are the ordered pairs of values in inc(pi) and E(pi) =
{(α, β)|β ∈ tr(pi ∪ α)}, i.e., including α in pi induces β in pi,
denoted α → β.

The addition of an incompatible pair α to pi implies all the de-
cendants of α in G(pi). Therefore, the problem reduces to choos-
ing from the vertices V ∗(pi) of G(pi) with no parents; i.e., V ∗(pi) =
{α ∈ inc(pi)|par(α) = ∅ in G(pi)}. We say that two pairs
α, β ∈ V ∗(pi) are incompatible, denoted by α ∼ β, if and only
if they can induce an alternating cycle in pi; i.e., ∃γ ∈ inc(pi)\α
such that α → γ and β → γ∂ , where γ∂ denotes the inverse
of ordered pair γ. The critical pairs of pi, with respect to G(pi)
are crit(pi) = {α ∈ V ∗(pi)} and the chromatic number of a
graph G = (V,E), denoted χ(G), is the minimal number of colors

needed to color the vertices of G so that no two adjacent vertices
share the same color.

DEFINITION 3. Given a partial order pi=(Di,�), the incom-

patibility graph is an undirected graph G∗(pi) = (V ∗(pi), E
∗(pi)),

where E∗(pi) = {(α, β)|α∼ β in G(pi), ∀α, β ∈ V ∗(pi)}. The

strict hypergraph is the hypergraph Ks
pi

= (crit(pi), C), where

C = {(e1, e2, · · ·) ⊆ crit(pi)|{e
∂
1 , e

∂
2 , · · · } forms a strict alter-

nating cycle}. The induced hypergraph from Ks
pi

is G(Ks
pi
) =

(crit(pi), C
′), where C′ = {e ∈ C | |e| = 2}.

THEOREM 1. Given a partial order pi = (Di,�), 1) G∗(pi)
and G(Ks

pi
) are isomorphic and then χ(G∗(pi)) = χ(G(Ks

pi
));

2) d(pi) = χ(Ks
pi
) ≥ χ(G(Ks

pi
)).

LEMMA 3. Given a partial order pi = (Di,�) and coloring

G∗(pi), d(pi) = χ(G∗(pi)) if and only if no hyperedge in Ks
pi

is

equally colored.

Theorem 1 implies that d(pi) can be computed by coloring the
corresponding incompatibility graph G∗(pi) if Ks

pi
= G∗(pi).

Otherwise, according to Lemma 3 there exists at least one hyper-
edge E in Ks

pi
such that some vertices {e ∈ E} share the same

color in G∗(pi). We can add the ordered pairs in G∗(pi) which
share the same color to pi to extend pi to a chain. However, some
of the resulting chains may contain cycles and in this case they
are unacceptable. To address this problem, a recursive procedure
has been proposed in [30], denoted by MinimumRealizer (G∗(pi)),
which returns χ(G∗(pi)) induced chains. If Ks

pi
= G∗(pi), then

d(pi) = χ(G∗(pi)) different chains, which have no cycles, can be
derived from pi based on the different sets of coloring vertices in
G∗(pi). Otherwise, at least one extending chain contains a strict
alternating cycle which consists of the vertices of G∗(pi) but some
edges among them cannot be linked in G∗(pi) (denoted by E).
The problem can be avoided by adding these edges in G∗(pi); i.e.,
G∗(pi) = G∗(pi) ∪ E. The chromatic number of such an ex-
tended incompatibility graph could increase and the procedure is
recursively applied until no cycle exists in the induced chains.

Algorithm 2: EmbeddingIntoChainProduct(pi = (Di,�))

Output: Bidirection encoding hash map H for v ∈ Di

Compute consistency digraph G(pi) = (inc(pi), E(pi))1

Compute incompatibility graph G∗(pi) = (V ∗(pi), E
∗(pi))2

repeat3

Color the incompatibility graph G∗(pi)4

t = χ(G∗(pi)) the chromatic number of G∗(pi)5

C =MinimumRealizer(G∗(pi)) [30] ✄C = {C1, C2, · · · , Ct}6

if (∃c ⊆ Ci) then ✄exist a cycle c = {v1 ≺ v2 ≺ · · · ≺ vr ≺ v1}7

E = {(α, β) /∈ E∗(pi) | ∀α, β ∈ V ∗(pi), α, β ∈ c}8

G∗(pi) = G∗(pi) ∪ E9

until (no cycle in C)10

for k = 1 to t do ✄Ck = {v0 ≺ v1 ≺ · · · ≺ vn−1}, n = |Di|11

mk = 012

for j = 0 to n− 2 do13

if (∃C ∈ C\Ck, vj ≺ vj+1 in C) then14

vj = vj+1, vj .pk = vj+1.pk = mk in Ck15

else vj .pk = mk++16

Algorithm 2 illustrates the method of [30] for embedding a par-
tial order pi = (Di,�) into a product of chains. For partial or-
der pi = (Di,�), each domain value v ∈ Di is encoded as an
t-tuple (v.p1, v.p2, · · · , v.pt), i.e., φ : Di 7→

∏t

l=1[ml], where
t = d(pi). Lines 1–10 generate the set of chains C, each of length
n = |Di|. Lines 11–16 compute a tight encoding, where the do-
main of each chain is minimized. The first element of each chain,
(corresponding to a value in Di) is set to 0 and the next element

1263

in the chain is set to the previous one if the ordering of the corre-
sponding values in pi can be implied by another chain; otherwise,
it is the previous value increased by 1.

Complexity. The complexity of this algorithm is dominated by
the coloring of the incompatibility graph. For a partial order with
m values this graph may have as many as n = O(m2) nodes.
Graph coloring is an NP-complete problem. Using an approximate
algorithm for coloring can drastically reduce the computation time,
at the expense of deriving a sub-optimal coloring. In our imple-
mentation, we used the graph coloring algorithm toolkit by Joseph
Culberson.2 The best approximation ratio that can be achieved is
O(n(log log n)2/(log n)3), where n is the number of vertices in
the graph to be colored, while the complexity of a typical algorithm
(DSATUR) is O(n3).

Reducing the complexity of the decomposition. Given a par-
tial order pi = (Di,�), the duplicates of v are dup(v) = {u ∈
Di|par(v) = par(u), son(v) = son(u)}, which are necessarily
incomparable. The partial order pi can be simplified by merging
duplicates and representing them as a single element. The simpli-
fied partial order is denoted by p̃i. W. T. Trotter [29] has high-
lighted that dim(p̃i) ≤ dim(pi) and in the embedding of p̃i we
may use a smaller number of shorter chains. In practice, we apply
the encoding on p̃i, and all duplicate elements in the original partial
order that have the same set of parents and children are encoded by
the same image tuple in the chain product. The impact of such a
schema is that dominance checking in the transformed space should
distinguish among duplicate values and identical ones, because the
former imply incomparability, but the latter do not. For example,
consider two objects o and o′ having equivalent, but incompatible
values in poset pi; e.g., o[i] = v, o′[i] = u, u ∈ dup(v). If o
dominates o′ in the remaining dimensions, o and o′ are still incom-
patible due to pi. However, if v and u are given the same value in
the chain decomposition, o will be found to dominate o′.

C. IMPLEMENTATION DETAILS OF SCL
In this appendix, we discuss issues related to the implementation

and maintenance of the strata-cyclic linked structure, used by SCL.

C.1 Construction
Column Di is only linked the next in order (i.e., Di+1 mod d),

therefore we construct the columns one-by-one, in separate files, as
follows. We start by creating column Dd, by topologically sorting
the objects according to the dominance level of their d-th coordi-
nates (i.e., l(o[d])). This creates the chunks for the d-th dimension.
For each chunk we defer the division to strata and the generation
of pointers, until column D1 has been constructed. Before flushing
each constructed chunk to disk, we update a temporary hash table
Td that enables us to locate for each object o the address of the
chunk in Dd that contains o.

Then, for i = d − 1 downto 1 we create column Di, by per-
forming a topological sort on l(o[i]). For each generated chunk
c by the sorting, we obtain the locating chunks of c’s objects in
Di+1, using Ti+1. Then, we topologically sort the addresses of
these chunks, based on their dominance levels. After sorting we di-
vide c into strata and generate the corresponding pointers (i.e., file
pointers to chunk locations in Di+1). After the construction of Di

is completed, we delete Ti+1 and construct Ti (to be used in the
construction of Di−1).

Finally, Dd is scanned again and T1 is used to divide its chunks
into strata and generate their pointers to D1. The construction cost
is dominated by sorting the d columns O(dn log n), provided that

2http://webdocs.cs.ualberta.ca/ joe/Coloring/Colorsrc/manual.html

the currently used hash table (i.e., Ti+1 for the construction of Di)
fits in memory (a realistic assumption). Thus, if each column fits in
memory, the data need only be scanned once to create the columns,
and each column is scanned once and sorted in memory.

C.2 Maintenance
If the chunks are “packed” in a column file, upon insertion of a

new object, the addresses of chunks could be shifted, causing the
update of many pointers in the previous column. Therefore, if the
dataset is dynamic, changing file addresses of chunks should be
avoided as much as possible. Although in our current implemen-
tation, we did not consider data updates, the storage scheme could
easily be adapted to facilitate changes in the data, in a similar way
to hash indexes. First, assuming that the cardinality of the domains
is not high, we can allocate one block per chunk. A new object
is then inserted to the chunk blocks corresponding to its values,
without affecting the addresses of other chunks. If a chunk block
overflows, then an overflow block can be allocated and linked to
the chunk. This way, each chunk is stored as a linked list of blocks
in the corresponding column. Strata pointers always refer to the
first block of a chunk. Although this architecture may introduce
some additional random accesses within a column (if the sequence
of blocks of a chuck have to be accessed), the overhead is manage-
able compared to having to update a large number of pointers from
the previous column. Deletions in the SCL storage structure can be
handled similarly. Appendix D discusses how the skyline can be
maintained after data updates.

C.3 Impact of Column Ordering
The ordering of domain columns may have impact to the per-

formance, as it determines the number of strata in the chunks. For
example, if we reorder the columns in a way such that the number
of strata is minimized, then the number of inter-column pointers
is minimized, storage space would be saved, and potentially there
would be lower I/O. We have experimented with an implementa-
tion of SCL with a column ordering which minimizes the number
of chunks. For each ordered pair of columns (Di,Dj), we com-
puted the number of inter-column pointers (i.e., number of strata in
Di) that would be required if Di is placed before Dj in the column
ordering. Then, we used a dynamic programming algorithm to find
the permutation of columns that results in the minimum number
of inter-column pointers overall. Nevertheless, the savings in stor-
age and performance achieved by the optimal ordering compared
to a random column ordering were not very high (about 10%). On
the other hand, finding the optimal ordering has a cost of O(d2B),
where d is the dimensionality and B is the number of blocks in a
column, as for all O(d2) ordered column pairs the number of inter-
column pointers should be computed. Thus, the high cost of find-
ing a good column ordering is not compensated by the performance
savings it offers.

D. SKYLINE MAINTENANCE
Regardless of the algorithm used to compute the skyline, it can

be updated after a new object o is inserted, by comparing o with the
existing objects in S; if o is dominated by any object in S, there is
no update; if o is incomparable with all objects in S it is inserted to
S; if o dominates some objects in S, these objects are deleted from
S and o is inserted to the skyline.

When an object o is deleted from the dataset, if S did not contain
o, there is no update. If o was part of the skyline, then the skyline
should be updated by accessing the objects dominated by o and
computing the skyline among them (see [22]). CPS can perform
this update by a constrained skyline query, as explained in [22].

1264

SCL can perform the update, by setting τ = o and accessing St(t)
to update the skyline, using S\o as the current skyline and ignoring
o (which is also deleted from its containing chunks).

E. GENERATION OF PARTIAL ORDERS

FOR REAL DATASETS
In this appendix, we discuss how the partial orders used for the

real datasets are generated.
Netflix: Originally, each record in the dataset is a 4-tuple, (user,

movie, date, rating), indicating the rating that a user gave to a
movie and the date when this was recorded. Let rui be the rating
of user u on movie i. Values of rui range from 1 (star) indicat-
ing no interest to 5 (stars) indicating a strong interest. Each user
u is associated with a set of items denoted by R(u), which con-
tains all the items for which ratings by u are available. Likewise,
R(i) denotes the set of users who rated item i. We derived the
new attributes based on a collaborative filtering analysis posted at
http://www.netflixprize.com/.

Each user u is modeled using the following attributes: (i) the

normalized fraction of movies rated by u:
R(u)

#movies
×1000; (ii) the

user’s deviation: σu =
∑

i∈R(u)(rui−µ−σi)

λ2+|R(u)|
, where µ is the global

mean rating, σi =
∑

u∈R(i)(rui−µ)

λ1+|R(i)|
, and λ1 = 25, λ2 = 10; (iii)

the associated time deviation: σu
t =

∑
i∈R(u) sgn(tui−tu)·|tui−tu|β

|R(u)|
,

where µ is the mean of all ratings, sgn(·) is the sign function, tui
is the timestamp of rating rui, tu is the mean rating timestamp for
user u, and β = 0.4.

Likewise, each movie is described by following attributes: (i)

the fraction of user ratings:
R(i)

#users
× 1000; (ii) the observed de-

viation: σi =
∑

u∈R(i)(rui−µ)

25+|R(i)|
; (iii) the associated time deviation:

σi
t =

∑
u∈R(i) sgn(tui−ti)·|tui−ti|

β

|R(i)|
, where ti is the mean rating

timestamp for item i.
Using these normalized derived attributes, we apply k-means

clustering to divide the users/movies into partitions. For each user
cluster, we compute an average rating r̃ and an average deviation
σ̃. The dominance relationship between two user clusters is defined
based on these two values, and a partial order on users is defined.
The same process is applied on the movie clusters to define a sec-
ond partial order. For each clustering, we used the best k, estimated
using the Akaike Information Criterion based on the minimal resid-

ual sum of squares (RSS) of all clusterings with up to K clusters
[11]. This resulted in 50 customer partitions and 88 movie clusters.

The third partial order on Netflix considers the effect of time on
ratings, since an item’s popularity may change over time. Time
may also have an effect on the behavior of users. For example, a
user who tended to give a rating 4 to an average movie, may now
rate average movies by 3. For each time unit (i.e., day), we capture
the average time deviation for different users on this date and the
average time deviation on different movies on this date. Based on
these two values, we define a partial order between days. The last
partial order is derived from about 40 different date gaps based on
user and movie biases by grouping similar time deviations on users
and movies.

Given two ratings rui and rvj , rui dominates rvj if the triplet
of clusters where rui falls, according to the three derived partial
orders, dominates the triplet of rvj . This intuitively means that
rui is more credible than rvj , since professional users give more
confident ratings on movies at the right time. We also keep the
rating value as a fourth, totally ordered dimension for ranking rat-
ings. Skyline evaluation on the derived dimensions of the ratings

can help an analyst to identify the most interesting subset of user
ratings in the database.

In a nutshell, the three attributes of the original dataset (user,
movie, date) upon which dominance cannot be defined in their orig-
inal domains are replaced by attributes with meaningful dominance
relationships in their domains, captured by the corresponding par-
tial orders.

Darpa: The 31 original attributes in this set are divided into
three group features (i.e., basic, content, and traffic features), which
contain 9, 13 and 9 attributes, respectively. Three partial orders
can directly be defined for each object, based on these features.
For example, object o dominates o′ in the basic partial order, if
o dominates o′ considering only the attributes in the basic feature
class. The dominance graph of each group feature can be easily
derived from its contained attributes.

Household: Each original tuple stores six types of annual ex-
penditures (e.g., electricity, gas, phone, etc) of a family and the
family class. In addition, the dataset contains the six types of ex-
penditures of the same family on a monthly basis. Therefore, we
can group the data by different family class and compute the aver-
age total cost per family (including all six types of expenditures)
in each quarter for each family class (i.e., four attributes are in-
duced, each corresponding to the average family expenditures in a
quarter). We say that family class v dominates family class u if v
spends more than or same as u on the average in each of the four
quarters, while there exists a quarter where v spends strictly more
than u. This way, a partial order can be derived on the family class
attribute.

F. PREPROCESSING COST
Here, we present a set of experiments, where we measure the

preprocessing overhead by all techniques. These times include
the computation of the spanning tree (and the topological order)
for SDC+ and TSS and the chain-product embedding for CPS and
SCL. They also include the time to generate the corresponding in-
dexes (i.e., R*-trees for SDC+, TSS, and CPS; and the column-
store index for SCL). Figures 11(a) and 11(b) plot the elapsed time
in log scale as a function of the PO parameters (ω and ρ) of UI
data with 2 TO and 2 PO. The time for spanning tree computa-
tion (in SDC+ and TSS) and chain-product embedding (in CPS
and SCL) are shown at the bottom part of each bar. Observe that
chain-product embedding is slightly more expensive, in general,
than spanning tree computation, and the costs of these operations
are negligible compared to the index construction costs. In addi-
tion, generating the corresponding R*-trees is more expensive for
SDC+ and CPS, than for TSS. SDC+ may have to generate multi-
ple R*-trees per partial order, while CPS constructs a single multi-
dimensional tree. TSS on the other hand, only constructs a one di-
mensional tree, this is why it has lower cost than the other R*-tree
based approaches. SCL has the lowest index-construction cost, be-
cause the index is not hierarchical, requiring only one pass over the
data to decompose them into columns, while the strata and the links
between them can be efficiently created with the help of a hashmap
(see Appendix C.1). Figure 11(c) shows how the preprocessing
cost is affected by the number of dimensions and the number of
total/partial orders in their domains. For each method we plot two
lines; one which fixes the number of PO to 2 and varies the num-
ber of TO and one that fixes the number of TO to 2 and varies the
number of PO. The times only slightly increase with dimensional-
ity and all methods scale similarly. Finally, Figure 11(d) shows that
changes in the database size do not affect the relative performance
of the methods.

Figure 12 shows the preprocessing costs of all methods on the

1265

2 4 6 8
0.02

0.1

1

10
20
40

E
la

p
s
e
d
 T

im
e
(s

e
c
)

 SDC
+ CPS TSS SCL

0.2 0.4 0.6 0.8 1.0
0.05

0.1

1

10

20
30

E
la

p
s
e
d
 T

im
e
(s

e
c
)

 SDC
+ CPS TSS SCL

(a) Width per PO (ω) (b) Density per PO (ρ)

2 3 4
0

5

10

15

20

25

30

E
la

p
s
e
d
 T

im
e
(s

e
c
)

SDC
+

CPS

TSS

SCL

2+|PO|

|TO|+2

100K 500K 1M 5M 10M
0.1

1

10

100

250

E
la

p
s
e
d
 T

im
e
(s

e
c
)

SDC
+

CPS

TSS

SCL

(c) |TO| or |PO| (d) Cardinality (n)

Figure 11: Preprocessing cost on UI datasets

real data. Chain-product embedding for SCL and CPS is more CPU
intensive than spanning tree computation for SDC+ and topologi-
cal sorting for TSS on larger scale partial orders (i.e., the Darpa

dataset). However, this time is only a small fraction of the total
preprocessing time. For indexing, the trend is similar to that on
synthetic data. CPS becomes more expensive than SDC+ for the
Darpa dataset, because of the large number of dimensions in the
embedding (10 dimensions for 3 partial orders), while only 6 di-
mensions are derived from the 3 PODs for SDC+. SCL has the
lowest indexing cost of all methods.

Household Darpa Netflix
0.01

0.1

1

10

E
la

p
s
e
d
 T

im
e
 (

s
e
c
)

SDC
+

CPS

TSS

SCL

Household Darpa Netflix
1

10

100

1000
1500

E
la

p
s
e
d
 T

im
e
 (

s
e
c
)

SDC
+

CPS

TSS

SCL

(a) Decomposing POs (b) Indexing Data

Figure 12: Preprocessing of Real Datasets

1266

