
https://doi.org/10.1007/s00145-017-9266-8
J Cryptol (2018) 31:641–670

Efficient Slide Attacks∗

Achiya Bar-On
Department of Mathematics, Bar-Ilan University, Ramat Gan, Israel

abo1000@gmail.com

Eli Biham
Computer Science Department, Technion, Haifa, Israel

biham@cs.technion.ac.il

Orr Dunkelman
Computer Science Department, University of Haifa, Haifa, Israel

orrd@cs.haifa.ac.il

Nathan Keller
Department of Mathematics, Bar-Ilan University, Ramat Gan, Israel

nkeller@math.biu.ac.il

Communicated by Vincent Rijmen.

Received 23 December 2016 / Revised 10 July 2017
Online publication 17 August 2017

Abstract. The slide attack, presented by Biryukov and Wagner, has already become
a classical tool in cryptanalysis of block ciphers. While it was used to mount practical
attacks on a few cryptosystems, its practical applicability is limited, as typically, its time
complexity is lower bounded by 2n (where n is the block size). There are only a few
known scenarios in which the slide attack performs better than the 2n bound. In this
paper, we concentrate on efficient slide attacks, whose time complexity is less than 2n .
We present a number of new attacks that apply in scenarios in which previously known
slide attacks are either inapplicable, or require at least 2n operations. In particular,
we present the first known slide attack on a Feistel construction with a 3-round self-
similarity, and an attack with practical time complexity of 240 on a 128-bit key variant
of the GOST block cipher with unknown S-boxes. The best previously known attack on
the same variant, with known S-boxes (by Courtois), has time complexity of 291.

Keywords. Slide attacks, Cycle structure, GOST, 3K-DES, 1K-AES.

∗A preliminary version of the paper including only Sects. 4.1 and 5.3 appeared in FSE 2007 [4].

© International Association for Cryptologic Research 2017

http://crossmark.crossref.org/dialog/?doi=10.1007/s00145-017-9266-8&domain=pdf

642 A. Bar-On et al.

P fk fk fk · · · fk fk fk C

fk fk fk fk · · · fk fkP C

C

P

Fig. 1. A slid pair.

1. Introduction

Most modern block ciphers are constructed as a cascade of repeated keyed components,
called rounds. The effectiveness of the standard cryptanalytic techniques (e.g., differ-
ential cryptanalysis [5], linear cryptanalysis [38], Square attack [16]) usually reduces
drastically as the number of rounds increases. Hence, increasing the number of rounds
is considered a relatively simple way to enhance the cipher’s security.
Only a few cryptanalytic techniques are independent of the number of rounds. Ar-

guably, the best known of these is the slide attack, introduced in 1999 by Biryukov and
Wagner [10].1 The original slide attack targets ciphers that are a cascade of � identical
functions, i.e.,

Ek = f �
k = fk ◦ fk ◦ · · · ◦ fk,

where fk is a “relatively weak” keyed permutation.
The idea behind the attack is rather simple. The adversary seeks to find a slid pair, a

pair (P, P ′) of plaintexts such that P ′ = fk(P), as demonstrated in Fig. 1. Due to the
structure of Ek , the corresponding ciphertexts C = Ek(P),C ′ = Ek(P ′) must satisfy
C ′ = fk(C). Hence, if a slid pair (P, P ′) is given, the adversary can use the “simplicity”
of fk to solve the system of equations:

{
P ′ = fk(P),

C ′ = fk(C),
(1)

and thus to retrieve the secret key k.
As the adversary does not know which plaintext pair is a slid pair, she simply takes

O(2n) random pairs (that can be constructed from O(2n/2) known plaintexts) and tries
to solve (1) for each of them. It is expected that at least one of the checked pairs is a slid
pair, and then the solution of (1) yields the secret key with a high probability. (For all
but a few other plaintext pairs, the equation system is expected to be inconsistent.) The
data complexity of the attack is O(2n/2) known plaintexts and the time complexity is
O(t · 2n), where t is the time required for solving system (1) (that is, to break fk given
two known input/output pairs).
The original slide attack can be used only when fk is “simple,” i.e., can be broken

efficiently using only two known input/output pairs. Subsequent papers (e.g., [11,25])
provided methods to apply the technique in cases where fk is more complex, usually

1We note that the slide attack is related to several previous techniques, including the attack of Grossman
and Tucherman on Feistel constructions [30] and Biham’s related-key attack [3].

Efficient Slide Attacks 643

at the expense of higher data and time complexities (or when the attacked cipher has a
very unique structure).
The slide attack was studied in numerous papers (e.g., [1,11,18,21]) and applied

to a few ciphers (most notably, the block cipher Keeloq [1]) and a few hash functions
(see [28]). However, its applicability has been limited, as the time complexity of O(t ·2n)
is usually impractically high, and in many cases even higher than that of exhaustive key
search.
Only a few general scenarios are known in which the slide attack, or its variants, have

time complexity significantly smaller than 2n . Usually, this happens when there exists
an efficient way to detect the slid pairs, so that the adversary does not have to check
O(2n) random plaintext pairs until a slid pair is found. These scenarios include Feistel
constructions with 2-round and 4-round self-similarity (i.e., with round keys of the
forms (k1, k2, k1, k2, . . .) and (k1, k2, k3, k4, k1, k2, k3, k4, . . .), respectively), possibly
surrounded by key whitenings (see [11,18]), the Even-Mansour [22] construction (i.e.,
Ek1,k2(P) = k2 ⊕ f (k1 ⊕ P), where f is a public permutation and k1, k2 are secret
keys) and some of its variants (see [21]).
In this paper, we concentrate on efficient slide attacks, that is, slide attacks with

complexity lower than 2n . We present four new classes of attacks:

1. Efficient slide attacks on SP Networks (SPNs) with self-similarity.We present, for
thefirst time, efficient slide attacks onSPNswith self-similarity (this is in contrast to Feis-
tel constructions with self-similarity that were studied in numerous works, see below).
Consider 1K-AES, a variant of AES [17] in which all round subkeys are replaced by

the same subkey (with no round constants). It seems clear that this variant is “bad,” being
vulnerable to the slide attack. However, the classical slide attack on it requires 264 known
plaintexts and has a time complexity of 2128 encryptions—no less than exhaustive key
search! This raises the question whether the slide attack is really a threat for this variant.
We present a simple efficient slide attack on this variant with data and time complexi-

ties of 264, confirming the intuition that it is completely insecure. Our attack applies to a
wide class of SP networks with 1-round self-similarity, yielding an attack with data and
time complexities of O(2n/2). We also show that in the specific case of AES, one can
also break 2K-AES and 3K-AESmuch with an efficient slide attack, using the somewhat
slow diffusion of the linear permutation of AES.
In addition, we study themore general class of SASA…SA structures [9] with 1-round

self-similarity. We show that when the linear layer A is known (like in the secret S-boxes
variant of AES [44]), the cipher can be broken in O(s · 2s · 2n/2) data and time, when
the S-box size is s bits.

2. An efficient attack on Feistel constructions with 3-round self-similarity.We con-
sider slide attacks on Feistel constructions with self-similarity, following [11,18,21,35,
36]. While the slide-with-a-twist attack and its variants provide very efficient attacks on
Feistels with 2-round and 4-round self-similarity, it appears that they do not yield an
attack faster than 2n on constructions with 3-round self-similarity. We present the first
known attack faster than 2n on a wide class of such constructions, with data and time
complexities of O(25n/6) and memory complexity of O(22n/3). Specifically, our attack
is applicable for all so-called Feistel-2 structures [32], i.e., when the round function is
of the form fk(x) = g(x ⊕ k) for some keyless function g(·).

644 A. Bar-On et al.

Table 1. Comparison of our attacks with the best previously known results on the same variants.

Primitive Reference Data Time Memory

AES with 1-round [10] 2n/2 KP 2n 2n/2

Self-similarity Section 2.1 2n/2 KP 2n/2 2n/2

SASA…SA with 1-round
Self-similarity (known A) Section 2.2 s · 2s · 2n/2 KP s · 2s · 2n/2 s · 2s · 2n/2

DES with 3-round [10] 2n/2 KP 2n 2n/2

Self-similarity Section 3 25n/6 KP 25n/6 22n/3

24-round GOST with [25] 264 KP 2100 264

Unknown S-boxes Section 5.3 263 ACP 263 263

Palindromic GOST with [14]∗ 232 CP 291 232

Unknown S-boxes Section 5.4 240 ACP 240 240

KP known plaintexts, CP chosen plaintexts, ACP adaptively chosen plaintexts
∗ The attack of [14] assumes that the S-boxes are known

When the round function fk(x) is more structured (specifically, for all Feistel-3 struc-
tures, including a 3-round self-similar variant of DES itself), we present an improved
attack that requires O((n/s) · 2n/2) adaptive chosen plaintexts and O((n/s) · 2n/2+s)

time, when the S-box size is s bits.

3. A slide attack using the cycle structure of fk ; application to 24-round GOST.We
present a new variant of the slide attack that finds the slid pairs directly using comparison
between the cycle structures of Ek and fk . While the data and time complexities of the
attack are close to 2n , it applies even if fk is very complex (in which case a standard
slide attack, if at all possible, would have time complexity significantly higher than 2n).
We apply the new technique to a 24-round variant of the Russian encryption standard
GOST [29] with unknown S-boxes. Our attack recovers the secret S-boxes and the secret
key with data and time complexity of about 263. A slide attack on the same variant can be
mounted using Furuya’s technique [25]; however, it would require the entire codebook
and time complexity of about 2100 encryptions. We note that similar ideas can be used in
the casewhere the encryption algorithm is implemented by a quantum computing device,
where one can use Simon’s algorithm to find the cycle efficiently (as observed in [2,34]).

4. An efficient slide attack using the cycle structure and reflection; application
to a 128-bit key variant of GOST. We show that in cases where the round keys of
a Feistel cipher are palindromic, our cycle-structure attack can be combined with a
reflection property (see [35,36]) into a powerful attack with data and time complexity
of only O(2n/2). We apply the new attack to a 128-bit key variant of GOST in which
the “full” 256-bit key has the palindromic structure (k1, k2, k3, k4, k4, k3, k2, k1). While
weaknesses of this variant were pointed out in previousworks (e.g., [11]), the best known
attack on it, presented by Courtois [14], is rather complex and has time complexity of
291, when the S-boxes are known to the adversary. Our attack breaks this variant with
practical complexity of 240, even if the S-boxes are secret.

Thus, our attack can be used to target the originalGOSTby a legitimate userwhowants
to recover the secret S-boxes she was provided (whichmay be profitable, as in GOST, the
same set of S-boxes is used in an entire industry, e.g., the banking industry, see [42]). If

Efficient Slide Attacks 645

the user is allowed to choose her secret key, she may choose it to be palindromic and then
recover the secret S-boxes practically using our attack. An S-box recovery attack of this
class was presented by Saarinen [41], but only for keys of the form (k, k, k, k, k, k, k, k)
for which GOST is a Feistel construction with 1-round self-similarity (which is widely
known to be too weak).
A comparison of our results with the best previous results on the same variants is

presented in Table 1.
This paper is organized as follows. In Sect. 2, we present efficient slide attacks on

SPNs with self-similarity. In Sect. 3, we present the new attack on 3K − DES. The
cycle-structure attacks are presented in Sect. 4. Finally, the applications to variants of
GOST are given in Sect. 5.

2. Efficient Slide Attacks on Substitution-Permutation Networks with
Self-Similarity

In this section, we study efficient slide attacks on SP networks (SPNs) with r -round
self-similarity. A specific example is a variant of the encryption standard AES [17] in
which the round keys are replaced by the sequence k1, k2, . . . , kr , k1, k2, . . . , kr , . . .,
that may be called rK-AES. Unlike Feistel constructions with self-similarity that have
been thoroughly studied in the context of slide attacks (see Sect. 3 below), SPNs with
self-similarity have not been studied specifically in previous works. Probably, the reason
for that is rK-AES being much more immune to slide attacks than rK-DES.

We present several efficient slide attacks on instances of rK-AES. First, in the simplest
case of 1-round self-similarity (i.e., 1K-AES), we present a simple efficient slide attack
with data and time complexities of 264 (or,more generally, 2n/2 for n-bit blocks).We then
turn our attention to a more complex type of 1-round self-similarity represented by so-
called SASA…SA structures (as defined in [9]), either with a known linear layer or even
with a key-dependent linear layer. Finally, in the specific case of AES-like structures,
we present efficient attacks on variants with 2-round and even 3-round self-similarity,
exploiting the slow diffusion of the AES round function.

2.1. A Simple Efficient Slide Attack on 1K-AES

2.1.1. The Structure of 1K-AES

TheAES [17] is themost widely used block cipher.We briefly recall a few details that are
relevant to our attack (the interested reader can look at [17] for a complete description).
The block size of AES is 128 bits, and the key sizes are 128/192/256 bits. AES is an
iterated cipher composed of 10/12/14 almost identical rounds. Each round consists of
four operations: SubBytes (SB), ShiftRows (SR),MixColumns (MC)—operations on the
state that do not depend on the key, followed by AddRoundKey (ARK)—bitwise XOR
of the state with a 128-bit subkey. In the real AES, there is an additional AddRoundKey
operation before the first round, and the MC operation is omitted in the last round. We
define 1K-AES to have a similar structure (with a whitening key before the first round)
but the same round key in all rounds, as depicted in Fig. 2. Thus,

Ek(P) = fk ◦ fk ◦ · · · ◦ fk(P ⊕ k),

646 A. Bar-On et al.

SB SR MC

k1

SB SR MC

k1

. . .

k1

SB SR MC

k1

Fig. 2. Structure of 1K-AES .

where fk(x) = ARKk ◦ MC ◦ SR ◦ SB denotes a single round of AES. We claim that
Ek can be broken with 264 known plaintexts and 264 time, using a simple variant of the
slide attack.

2.1.2. The Attack Algorithm

The idea behind the attack is simple. Assume that (P, P ′) is a slid pair for Ek , i.e., that
fk(P ⊕ k) = P ′ ⊕ k. We have P = k ⊕ (SB−1 ◦ SR−1 ◦ MC−1(P ′)). Hence, denoting
P̄ ′ = SB−1 ◦ SR−1 ◦ MC−1(P ′), we have

P ⊕ P̄ ′ = k. (2)

On the other hand, by the structure of E , the corresponding ciphertexts must satisfy
C ′ = k ⊕ (MC ◦ SR ◦ SB(C)). Thus, denoting C̄ = MC ◦ SR ◦ SB(C), we have

C ′ ⊕ C̄ = k. (3)

Combining (2) and (3), we get

P ⊕ C̄ = P̄ ′ ⊕ C ′. (4)

This relation allows to mount the attack described in Algorithm 1, inspired by the slide-
with-a-twist attack of [11]. We note that similar observations were used in the attack of
Jean et al. on the PRINCE block cipher [33] and in [21].

Algorithm 1 A slide attack on 1K-AES
Ask for the encryption of 264 known plaintexts (Pi ,Ci).
for Each plaintext/ciphertext pair (Pi ,Ci) do

Compute the value C̄i = MC ◦ SR ◦ SB(Ci),
Compute the value Pi ⊕ C̄i ,
Store in a hash table the pairs (Pi ⊕ C̄i , Pi), indexed by the first coordinate.

end for
for Each plaintext/ciphertext pair (Pj ,C j) do

Compute the value P̄j = SB−1 ◦ SR−1 ◦ MC−1(Pj),
Compute the value P̄j ⊕ C j ,
Check for entries in the hash table whose first coordinate matches it.

end for
for Each collision in the table (Pi ⊕ C̄i = P̄j ⊕ C j) do

Test the key candidate k = Pi ⊕ P̄j .
end for

Efficient Slide Attacks 647

By the birthday paradox, it is expected that the data set contains a slid pair, i.e.,
a pair satisfying fk(Pi) = Pj , with a non-negligible probability. For a random pair
(Pi , Pj), the probability that Pi ⊕ C̄i = P̄j ⊕ C j is 2−128, and thus, only a few col-
lisions are expected in the table. These collisions include the collision induced by the
slid pair, which suggests the correct value of k. The data complexity of the attack is
264 known plaintexts, and the time and memory complexities are 264 operations, as
asserted.
We note that the collision we are looking for is of the form Pi ⊕ C̄i = P̄j ⊕ C j .

Given that each side of the equation depends on a single plaintext/ciphertext pair, one
can easily transform the attack into a memoryless one, as follows:
Define g1(Pi) = Pi ⊕ C̄i and g2(Pj) = P̄j ⊕ C j . Use a memoryless collision

finding algorithm (such as [24]) to find a collision between g1(·) and g2(·). As such
algorithms take about O(2n/2) queries to g1(·) and g2(·), the time complexity of the
attack is O(2n/2). The main change is that the data requirement becomes an adaptive
chosen plaintext one (following the way memoryless collision algorithms operate), in
exchange for the reduction of the memory complexity.
The attack applies to any SPNwith 1-round self-similarity inwhich the key-dependent

operation is XOR or modular addition, regardless of the non-key-dependent operations.
The data and time complexities remain the same — O(2n/2).

2.2. An Efficient Slide Attack on SASA…SA

We now turn our attention to the more general SPN structures known as the SASA…SA
constructions. First analyzed by Biryukov and Shamir in [9], such constructions have
layers of bijective nonlinear S-boxes S (the S-boxesmay be different) followed by invert-
ible affine layers A. Both types of layers may be key-dependent. General SASA…SA
constructions (without self-similarity) were recently studied in several papers, for exam-
ple [6,7,39]. We consider SASA…SA constructions with 1-round self-similarity, i.e.,
where the same combination A ◦ S is applied r times sequentially. The generic attack
of Algorithm 1 obviously cannot be applied to this constructions, due to the complex
key-dependent operations.
We first consider the case when the A layer is not key-dependent (like in the AES

variant studied in [44]) and present a simple attack with data and time complexities
of O(s · 2s · 2n/2) for an s-bit S-box. We then extend the attack to the case when
A is key-dependent, with data complexity of O(s · 2s · 2n/2) and time complexity of
O(n3 · 2n). (The latter attack falls a bit out of our scope, requiring more than 2n op-
erations. We chose to present it, as it uses similar techniques like the previous attacks
and is much faster than the best one can get with a classical slide attack on the same
variant.)

2.2.1. Attacking SASA…SA When A is Not Key-Dependent

Let P ′ = A ◦ S(P), i.e., (P, P ′) is a slid pair. As observed in [25], if (P, P ′) is a slid
pair, then so is (Ek(P), Ek(P ′)), as well as (Ei

k(P), Ei
k(P

′)) for any i . Hence, using
adaptive plaintext queries, one can generate as many slid pairs as needed out of a single
slid pair.

648 A. Bar-On et al.

Algorithm 2 A slide attack on SASA…SA
Pick 2n/2 plaintexts Pi and for each of them ask for the encryption of the chain
Pi , Ek (Pi), E

2
k (Pi), . . . , E

t
k (Pi).

for Each plaintext chain Pi , Ek (Pi), E
2
k (Pi), . . . , E

t
k (Pi) do

Find all the locations for which the same S-box has the same value.
Store the list of locations along with the chain in a hash table indexed by the list of locations.2

end for
for Each plaintext chain Pi , Ek (Pi), E

2
k (Pi), . . . , E

t
k (Pi) do

Compute the chain A−1(Pi), A
−1(Ek (Pi)), A

−2(E2
k (Pi)),

Find all the locations for which the same S-box has the same output value according to the computed
chain.

Check for entries in the hash table whose list of locations matches the found locations.
end for
for Each collision in the locations (chains Pi , Ek (Pi), . . . and A−1(Pj), A

−1(Ek (Pj)), . . .) do
Collect for each S-box the input/output pairs defined by the chains, and deduce the S-boxes.

end for

In the data collection phase of the attack, we take 2n/2 plaintexts, and generate from
each of them a sequence of plaintexts, i.e., P, Ek(P), E2

k (P), E3
k (P), . . . , Et

k(P) for a
parameter t we shall choose later. Then, we detect the slid pairs (P, P ′) (and their en-
cryptions) efficiently using the following observation: If in the chain P, Ek(P), E2

k (P),

E3
k (P), . . . , Et

k(P) the same value enters one of the S-boxes twice (e.g., in E1
k (P) and

E8
k (P)), then the outputs of the respective S-boxes in the sequence generated by P ′ are

equal (i.e., we have A−1(E1
k (P

′)) = A−1(E8
k (P

′))). This observation allows an imme-
diate identification of the slid pairs (without the need of comparing all sequences to all
other sequences). After finding the slid pairs, the adversary obtains a large number of
input/output pairs for each of the S-boxes, which is sufficient to identify the S-boxes.
The attack is depicted in Algorithm 2.

The value of t depends on two factors: The length of the chains required to ensure
that enough collisions exist, and the length of the chains required to ensure that we
can recover the full S-box. A pair of chains of length t contains t pairs of plaintexts
(Ea

k (Pi), Ea
k (Pj)), each with n/s S-boxes that can collide. As we have to obtain an

n-bit filtering condition, and as each collision offers an s-bit filtering condition, we need
t · n

s · 2−s ≥ n
s , i.e., t ≥ 2s . At the same time, obtaining 2s different inputs to each and

every S-box (where the inputs are chosen at random), requires ln 2 · s · 2s inputs (due
to the coupon collector’s nature of the problem), i.e., we need t = O(s · 2s). Therefore,
the data and time complexities of the attack are O(s · 2s · 2n/2).

2.2.2. Attacking SASA…SA When A is Key-Dependent

In this case, we need to try all pairs of chains, as we cannot obtain direct access to the
output of the S-boxes. To identify whether a candidate pair of chains is indeed slid, we
use the above observation in a different way. Recall that when the inputs to the S-box

2Instead of storing the list of locations, one can define a lexicographic order (or any other standardized
order), and apply a hash function on the list.

Efficient Slide Attacks 649

are the same, then so are the outputs. This fact translates into an s-bit linear relation on
the chain A−1(Pi), A−1(Ek(Pi)), A−2(E2

k (Pi)), Hence, for each pair of candidate
chains, one can construct the relevant system of linear equations for A−1 and try to solve
it. If the solution is consistent (by having a few more equal values, one can obtain an
over-determined system of linear equations that is expected to be inconsistent for non-
slid chains), one obtains the correct value of A, and then the S layer can be recovered
like in the previous attack.
As there are 2n pairs of candidate chains, and as solving the set of n linear equations

takes O(n3) operations, the total time complexity of the attack is O(n3 ·2n). Thememory
and data complexities are O(s · 2s · 2n/2).

2.3. Efficient Slide Attack on Specific Instances of 2K-AES and 3K-AES

A slight modification of the above attack presented in Sect. 2.2 can be used to attack
rK-AES with r > 1, if the diffusion in the linear layer is not full. We demonstrate
it in the case of the AES, for which we can attack variants with 2-round and 3-round
self-similarity. We denote these variants below by 2K-AES and 3K-AES and alert the
reader that unlike the attack on 1K-AES presented in Sect. 2.1, these attacks do exploit
the specific structure of the AES.
We start with an attack on 2K-AES. Consider a slid pair (P, P ′) such that P ′ ⊕ k1 =

ARKk1 ◦MC ◦SR◦SB◦ARKk2 ◦MC ◦SR◦SB(P ⊕k1). As the ARKk1 on the right-hand
side cancels out with the ⊕k1 on the left-hand side, the second round’s SB, SR,MC
operations can be easily inverted, by computing P̃ ′ = SB−1 ◦ SR−1 ◦ MC−1(P ′) and
obtaining P̃ ′ = ARKk2 ◦ MC ◦ SR ◦ SB(P ⊕ k1). Moreover, as MC and SR are linear
operations which can be easily exchanged with the ARK operation (by applying the
inverse operations to the key), P̃ ′ can be rewritten as:

P̃ ′ = MC ◦ SR ◦ ARKSR−1◦MC−1(k2) ◦ SB ◦ (P ⊕ k1).

Hence, for a given P ′ we compute P̄ ′ defined as

P̄ ′ = SR−1 ◦ MC−1(P̃ ′) = SR−1 ◦ MC−1 ◦ SB−1 ◦ SR−1 ◦ MC−1(P ′).

As a result, when (P, P ′) is a slid pair (and thus, the chains that are generated from them
are slid chains), two bytes with the same input in the chain of P must have the same
output in the chain of P̄ ′. This immediately allows to apply Algorithm 2. Moreover, note
that there is no need to recover the full S-box, as once the slid chain is found, it is trivial
to extract k1 and SR−1 ◦ MC−1(k2). Therefore, a slightly lower data/time complexity
is needed for this attack: Only 269 adaptive chosen plaintext and ciphertext pairs are
needed, as well as 269 time.
The attack on 3K-AES is similar in nature. Due to the additional round, instead

of looking at equality in inputs and outputs from a single S-box (an 8-bit condition),
we consider the AES’ super S-box (essentially, a column of 4 S-boxes). As a re-
sult, applying Algorithm 2 with 32-bit S-boxes results in data and time complexity of
about 281.

650 A. Bar-On et al.

3. Efficient Slide Attacks on Feistel Constructions with 3-round Self-Similarity

Historically, a main target of the slide attack and its generalizations have always been
a Feistel construction with r -round self-similarity, i.e., whose sequence of round func-
tions is f1, f2, . . . , fr , f1, f2, . . . , fr , A specific example is a variant of the for-
mer encryption standard DES [40] in which the round keys are replaced by the se-
quence k1, k2, . . . , kr , k1, k2, . . . , kr , . . . (where k1, . . . , kr are independent of each
other), called in [10] rK-DES.
In [10], Biryukov and Wagner showed that 2K-DES (and more generally, a Feistel

construction with n-bit blocks and 2-round self-similarity) can be broken with O(2n/2)

adaptively chosen plaintexts and O(2n/2) time using the slide attack. In [11], Biryukov
and Wagner presented the complementation slide and slide with a twist techniques and
used them to break 2K-DES in O(2n/4) chosen plaintexts and O(2n/4) time, and also
to break 4K-DES with the same complexity. In [21], Dunkelman et al. introduced the
mirror slidex attack and used it to break 2K-DES surrounded by key whitenings in
O(2n/2) known plaintexts and O(2n/2) time. Finally, Dinur et al. [18] were able to break
4K-DES surrounded by key whitenings in O(n · 2n/2) known plaintexts and O(n · 2n/2)

time using enhanced reflection.
Neither of these attacks seems to apply to 3K-DES, i.e., a Feistel construction with

3-round self-similarity depicted in Fig. 3. Hence, the best one can currently do is to apply
the standard slide attack, which results in data complexity of O(2n/2) known plaintexts
and time complexity of O(t · 2n) where t is the time required for breaking 3-round DES
given two input/output pairs.
In this section, we present a new attack on this construction with a lower time com-

plexity of O(25n/6), at the expense of a higher data complexity of O(25n/6). Our attack
exploits slid pairs of a specific type and uses ideas developed in the attacks presented in
Sect. 2.

In addition, for a more specific class of round functions which contains the round
function of DES itself (or any Feistel-3 construction), we present a slide attack on 3K-
DES with data complexity of O((n/s) · 2n/2) known plaintexts and O((n/s) · 2n/2+s)

time, when the S-box size is s bits.

3.1. The Structure of 3K-DES and Notations

The DES [40] was the US encryption standard until 2001, and the most widely used
block cipher worldwide until the end of the 1990s. Its structure is well known and can be
found in [40].We briefly recall a few details that are relevant to our attack. The block size
of DES is 64 bits, and the key size is 56 bits. DES is a 16-round Feistel construction. Each
round function fi : {0, 1}32 → {0, 1}32 consists of four operations: a linear expansion
function E that expands the state to 48 bits, XOR with a 48-bit subkey, an S-box layer S
which shrinks the state to 32 bits and a permutation P . The only key-dependent operation
in fi is the XOR with a subkey.
In our attack,weconsider the followingnatural abstractionof 3K-DES (called “Feistel-

2 construction with 3-round self-similarity,” according to the terminology of [32]). Let
k1, k2, k3 be independent (n/2)-bit subkeys. Let Ek1,k2,k3 be a 3m-roundFeistel construc-
tion with n-bit blocks, in which the round function fki has the form fki (x) = g(ki ⊕ x),

Efficient Slide Attacks 651

P

g

g

g

g

...

g

g

C

k1

k2

k3

k1

k2

k3

X0L X0R

X3mL X3mR

Fig. 3. Structure of 3K-DES.

where ki := k(i mod 3)+1 and g is a public keyless function. The structure of E is demon-
strated in Fig. 3.

Denote by h the first three Feistel rounds of E . It is clear that E = hm . For a given
plaintext/ciphertext pair (P,C), we denote the input to round i in the encryption process
of P by Xi (e.g., P = X0), and the input to round i in the encryption process of C
(assuming that it is encrypted) by Yi (e.g., C = Y0), as shown in Fig. 3. Note that if
(P, P ′) is a slid pair for E (i.e., if P ′ = h(P)), then P ′ = X3 and C ′ = Y3. We also use
XL to denote the left half of X and XR to denote the right half of X .

3.2. The Observations Behind the Attack

The basic idea of the attack is to search for slid pairs that satisfy the following additional
property:

Y1L = X1L . (5)

652 A. Bar-On et al.

We use a few observations. Assume that (5) holds for some slid pair (P, P ′). Then
we can deduce the following:

1. The outputs of the second round function fk2 in the encryptions of P and C are
equal. By the Feistel structure, this implies X0L⊕X2L = Y0L⊕Y2L . As X2L = P ′

R
and Y2L = C ′

R , we obtain PL ⊕ P ′
R = CL ⊕ C ′

R , or equivalently,

PL ⊕ CL = P ′
R ⊕ C ′

R . (6)

Conversely, if the keyless function g is invertible then (6) implies (5), and even if
g is a random function, (6) implies that (5) holds with a constant non-negligible
probability.

2. By the Feistel construction, (5) implies X0R ⊕ fk1(X0L) = Y0R ⊕ fk1(Y0L), or
equivalently, X0R ⊕ Y0R = fk1(X0L) ⊕ fk1(Y0L). Now, consider the applications
of g as part of fk1 in the encryptions of P andC . We know that the input difference
between these two applications is X0L ⊕ Y0L (as the key addition does not change
the difference), and that the output difference is X0R ⊕Y0R . For a random function
g, given an input difference α and an output difference β, there exists one pair
of inputs (x, x ′) on average such that x ⊕ x ′ = α and y ⊕ y′ = β. Moreover,
given the full Difference Distribution Table (DDT) of g and the input/output dif-
ferences (α, β), one can obtain instantly all possible actual values of the input pairs
(x, x ′) that correspond to those differences, whose total number is usually very
small.
Hence, if we could pre-compute the full DDT of the function g, our knowledge
would be sufficient to recover the actual values (X0 ⊕ k1,Y0 ⊕ k1), and hence, to
get a suggestion for the subkey k1. As we cannot keep in memory the full DDT
(since it requires 2n space) or even compute it (since this also takes 2n time), we
will exploit this observation in a more subtle way.

3. By the same argument, applied with P ′,C ′ instead of P,C , if (5) holds then we
know the input and output differences in the applications of g as part of fk3 in the
encryptions of P and C . This would be sufficient for recovering k3, and could we
pre-compute and store the full DDT of g.

4. Once k1, k3 are known, a candidate for k2 can be instantly found by comparing a
partial encryption of P with a partial decryption of P ′.

3.3. The Attack Algorithm

A naïve way to exploit the above observations in a slide attack is to go over many
random pairs (P, P ′), and for each pair assume that it is a slid pair that satisfies (5), use
the above observations to get candidates for the subkeys k1, k2, k3 and check them by
trial encryption. However, as the probability of a random plaintext pair to be a slid pair
that satisfies (5) is 2−n · 2−n/2 = 2−3n/2, such a naïve attack has time complexity of
Ω(23n/2).
Instead, we use relation (6) to check many candidate plaintext pairs simultaneously,

and construct “slices” of the DDT that are sufficient for our purposes instead of the full
DDT in order to save time and space. The attack algorithm is given in Algorithm 3.

Efficient Slide Attacks 653

3.4. Analysis of the Attack

The data complexity of the attack is O(25n/6) known plaintexts. Each plaintext enters
tables T1 or T2 with probability 2n/3−n/2 = 2−n/6, i.e., the expected size of the tables
T1, T2 is 22n/3. Hence, the total number of candidate slid pairs the attack may analyze
is 24n/3. Of these pairs, the attack identifies the pairs (P, P ′) satisfying PL ⊕CL , P ′

R ⊕
C ′
R ∈ L . Given that the size of L is 2n/3, the probability that (6) holds is 2−n/3 (since this

is the probability of collision between two random elements in a set of size 2n/3). Hence,
the probability that a pair (P, P ′) examined in the attack is a slid pair satisfying (6) is 2−n ·
2−n/3 = 2−4n/3. Therefore, with a constant non-negligible probability, the data contain
a slid pair that satisfies (6), and hence satisfies (5) (again, with a constant probability). As
any slid pair suggests the correct subkeys (possibly, along with a few additional subkey
candidates), the attack recovers the secret key with a constant probability. The success
probability can be easily increased by enlarging the data complexity by a fixed constant
(i.e., examining additional plaintexts).
The time complexity of the first external loop is 25n/6, dominated by encrypting the

plaintexts. The second external loop is repeated for 2n/3 values of α and its complexity

Algorithm 3 A slide attack on 3K-DES
Choose an arbitrary list L of 2n/3 n/2-bit values.
Collect 25n/6 known plaintext/ciphertext pairs (Pi ,Ci).
Initialize three empty hash tables T1, T2, and T3.
for All plaintext/ciphertext pairs (Pi ,Ci) do

if PiL ⊕ CiL ∈ L then
Add (PiL ⊕ CiL , PiL) to T1 (which is indexed by PiL ⊕ CiL)

end if
if Pi R ⊕ Ci R ∈ L then

Add (Pi R ⊕ Ci R , Pi R) to T2 (which is indexed by Pi R ⊕ Ci R)
end if

end for
for All α ∈ L do

Compute the row of the DDT of g that corresponds to the input difference α.
for All entries of T1 satisfying PiL ⊕ CiL = α do

Assume that (5) holds and use the above observations to instantly obtain a suggestion for the subkey
k1.

Using k1, partially encrypt P through the first round, and store the pair (Xi1L , Xi1R) in the hash table
T3.

end for
for All entries of T2 satisfying P ′

j L ⊕ C ′
j L = α do

Assume that (5) holds and use the above observations to instantly obtain a suggestion for the subkey
k3.

Using k3, partially decrypt P ′
j through the third round to compute (X ′

j2L , X ′
j2R).

Search for entries in the table T3 whose first coordinate (i.e., Xi1L) matches X ′
j2R .

for All matching entries (Xi1L , Xi1R) and (X ′
2 j L , X ′

2 j R) do
Use the values Xi1R and Xi2L to extract k2 from fk2 .
Check the resulting suggestion (k1, k2, k3) by a trial encryption.

end for
end for

end for

654 A. Bar-On et al.

is dominated by computing a row in the difference distribution table that requires 2n/2

operations for each value of α. (The first internal loop takes 2n/3 operations for each
α, and the second internal loop takes 2n/6 encryptions, since the expected number of
collisions with the table T3 is 2n/3 · 2n/3 · 2−n/2 = 2n/6.) Therefore, the total time
complexity of the attack is O(25n/6) encryptions.
The memory complexity is O(22n/3), dominated by the storage required for the ta-

bles T1, T2. (Note that the plaintext/ciphertext pairs themselves that do not enter tables
T1 and T2 can be discarded.) As T3 is built for each value of α independently, and
as each α value is expected to correspond to 2n/3 pairs in T1, the size of T3 is just
O(2n/3).

3.5. Attack on 3K-DES Using the Structure of the Round Function

Let us assume now that the round function F in the Feistel construction has the following
specific form (sometimes referred to as Feistel-3, as opposed to the more general Feistel-
2 structure we considered above): first, the input of F is divided into s-bit chunks that
are independently processed through an S-box layer, and then a linear transformation
is applied to the entire state. This structure is satisfied by DES, with |s| = 6 (up to
the “linear expansion” operation, which changes the analysis only slightly and thus is
omitted here), and by many other Feistel ciphers. In this case, we present an improved
slide attack that takes only O((n/s) · 2n/2) adaptive plaintexts (i.e., relies on finding a
single slid pair) and O((n/s) · 2n/2+s) time.
Consider a candidate pair (P, P ′) and their corresponding ciphertexts (C,C ′), respec-

tively. For such a pair, we know that P ′ = fk3(fk2(fk1(P))) andC ′ = fk3(fk2(fk1(C))),
which allows for a simple meet in the middle attack.
Namely, it is possible to guess the part of k1 that allows partial encryption of a sin-

gle S-box for P and for C . Similarly, one can guess the part of k3 that allows partial
decryption of a single S-box for P ′ and for C ′. Hence, by guessing s key bits from
k1 and s from k3, we obtain a 2s-bit filter condition (due to the existence of two “in-
put/output” pairs to 3 rounds of DES). Obviously, one can extend the attack to find
more key bits by targeting the other S-boxes, resulting in a simple attack on 3 rounds of
DES.
This simple meet in the middle attack can be exploited in a slide attack as well. First of

all,wegenerate fromeachplaintext a chainof a fewencryptions P, Ek(P), Ek(Ek(P)),
It is easy to see that each of the 3-round DES instances that need to be attacked uses the
same order of subkeys, and thus, guessing s bits of k1 allows for the partial encryption
of all the values in the chain by one round.
The attack is thus very simple: For each chain P, Ek(P), Ek(Ek(P)), . . ., we guess s

bits of subkeymaterial for k1 and store in the table the resulting partial encryptions of the
chainvalues (under all k1 guesses). Similarly, for each chain P ′, Ek(P ′), Ek(Ek(P ′)), . . .
we try s bits of k3, and perform partial decryption to search in the table for collisions.
Each such collision suggests a candidate slid chain as well as candidate keying material.
Once a slid chain is identified, it is easy to extract the remaining bits of k1 and k3, and
to use them to retrieve k2.
For a chain of length t , we obtain t · s filtering bits for the meet in the middle parts.

There are 2n/2+s candidate chains from each side, resulting in 2n+2s possible pairs of

Efficient Slide Attacks 655

chains. By having a n + 2s-bit filtering, we can immediately identify the slid chains,
suggesting that t = n/s + 2 is sufficient.

The resulting data complexity is (n/s + 2) · 2n/2 adaptive chosen plaintexts and
ciphertexts. The memory and time complexities are both O((n/s) · 2n/2+s).

4. Efficient Slide Attacks using the Cycle Structure of Permutations

In this section, we present a new variant of the slide attack that exploits the relation
between the cycle structures of the entire cipher Ek = f �

k and the round function fk
to detect slid pairs efficiently. First, we present a generic attack with data and time
complexities of 2n−1 that applies even when fk is very complex. Then, we show that
for Feistel constructions with a palindromic key schedule the complexity of the generic
attack drops to O(2n/2), using a reflection property.

4.1. A Generic Attack Using the Cycle Structure

4.1.1. Facts and observations

First we recall several facts regarding the cycle structure of permutations that are used in
our attack. Let g : GF(2n) → GF(2n) be a randompermutation. For every x ∈ GF(2n)
we denote CycleLength(x) = min{k > 0|gk(x) = x}. Following the classical results
of [26,27] on the distribution of cycle sizes in randompermutations (see also [23, p. 596]),
we expect that the largest cycle Cyclemax has an expected size of (1 − 1/e) · 2n , and
for every x ∈ GF(2n), Pr[x ∈ Cyclemax] ≈ 1 − 1/e. Here, e = 2.7182 . . . is the basis
of the natural logarithm. Moreover, we expect that the second largest cycle has a size of
1/e·(1−1/e)·2n , and generally, the size of the i th largest cycle is (1/e)i−1 ·(1−1/e)·2n .
The main observation used in our attack is the following: Let P be an arbitrary

plaintext.We consider the cycles of P with respect to fk and Ek , denoted byCycle fk (P)

and CycleEk (P), respectively. Denote the length of Cycle fk (P) by m1, i.e., m1 =
min{t > 0| f tk (P) = P}. Similarly, denote the length ofCycleEk (P)bym2.As Ek = f �

k ,

the relation Em2
k (P) = P can be written as f l·m2

k (P) = P . It clearly follows that m1|� ·
m2. On the other hand, m2 = min{t > 0|Et

k(P) = P} = min{t > 0| f (t ·�) mod m1
k (P) =

P}. Combining these two statements, we get m2 = min{t > 0|t� = 0 mod m1}, or
equivalently,

m2 = m1/ gcd(m1, �). (7)

In particular, if gcd(m1, �)=1, then m1 = m2.
If gcd(m1, �) = 1, we can use Euclid’s extended algorithm to find 1 ≤ d1 ≤ � − 1

and d2 such that d1 · m1 = � − 1 (mod �) = d2 · � − 1. For those d1, d2, we have

f d1·m1+1
k (P) = fk(P), and f d1·m1+1

k (P) = f d2·�k (P) = Ed2
k (P).

Hence, the pair (P, Ed2
k (P)) is a slid pair for Ek .

656 A. Bar-On et al.

It is important to note that the adversary does not have access to fk and thus cannot
computem1. Onlym2 can be computed, by sequential encryption using Ek . However, the
adversary may assume that gcd(m1, �) = 1 and then use the value m1 = m2 to compute
d1, d2 and find the candidate slid pair (P, Ed2

k (P)). If the assumption gcd(m1, �) = 1 is
correct, the found pair must be a slid pair. Furthermore, as observed in [11], this implies
that for every t , the pairs (Et

k(P), Ed2+t
k (P)) must also be slid pairs.

4.1.2. The Attack Algorithm and Its Analysis

Based on the above observations, we can mount the following attack.

1. Fix an arbitrary plaintext P0.
2. Ask for a sequential encryption of P0 through Ek , i.e., for the sequence Ek(P0),

E2
k (P0) = Ek(Ek(P0)), E3

k (P0), . . ., until E
m2
k (P0) = P0 is encountered for the

first time.
3. Use the extended Euclid algorithm to find d1, d2 such that d1 · m2 = d2 · � − 1.
4. Deduce that (P, Ed2

k (P)) is a candidate slid pair and check the guess by attacking

fk using {(Et
k(P), Ed2+t

k (P))}t≥0 as input/output pairs.

For a random value of x , E[CycleLength(x)] = (1 − 1/e) · 2n , and thus, we expect
to get about (1 − 1/e) · 2n pairs of the form {(Et

k(P), Ed2+t
k (P))}t≥0. This amount

is sufficient for most possible attacks on fk , including adaptive chosen plaintext and
ciphertext attacks. Hence, Step 4 is expected to succeed even for fairly complex functions
fk (e.g., fk being the full 16-round DES).
The attack succeeds if gcd(m1, �) = 1. For a random permutation fk , this occurs

with probability ϕ(�)/�, where ϕ(�) = |{1 ≤ d ≤ (� − 1) : gcd(d, �) = 1}| is the
Euler function. In case of failure, we can apply the attack again with another plaintext
P1 that is not included in the sequence Ei

k(P0). If the attack fails again, we can take a
new plaintext P2 etc. After k applications of the attack, the total success probability is
1 − (1 − ϕ(�)/�)k , which approaches 1 quickly.

As the expected length of CycleEk (P0) is (1 − 1/e) · 2n), the data complexity of the
attack is very large — almost the entire codebook.
The advantage of the attack over a standard slide attack is the time complexity —

O(2n−1 + t), where t is the time required for breaking fk with O(2n−1) known in-
put/output pairs (compared to O(2n · t) for the standard slide attack). Hence, the attack
is advantageous in cases where fk is very complex, so that t is large. In Sect. 5, we ex-
emplify this technique with an attack on 24-round GOST with unknown S-boxes, where
the function fk is 8-round GOST with unknown S-boxes. Due to the complexity of fk ,
our attack is 236 times faster than the best previously known slide attack on the same
variant.
We note that when the encryption algorithm is implemented by a quantum computing

device capable of encrypting a quantum state, one can use the quantum cycle finding
algorithm by Simon [43]. In such a case, the detection of the cycle itself can be done
in time O(n) using O(1) quantum queries to the device (by generating an entangled
state composed of all possible inputs, which is then encrypted to an entangled state
composed of all possible outputs). After finding the cycle length, one can either exploit

Efficient Slide Attacks 657

a standard cryptanalytic attack or use some advanced quantum attack algorithms, e.g.,
those presented in [2,34].

4.2. An Efficient Attack on Feistel Constructions with a Palindromic Key Schedule

The attack algorithm described above does not depend on the exact cycle structures of Ek

and fk , apart from its success probability (that depends on the probability Pr[gcd(m1, �)

= 1]). Hence, if for some cipher Ek the cycle structure deviates from random, such that
shorter cycles are more likely to occur, the same attack holds with a lower complexity
(as the complexity is dominated by the computation of CycleEk (P0)).

A notable case in which such a reduction occurs is Feistel ciphers with a palindromic
key schedule, i.e., round subkeys of the form k1, k2, . . . , kr , kr , kr−1, . . . , k1 for some
r . Let fk be such a construction, and let Ek = f �

k as before (so that Ek consists of 2r�
Feistel rounds). Consider a sequential encryption of a plaintext P0, as performed in the
attack described above, and denote the input of the j’th round in the encryption process
of Ei

k(P0) by X [2r� · i + j] (for j = 0, 1, . . . , 2r� − 1).
We use the following observation, introduced in [35,36] and called reflection property.

Assume that for some i ∈ N and for some 0 ≤ m ≤ � − 1, the intermediate value
X = X [2r� · i + 2rm + r] satisfies XL = XR . In such a case, by the palindromic
Feistel structure, we have X [2r� · i + 2rm] = X [2r� · i + 2r(m + 1)]. Furthermore, the
reflection property can be extended all the way in both directions to obtain

P0 = X0 = X [2r� · 2i + 2r(2m + 1)]. (8)

This intermediate value is not seen by the adversary who sees only values of the form
E j
k (P0) = X [2r� · j]. However, if we denote c = �

gcd(2m+1,�) , then (8) implies

P0 = X [c(2r� · 2i + 2r(2m + 1))] = X

[
2r� ·

(
2ic + 2m + 1

gcd(2m + 1, �)

)]

= E
2ic+ 2m+1

gcd(2m+1,�)
k (P0).

It follows that in such a case,

CycleLengthEk
(P0) ≤ 2ic + 2m + 1

gcd(2m + 1, �)
. (9)

Furthermore, the same argument holds if some X ′ = X [2r�·i+2rm] satisfies X ′
L = X ′

R ,
and in such a case,

CycleLengthEk
(P0) ≤ 2ic′ + 2m

gcd(2m, �)
, (10)

where c′ = �/ gcd(2m, �).
We now analyze the expectation of the right-hand sides of (9) and (10). By standard

randomness assumptions, for each i ∈ N and 0 ≤ m ≤ � − 1, the probability that

658 A. Bar-On et al.

X = X [2r� · i + 2rm + r] satisfies XL = XR is 2−n/2. The same holds for the
probability that X ′ = X [2r� · i + 2rm] satisfies X ′

L = X ′
R . Hence, it is expected that

the smallest index for which (8) or the respective statement for X ′ holds is X [j], for
j = O(r · 2n/2). Therefore, in expectation (9) and (10) yield

E
[
CycleLengthEk (P0)

] ≤ O

(
r · 2n/2 · 2 · �

gcd(2m+1,�)

2r�

)
≤ O(2n/2). (11)

It follows that when we apply the attack algorithm described above to Ek , the expected
data complexity is as small as O(2n/2). In Sect. 5, we apply this attack to a 128-bit key
variant of the block cipher GOST, to get an attack which is 251 times faster than the best
previously known attack of [14] on an even weaker variant.
It should be noted that as CycleLengthEk (P0) becomes smaller, the task of breaking

fk using the candidate slid pairs becomes more complex, since the cycle contains at
most O(2n/2) known input/output pairs for fk . Combining many cycles together is
problematic since each candidate slid pair is correct only with probability ϕ(�)/�, so the
probability that all examined cycles suggest correct slid pairs may be too low. A possible
way to overcome this obstacle is to devise an efficient distinguishing attack on fk that
requires at most O(2n/2) known input/output pairs. Using the distinguishing attack, the
adversary can check which of the suggested slid pairs are correct ones and then combine
verified slid pairs suggested by different cycles to break fk with a more data-consuming
attack.

5. Application to the GOST Block Cipher

In this section we apply the new slide attacks presented in Sect. 4 to variants of the
block cipher GOST—the Russian encryption standard.3 First we present the structure of
GOST and a brief account of previous results on the cipher. Thenwe present new efficient
attacks on 8-round GOST with unknown S-boxes that will be used as subroutines in the
slide attacks. Finally, we present the new slide attacks on 24-round GOST and on a
128-bit key variant of the cipher considered in [11,14].

5.1. The Structure of GOST and Previous Results

The Russian encryption standard GOST [29], designed in 1989, is a 64-bit block and
256-bit key cipher with a Feistel structure of 32 rounds. The round function accepts an
input and a subkey of 32 bits each. The input and the subkey are added (modulo 232), and
the outcome is divided into eight sets of four bits each. Each such set enters a different
S-box, where the least significant set enters S1 and the most significant set enters S8. A
central feature of GOST is that the actual S-boxes that are used are kept secret and are

3We note that GOST has been the Russian encryption standard since 1989. In 2015, the Russian Federation
standardization body issued another standard called Kuznyechik, to be effective in parallel with GOST (which
is now calledMAGMA in the official documents). Hence, currently GOST is one of the two Russian standards
for block ciphers.

Efficient Slide Attacks 659

S1

S2

S3

S4

S5

S6

S7

S8

≪ 11

SKr

Fig. 4. Round function of GOST.

assigned by the government to a given set of users in each industry.4 The outputs of all
S-boxes are combined to 32 bits, which are then rotated to the left by 11 bits. Figure 4
describes one round of GOST.
The key schedule algorithm takes the 256-bit key and treats it as eight 32-bit words,

i.e., K = K1, . . . , K8. The subkey kr of round r is

kr =
{
K(r−1) mod 8+1 r ∈ {1, . . . , 24};
K33−r r ∈ {25, . . . , 32}.

Most of the previous results on GOST consider a variant with known S-boxes, using as a
specific example the set of S-boxes used in the Russian banking industry that has leaked
and appears in [42]. In this mode, Isobe [31] was the first to publish an attack on the full
cipher in 2010. Later on, several improved attack were presented byDinur et al. [19], and
a multitude of attacks using various techniques were presented by Courtois [12,13,15].
The results obtained so far onGOSTwith unknown S-boxes are by far less impressive.

A related-key distinguisher for the entire cipher that requires only two related-key chosen
plaintexts is presented in [37]. In [11,21] a slide-with-a-twist attack on a 20-round
variant of GOST is described, and in [18] an efficient enhanced reflection attack on
18-round GOST is given. Finally, a weak-key class consisting of 232 keys of the form
(K , K , K , K , K , K , K , K) identified using a slide attack is presented in [25], and in [41]
it is shown that for a key in this weak-key class, an adversary can recover the secret S-
boxes with a chosen-key attack. To summarize, the only known attacks on more than 20
rounds of GOST with secret S-boxes are either related-key attacks or attacks that apply
for only 232 of the 2256 keys.

4We note that according to the published documentation [29], the S-boxes are not necessarily permutations.
Hence, an S-box can be modeled as an unknown 64-bit key.

660 A. Bar-On et al.

In our attacks on variants of GOST presented below, we use the following notations.
The plaintext and the ciphertext are denoted, as usual, by P,C , respectively. The input
to round i is denoted by Xi , so P = X1. Note that following the official GOST speci-
fications, we start the rounds at round 1. For any state X , the left and right halves of X
are denoted by XL and XR , respectively. Bits j, j + 1, . . . , � of a state X are denoted
by X [j–�]. Finally, a difference between two encryptions in the intermediate state X is
denoted by X ′.

5.2. Efficient Known-Plaintext Attacks on 8-Round GOST with Unknown S-Boxes

We now present two new attacks on 8-round GOST with unknown S-boxes. The first
is a simple distinguishing attack with data complexity of 236 known plaintexts. The
second attack is more complex, but allows to recover the unknown S-boxes and the
secret key with data complexity of 236.5 known plaintexts and time complexity of 236.5.
Both attacks will be used as subroutines in the slide attacks presented in Sects. 5.3
and 5.4. (For reasons described below, both are needed.)

5.2.1. A Distinguishing Attack on 8-Round GOST with Unknown S-Boxes

The distinguishing attack is a simple truncated differential attack which uses the 8-
round differential characteristic depicted in Fig. 5. The characteristic exploits the weak
diffusion of the GOST round function to predict the difference in 17 bits of the state
after 8 rounds with probability (1/2)8 · (3/4)8 = 2−11.32. As can be seen, for each S-box
whose input difference is Li ∈ {0, 1, . . . , 7}, with probability of at least 3/4, the key
addition operation does not result in carry to the next S-box (and so, the next S-box
remains inactive5), and with probability of 1/2, the LSB of the output difference is zero,
so that after the rotation, only one S-box is affected and not two. In the last three rounds
of the characteristic, we allow some of the active S-boxes to affect two S-boxes in the
next round in order to increase the probability of the characteristic.
The differential characteristic allows to mount a distinguishing attack on 8-round

GOST with data complexity of 237 known plaintexts. Indeed, the plaintexts contain
22·37−1 = 273 pairs, out of which 273 · 7 · 2−64 ≈ 211.8 pairs satisfy the input difference
of the characteristic. Hence, it is expected that for 8-round GOST, at least one of them
satisfies also the output difference of the characteristic. On the other hand, for a random
permutation, the probability that the output difference of the characteristic is obtained for
a given pair is 2−17, and thuswith a very high probability there are no pairs that satisfy the
characteristic’s input and output differences. This allows to distinguish 8-round GOST
from a random permutation with a high probability.
The data complexity of the attack can be slightly reduced to 236 known plaintexts, by

using variants of the differential characteristic in which the input difference is rotated
cyclically by k nibbles (for k = 1, 2, . . . , 7). It can be checked that each of these
characteristics holds with probability of at least 2−12.57, and so, 271 pairs (formed from
236 plaintexts) are sufficient to have a right pair with respect to one of the 8 characteristics

5Obviously when we discuss the most significant S-box, there is no such carry with probability 1.

Efficient Slide Attacks 661

P = 00 0L1 00 00 00 00 00 00x

A = 00 00 00 00 a = 00 00 00 00 p = 1

B = L20 00 00 00 b = 00 0L1 00 00x p = 1
2 · 3

4

ROL11(00 0? 00 00)

C = 00 00 0L3 00 c = L20 00 00 00 p = 1
2

ROL11(?0 00 00 00)

D = L40 L50 00 00 d = 00 0L1 0L3 00 p = (12)
2 · (34)2

ROL11(00 0? 0? 00)

E = 00 00 0L7 0L8 e = L60 L50 00 00 p = (12)
2 · (34)

ROL11(?0 ?0 00 00)

F = L100 L11? ?0 00 f = 00 0L1 0L9 0L8 p = (12)
2 · (34)2

ROL11(00 0? 0? ??)

G =?? U10 0L14 U2L15 g = L120 L13? ?0 00 p = 3
4

ROL11(?0 ?? ?0 00)

H =?U3 L18? ?? ?? h =?? U1L1 0L16 U2L17 p = 3
4

ROL11(?? ?? 0? ??)

T =?U3 L19? ?? ?? ?? U1L1 0L16 U2L17

F

F

F

F

F

F

F

F

? denotes an unknown value.
Ui ∈ {0, 8x}, Li ∈ {0, 1x, . . . , 7x}

Fig. 5. An 8-round truncated differential of GOST with probability (12)8 · (34)8 = 2−11.32.

with a high probability.6 Finally, the attack can be performed efficiently by inserting all
plaintexts into a hash table indexed by the right half of the input and the 8 MSBs of the
nibbles in the left half of the input (i.e., a total of 40 bits), and checking only colliding
pairs in the table as candidates for satisfying the characteristic. In this way, the time
complexity is dominated by encrypting the plaintexts.

6Using standard independence assumption and the Poisson distribution of right pairs, the success proba-
bility is 71.8%.

662 A. Bar-On et al.

P = α = 00 00 00 0W1 00 00 00 00x

A = 00 00 00 00 a = 00 00 00 00 p = 1

B = 00 00 L1U1 00 b = 00 00 00 0W1 p = 7/8

ROL11(00 00 00 0?)

C = 0L2 ?U2 00 00 c = 00 00 L1U1 00 p = 3/4

ROL11(00 00 ?? 00)

D =?U3 00 L4U4 L3? d = 0L2 ?U2 00 0W1 p = (7/8) · (3/4)
ROL11(0? ?? 00 0?)

E = 0L6 ?? ?? ?U6 e =?U3 00 L5U5 L3? p = 3/4

ROL11(?? 00 ?? ??)

F =?? ?? ?U7 L8? f = 0L7 ?? ?? ?U1 p = 3/4

ROL11(0? ?? ?? ??)

G =?? ?? ?? ?? g =?? ?? ?U8 L9? p = 1

ROL11(?? ?? ?? ??)

T = β =?? ?? ?? ?? ?? ?? ?U8 L9?

F

F

F

F

F

F

F

? denotes an unknown value.
Ui ∈ {0, 8x}, Li ∈ {0, 1x, . . . , 7x}, W1 ∈ {1x, 2x, 3x}, U1 ∈ {1x, 2x, 3x, 9x, Ax, Bx}

Fig. 6. A 7-round differential of GOST with probability (78)2 · (34)4 = 0.242.

5.2.2. A 7-Round Truncated Differential and a Key Recovery Attack on 8-Round GOST
with Unknown S-Boxes

The basic 7-round truncated differential we use is depicted in Fig. 6. It exploits the
weak diffusion of the GOST round function to predict the difference in 4 bits of the
intermediate state after 7 rounds with probability 0.242.
As in the 8-round differential presented above, we require that in all “active” S-boxes

(i.e., S-boxes with a nonzero input difference), the key addition does not result in carry
into the next S-box. The probability of this event is either 7/8 (if the difference in
the S-box is W1) or 3/4 (if the difference is Li). This time, we always allow the output
difference to affect two S-boxes in order tomaximize the probability of the characteristic.

Efficient Slide Attacks 663

We use the differential in rounds 2–8 of the encryption process and analyze the first
round.Denote its input difference byα, i.e., we look for pairswith difference X ′

2 = α. For
such pairs, the input difference of the round function in round 1 is P ′

1L = 00 00 00 0W1.
With probability 7/8, this implies that only one S-box in round 1 is active and the output
difference is of the form 00 00 L1U1 00. If this is the case, then there are only 16
possible plaintext differences (which are all P ′ such that P ′

R[0–10,15–31] = 0) that lead
to difference α in the input of round 2. Denote the set of these 16 possible differences
of P ′

R by S.
In the attack, we examine 236.5 plaintexts, and out of the 272 possible plaintext pairs

that they compose we keep only those that satisfy three conditions:

1. P ′
L = 00 00 00 0W1, for W1 ∈ {1x , 2x , 3x }.

2. P ′
R ∈ S (which means that P ′

R[0–10,15–31] = 0).
3. C ′ ∈ β (which means that C ′[7–10] = 0000).

Out of the 236.5 known plaintexts, it is possible to compose 272 pairs. The probability that
a random pair satisfies the above three conditions is 3/232 ·2−28 ·2−4 = 3 ·2−64, and we
expect 272 · 3 · 2−64 = 768 random pairs to satisfy all three conditions. Independently,
out of the 272 pairs, a fraction of 3 · 2−64 satisfy the input difference α at the entrance to
the second round. Each of these 272 ·3 ·2−64 = 768 pairs has probability 0.242 to satisfy
the differential characteristic (i.e., to have the output difference C ′ ∈ β). This suggests
that about 768 · 0.242 = 184 right pairs exist in the data. We note that with probability
7/8 a pair with input difference α to the second round has only one active S-box in the
first round (Condition 2), i.e., we expect about 184 · 7/8 = 161 right pairs to exist in the
data set (along 768 random pairs which satisfy the input/output differences).
Therefore, after the initial filtering we are left with about 160 “right” pairs that satisfy

the truncated differential and 768 “random” pairs. We now need to identify the right
pairs and use them appropriately.

Observation 1. Let (P1, P2) and (P∗
1 , P∗

2) be two right pairs satisfying Condition 2.
If P1L [0–3] = P∗

1L [0–3] (the input bits to the single active S-box in round 1) and

P2L [0–3] = P∗
2L [0–3] (which imply that the input differences P ′

L , P
′∗
L are equal),

then the output differences of the first round function are equal in both pairs, and thus
P ′
R[11–14] = P

′∗
R [11–14].

This observation can be used to distinguish 8-round GOST from a random permuta-
tion, as follows: We divide the ≈ 900 pairs (out of which about 160 are right pairs) that
satisfy the three conditions into 48 sets, according to the value of (PL [0–3], P ′

L [0, 1]).
(Note that P ′

L [0, 1] has only three possible values.) In each set, check how many times
each value of P ′

R[11–14] is encountered. For a random cipher (or when the pairs are
random), the values of P ′

R[11–14] in each set are distributed uniformly among the 16
possible values. In particular, the probability that in more than a few sets a value of
P ′
R[11–14] appears at least four times is fairly low. On the other hand, for 8-round

GOST, in each of the 48 sets, all right pairs have the same value of P ′
R[11–14]. As each

set contains 3.33 right pairs on average, it is expected that at least 10 sets have a value of
P ′
R[11–14] appearing at least four times, or at least two sets have a value of P ′

R[11–14]
appearing at least five times.

664 A. Bar-On et al.

Formally, we define the distinguisher based on whether at least 10 sets have a value of
P ′
R[11–14] appearing at least four times or at least two sets have a value of P ′

R[11–14]
appearing at least five times. Otherwise, we decide that the examined cipher is a random
permutation. A straightforward computation shows that the success probability of this
distinguisher is very high.Weexperimentally verified this by running10,000 experiments
with right pairs (all of whichwere identified correctly).We also run 100,000 experiments
with a randompermutation (all of whichwere identified correctly aswell). The algorithm
of the distinguisher is presented below.

1. Ask for the encryption of 236.5 known plaintexts.
2. Insert the plaintext/ciphertext pairs into a hash table T1 indexed by bits PL [2–31],

PR[0–10,15–31],C[7–10].
3. Collect all pairs colliding in T1 (all satisfying Conditions (1)–(3)).
4. Insert the colliding pairs into a second hash table, T2 indexed by the value of

(PL [0–3], P ′
L [0, 1]).

5. In each entry of T2, find the maximal number of times that a P ′
R[11–14] value

appears. Count how many times this maximum is 4 or at least 5. If the number of
times 4 appears as the maximum is 10 or more, or if the number of times 5 (or
more) appears as the maximum is 2 or more, output “8-round GOST.” Otherwise,
output “random permutation.”

The data and time complexities of the above distinguisher are 236.5.

5.2.3. Recovering the Subkeys and the S-Boxes

The algorithm described above allows not only to distinguish 8-round GOST from a
random permutation, but also to detect the right pairs, and using them, to recover the
subkeys and the secret S-boxes. For each of the 48 sets considered above,with a very high
probability the right pairs are those which correspond to the most frequently proposed
value of P ′

R[11–14].
We start the analysis by using the right pairs from each set to determine the least

significant nibble of k1. Right pairs that passed our analysis do not have the second
S-box active, and thus, subkey suggestions that cause overflow and activate the second
S-box can be discarded. After analyzing all 48 sets, we expect only the correct value of
k1 to remain.

We also note that one can apply the attack from the ciphertext side (by reversing the
order of rounds in the differential characteristic and using it in rounds 1–7). This allows
finding the least significant nibble of k8 using the same technique.
At this point, we know various input pairs to S1 and their corresponding output

differences. While it allows using techniques such as those discussed in [8], a more
subtle analysis is needed. The S-box recovery as well as the related subtleties are given
in “Appendix”.
After recovering the first S-box S1, as well as the least significant nibbles of k1 and

k8, we can repeat the attack targeting S2 and the second least significant nibbles. The
attack is then repeated until the full k1 and k8 as well as the 8 S-boxes are recovered.
Extracting the remaining six subkeys (k2, k3, . . . , k7) can be easily done by truncating
the differential and re-running the attack on less rounds using the truncated differential.

Efficient Slide Attacks 665

Hence, we can fully recover the secret S-boxes and the secret key with data, memory,
and time complexity of 236.5.

5.3. A Slide Attack on 24-Round GOST with Unknown S-Boxes

An efficient slide attack on a reduced round variant of GOST which consists of the first
24 rounds of the cipher can be mounted by combining the generic technique of Sect. 4.1
with the attack on 8-round GOST of Sect. 5.2.2.

Indeed, by the structure of GOST, its first 24 rounds can be written as Ek = (fk)3,
where fk is 8-roundGOSTwith subkeys K1, K2, . . . , K8. This allows to apply the attack
of Sect. 4.1 to retrieve a set of ≈ 263 slid pairs, which are input/output pairs to fk . Given
these input/output pairs (and actually, 236.5 of them are sufficient), the secret S-boxes
and the secret key K1, K2, . . . , K8 can be recovered using the attack of Sect. 5.2.2.

The attack complexity is dominatedby the complexity of the generic attackofSect. 4.1,
which requires 263 adaptively chosen plaintexts (or almost 264 known plaintexts) and
has time complexity of 263. The success probability is close to 1 as if the attack fails for
one cycle of Ek (which happens with probability 1 − ϕ(3)/3 = 1/3, as � = 3 in our
case), we can repeat it for other cycles.

5.4. An Efficient Slide Attack on an 128-Bit Key Variant of GOST

Consider a weak-key class of GOST of size 2128 in which the 256-bit key is palindromic,
i.e., has the form K1, K2, K3, K4, K4, K3, K2, K1 where K1, K2, K3, K4 are 32-bit
words. This weak-key class was mentioned in [11], where it was remarked that under
such keys GOST is an involution, and thus, has 232 fixed points. However, this is clearly
not sufficient for attacking it efficiently. In [14], Courtois analyzed two natural 128-bit
key variants of GOST. One of these variants is our “palindromic key schedule” variant,
and for this variant Courtois presents a fixed-point attack which requires 232 chosen
plaintexts and 291 encryptions, assuming that the S-boxes are known. We present an
efficient slide attack on this variant, which has a practical complexity of about 240, even
if the S-boxes are secret.
For keys of the form K1, K2, K3, K4, K4, K3, K2, K1, the full 32-round GOST can

be written as Ek = f 4k , where fk is 8-round GOSTwith unknown S-boxes. Furthermore,
fk is a Feistel construction with a palindromic key schedule, and thus, we can apply to
Ek the efficient slide attack of Sect. 4.2. In this case, we have n = 64, � = 4, and r = 4,
and thus, the expected length of CycleEk (P0) is 231. By the attack of Sect. 4.2, this
would be sufficient to break Ek with 231 plaintexts and time, could we break 8-round
GOST with 231 known plaintexts. As our best attack on 8-round GOST requires 236.5

known plaintexts, we have to work a little more.
In order to collect 236.5 plaintexts, we must use plaintexts from many different cycles

together. However, for each of the cycles, the probability that the candidate pairs yielded
by it are correct slid pairs is ϕ(4)/4 = 1/2. Hence, the probability that all pairs we
collect are simultaneously correct is extremely low. To overcome this problem, we first
use the distinguishing attack of Sect. 5.2.1 to detect the cycles that yield correct slid
pairs and then apply the key recovery attack of Sect. 5.2.2 to the “correct” pairs.

666 A. Bar-On et al.

Specifically, we start with 240 adaptive plaintexts (collected from ≈ 512 different
cycles) and detect all plaintext pairs that satisfy the truncated differential presented in
Sect. 5.2.1. As described above, the pairs can be detected efficiently (i.e., in time that is
negligible compared to the encryption of the plaintexts) using a hash table. Among the
279 plaintext pairs, about 277 result from correct slid pairs (as this happens exactly when
both plaintexts belong to cycles that yield correct slid pairs). Hence, about 64 pairs are
expected to satisfy the truncated differential characteristic . In addition, it is expected
that 279 · 2−64 · 2−17 · 7 · 8 ≈ 16 pairs satisfy the input and output differences of the
characteristics by chance. Despite the “false alarms,” we treat all found pairs as “right”
pairs, and for each of them, we assume that both cycles from which the elements of the
cycle were taken contain “correct” slid pairs. Thus, we obtain about 27 “correct” cycles,
which are used in the subsequent key recovery attack.
In the key recovery attack, we are given about 231 · 27 = 238 plaintexts, that form 275

pairs. However, out of these pairs only 275 · (4/5)2 ≈ 274.31 are real plaintext/ciphertext
pairs, while the rest are “random” pairs taken from the “false alarm” cycles. As a result,
the signal/noise ratio of the truncated differential attackpresented inSect. 5.2.2 is reduced
by a factor of (4/5)2. However, it can be easily seen that as the total number of plaintexts
is increased by a factor of 2, the attack still succeeds to recover the key and the secret
S-boxes with a high probability.
To summarize,we obtain an attack on the “palindromic key schedule” variant ofGOST

with data, memory, and time complexity of 240. It seems plausible that the complexity
of the attack can be reduced even further (say, to about 235), by devising an attack on
8-round GOST with a smaller data complexity.

6. Summary and Conclusions

In this paper, we presented four types of new efficient slide attacks, that perform better
than the “standard” 2n time complexity of the slide attack, due to efficient detection of
the slid pairs. We applied our attacks to two variants of the Russian encryption standard
GOST, improving the total complexity over the best previously known attacks on the
same (or weaker) variants by a factor of more than 235. One of our attacks can be used
practically by a legitimate user of GOST who wants to recover her secret S-boxes (that
are supposed to be used in other branches of the same industry).
It will be interesting to find further scenarios in which slide attacks can be performed

with time complexity of less than 2n , and thus, make slide attacks more applicable in
practice.

Acknowledgements

The authors are grateful to Itai Dinur and Adi Shamir for numerous fruitful discussions.
The authors would also like to thank Nicolas Courtois for his useful comments on a
draft of the paper. We also would like to thank Erkan Uslu for his comment on this
manuscript. The help of the anonymous referees in improving the attacks of this paper
is highly appreciated. The first author was partially supported by the Israeli Ministry

Efficient Slide Attacks 667

of Science and Technology and by the Check Point Institute for Information Security,
and by the BIU Center for Research in Applied Cryptography and Cyber Security in
conjunction with the Israel National Cyber Bureau in the Prime Minister’s Office. The
third author was supported in part by the Israel Science Foundation through grants
No. 827/12 and No. 1910/12 and in part by the European Commission under Contract
ICT-645622 PQCrypto. The fourth author was supported by the Alon Fellowship.

Appendix: S-Box Recovery

In this appendix, we describe the S-box recovery part of our attack on 8-round GOST
with unknown S-boxes. To the best of our knowledge, the problem of recovering an
S-box from its difference distribution table (or parts of it) was not fully addressed in
the literature. In a related manuscript [20], we discuss the problem and analyze various
strategies. Here we present a simple algorithm which is sufficient for the purposes of
our current attack.

In the settings discussed in this paper, the adversary has access to only several rows
of the difference distribution table. Recall that the slide attack allows obtaining inputs
to some S-box, e.g., S1, followed by their output difference. One thing which affects
our analysis is the fact that though we obtain all different inputs, the pairs of which we
know the output difference have input difference of either 1,2, or 3, up to the effects of
the modular key addition. When the key nibble corresponding to the S-box we analyze
is nonzero, other input differences to the S-box may occur (due to the carry chain).
However, even in these cases, we obtain only a partial view of the difference distribution
table (we later discuss methods to obtain the missing bits and pieces).

We shall analyze the “worst” case from our perspective, namely when the respective
key nibble is all zero. In such a case, all input pairs are indeed with difference 1,2,
or 3. This means that each four values of S[4i], S[4i + 1], S[4i + 2], and S[4i + 3]
can be determined independently for i = 0, . . . , 3. Moreover, due to the nature of the
informationwe have, one can only find the candidate values for such a quartet, but cannot
determine which quartet of values obtains which solution.

Our algorithm is quite straightforward.We first determine S[0] to be x (any value will
be acceptable, as the output differences are preserved underXORing the same value to all
outputs of S[0]), and try all possible S[1] that are plausible (namely, for which the output
difference S[0]⊕S[1] is possible given an input difference 1x). For each such possibility,
we try all possible values of S[2] that are plausible with respect to S[0] and then continue
to verify that the difference S[1] ⊕ S[2] may occur for an input difference 1 ⊕ 2 = 3.
Similar considerations are applied on S[3]. Also, we can check that the determined
values do not offer entries that contradict the known values of the difference distribution
table (i.e., offer values higher than those in the actual difference distribution table).

After computing the first four values, we can continue. In case the two least significant
bits of the key nibble are zero, we must try all possible remaining values for some entry
(otherwise, we can use the difference distribution table to determine some other S-box
entry). We continue this process, until the full S-box is recovered. We then verify the
correctness of the S-box by checking the rows of the difference distribution table which
are available to the adversary.

668 A. Bar-On et al.

Our experimentswith 32different S-boxes (the 8S-boxes ofGOSTused in theRussian
banking industry, the 8 S-boxes suggested in the revised GOST R 34.12-2015 standard,
the 8 S-boxes of the block cipher Serpent, and their 8 inverses) show that given the correct
value of S[0], the information from the difference distribution table corresponding to
input differences 1, 2, and 3 is sufficient to reduce the number of candidates to between
147456 and 2359296 (which is equivalent to a total of between 2359296 = 221.2 and
37748736 = 225.2 possible S-boxes). The process of reconstructing all possible S-boxes
given a single difference distribution table takes about 1.31 seconds on average, using a
C program compiled with gcc-4.8.4 with the optimization flag “-O2” on an Intel Quad-
Core i7-5500U CPU running at 2.40GHz.

To further reduce the number of possible S-boxes, one needs to obtain more rows of
the difference distribution table. When the two least significant bits of the key nibble
are nonzero, one can obtain additional rows using carries (and use them to filter wrong
S-box candidates). In the other cases, one can consider pairs that satisfy rotated versions
of the 8-round differential characteristic depicted in Fig. 5 such that the eighth round has
a nonzero input to the S-box, with a known output difference. This allows reconstructing
the missing rows in the difference distribution table.

Using this additional knowledge, we were able to reduce the number of candidate S-
boxes to between 144 and 352 (including the uncertainty concerning the value of S[0]).
The average time complexity of identifying these candidates is less than 1.35 seconds on
the same machine (i.e., it takes a fraction of a second more to reconstruct the difference
distribution tables and check them).

Once the first S-box is recovered, one can continue and recover other S-boxes, or
analyze other rounds. For example, after recovering the S-boxes S1, S6, and S7, it is
possible to target the value of the first nibble of k2 and/or of k7. If a guess of these S-boxes
does not offer a consistent suggestion to these key nibbles, then it can be discarded. This
way we can determine step by step more S-boxes and key nibbles, until only a single
consistent solution remains.

The timecomplexity ismostly determinedby the analysis of eachS-box independently
using the difference distribution table (or its known parts) which takes at most the
equivalent of 232 GOST encryptions.

References

[1] W. Aerts, E. Biham, D.D. Moitie, E.D. Mulder, O. Dunkelman, S. Indesteege, N. Keller, B. Preneel,
G.A.E. Vandenbosch, I. Verbauwhede, A practical attack on KeeLoq. J. Cryptol. 25(1), 136–157 (2012)

[2] M.V.Anand, E.E. Targhi,G.N. Tabia,D.Unruh, Post-quantum security of theCBC,CFB,OFB,CTR, and
XTS modes of operation, in T. Takagi (ed.) Post-Quantum Cryptography—7th International Workshop,
PQCrypto 2016, Fukuoka, Japan, February 24–26, 2016, Proceedings. Lecture Notes in Computer
Science, vol. 9606 (Springer, Berlin, 2016), pp. 44–63

[3] E. Biham, New types of cryptanalytic attacks using related keys. J. Cryptol. 7(4), 229–246 (1994)
[4] E. Biham, O. Dunkelman, N. Keller, Improved slide attacks, in A. Biryukov (ed.) Fast Software Encryp-

tion, 14th International Workshop, FSE 2007, Luxembourg, Luxembourg, March 26–28, 2007, Revised
Selected Papers. Lecture Notes in Computer Science, vol. 4593 (Springer, Berlin, 2007), pp. 153–166

[5] E. Biham, A. Shamir, Differential Cryptanalysis of the Data Encryption Standard (Springer, Berlin,
1993)

[6] A. Biryukov, C. Bouillaguet, D. Khovratovich, Cryptographic schemes based on the ASASA struc-
ture: black-box, white-box, and public-key (extended abstract), in P. Sarkar, T. Iwata (eds.) Advances

Efficient Slide Attacks 669

in Cryptology—ASIACRYPT 2014—20th International Conference on the Theory and Application of
Cryptology and Information Security, Kaoshiung, Taiwan, R.O.C., December 7–11, 2014. Proceedings,
Part I. Lecture Notes in Computer Science, vol. 8873 (Springer, Berlin, 2014), pp. 63–84

[7] A. Biryukov, D. Khovratovich, L. Perrin, Multiset-Algebraic Cryptanalysis of Reduced Kuznyechik,
Khazad, and secret SPNs. IACR Trans. Symmetric Cryptol. 2016(2), 226–247 (2016). http://tosc.iacr.
org/index.php/ToSC/article/view/572

[8] A. Biryukov, L. Perrin, On reverse-engineering S-boxes with hidden design criteria or structure, in R.
Gennaro, M. Robshaw, (eds.) Advances in Cryptology—CRYPTO 2015—35th Annual Cryptology Con-
ference, Santa Barbara, CA, USA, August 16–20, 2015, Proceedings, Part I. Lecture Notes in Computer
Science, vol. 9215 (Springer, Berlin, 2015), pp. 116–140

[9] A. Biryukov, A. Shamir, Structural Cryptanalysis of SASAS. J. Cryptol. 23(4), 505–518 (2010)
[10] A.Biryukov,D.Wagner, Slide attacks. in L.R.Knudsen, (ed.)Fast SoftwareEncryption, 6th International

Workshop, FSE ’99, Rome, Italy, March 24–26, 1999, Proceedings. Lecture Notes in Computer Science,
vol. 1636 (Springer, Berlin, 1999), pp. 245–259

[11] A. Biryukov, D. Wagner, Advanced slide attacks, in B. Preneel, (ed.)Advances in Cryptology—
EUROCRYPT 2000, International Conference on the Theory and Application of Cryptographic Tech-
niques, Bruges, Belgium, May 14–18, 2000, Proceeding. Lecture Notes in Computer Science, vol. 1807
(Springer, Berlin, 2000), pp. 589–606

[12] N. Courtois, Algebraic complexity reduction and cryptanalysis of GOST. IACR Cryptology ePrint
Archive 2011, 626 (2011). http://eprint.iacr.org/2011/626

[13] N.T. Courtois, An improved differential attack on full GOST. IACR Cryptology ePrint Archive 2012,
138 (2012). http://eprint.iacr.org/2012/138

[14] N.T. Courtois, Cryptanalysis of two GOST variants with 128-bit keys. Cryptologia 38(4), 348–361
(2014)

[15] N.T. Courtois, An improved differential attack on full GOST, in P.Y.A. Ryan, D. Naccache, J. Quisquater,
(eds.) The New Codebreakers—Essays Dedicated to David Kahn on the Occasion of His 85th Birthday.
Lecture Notes in Computer Science, vol. 9100 (Springer, Berlin, 2016), pp. 282–303

[16] J. Daemen, L.R. Knudsen, V. Rijmen, The block cipher square, in E. Biham, (ed.) Fast Software Encryp-
tion, 4th International Workshop, FSE ’97, Haifa, Israel, January 20–22, 1997, Proceedings. Lecture
Notes in Computer Science, vol. 1267 (Springer, Berlin, 1997), pp. 149–165

[17] J. Daemen, V. Rijmen, The design of Rijndael: AES—the advanced encryption standard. Information
Security and Cryptography (Springer, Berlin, 2002)

[18] I. Dinur, O. Dunkelman, N. Keller, A. Shamir, Reflections on slide with a twist attacks. Des. Codes
Cryptogr. 77(2–3), 633–651 (2015)

[19] I. Dinur, O. Dunkelman, A. Shamir, Improved attacks on full GOST, in A. Canteaut, (ed.) Fast Soft-
ware Encryption—19th International Workshop, FSE 2012, Washington, DC, USA, March 19–21, 2012.
Revised Selected Papers. Lecture Notes in Computer Science, vol. 7549 (Springer, Berlin, 2012), pp.
9–28

[20] O.Dunkelman,N.Keller,ReverseEngineering theDifferenceDistributionTable (2016),work in progress
[21] O. Dunkelman, N. Keller, A. Shamir, Slidex attacks on the Even–Mansour encryption scheme. J. Cryp-

tol. 28(1), 1–28 (2015)
[22] S. Even, Y. Mansour, A construction of a cipher from a single pseudorandom permutation. J. Cryp-

tol. 10(3), 151–162 (1997)
[23] P. Flajolet, R. Sedgewick, Analytic Combinatorics (Cambridge University Press, Cambridge, 2009).

http://www.cambridge.org/uk/catalogue/catalogue.asp?isbn=9780521898065
[24] R.W. Floyd, Nondeterministic Algorithms. J. ACM 14(4), 636–644 (1967)
[25] S. Furuya, Slide attacks with a known-plaintext cryptanalysis, in K. Kim, (ed.) Information Security and

Cryptology—ICISC 2001, 4th International Conference Seoul, Korea, December 6–7, 2001, Proceed-
ings. Lecture Notes in Computer Science, vol. 2288 (Springer, Berlin, 2001), pp. 214–225

[26] V. Goncharov, On the distribution of cycles in permutations. Doklady Akedmii Nauk SSSR 35, 299–301
(1942)

[27] V. Goncharov, Some facts from combinatorics. Izvestia Academii Nauk SSSR 8 , 3–48 (1944), ser. Mat.
[28] M. Gorski, S. Lucks, T. Peyrin, Slide attacks on a class of hash functions, in J. Pieprzyk, (ed.) Advances

in Cryptology—ASIACRYPT 2008, 14th International Conference on the Theory and Application of

http://tosc.iacr.org/index.php/ToSC/article/view/572
http://tosc.iacr.org/index.php/ToSC/article/view/572
http://eprint.iacr.org/2011/626
http://eprint.iacr.org/2012/138
http://www.cambridge.org/uk/catalogue/catalogue.asp?isbn=9780521898065

670 A. Bar-On et al.

Cryptologyand InformationSecurity,Melbourne,Australia,December7–11, 2008.Proceedings. Lecture
Notes in Computer Science, vol. 5350 (Springer, Berlin, 2008), pp. 143–160

[29] Government Committee of theUSSR for Standards, Gosudarstvennei Standard 28147-89: Cryptographic
Protection for Data Processing Systems. Tech. rep. (1989)

[30] E.K. Grossman, B. Tucherman, Analysis of a weakened Feistel-like Cipher, in Proceedings of Interna-
tional Conference on Communications (1978), pp. 46.3.1–46.3.5

[31] T. Isobe, A single-key attack on the full GOST block cipher. J. Cryptol. 26(1), 172–189 (2013)
[32] T. Isobe, K. Shibutani, Generic key recovery attack on Feistel scheme, in K. Sako, P. Sarkar, (eds.)

Advances in Cryptology—ASIACRYPT 2013—19th International Conference on the Theory and Appli-
cation of Cryptology and Information Security, Bengaluru, India, December 1–5, 2013, Proceedings,
Part I. Lecture Notes in Computer Science, vol. 8269 (Springer, Berlin, 2013), pp. 464–485

[33] J. Jean, I. Nikolic, T. Peyrin, L. Wang, S. Wu, Security analysis of PRINCE, in S. Moriai (ed.) Fast
Software Encryption—20th International Workshop, FSE 2013, Singapore, March 11–13, 2013. Revised
Selected Papers. Lecture Notes in Computer Science, vol. 8424 (Springer, Berlin, 2013), pp. 92–111

[34] M. Kaplan, G. Leurent, A. Leverrier, M. Naya-Plasencia, Breaking symmetric cryptosystems using
quantum period finding, in M. Robshaw, J. Katz, (eds.) Advances in Cryptology—CRYPTO 2016—36th
Annual International Cryptology Conference, Santa Barbara, CA, USA, August 14–18, 2016, Proceed-
ings, Part II. Lecture Notes in Computer Science, vol. 9815 (Springer, Berlin, 2016), pp. 207–237

[35] O. Kara, Reflection attacks on product ciphers. IACR Cryptology ePrint Archive 2007, 43 (2007). http://
eprint.iacr.org/2007/043

[36] O.Kara, Reflection cryptanalysis of some ciphers, inD.R.Chowdhury,V.Rijmen,A.Das, (eds.)Progress
in Cryptology—INDOCRYPT 2008, 9th International Conference on Cryptology in India, Kharagpur,
India, December 14–17, 2008. Proceedings. Lecture Notes in Computer Science, vol. 5365 (Springer,
Berlin, 2008), pp. 294–307

[37] Y. Ko, S. Hong, W. Lee, S. Lee, J. Kang, Related key differential attacks on 27 rounds of XTEA and
full-round GOST, in B.K. Roy, W.Meier, (eds.) Fast Software Encryption, 11th International Workshop,
FSE 2004, Delhi, India, February 5–7, 2004, Revised Papers. Lecture Notes in Computer Science, vol.
3017 (Springer, Berlin, 2004), pp. 299–316

[38] M. Matsui, Linear cryptanalysis method for DES cipher, in T. Helleseth, (ed.) Advances in Cryptology—
EUROCRYPT ’93, Workshop on the Theory and Application of Cryptographic Techniques, Lofthus,
Norway, May 23–27, 1993, Proceedings. Lecture Notes in Computer Science, vol. 765 (Springer, Berlin,
1993), pp. 386–397

[39] B. Minaud, P. Derbez, P. Fouque, P. Karpman, Key-recovery attacks on ASASA, in T. Iwata, J.H Cheon,
(eds.) Advances in Cryptology—ASIACRYPT 2015—21st International Conference on the Theory and
Application of Cryptology and Information Security, Auckland, New Zealand, November 29–December
3, 2015, Proceedings, Part II. Lecture Notes in Computer Science, vol. 9453 (Springer, Berlin, 2015),
pp. 3–27

[40] National Bureau of Standards: Data Encryption Standard. NBS Federal Information Processing Standard
(FIPS) 46 (1977)

[41] M.J Saarinen, A chosen key attack against the secret S-boxes of GOST (1998). http://citeseer.ist.psu.
edu/saarinen98chosen.html

[42] B. Schneier, Applied Cryptography 2nd edn (Wiley, New York, 1996)
[43] D.R. Simon, On the power of quantum computation. SIAM J. Comput. 26(5), 1474–1483 (1997)
[44] T. Tiessen, L.R. Knudsen, S. Kölbl, M.M. Lauridsen, Security of the AES with a secret S-Box. in G.

Leander, (ed.)Fast Software Encryption—22nd International Workshop, FSE 2015, Istanbul, Turkey,
March 8–11, 2015, Revised Selected Papers. Lecture Notes in Computer Science, vol. 9054 (Springer,
Berlin, 2015), pp. 175–189

http://eprint.iacr.org/2007/043
http://eprint.iacr.org/2007/043
http://citeseer.ist.psu.edu/saarinen98chosen.html
http://citeseer.ist.psu.edu/saarinen98chosen.html

	Efficient Slide Attacks
	1. Introduction
	2. Efficient Slide Attacks on Substitution-Permutation Networks with Self-Similarity
	2.1. A Simple Efficient Slide Attack on 1K-AES
	2.1.1. The Structure of 1K-AES
	2.1.2. The Attack Algorithm

	2.2. An Efficient Slide Attack on SASA…SA
	2.2.1. Attacking SASA…SA When A is Not Key-Dependent
	2.2.2. Attacking SASA…SA When A is Key-Dependent

	2.3. Efficient Slide Attack on Specific Instances of 2K-AES and 3K-AES

	3. Efficient Slide Attacks on Feistel Constructions with 3-round Self-Similarity
	3.1. The Structure of 3K-DES and Notations
	3.2. The Observations Behind the Attack
	3.3. The Attack Algorithm
	3.4. Analysis of the Attack
	3.5. Attack on 3K-DES Using the Structure of the Round Function

	4. Efficient Slide Attacks using the Cycle Structure of Permutations
	4.1. A Generic Attack Using the Cycle Structure
	4.1.1. Facts and observations
	4.1.2. The Attack Algorithm and Its Analysis

	4.2. An Efficient Attack on Feistel Constructions with a Palindromic Key Schedule

	5. Application to the GOST Block Cipher
	5.1. The Structure of GOST and Previous Results
	5.2. Efficient Known-Plaintext Attacks on 8-Round GOST with Unknown S-Boxes
	5.2.1. A Distinguishing Attack on 8-Round GOST with Unknown S-Boxes
	5.2.2. A 7-Round Truncated Differential and a Key Recovery Attack on 8-Round GOST with Unknown S-Boxes
	5.2.3. Recovering the Subkeys and the S-Boxes

	5.3. A Slide Attack on 24-Round GOST with Unknown S-Boxes
	5.4. An Efficient Slide Attack on an 128-Bit Key Variant of GOST

	6. Summary and Conclusions
	Acknowledgements
	Appendix: S-Box Recovery
	References

