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Abstract—As content provisioning becomes the driv-
ing application of today’s (opportunistic) networking
environments and the User Generated Content ex-
plodes, the problem of devising scalable approaches to
placing it optimally within a networking structure be-
comes more important and challenging. Since the well-
known k-median optimization problem that is typically
formulated to address it requires global topology and
demand information, different approaches are sought
for. The latter is the focus of this paper that aims
at exploiting social structures, present in emerging
networking environments, in order to devise a scalable
approach to the optimal or near-optimal content place-
ment. A new metric that captures the node’s social
significance or potential for helping establish paths
between nodes is introduced and serves as the basis for
creating a small scale network sub-graph over which
the small-scale content placement problem is solved
sequentially until the optimal or near-optimal location
is identified. The trade-off between the sub-graph’s size
and the degree of convergence to the optimal solution
is studied through simulations on E-R and B-A random
graphs and the effectiveness of the proposed approach
is demonstrated.

I. Introduction

Opportunistic networks [1] are self-organizing wireless
mobile networks formed by user devices, without requiring
any pre-existing network infrastructure. Communications
in this environment has been typically supported through
Mobile Ad hoc Networks (MANETs). However, MANET
solutions work only if a rather stable topology can be
established among the nodes, which is often not the case
in the presence of users’ mobility. Opportunistic networks
support communication among nodes even when no stable
multi-hop paths between communication endpoints can be
established. In an opportunistic network a node carrying
a content addressed to a given destination evaluates if any
other node it comes in direct contact is “better suited”
than itself to bring the content to the destination. In other
words, each contact is opportunistically exploited to bring
the content closer and closer to the destination.

This work has been supported by the IST-FET project SOCIAL-
NETS (FP7-IST-217141).

While research on opportunistic networks has initially
focused on forwarding issues, recently attention has also
been paid to data dissemination problems. Opportunis-
tic networks are formed by user devices, which are in-
creasingly capable of generating complex multimedia User
Generated Content. Devising solutions for sharing content
through decentralized data dissemination techniques is
clearly a challenging and important issue. On the other
hand, social awareness (i.e., information about the social
relationships and interactions among the users) is increas-
ingly perceived as a key contextual information to design
networking solutions for opportunistic networks. With
respect to the data dissemination problem, for example,
solutions have been proposed that leverage information
about how users group in social communities to design
efficient content replication schemes [2], [3].

This paper falls in this stream of research, and studies
the problem of optimal placement of a given piece of
content in an opportunistic network. First, we discuss
that contact patterns among users naturally hint to a
graph representation of the network, where a link exists
among nodes if they are “enough frequently” in touch with
each other. Given this representation, existing literature
approaches the problem of content optimal placement as
an instance of the facility location problem, and identifies
heuristics in order to deal with the fact that this optimiza-
tion problem is -for the general case- NP-hard.

In this paper we propose a social-aware heuristic to find
the content’s optimal location. Intuitively, content is iter-
atively migrated to nodes that are increasingly “central”
to the overall network, i.e. nodes such that the average
cost of accessing the content from any other interested
node is increasingly lower. We analyse the performance of
the proposed heuristic, which works with local informa-
tion, studying its degree of approximation of the optimal
centralized solution on two types of graphs representing
different user contact patterns, i.e. the Erdős-Rényi (E-
R) [4] and the Barabási-Albert (B-A) [5] graph model.
Interestingly enough, we find that the heuristic performs
much better -and close to the optimal- under the B-
A model, which is known to represent more realistically



than the E-R model user social interactions and contact
patterns.

II. A graph-oriented approach

In this section we firstly discuss why opportunistic
networks can be represented with random graphs. Then,
we provide an overview of the resulting formulation of the
optimal content placement problem, and finally present
the rationale behind the proposed social-aware heuristic.

A. A Social-oriented graph representation of opportunistic
networks

In opportunistic networks communication links between
nodes appear and disappear dynamically over time. Never-
theless, it is possible to represent an opportunistic network
with a logical graph structure, by adding an edge between
two nodes if the frequency of encounters between the two
nodes or the cumulative time they have been in direct
contact (over a given time window), exceeds a pre-defined
threshold. This representation has been already proposed
in the opportunistic networking literature, and has been
exploited to design distributed community detection algo-
rithms [6].

Here, we build on this way of representing an oppor-
tunistic network to study the optimal content placement
problem. Note that a multi-hop path on such a graph
does not imply a simultaneous multi-hop path between two
nodes as in conventional MANETs. Instead, a multi-hop
path means that it is possible to move content from one
path end-point to the other by opportunistically exploiting
contacts between the nodes in the path; such contacts are
not necessarily simultaneous. Therefore, a multi-hop path
in such a graph has to be seen as a space-time multi-hop
path [7].

Note that this graph representation implicitly includes
social information about the nodes. Recall that an edge
represents the fact that two nodes have been in touch for at
least some amount of time or with at least some frequency.
Therefore, it means that those nodes are co-located with
each other often enough, and thus they are likely to
share some social interest. This representation does not
distinguish between the case in which nodes get in touch
because the users actually share a social relationship,
and the case in which users do not know each other but
happen to be often physically co-located. However, from
the standpoint of communication protocols, this does not
make a huge difference. In both circumstances, it is a fact
that the two nodes are often in touch with each other
due to some feature of their users’ social behaviour, and
this direct communication link can be opportunistically
exploited to optimize the networking operations (optimally
placing content in our case).

In view of this social-oriented graph representation of
opportunistic networks, the problem of optimal content
placement can be seen as how to optimally place a given
content on a graph. Traditionally, this problem has been

tackled as an instance of the facility location problem [8],
one of the most studied problems in operations research,
which considers the optimal placement of some facilities
serving the demands of a set of clients. The main question
is to determine, in the general case, the number and
locations of the facility set elements, in a way that the
cumulative cost of serving all clients’ demands, is mini-
mized.

B. The facility location problem formulation

Having adopted the above introduced graph represen-
tation, we aim to identify the network nodes of a given
topology that can host some content, so that the latter
is accessed by the network users residing at the various
network nodes with the minimum average cost.

The network topology is represented by an undirected
connected graph G(V,E), where V is the set of nodes
and E is the set of edges, between them. Without loss
of generality (see discussion later) we assume that all
links have a unit of weight and thus the minimum cost
path d(n,m) between nodes n and m, corresponds to the
shortest path between n and m. The demand for the
content, generated by a node n, is denoted by wn. When
there are k replicas of the content available, the problem of
their optimal placement can be formulated as the classical
k-median problem that determines the set F of k host-
nodes (|F| = k), that can host the content, so that the
following average content serving cost is minimized:

Cost(F) =
∑

n∈V
wn · minxj∈F{d(xj , n)} (1)

where min{d(xj , n)} is the smallest distance among all,
from each host-node xj ∈ F to node n. In this paper we
focus on the case in which only one copy of the content
is available; this case may capture well the spontaneous
generation of the aforementioned User Generated Content
(UGC) that is of relatively low demand (thus its repli-
cation would probably not be sensible or affordable) and
seeks to find its optimal placement within a network. Thus,
in this case |F| = 1, yielding a 1-median formulation
with the content located at node k ∈ V and a cost to
be minimized given by:

Cost(F) =
∑

n∈V
wn · d(k, n) (2)

Generally speaking, optimization problems like the
above ones are NP-hard (even when the service cost is
considered to be the Euclidean distance from a node to
the nearest content’s host [9]), requiring global informa-
tion about the network topology and generated demand
load. Thus, the main bulk of relevant theoretical work,
so far, is in the field of approximation algorithms, where
various techniques have been applied (e.g. rounding to LP
relaxation [10] or primal-dual methods [11]).



C. Social based small-scale approach to overcome limita-
tions

Herein, we propose and evaluate an algorithm which
incorporates a social dimension in the problem of content’s
optimal placement by exploiting information stemming
from the nodes’ social attributes. In an opportunistic
networking environment nodes can have fairly diverse
characteristics with respect to the kind and frequency
of social communication links with other nodes. From a
networking standpoint, this means they can have different
roles as intermediaries, as, for example, nodes having a
higher number of links might be key in helping establish
links between other nodes. Such nodes could also probably
be major players in the solution of the 1-median problem.
The main objective of this paper is to identify them, and
use them to define a thinned-out network topology yielding
a smaller-scale optimization problem with respect to the
one involving all the nodes of the graph.

To this end, an innovative social metric is introduced,
referred to as conditional betweenness centrality (to be
defined later) and a thinned-out subnetwork topology is
identified by considering the nodes with the highest values
of this metric. It turns out that this metric possesses
two important features: first, it yields subnetworks of
nodes that can be constructed with local information and
are contained within a generally confined locality, which
is important for the implementation and scalability of
the proposed solution; second, it captures implicitly the
content demands of the network nodes not included in
the thinned-out subnetwork, which should help reduce the
approximation error.

The rest of the paper is organized as follows. In Section
III we give an overview of the related work and in the next
one we introduce highlights of our approach. In Section
V, we introduce a novel social-inspired metric that will
be used, later on, in our algorithm which is analyzed in
Section VI. The Section VII contains our experimental
results and comments on the performance of the proposed
solution. Finally, in Section VIII we conclude the paper
and discuss possible extensions.

III. Related work

Data dissemination problems (of which content place-
ment is an example) are starting being investigated in
opportunistic networks. The work in [2] proposes Con-
tentPlace, which is a social-oriented framework for data
dissemination. ContentPlace builds on the work in [6] and
assumes that nodes can be aware of the social communities
they belong to. Using a general utility-based optimization
framework, ContentPlace defines distributed algorithms
for nodes to select which content to locally replicate, out of
what is available on encountered nodes. These algorithms
take into consideration the estimated distribution of con-
tent in the network, and the interests of the users with
respect to content. A similar approach is taken in [3] where

it is shown that mobility and cooperative content replica-
tion strategies can help bridge social groups. The work
in [12], which also relies on [6] for community detection,
defines a social-oriented pub/sub overlay for opportunistic
networks. One broker per community is selected, as the
node being more “central“ (from a social standpoint) in
the community. A broker overlay is maintained, and pub-
lications are disseminated to all brokers, which then decide
to which subscribers they should be forwarded. The work
presented in this paper provides some solid grounds to the
choice of selecting “central” nodes for content placement.

As already mentioned, there is a great amount of
work dealing with the facility location problem. Typically
centralized approximation algorithms using various tech-
niques (like rounding fractional solutions to linear pro-
gramming relaxations [13]) have been employed to solve
the problem, associated with large scale optimization.
Heuristic methods like local search [14] have also been used
to approximate the optimal solution in polynomial time.
When considering the limitations of dynamic networking
environments, the above facility location problem becomes
more challenging and has received renewed attention [15].
Ideas like iterative negotiation between clients and service
instances [16] or a plethora of application layer solutions
have been proposed. An identical to the 1-median problem
has been studied in the work of Oikonomou et al. [17],
where a single service facility moves one hop at a time,
following a cost decreasing path, when some service-
movement criteria are fulfilled.

Our work, which has the above focus, was motivated by
the upcoming paper of G.Smaragdakis et al. [18]. In there,
the placement problem has been solved in a distributed
manner by using some limited scope centralized approach
within an area of r-hops from the location of each service
and mapping the demand coming from the outer nodes
on the ring of the r-hop area. Still, the content placement
problem for a social network or even the incorporation
of some social dimension to its solution, has not been
considered.

IV. Framework of proposed solution

In this section we highlight the key points of our
approach so as to bring out some important details.
Social information is being exploited here to determine
the optimal physical location of the node to host some
content by solving iteratively a spatially restricted, low-
cost 1-median problem (instead of a costly, global one).
Consequently, the proposed algorithm can provide for easy
adaptation to dynamic environments due to its local-info
requiring approach. As approximations are involved, the
proposed solution may not always lead to the identification
of the optimal location; nevertheless, it is shown that the
divergence error is not substantial.

Assuming full topology knowledge, over a limited re-
gion around some node currently hosting the content, we
propose a social based criterion, for selecting a number



of fairly neighbouring nodes (forming a subgraph) to take
part in a small-scale, local solution. This, may be derived
by employing any well-studied centralized approach (e.g.
approximation algorithm, heuristics). The selected nodes
(a percentage of total number) are the ones, having the top
values of an innovative metric, inspired by social network
studies, that plays a twofold key role. First, it captures
a node’s significance, regarding its capability to transport
content efficiently. Second, it captures the contribution (to
the 1-median solution) of incoming demand from the rest
of the network nodes, not included in the above subgraph.
Actually, we show that the demand, following a uniform
model, can be deduced from this metric which is a measure
of the role of every node in the information flow, towards
the one having the content.

After solving the small-scale optimization problem de-
scribed above, the node within the subgraph considered,
that minimizes the content provision cost (if hosting the
content) is identified. Then, the content is assumed to be
placed in this node1 and the new subgraph is determined
around this node and the new small-scale optimization
problem is solved. This iterative procedure repeats until
no further movement of the content is possible; that is, the
node with the minimum cost turns out to be the currently
hosting node. Notice that the content moves according
to the outcome of the optimization, on a cost-decreasing
path, trying to reach the optimal location.

V. Conditional Betweenness Centrality

The solution proposed herein relies heavily upon the
criterion based on which the subgraph, around the cur-
rent node having the content, is picked in order to solve
(there) the small-scale optimization problem. This crite-
rion (referred to as CBC criterion hereafter) involves an
innovative, to the best of our knowledge, metric coming
from social networks analysis, that captures network traffic
towards a specific node (the node, each time, hosting the
content).

Centrality measures (or indices) are widely used in social
network analysis, since Freeman’s late ’70s influential ar-
ticles [20], [21]. Actually, they are used as graph-theoretic
tools in order to explain social phenomena. These indices,
defined either on the nodes or edges of a graph, are usually
based on geodesic paths that link members of a social
network and aim to provide a measure of importance of
their social position, under the assumption that impor-
tance is equally divided among all shortest paths of each
pair. Different measures have been introduced to capture
a variation of a node’s importance, like ability to reach
numerous nodes via relative short paths or popularity
among others [21].

1Although out of scope of this work, there are various component
migration mechanisms at application layer, as well. They are pro-
vided by some distributed architectures and are able of moving both
functionality and data from one host to another, in a transparent
way to the user [19]. This implies that practical software solutions
may use an idea like the proposed one, without prohibitive cost.

Betweenness centrality, one of the most frequently used
metric, is a measure of the extent to which a node lies on
the (shortest) paths linking other nodes. Let σst denote
the number of shortest paths between any two nodes s
and t in a connected graph G = (V,E). If σst(u) is the
number of shortest paths passing through the node u ∈V,
then the betweenness centrality index of node u is given
by (3).

BC(u) =
|V |∑

s=1

s−1∑

t=1

σst(u)
σst

(3)

BC(u) captures a node’s u ability to control or help
establish paths between pairs of nodes; this is an average
over all network pairs (see (3)). When the content is hosted
by a specific node t, the traffic flow of relevance -that
shapes the resulting cost of content provisioning from that
node- is the one between all node pairs (x, t) ∀x ∈ V
for the fixed node t, and not all possible pairs, as in (3).
Consequently, if we were to select a subgraph of nodes to
solve a small-scale optimization problem, it would make
sense to include the nodes that stand between the “most”
paths linking the network nodes to the specific one hosting
the content; the presence of such nodes would reflect some-
what the fact that relatively high demand (that shapes
the resulting cost) is coming through such nodes. The
conditional betweenness centrality (CBC) index defined by
(4), can be used as a criterion for constructing the network
subgraph (assuming σst(s) = 0):

CBC(u; t) =
∑

s∈V,u�=t

σst(u)
σst

(4)

A possible implementation of the calculation of the
CBC index could take place by having the nodes monitor
the packets routed through them. Assuming that routing
takes place along shortest paths on the considered space-
time graph and that packets carry with them the already
traveled path, the quantities involved in (4) can be com-
puted by each node t and the CBC(u; t) values for all
nodes u can be locally (at node t) available.

Based on the definition in (4), it is expected that nodes
u which lie in between t and some dense networks region
will exhibit higher CBC values, due to the large number of
shortest paths passing through u coming from that region
and leading to node t. The closer a node u is to t, the
greater the number of nodes that reach t through it and
thus, the larger the CBC values for such u nodes. Con-
sequently -and as it is also discussed later in conjunction
with Fig.1 and Table I- the subgraph containing the nodes
with the higher CBC values is expected to be confined
with a locality around t.

VI. Analysis of 1-Median social-aware approach

In this section we present the social-aware approach to
the content placement problem. Our solution’s pseudocode
is depicted in the Algorithm 1, where the cost of placing



the content at node k of graph G(V,E) that represents the
entire topology, is denoted by C(k). The i-th iteration’s
subgraph around the host-node n, where the small-scale
optimization takes place, is denoted by Gi

n. Finally, we
use the variables Ccurrent and Cnext to hold the cost of
current and next step solution, respectively.

Algorithm 1 Social-aware 1-median in G(V,E)
1. choose randomly node s
2. place CONTENT in s
3. Ccurrent ⇐ ∞
4. ∀ u ∈ G compute CBC(u; s)
5. let Go

s be α% of G nodes with top CBC values
6. 1-median solution in Go

s → node Host
7. Cnext ⇐ C(Host)
8. while Cnext < Ccurrent do
9. move CONTENT to Host

10. Ccurrent ⇐ Cnext

11. ∀ u ∈ G compute CBC(u;Host)
12. let Gi

Host be α% of G nodes with top CBC values
13. 1-median solution in Gi

Host → node NewHost
14. Host ⇐ NewHost
15. Cnext ⇐ C(NewHost)
16. end while

A. Detailed description
The proposed algorithm begins with the random choice

of node s where the content is initially placed. To ensure
the first hop of our cost-decreasing path, we assign infinite
value to the cost of that placement in order to fulfil the cost
condition (line 8) at least once. Next, the computation2

of CBC(u; s) metric takes place for every node u in G.
Nodes having the top CBC values comprise subgraph Go

s,
the size of which is determined by the percentage α% of
total number of network nodes. The following step (line
6) is to solve the 1-median problem on the subgraph Go

s,
consisted of α ·V nodes. Note that the CBC index cannot
be defined for the host-node which is not included in the
solution space (i.e. nodes that are possible solutions for
the 1-median problem).

Any centralized technique may be used to solve the
small-scale optimization problem (on each iteration’s se-
lected subgraph). One can seek for the best heuristic
method available (successively better algorithms have been
designed during the last few years [24]), so as to achieve
maximum scalability. For simplicity reasons we have solved
it using enumeration [8], even if there are other more cost-
effective methods. Besides, this implementation choice

2For our simulation’s needs, this involves solving the all-pairs
shortest path problem. Common algorithms, like Floyd-Warshall [22],
may need even Θ(|V |3) time to solve, on a G(V, E) graph. Hence,
for CBC computation we properly modified a new, scalable algo-
rithm [23] for betweenness centrality, with runtime O(|V ||E|). The
cost introduced is low, as the length and number of all shortest paths
from a given source to every other node, needed for our computation,
is determined in O(|E|) time [23].

does not affect the degree of convergence of our solution
to the optimal one.

The optimization’s outcome is the location of node
Host, with which we achieve minimum service cost3, called
C(Host), among the nodes of the current subgraph. We
assign the value of this cost to the variable Cnext and test
whether the cost-decreasing condition (Cnext < Ccurrent)
is fulfilled. In case it is true, the content is moved to node
Host and the same steps are followed thereafter4. As long
as the aforementioned condition remains true, the above
process is executed iteratively and the content migrates
from node to node, trying to reach the (globally) lowest-
cost one, to be hosted at.

Fig. 1. Encompassing dashed line marks those nodes singled out by
CBC(u; 3) criterion (∀u ∈ G).

In the sequel, we discuss how the CBC criterion applied
here, results in subgraphs that manage to “forward” the
content to more cost-effective regions. Assume we have
the network topology of Fig. 1, where the content has
been placed at host-node ’3’. When applying the CBC
criterion, we pick those nodes that possess, socially sig-
nificant, intermediate places between the content’s host-
node and a great number of other nodes. The nodes
selected5, included in the dashed line of Fig. 1, are fairly
neighbouring to the host, though not forming some sort of
circular area, around it. Rather, they deviate from exact
surrounding locality by stretching in a certain direction
(towards nodes ’8’, ’9’ and ’11’). This deviation is due
to the presence of some nodes with significant social
role, regarding their participation in numerous information
pathways (that correspond to shortest paths) from the
rest of the nodes to the content’s host. So, the solution
space of our 1-median problem is practically moved by this
selection, towards directions/areas “populated” by nodes
highly capable of transporting content, efficiently. This
CBC characteristic of identifying a socially significant

3In case of multiple minimum-cost solutions within the Gi nodes,
we choose randomly one of them.

4The percentage α of total number of nodes, that forms the Gi

subgraph, remains the same until our algorithm’s completion.
5In Fig.1, let the percentage α be of such a magnitude that results

in picking the nodes of the 3-rd top CBC level.



“direction” within the network is valid under any demand
model but can be useful and exploited only under the
uniform demand hypothesis. In the latter case, the nodes
with high CBC values are those that have “behind” them
large portions of the network and thus (under uniform
load) of the demand traffic as well. When non-uniform
demand is involved these directions may be misleading
since the existence of a great number of nodes connected
to a (thus) significant one, does not correspond to great
demand load stemming from them.

B. On the convergence of proposed solution

In this paragraph we examine whether the cost-
decreasing criterion is sufficient enough to make the con-
tent’s migration mechanism halt at some host-node. We
sketch a proof for the convergence below:

Theorem 1: Algorithm 1 converges to a solution after a
finite number of steps.

Proof: We distinguish three cases that describe all
the different ways of content’s migration, according to
Algorithm 1. For each one we show that convergence is
achieved.

α. The content reaches node n where C(n) <
C(m), ∀m ∈ G1

n which is the first subgraph formed by
the CBC criterion. Thus, the algorithm terminates there.

β. The content moves in a loop-free fashion amongst the
nodes of G. This means that the content, following a cost-
decreasing path, may be hosted at some node u at most
one time. Since the solution space is finite, the content’s
migration will stop at the k-th iteration, where k ∈ [1, V ].
Thus, the algorithm terminates there.

γ. The content moves in an infinite loop fashion. The
situation involves the consecutive migration of the content,
from one host to another, visiting the same nodes infinite
times. This scenario is shown below to contradict the cost-
decreasing criterion, so our proof is completed. Suppose
that the content, moved by Algorithm 1, reaches some
node b ∈ G, twice. Right after its first placement at b, we
solve the 1-median in the subgraph G

[1]
b (index [k] denotes

the k-th time when the content is placed at b) that is
formed by the application of CBC(u; b) criterion, ∀u ∈ G.
Let the corresponding cost be C

[1]
b . When the content

returns to b, given that the network topology remains the
same, the deterministic CBC criterion of (4) singles out
the same subgraph (around b) with the one of the first
visit, so we have that G

[1]
b = G

[2]
b , implying for the costs

that C
[1]
b = C

[2]
b , which contradicts the cost-decreasing

condition of Algorithm 1. Thus, the content cannot be
moved any farther than node b and consequently, we
conclude that once the content reaches some node for the
second time, Algorithm 1 terminates.

VII. Simulation Results

We have implemented the algorithm described in section
VI in our simulation environment. Experiments, presented

in the next paragraphs, have been carried out on well-
studied random graph models, in order to evaluate its
performance.

A. Simulation settings

In our set-up, we generate both Erdős-Rényi [4] and
Barabási-Albert [5] random graphs of N=100 nodes. For
the first ones, each edge is included in the graph with
probability p=0.4, while the second ones are generated by
starting from an initial network of m0=10 nodes and each
newly added one connects to m=2 other nodes according
to the well known preferential attachment rule.

For any chosen configuration of the parameters, we
replicated simulation runs 10 times to achieve statistical
significance. Specifically, results presented hereafter are
the averages over the simulation runs. Note that the graphs
are re-created at the beginning of each simulation run.
This allows us to reproduce the key statistical properties
of the chosen graph models. It is easy to see that, as
we re-create the graphs for each simulation runs, over a
sufficiently large number of replicas, the probability of
any given link to exist approximates the theoretical value
of the target graph model. For example, in the case of
E-R graphs, it is easy to show that, as the number of
replicas increase, the overall probability of any specific
edge among any two nodes exist with probability equal
to p. Finally, note that this also results in meaningful
test cases from a social perspective. In the case of E-R
graphs, each pair of users have the same probability of
getting in touch with each other, which corresponds to a
completely uniform opportunistic environment. This is not
a particularly realistic model, but is definitely a reference
case in the literature, and is thus included as a benchmark.
The case of the B-A model reproduces a more realistic
scenario, in which the number of social relationships of a
given node is distributed according to a power law.

B. Experiments on random graphs

First, we measure the locality of our solution by com-
puting the mean percentage of the nodes in the current
subgraph Gi ⊆ G, which are not within a radius of two
hops away from content. Having these nodes in a small
radius around content’s location, is desirable to keep the
communication cost low. We call this mean percentage,
that comes out of 10 runs, mismatch and present its
values in Table I. Obviously, such an attribute is no
longer meaningful when considering percentage α close to
1. The results in Table I suggest, as expected, that the
CBC criterion picks fairly neighbouring nodes around the
current content’s location, showing a locality attribute of
the proposed algorithm.

We now present the results illustrating the degree of
convergence of our social-aware solution to the optimal
one, derived assuming global topology and demand in-
formation. We run our algorithm on both E-R and B-
A graphs assuming a unit of demand from all nodes



TABLE I
Mismatch for various sizes of subgraph Gi

α of G nodes (%) E-R mismatch (%) B-A mismatch(%)
10 23.7 1.5
20 36.0 3.5
30 43.4 11.3
40 56.5 19.9
50 62.7 28.7
60 68.2 31.0
70 71.3 33.6

(wn = 1,∀ n ∈ G). We measure the mean ratio of our
algorithm’s cost Calgorithm to the cost of the optimal
solution Coptimal and call it βalgorithm:

βalgorithm(α) = E[
Calgorithm

Coptimal
] (5)

Fig. 2 depicts the mean value of the normalized cost
ratio β, for various values of the percentage of G nodes
participating in the solution. The social-aware approach
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Fig. 2. Convergence of proposed solution to optimal, against the
percentage of participating nodes

seems good convergence to the optimal, yielding a low-
cost solution. Clearly, the larger the percentage of nodes
included, the smaller the induced error. The better per-
formance of our algorithm for B-A than E-R graphs is
due to the preferential attachment characteristic of the
first ones [5], which captures one key (social) feature of
real-world networks and leads to the appearance of highly
connected nodes, capable of serving (as host-nodes) the
demands at fairly low cost.

Finally, we compare the cost induced by the derived
social-aware solution to that induced by placing the con-
tent in a randomly selected node; the latter would amount
to serving the demands from the node that, e.g., generated
the content, without paying the price of taking consecutive
steps towards less costly positions. We measure the mean
ratio between the cost of the random policy and the cost
of the optimal (global) solution, defined likewise (5). This
ratio is called βrandom:

βrandom = E[
Crandom

Coptimal
] (6)

In order to compare the two approaches we choose the
maximum cost ratio βalgorithm, shown in Fig. 2, corre-

sponding to size of subgraph α = 10% of total G nodes.
The results below (Table II) show that our algorithm
outperforms -by far- the random policy, even when con-
sidering the most costly scenario, from Fig. 2.

TABLE II
socio-aware 1-median VS simple random placement

E-R graphs B-A graphs
max. βalgorithm βrandom max. βalgorithm βrandom

1.0938 1.2736 1.0366 1.4953

C. Demand mapping

In this paragraph we talk about a variation of the
proposed solution, worthy of remark. The idea here, is
to drop the initial assumption that each node k ∈ Gi

takes part in the 1-median solution with the same demand
load (wk = 1,∀k ∈ Gi) and apply some sort of mapping
between the CBC values of the nodes k ∈ Gi and the
incoming demand load, these nodes may receive from
the nodes not included in Gi. As stressed above, the
CBC metric can be interpreted as a node’s capability of
information flow control towards the content’s host-node,
by occupying a significant, intermediate among others,
position. Consequently, the higher the CBC values for a
node, the greater the amount of information flows through
it (heading towards the current host-node). But, the fact
that information flow reflects the aforementioned demand
load, motivated us to introduce a new demand mapping for
the small-scale optimization problem in order to improve
our algorithm’s performance.

In more detail, a demand model is employed to capture
more properly the fact that nodes with high CBC values
have increased contribution to the 1-median solution. We
implemented the following mapping from the CBC values
to the demand wk values, given by the equation6 below:

wk = CBC(k;Host) + 1, k ∈ Gi (7)

The results derived from our experiments show that the
presumable idea of demand mapping affects the perfor-
mance of our algorithm, especially for a range of relative
low values of the α percentage. When the number of nodes
participating in the small-scale optimization is very small,
namely α ≤ 0.1 (see Fig. 3), the demand mapping re-
sults in current algorithm outperforming the previous no-
mapping approach. This fact suggests the use of the CBC
values as “weights” to capture the contribution of distant
demand load to our restricted optimization problem.

When considering the case of high percentage α, de-
mand mapping does not reflect our initial arguments of
taking into account the load of a significant number of
distant nodes, not included in the small-sized subgraph
Gi. On the contrary, the number of nodes not included

6Even if a node has CBC = 0, its demand may be different than
zero. This is why we need to add one to all CBC values.
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Fig. 3. Performance of very small-scale solution for E-R and B-A
graphs, under mapping and no-mapping demand approach

in Gi is, in this case, low and hence the mapping of a
small number of nodes’ demand on the great number of
Gi ones, is to no avail. Moreover the solution derived
when demand mapping is applied, is affected by the CBC
values which contribute, as demand load, to the cost
(to be minimized) of (2). Consequently, for very high α
percentages, asymptotically reaching 100%, we end up
solving a completely different problem to the one with no
mapping, where wk = 1∀k ∈ Gi.

VIII. Conclusions and future work

In this paper we have developed a scalable and efficient
approach for determining the optimal or near-optimal
placement of (User Generated) content in an opportunistic
networking environment, exploiting available social struc-
tures. The presented approach amounts to solving the 1-
median problem in a scalable manner.

We employed an already existing in literature graph
representation of the opportunistic networks and proposed
a heuristic method in each iteration of which, a limited
horizon approach is applied to get a local solution based
on nodes’ social significance. This attribute stems from
the extent to which they hold an intermediate position
between the current content’s host and the rest of net-
work nodes. The out-of-horizon demand is inferred by the
value of an innovative sociometric index, introduced to
quantify this significance and accordingly pick the nodes
to take part in the local solution. Having exploited the
above social-inspired index, there is no need to apply any
mapping mechanism for capturing this demand load. The
extra communication and computation cost (e.g. mapping
errors) occurring by possible application of such a mecha-
nism, is (here) avoided.

Our solution is not guaranteed to always reach the
optimal, but simulation shows that it achieves satisfying
convergence, especially when applied on graphs incorpo-
rating with some real-world social characteristics (such as
B-A random graphs). We plan to extend this work to a
general solution, since the model studied in this paper is
constrained according to a uniform demand hypothesis. If
the latter is relaxed, an augmentation of the definition of
the introduced CBC metric will be necessary to account
for it. In addition, other attributes and characteristics such
as correlated load demands should be considered in order

to better model real-world social characteristics of user
nodes communicating opportunistically.
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