
Efficient Software-based Online Phase Classification

Andreas Sembrant, David Eklov and Erik Hagersten
Uppsala University, Department of Information Technology

P.O. Box 337, SE-751 05 Uppsala, Sweden
{andreas.sembrant, david.eklov, eh}@it.uu.se

Abstract

Many programs exhibit execution phases with time-
varying behavior. Phase detection has been used exten-
sively to find short and representative simulation points,
used to quickly get representative simulation results for
long-running applications. Several proposals for hardware-
assisted phase detection have also been proposed to guide
various forms of optimizations and hardware configura-
tions.

This paper explores the feasibility of low overhead phase
detection at runtime based entirely on existing features
found in modern processors. If successful, such a technol-
ogy would be useful for cache management, frequency ad-
justments, runtime scheduling and profiling techniques.

The paper evaluates several existing and new alterna-
tives for efficient runtime data collection and online phase
detection. ScarPhase (Sample-based Classification and
Analysis for Runtime Phases), a new online phase detection
library, is presented. It makes extensive usage of the new
hardware counter features, introduces a new phase classi-
fication heuristic and suggests a way to dynamically adjust
the sample rate. ScarPhase exhibits runtime overhead be-
low 2%.

1. Introduction

It is well known that many programs exhibit time-

varying behavior [29]. As an example, some parts of an

application’s execution may be memory bound while others

are compute bound. Categorizing this application based on

its average behavior can be misleading as it may appear to

be neither compute nor memory bound.

To capture such time varying behaviors, researchers have

proposed detecting program phases. A program phase is

defined to be a period of execution with a stable behav-

ior. There are several important optimizations, both of-

fline [5, 13, 27, 30, 32] and online [8, 15, 17, 24], which

benefit from knowledge of program phases. For exam-

Software
Only

Custom
Hardware

Offline Online

D
e
n
s
e

Commodity
Hardware

ScarPhase

S
p
a
rs

e

Q1 Q2

Q3 Q4

[29, 30, 19] [31, 22]

[7, 4, 21, 28]

Figure 1. Taxonomy of program phase classi-
fication methods.

ple, a CPU scheduler that knows the present phase of each

runnable process can make better scheduling decisions and

improve resource utilization [24, 32]. Other example in-

clude dynamic recompilation where knowledge of program

phases can help determining when it is worth recompil-

ing [5, 13, 26], efficient profiling where profiling is only

performed for a phase with yet unknown behavior[25], or

collection of representative simulation points to speed up

simulation [30].

The goal of this paper is to develop and explore online

techniques for phase classification. For such a technique

to be generally applicable, it must have the following prop-

erties: 1) It should not require custom hardware support;

2) It should have minimal runtime overhead without loss

of accuracy and fidelity; 3) It should be transparent and

non-intrusive (e.g., require no recompilation of the analyzed

program and work with dynamically generated code), 4) It

should be independent of the system load, and finally; 5)

It should capture general purpose phase behavior (i.e., not

study a single property such as L3 miss rate for the phase

classification).

A large variety of program phase classification and pre-

diction techniques have been studied in previous work [8, 9,

978-1-4577-2064-2/11/$26.00 ©2011 IEEE 104

31, 19]. Most of these methods rely on the observation that

the behavior of an application is highly correlated with the

code it currently executes. This is typically captured using

basic block execution frequencies that are collected during

the applications execution. The application’s execution is

divided into non-overlapping, adjacent, intervals for which

execution frequencies are collected. If two intervals have

similar enough execution frequencies they are classified as

belonging to the same program phase.

Program phase classification methods can be categorized

along two dimensions: whether they count the execution

frequencies of every basic block (dense) or randomly sam-

ple the execution frequencies (sparse), and whether they

do the classification on- or off-line. Figure 1 shows the

four quadrants for such a classification. As we target on-

line phase classification, which require low runtime over-

head, the most interesting aspect of this classification is the

runtime overhead of the different methods. The methods

in quadrant Q1 use instrumentation to collect dense execu-

tion frequencies, which is accurate but often has a high run-

time overhead. Two different approaches have been inves-

tigated to reduce the runtime overhead; using custom hard-

ware (Q2) and using sparse execution frequencies (Q3). The

methods in Q2, that use custom hardware, have mainly been

used for online classification. While being both accurate

and low overhead; the drawback of these methods is that

they cannot be used on commodity hardware. The meth-

ods shown in Q3 use sparse execution frequencies. This

allows them to use hardware performance counters to col-

lect runtime information, which results in very low runtime

overhead. However, collecting sparse frequency vectors us-

ing hardware performance counters in combination with on-

line classification (Q4) has not yet been investigated. Given

the advancement in hardware counter technology, we en-

visioned that this quadrant could be conquered without the

need for dedicated hardware support. If at all feasible, such

a solution would have a fast uptake and be an enabler for im-

plementing the many phase guided optimizations proposed

to date.

In this work we try to leverage many of the results from

previous work. We utilize sparse execution frequency vec-

tors collected using hardware performance counters and we

compare the quality of previously proposed frequency vec-

tors in the context of online phase classification. The main

contributions of this work are:

• We propose a new and efficient way to collect sparse

frequency vector at a basic block granularity using In-

tel’s Precise Event Based Sampling (PEBS) to sample

branch instruction.

• We propose and evaluate a new sparse frequency vec-

tor based on conditional branches enabled by PEBS.

This vector requires fewer samples and therefore re-

0%
25%
50%
75%

100%

0%
25%
50%
75%

100%

0
8

16
24
32

0 100 200 300 400 500 600 700

Time in Intervals

Branch Miss Predictions

A B B C′ B D A B B C′′ B D EE

Cycles Per Instructions

A B B C′ B D A B B C′′ B D EE

Basic Block Vectors

A B B C′ B D A B B C′′ B D EE

Figure 2. The top and middle figures show
how gcc/166’s CPI and BMP changes over
time, respectively, expressed as percentage
of the maximum observed CPI/BMP. The bot-
tom figure shows BBVs with 32 entries for
each execution interval. The counters are
shown on the y-axis, where darker shades of
gray indicated more frequently executed ba-
sic blocks.

duces the overhead of data collection compared with

previous work.

• We propose a method that allows us to dynamically ad-

just the sampling frequency, which reduces the runtime

overhead by an additional factor of two.

• We have developed a general and easy to use library

for online phase classification and prediction, called

ScarPhase (Sample-based Classification and Analysis

for Runtime Phases).

2. Phase Detection Algorithms

A program phase is defined to be a period of execu-

tion with stable behavior with respect to a given perfor-

mance metric, e.g., cycles per instruction (CPI) or branch

miss predictions (BMP). For example, Figure 2 shows how

gcc/166’s CPI and BMP changes over time. While both the

CPI and BMP vary greatly, there are periods where they

are relatively constant. These periods of constant behavior

are the program phases of gcc. Two of the most prominent

phases are labeled C ′ and C ′′. As in previous works, we

do not distinguish between C ′ and C ′′, and instead say that

they are two occurrences of the same phase.

Most program phase classification methods divide the

application’s execution into non-overlapping, fixed size, ex-

105

ecution intervals. Their size is typically measured in exe-

cuted instructions. To find the program phases, the applica-

tion is profiled in order to measure the behaviors of individ-

ual execution intervals. The intervals with relatively similar

behaviors are then classified as belonging to the same phase.

For example, the first occurrence of phase C in Figure 2 (la-

beled C ′), consists of about 70 consecutive execution inter-

vals of 100M instructions with relatively similar behaviors.

2.1. Execution Frequency Vectors

It has been observed that most performance metrics are

strongly correlated with the code being executed [8, 9, 29,

30]. This observation has been the basis for many program

phase classification techniques [19]. These methods typi-

cally use some form of execution frequency vectors to cap-

ture what code is executed during an execution interval, and

define a measure of distance between the vectors. This dis-

tance is then used to compute the similarity of the intervals,

and classify them into program phases.

Dhodapkar and Smith [8, 9] use a bit vector to keep track

of what instructions have been executed during the execu-

tion intervals. When an instruction is executed its address

is hashed into the bit vector, and the corresponding bit is

set. Sherwood et al. [29, 30] keep track of the execution

frequencies of basic blocks. They found that it is not neces-

sary to have one counter for each basic block. Instead they

use a small vector of counters, called a Basic Block Vector
(BBV), and hash the basic blocks (using their addresses)

onto the counters in the BBV. This has the benefit of reduc-

ing storage overhead and lowering cost of computing the

distances between BBVs.

Figure 2 shows the BBVs for all the execution intervals

of gcc/166. Dark colors indicate high execution frequen-

cies. The figure shows a strong correlation between the

BBVs and the program phases. For example, consider phase

C for which the corresponding BBVs are nearly identical.

Lau et al. [20] evaluated the quality of phase classifi-

cation based on the execution frequencies of a number of

different program structures such as: function calls, loop

branches, particular op-codes, register usage, memory ac-

cess strides, and memory working sets. Their results sug-

gest that none of these alternatives results in significant im-

provement over basic block execution frequencies.

In this work we therefore focus mainly on basic block

execution frequencies.

2.2. Sparse Execution Frequency Vectors

To reduce the runtime overheads of collecting execution

frequencies, Davies et al. [7] use hardware performance

counters to collect sparse samples of instruction execution

frequencies, which they use to estimate Extended Instruc-
tion Pointer Vectors (EIPV). EIPVs are similar to BBVs, but

instead of capturing execution frequencies of basic blocks

they capture execution frequencies of individual instruc-

tions.

Davies et al.’s original implementation uses VTune [2].

Our implementation, uses comparable features of Linux-

perf events [1], which has been available in the mainline

Linux kernel since version 2.6.32. Using perf events, the

performance counters can be programmed to operate in two

main modes. Either they count the occurrences of certain

events, e.g., executed instructions, or they periodically trig-

ger interrupts after a given number of occurrences of the

event, called the sample period. These interrupts are caught

by perf events that in turn reacts to the interrupt in one of

two different ways. Either it forwards the interrupt to user

space in the form of a signal1, or it records the state of the

CPU, including its instruction pointer, at the time the in-

terrupt is handled. These recorded CPU states can later be

requested from user space.

To capture EIPVs Davies et al. use two performance

counters. The first counter is used to select what instruc-

tions to “sample”. This is done by programming perf events

to record the state of the CPU every N executed instruc-

tions, where N is the sample period. The second counter is

used to notify user space at the end of each execution inter-

val. This is achieved by programming the counter to send

a signal after I executed instructions, where I is the exe-

cution interval size. When the signals are received we read

the recorded CPU states and use the instruction pointers to

build an EIPV for the current execution interval.

While EIPVs can be collected fairly easily using stan-

dard hardware performance counter features, they are less

accurate than BBVs. Since all the instructions in a basic

block are executed the same number of times, it is more

effective to count basic block execution frequencies and

weight the count with the number of instructions in the ba-

sic blocks. Lau et al. [21, 28] showed that the results can be

significantly improved by mapping the sampled instructions

to their corresponding basic block. This however requires

analysis of the program binary and is therefore not suitable

for dynamically generated code. To leverage the low over-

head data collection of Davies et al. but at the same time

achieve the accuracy of BBVs, Lau et al. [21, 28] map in-

struction addresses to their corresponding basic blocks us-

ing the program binary. This however, has two problems: it

increases the runtime data collection overhead, and it cannot

be used to analyze dynamically generated code (e.g., JIT’ed

code) as the mapping information is not readily available.

We refer to these vectors as Mapped Basic Block Vector
(MBBV).

1To receive a signal, the user space process has to setup asynchronous

notification on the perf events file descriptor

106

2.3. Sparse Branch Vectors

It would be a clear advantage if we could find a way

to directly capture basic block frequencies instead of first

capturing instruction frequencies and later translate them to

basic block frequencies.

Since each basic block ends with one branch instruc-

tion, we could attempt to record the addresses of sparsly se-

lected branch instruction instead of the address of sparsely

selected instructions. We could, for example, program

perf events to record the address of every N th branch in-

struction, which at the end of the execution intervals would

give us a sample of the executed branch instructions that di-

rectly corresponds to the BBVs. This, however, does not

work due to performance counter skid [3].

If the performance counter is used to generate interrupts

after N branch instructions, there will be a short delay be-

tween the time of the N th branch and the time when the

interrupt handler is invoked, during which the CPU keeps

executing instructions. This delay is referred to as perfor-
mance counter skid. It is first when the interrupt handler is

invoked that perf events records the CPU state, which due

to the skid can not be guaranteed to point to a branch in-

struction.

To reduce the impact of performance counter skid, In-

tel introduced Precise Event Based Sampling (PEBS) [16].

When PEBS2 is enabled, the CPU saves its state at the time

when the N th event occurs. This saved state can then be

read by perf event’s interrupt hander

One of the key contributions of this paper is the proposal

to use PEBS to directly measure sparse BBV vectors. This

is done by setting up perf event to sparsely collect the ad-

dress of every N th branch instruction and to build BBV fre-

quency vectors based on those addresses. We refer to this

method as BRanch Vectors (BRV).

2.4. Sparse Conditional Branch Vectors

To further reduce the overhead of BBV collection we

also propose an alternative method and collect an even more

distilled form of BBVs. This idea is inspired by the obser-

vation that most functions contain loops and if statements.

Recording the entry and exit point will therefore not add

any additional information. The execution count of the first

basic block in a function can be inferred from the execution

count of the basic block following it. Counting conditional

branches only, therefore, results in a minimal loss of infor-

mation compared to counting all branches.

2However, there is a small delay before the processor state is recorded,

called shadowing [23]. For example, if we program a performance counter

to trigger after the execution of 1000 branch instructions, the processor

state might be recorded first when executing the 1001th instruction. This,

however, does not present a problem for the work presented in this paper.

Table 1. List of abbreviations
EIPV Extended Instruction Pointer Vector [7]

MBBV Mapped Basic Block Vector [21, 28]

BRV BRanch Vector (New)

CBRV Conditional BRanch Vector (New)

To capture Conditional BRanch Vectors (CBRVs) we

use a performance counter that counts conditional branches

only, which is available on Intel’s Nehalem chips.

Table 1 shows a list of abbreviation. We will refer to the

different execution frequency vectors by their abbreviations

in the rest of this paper.

3. Experimental Setup

We performed our evaluation on astar/lakes,

bzip2/chicken, bwaves, dealii, gcc/166, mcf, perl/split-
mail, wrf and xalan from the SPEC 2006 [14] benchmark

suite. We chose the programs above because they display

the most interesting phase behavior. All benchmarks were

run to completion with their reference input on an Intel

Xeon E5620 (Nehalem) system.

4. Case Study: GCC

In this section we evaluate the quality of the execution

frequency vectors obtained using the methods discussed in

Section 2.3 and 2.4 by comparing them to execution fre-

quencies obtained using a Pin [6] based reference imple-

mentation. The reference implementation dynamically in-

struments the benchmark applications and counts each exe-

cution of all basic blocks, and provides a ground-truth ref-

erence. We use an execution interval size of 100M instruc-

tions for both the reference and the evaluated methods.

For the evaluation in this section we focus on gcc which

is one of the SPEC CPU2006 benchmarks with the most

complicated phase pattern. Figure 2 shows how the CPI

and branch miss predictions changes over time for gcc/166.

The figure shows that the behavior of gcc changes greatly

over time.

To quantify the difference between the captured exe-

cution frequency vectors and reference execution frequen-

cies vectors, we compare their basic block similarity matri-

ces [30]. A basic block similarity matrix is N×N upper

triangular matrix M , where N is the number of intervals.

Each element Mn,m is the Manhattan distance between the

execution frequency vectors of the nth and mth interval.

Figure 3(a) shows the similarity matrix for gcc/166 gener-

ated from the reference BBVs. The gray scale indicates the

similarity between BBVs, where darker shades represents

shorter Manhattan distances. The similarity matrix allows

107

0

100

200

300

400

500

600

700

0 100 200 300 400 500 600 700

C′

C′′

(a) Matrix are generated based on BBVs

captured using the reference implementa-

tion. Darker shades of gray indicate shorter

Manhattan distances.

0

100

200

300

400

500

600

700

0 100 200 300 400 500 600 700

C′

C′′

(b) Matrix are generated based on BBVs

captured using ScarPhase. Darker shades of

gray indicate shorter Manhattan distances.

0

1

2

3

4

5

6

0 200
400

600
800

1000
1200

1400
1600

A
bs

ol
ut

e
E

rr
or

(%
)

Samples per Interval

EIPV
MBBV

BRV
CBRV

(c) The average absolute element-wise differences

between the reference similarity matrix and the sim-

ilarity matrices generated from data captured using

EIPVs, MBBVs, BRVs and CBRVs for gcc/166.

Lower is better.

Figure 3. Basic block similarity matrices for gcc/166.

us to evaluate the quality of execution frequency vectors in-

dependent of the phase classification method.

We can interpret the basic block similarity matrix as

follows. The application’s execution progresses along the

diagonal. The triangles above the diagonal indicate that

neighboring intervals have similar execution frequency vec-

tors and therefore belong to the same phase. For example,

see Figure 3, where we have labeled the two occurrences of

phase C (C ′ and C ′′). To find possible reoccurrences of a

phase, we start at the triangle marking the phase and move

horizontally to the right across the matrix until we reach

a dark rectangle. Then, from the rectangle, we continue

straight down until we reach the diagonal. The triangle that

we land on indicates the similarity of a set of intervals which

belong to the phase where we started.

Figure 3(b) shows the similarity matrix for gcc/166 gen-

erated from the BBVs captured using ScarPhase. Compar-

ing the two matrices (Figure 3(a) and Figure 3(b)), we see

that the one generated using ScarPhase has an overall sim-

ilar structure, but is somewhat brighter, indicating longer

distances between BBVs. This difference is mainly due to

statistical sampling errors. For example, the triangles cor-

responding to phase C is much brighter in Figure 3(b). This

is because gcc accesses a large instruction working set in

phase C, and accurately capturing the BBV for such inter-

vals requires higher sample rates.

To quantify the difference between two similarity ma-

trices we compute the average element-wise difference be-

tween the two matrices. Figure 3(c) shows the average

elemen-wise difference between the reference similarity

matrix and the ones based on EIPVs, MBBVs, BRVs and

CBRVs for a range of sample periods3, i.e., the number of

3For all the experiments presented in this paper we use periodic sam-

“sampled” instructions/branches during execution intervals.

As expected the similarity improves when the number of

samples per interval is increased. However, the curves start

to level of when more than 800 samples per interval is used,

suggesting that there is no real benefit to use more than 800
samples for any of the methods.

EIPV and MBBV both rely on the same runtime data;

sparse instruction execution frequencies, and do not use

PEBS. The difference between the error for these two meth-

ods shows that basic block vectors more accurately cap-

ture the phase behavior than the extended instruction vec-

tors. BRV and CBRV both use PEBS, BRV, however, count

all types of branches, while CBRV only counts conditional

branches. The difference between MBBV (not using PEBS)

and BRV (using PEBS), shows that PEBS significantly im-

proves accuracy.

CBRV has the lowest overall error. If we count all the

dynamic executions, i.e., not using sampling, then CBRV

would yield a larger error than BRV, as it ignores all non-

conditional branches. However, this is not the case when

sampling. As the figure shows, for a given number of sam-

ples, CBRV performs better than BRV. This is because some

of the non-conditional branches sampled when capturing

BBVs can be inferred from the conditional branches sam-

pled when capturing CBRVs (see Section 2.4). In this sense,

each conditional branch sample contains more information,

and the CBRV therefore outperforms BBV for low sample

rates.

pling. We also tried random sampling, but the results showed only minor

improvements over periodic sampling. However, random sampling had to

be implemented in the kernel to work with in-kernel buffering, and since

changing the kernel is often undesirable, we decided to use periodic sam-

pling.

108

5. Phase Analysis

In the previous section we evaluated how well the differ-

ent execution frequency vectors (EPIV, MBBV, BRV and

CBRV) capture changes in the applications behavior inde-

pendent of the program phase classification algorithm by

comparing their basic block similarity matrices. In this sec-

tion, we evaluate their impact on the quality of the resulting

phase classifications. Our goal is to identify which execu-

tion frequency vector gives us the best phase classification

while incurring the lowest runtime data collection overhead.

For phase classification we use the leader-follower clus-

tering algorithm [10]. It identifies cluster of similar exe-

cution frequency vectors, and we interpret each clusters as

program phases. The algorithm works as follows. At the

end of every execution interval, we apply leader-follower

clustering to the interval’s execution frequency vector. If

the vector is close enough to the center of an existing clus-

ter, it is added to the cluster, and the cluster’s center is re-

computed. Here, close enough means that the Manhattan

distance between the execution frequency vector and the

cluster center is below a threshold. Otherwise a new clus-

ter is created to which the vector is added. The interval is

classified as belonging to the phase defined by the cluster to

which it was added.

5.1. Online Phase Classification

There are several important aspects to consider when

evaluating the quality of program phase classification. The

importance of these aspects depends on the context in which

the program phases are used. In this section we therefore fo-

cus on what we believe to be a fairly general application of

program phases; phase guided profiling [25].

To reduce profiling overhead, phase guided profiling

only profiles a few execution intervals from each program

phase. In this context, there are two important aspects to

evaluate, the phase classification; the homogeneity of the

phases, and the number of different phases detected. Since

the behavior of a whole phase is estimated based on the

behavior of only a few intervals, homogeneity has a large

impact on the profiling accuracy. The number of detected

phases, on the other hand, impacts the profiling overhead, if

too many phases are detected more execution intervals have

to be profiled, resulting in larger profiling overheads.

To measure phase homogeneity we use the Coefficient of
Variation (CoV) [31]. To compute the CoV we first measure

the CPIs of all execution intervals. Then, for each phase,

we compute both the average and the standard deviation of

the CPIs of the intervals belonging to the same phase. The

per-phase CoV is then the standard deviation divided by the

average. Finally we compute the whole program CoV as the

weighted average of the per-phase CoVs. Note that CoV is

0
2
4
6
8

10
12
14
16

No PEBS

PEBS
No PEBS

PEBS
No PEBS

PEBSM
ic

ro
se

co
nd

s
pe

rS
am

pl
e

mcfgcc/166bzip2/chicken

Buffered Unbuffered

Figure 4. The average time in microseconds
to collect one sample. With and without us-
ing in kernel buffering, and with and without
using PEBS.

a lower-is-better metric.

One issue when using CoV to assess the quality of phase

classifications is that it does not consider the number of

detected phases. For example, a naive phase classification

method that classifies all intervals as belonging to different

phases achieves a CoV of zero. With such a classification

method we would end up profiling all intervals, which de-

feats the purpose of phase guided profiling. Therefore, we

want to adjust the CoV metric to penalize phase classifica-

tion methods that detect too many different phases. For this

we use the following observation. As we can identify a new

phase first after having seen its first interval, phases must

span at least two intervals in order to be profiled. Therefore,

whenever we identify an execution interval that is not clas-

sified as belonging the same phase as its neighbors, we clas-

sify it as belonging to a “virtual” phase (this is only done for

CoV calculations). When computing the CoV of the whole

program, we set the CoV of the “virtual” phase to the CoV

computed from all the application’s intervals (i.e., the CoV

of a phase classification method that classifies all intervals

as belonging to the same phase). This gives us a goodness

metric that penalizes phase classification methods that iden-

tify too many phases. We call this new metric Corrected

CoV (CCoV). Now, in the extreme case when all execution

intervals are classified into different phases, they will all

end up in the virtual phase and the CCoV will be equal to

the CoV of the whole program, which is the desired result.

Figure 5 shows the CCoV of the phase classification

for different number of samples per interval, lower is bet-

ter. EIPV has on average the lowest accuracy. For exam-

ple, 25 samples per interval with MBBV/BRV/CBRV are

on average better than 50 samples with EIPV. We find that

all four methods have comparable accuracies when a high

number of samples are used. However, at a lower sample

rate, CBRV has the best quality followed closely by BRV

then MBBV.

109

0
10
20
30
40
50
60

25 50 100
200

400
25 50 100

200
400

25 50 100
200

400
25 50 100

200
400

25 50 100
200

400

C
C

oV
(%

)

0
10
20
30
40
50
60

25 50 100
200

400
25 50 100

200
400

25 50 100
200

400
25 50 100

200
400

25 50 100
200

400

C
C

oV
(%

)

gcc/166dealiibzip2/chickenbwavesastar/lakes

averagexalanwrfperl/splitmailmcf

EIPV MBBV BRV CBRV

Figure 5. CCoV for different number of samples per interval. Lower is better.

10

15

20

25

30

35

40

0.5 1 1.5 2 2.5 3 3.5 4 4.5

C
C

oV
(%

)

Overhead (%)

EIPV
MBBV

BRV
CBRV

Dynamic CBRV

Figure 6. Average CCoV vs runtime overhead.

5.2. Runtime Overhead

In this section we examine the overhead of the different

methods. EIPV has the lowest per sample cost as it require

no PEBS support or mapping, but on the other hand it re-

quires more samples to achieve the same accuracy (almost

twice the number of samples). BRV and CBRV has an ad-

ditional PEBS cost, each sample require the processor to

write the state of the registers to main memory. MBBV first

parses the program binary to create a instruction to basic

block mapping, then during each sample map the instruc-

tion pointer to a basic block.

To measure what it cost to use PEBS we measured the

overhead of sampling every one thousand instructions with

and without PEBS and divided the overhead by the number

of samples. Figure 4 (Buffered) shows the time in microsec-

onds to collect one sample. For gcc/166, the cost to collect

one sample using PEBS is 33% more expensive than with-

out PEBS support.

There is an expensive context switch between user and

kernel mode when a signal is sent to notify the monitoring

process of a new sample. Linux perf events can be config-

ured to store the samples in a memory mapped file. By dis-

abling event notification, i.e., no signal is sent, the samples

can be buffered. Only at the end of the execution interval is

the memory mapped file parsed (another counter is used to

divides the execution into intervals).

Figure 4 (Buffered vs. Unbuffered) shows the time to

collect one sample with and without buffering. On average,

the sample cost is reduced with a factor 11. This means

that for the same overhead, 11 times more samples can be

collected. It is therefore vital to buffer the samples in kernel

space for online phase classification.

In the previous section we evaluated the accuracy at dif-

ferent number of samples, however the cost of a sample

varies between the methods. Figure 6 shows the accuracy

against the overhead. This shows that CBRV results in

the most accurate phase classification for a given overhead

and MBBV the worst. Comparing EIPV with BRV/CBRV

shows that the benefit of using PEBS clearly outweighs the

additional runtime cost.

One design parameter of great importance for both ac-

curacy and overhead, but not evaluated here, is the execu-

tion interval size. In practice, the most appropriate interval

size may depend on how the phase information will be used.

Using larger execution intervals would have an almost lin-

ear effect on the runtime overhead for all methods studied

in this section (assuming that the number of samples per

110

interval is held constant). Throughout this paper we use a

execution interval size of 100M instructions as in most prior

works [30, 7, 4, 28].

To summarize; MBBV, BRV and CBRV have compara-

ble accuracies, and are all better than EIPV. CBRV has the

best accuracy for a given overhead. Overall, the accuracy

starts to level out at 200 samples, suggesting that 200 sam-

ples per interval is a good trade-off between accuracy and

overhead. Throughout the rest of the paper, we therefore fo-

cus mainly on CBRV and use a sample rate of 200 samples

per interval.

6. Dynamic Sample Rate

In the previous section we found that 200 samples per

execution interval results in the best trade-off between accu-

racy and performance, resulting in an average runtime over-

head of 2.5%. In this section we will develop a method to

dynamically adjust the sample rate. This method reduces

the average runtime overhead down to 1.7% without sacri-

ficing accuracy.

By profiling our ScarPhase implementation we found

that it spends about 85% of the time handling samples in

the kernel. The most effective way to reduce the runtime

overheads is therefore to reduce the cost of handling sam-

ples. However, as this is handled in the kernel, it is out of

our reach to reduce the cost per sample. To reduce the run-

time overhead we therefore need to reduce the number of

samples per interval. However, as we saw in Section 5.1

(see Figure 5), reducing the number of samples per interval

below 200 can have a negative impact on the phase classifi-

cation accuracy.

Most programs have relatively long runs of consecutive

intervals that belong to the same phase. We can take ad-

vantage of this in order to lower the number of samples

per interval. When entering a new phase, we start off sam-

pling 200 branches per interval, and can confidently classify

the first interval. Once we have classified the first interval,

we assume that the following intervals belong to the same

phase, and we therefore only need to detect when a phase

change occurs. This turns out to be much easier, and can

be accurately done based on fewer samples (i.e., less than

200)4. This allows us to dynamically reduce the sample

rate. This is done exponentially until we reach a lower limit

of 25 samples per interval. When a phase change is de-

tected, we go back to sample 200 branches per interval.

There are two things to note about the above method.

First, when detecting a phase change, we have to classify

the current interval (i.e. the first interval in the new phase),

however, as we have lowered the sample rate, we have less

4When we look for phase changes and are sampling at a lower rate,

we are more sensitive to sampling noise, and we therefore use a somewhat

higher threshold than when doing full phase classification.

0

20

40

60

80

100

astar/lakes

bwaves

bzip2/chicken

dealii
gcc/166

mcf
perl/splitmail

wrf
xalan

average

S
am

pl
e

R
at

e
(%

)

Figure 7. Average number of samples per ex-
ecution interval when using dynamic sample
rate. The number of samples are shown as
percentages of the maximum number of sam-
ples per interval (200).

than 200 samples, and the classification might therefore be

less accurate. To reduce the impact of this we use a next

phase predictor that predicts the phase of the next inter-

val. If it predicts that the next interval belongs to a different

phase, we pessimistically increase the sample rate back to

200 samples per interval, and can now more accurately clas-

sify the interval. For this, we use a history-based predictor

similar to the one used by Sherwood et al. [31]. Second,

if the predictor incorrectly does not predict a phase change,

it will not help us, and we need to classify the current in-

terval based on less than 200 samples. This is particularly

troublesome if we incorrectly classify the interval as a new

phase (i.e. one that we have not previously encountered) as

this increases the total number of detected phases. There-

fore, whenever we detect a new phase while sampling with

a lowered sample rate, we do not attempt to classify the in-

terval, and consider it as unclassified.

Figure 7 shows the average sample rate in percentage of

the maximum sample rate (corresponding to 200 samples

per interval) for all benchmarks. astar/lakes has few phases

with very long run lengths, the sample rate is therefore re-

duced to 15% (30 samples per interval). wrf on the other

hand has many phase changes, and the sample rate is there-

fore only reduced to 87% (174 samples per interval). Using

the dynamic sample rate adjustment, the sample rate is re-

duced on average to 59% (118 samples per interval), which

results in an average runtime overhead of 1.7%.

Figure 8 shows the CCoV for all benchmarks when us-

ing both static sample rate (i.e. 200 samples for all interval)

and dynamic sample rates adjustment. When computing

the CCoV for dynamic sample rate, we group all unclas-

sified intervals into a “junk” phase. This phase will have a

large CoV, as its constituent intervals belong to many dif-

ferent phases, and undesired unclassified intervals therefore

contribute to an increased CCoV. As the figure shows, us-

ing dynamic sample rate does not significantly increase the

CCoV. The benchmark where the CCoV increase the most

111

0
5

10
15
20
25
30
35

astar/lakes

bwaves

bzip2/chicken

dealii
gcc/166

mcf
perl/splitmail

wrf
xalan

average

C
C

oV
(%

)

Static Dynamic

Figure 8. CCoV when using static sample rate
(left bar) and dynamically adjusted sample
rate (right bar).

0
1
2
3
4
5
6
7

astar/lakes

bwaves

bzip2/chicken

dealii
gcc/166

mcf
perl/splitmail

wrf
xalan

average

O
ve

rh
ea

d
(%

)

Static MBBV
Dynamic MBBV

Static CBRV
Dynamic CBRV

Figure 9. Runtime overhead in percentage,
when using both static and dynamically ad-
justed sample rate to collect MBBVs and
CBRVs.

is gcc/166, this is mainly due to gcc having the largest num-

ber of unclassified intervals, 1.7% of its intervals are unclas-

sified. Across all benchmarks only 0.4% of the intervals are

unclassified.

Figure 9 shows the runtime overhead for all benchmarks,

for both static and dynamic sample rate, and for collect-

ing both MBBVs and CBRVs. The figure clearly shows

that using dynamic sample rate adjustment significantly re-

duced the runtime overhead for collecting both MBBVs and

CBRVs. On average the runtime overhead is reduced by

20% and 33% for MBBV and CBRV respectively.

In summary, the results of this section shows that col-

lecting CBRVs using dynamic sample rate outperforms all

previous approaches, both in terms of accuracy and runtime

overhead. This is clearly shown in Figure 6 where we have

marked the average CCoV and runtime overhead of CBRV

based phase classification using dynamic sample rate with

an ×.

0
5

10
15
20
25
30

astar/lakes

bwaves

bzip2/chicken

dealii
gcc/166

mcf
perl/splitmail

wrf
xalan

average

R
el

at
iv

e
C

P
IE

rr
or

(%
)

Periodic Static Dynamic

Figure 10. The relative error between the
measured CPI and the estimated average
CPI based on periodic sampling and phase
guided profiling using both static and dynam-
ically adjusted sample periods. Lower is bet-
ter.

7. ScarPhase

The methods that have been described in this paper have

been consolidated into an easy to use library. It is written

in C/C++ and exposes a simple C interface. Two callback

functions are used to notify the application of the program

phase behavior. They are called when the program changes

phase and after an interval has been executed. The callbacks

pass along information on what phase the interval belonged

to and a prediction of what phase the next interval will be-

long to. This makes it easy to plug the library into existing

tools to take advantage of program phase behavior.

In the rest of this section we describe a practical usage

study describing how ScarPhase is utilized to cheaply and

accurately profile an application.

7.1. Use Case: Phase Guided Profiling

Profiling is commonly used for application performance

tuning. A typical work flow might look as follows. First,

the application is profiled to find performance bottlenecks,

once found, the program is rewritten to remove the bottle-

necks. Then the application is profiled again to verify that

the changes to the application successfully removed the bot-

tlenecks. This process is repeated until the program meets

the desired performance goal. In this scenario, it is impor-

tant that the profiling overhead is as low as it adds to the

development cycle.

In this section, we used the ScarPhase library to imple-

ment a phase guided profiling tool which only profiles a sin-

gle execution interval from each program phase. We com-

pare its accuracy against a sampling approach which ran-

domly selects a small subset of the execution intervals to

profile.

112

0.4
0.6
0.8
1.0
1.2
1.4

C
P

I

0.4
0.6
0.8
1.0
1.2
1.4

0 200
400

600
800

1000
1200

1400
1600

P
re

di
ct

ed
C

P
I

Time in Intervals

Periodic Phase Guided

Figure 11. CPI changes over time for
bzip2/chicken (top), and the reconstructed
program execution (bottom) using periodic
sampling (front, bottom) and phases guided
sampling (back, bottom). It should be noted
that the period from 800 to 1600 is not a sin-
gle phase, but a series of smaller phases.

To implement the phase guided profiling, we use the li-

brary to predict the next interval; the interval is then profiled

if it belongs to a phase that has not yet been profiled. (In this

example, we simply measure the CPIs of the intervals.) To

avoid small phases that do not make a significant contribu-

tion to the average CPI, a phase is only profiled after it has

been seen in a certain number of intervals. To estimate the

overall CPI of the profiled application, we compute average

CPI of the phases weighed with the number of intervals de-

tected for each phase. (If the same phase was profiled more

than once due to miss-prediction, we use the median CPI).

Figure 10 shows the relative error between the measured

CPI and the estimated average CPI, for both periodic sam-

pling5 (Periodic) and phase guided profiling. The phase

guided profiling was done using both static (Static) and dy-

namic (Dynamic) sample period adjustment. Phase guided

profiling can accurately estimate the CPI with an average er-

ror of 3%, while periodic sampling has an average error of

8%. Furthermore, the accuracy of periodic sampling varies

a lot between the applications. For example, gcc/166 has

an error of 22%, while the error for wrf is only 1%. The

standard deviation for phase guided profiling and periodic

sampling is 2 and 9.5 respectively.

With phase guided profiling we can cheaply reconstruct

the profiled application’s execution behavior over time.

This cannot be easily done using periodic sampling6. To

do this, the CPI of each interval is predicted to be the same

5Both methods has roughly the same overhead, i.e., sample the same

number of intervals, however phase guided profiling distribute the samples

in a more efficient way.
6If every interval is profiled, the execution behavior can be recon-

structed. However, only a few number of intervals are profiled to lower

the overhead.

0
10
20
30
40
50
60

astar/lakes

bwaves

bzip2/chicken

dealii
gcc/166

mcf
perl/splitmail

wrf
xalan

average

R
el

at
iv

e
C

P
IE

rr
or

(%
)

Average CPI
Periodic

Static
Dynamic

Figure 12. The average relative difference be-
tween the measured CPI and the predicted
CPI for each interval. The executions were
reconstructed using both periodic sampling
and phase guided profiling with both static
and dynamically adjusted sample periods.
Lower is better.

as the CPI of the phase it belongs to. (The CPI of a phase

is the CPI of the profiled interval.) Figure 11 shows how

the CPI changes over time for bzip2/chicken. The top fig-

ure shows the measured CPI, and the bottom figure shows

the reconstructed CPI. The line labeled periodic in the bot-

tom figure, shows an attempt to reconstruct the CPI using

periodic sampling by interpolating between the profiled in-

tervals. For phase guided profiling, only 0.7% and 0.8% of

the execution intervals are profiled using static and dynamic

sample period adjustment respectively, however the profiled

intervals represent 90% and 91% of the application’s execu-

tion.

Figure 12 shows average relative difference between the

measured CPI and the predicted CPI for each interval. Us-

ing phase guided profiling with and without dynamic sam-

ple rate results in an error of 10% and 11% respectively,

while periodic sampling has an error of 24%. Using the av-

erage CPI to predict the behavior for the whole execution

results in an error of 32%. This shows that predicting the

program’s behavior with an average can be misleading.

In this section we profiled the CPI, however it should be

noted that the technique is general purpose and applicable

to any type of profiling. This shows that ScarPhase can be

used for phase guided profiling and accurately reconstruct

the program execution with only a small increase in over-

head.

8. Related Work

In this paper we have focused on temporal phases [29, 8],

however, there are alternative definitions of phases such as

code phases [15, 12, 18, 13, 32]. Instead of observing the

113

execution behavior over time, the program binary is an-

alyzed, where parts of program’s control flow is grouped

into phases. For example, if the number of instructions in

a function is above a threshold, the function is considered

to be a phase. This has been used to instrument code at

the phase boundaries for various optimizations. Both soft-

ware [12, 13, 32] and hardware [15, 18] approaches have

been suggested.

Gu and Verbrugge [13] used code phases to find the best

optimization level for each function with respect to compi-

lation/execution time for dynamic recompilation in Java vir-

tual machines. Sondag and Rajan [32] instrumented phase

boundaries for scheduling, and moved threads between het-

erogeneous processors when they changed phase. They

found that phase guided scheduling can significantly im-

prove the throughput compared to the standard Linux sched-

uler.

Temporal phases (see Section 2) divide the execution

into intervals and group similar intervals into phases. This

has been used to reduce the overhead of profiling [25] and

finding representative part of the execution for architectural

simulation [29, 30, 7, 28].

A sub set of temporal phase classification is phase

change detection and predicting the applications perfor-

mance behavior [9, 11, 17, 26]. Peleg and Mendelson [26]

showed that changes in the CPI can not be used as a met-

ric for loaded systems. Instead, BBVs, instruction working

sets, and other architecture independent metrics have been

used to detect performance behavioral changes. This is dif-

ferent from phase classification in that only the last intervals

are of interest, i.e., the program changes phase if the differ-

ence between the last two intervals is above a threshold.

However, remembering reoccurring phases can improve

performance by reusing configuration settings [11, 17].

Dhodapkar and Smith [9] used instruction working set to

reconfigure the size of caches at runtime when the applica-

tion changes phase. Isci et al. [17] predicted the ratio be-

tween memory transactions and micro operations to reduce

the power consumption using dynamic voltage frequency

scaling.

9. Conclusions

This paper shows that it is possible to implement a low-

overhead general purpose library for online phase classifica-

tion and prediction without the need to add dedicated hard-

ware support. Several new and existing options are evalu-

ated and combined to reach this goal. We show that Intel’s

Precise Event Based Sampling can be used to sample ba-

sic block frequencies without any software mapping. We

combine this finding with a new execution frequency metric

based on conditional branch counters to improve accuracy

and efficiency. A new dynamic sampling rate technique fur-

ther brings down the runtime overhead to below two per-

cent.

We anticipate a quick uptake of this software-only tech-

nique, since many existing phase guided optimizations typ-

ically gain more than 1.7% runtime overhead of ScarPhase.

We are in the process of making our phase detection library

for Sample-based Classification and Analysis for Runtime

Phases, ScarPhase, available for free download.

References

[1] Linux perf events. URL

Linux/include/linux/perf event.h.

[2] Intel vtune performance analyzer homepage. URL

http://www.intel.com/software/products/vtune/.

[3] Intel VTune Amplifier XE 2011 Getting Started Tutorials for
Linux* OS, 2010. Section Key Concept: Event Skid.

[4] M. Annavaram, R. Rakvic, M. Polito, J.-Y. Bouguet, R. A.

Hankins, and B. Davies. The fuzzy correlation between code

and performance predictability. In Int. Symposium on Mi-
croarchitecture, 2004.

[5] R. D. Barnes, E. M. Nystrom, M. C. Merten, and W.-m. W.

Hwu. Vacuum packing: extracting hardware-detected pro-

gram phases for post-link optimization. In Int. Symposium
on Microarchitecture, 2002.

[6] C.-K. Luk, R. Cohn, R. Muth, H. Patil, A. Klauser,

G. Lowney, S. Wallace, V. J. Reddi and K. Hazelwood. Pin:

building customized program analysis tools with dynamic in-

strumentation. In Conf. on Programming Language Design
and Implementation, 2005.

[7] B. Davies, J. Bouguet, M. Polito, and M. Annavaram. ipart :

An automated phase analysis and recognition tool. Technical

Report IR-TR-2004-1-iPART, Intel Corporation, 2004.

[8] A. S. Dhodapkar and J. E. Smith. Managing multi-

configuration hardware via dynamic working set analysis. In

Int. Symposium on Computer Architecture, 2002.

[9] A. S. Dhodapkar and J. E. Smith. Comparing program phase

detection techniques. In Int. Symposium on Microarchitec-
ture, pages 217–, 2003.

[10] R. O. Duda, P. E. Hart, and D. G. Stork. Pattern Classi-
fication, chapter 10.11. On-line Clustering, pages 559–565.

Wiley-Interscience, 2 edition, 2001. ISBN 0-471-05669-3.

[11] E. Duesterwald, C. Cascaval, and S. Dwarkadas. Charac-

terizing and predicting program behavior and its variability.

In Int. Conf. on Parallel Architecture and Compilation Tech-
niques, 2003.

[12] A. Georges, D. Buytaert, L. Eeckhout, and K. De Bosschere.

Method-level phase behavior in java workloads. In Int. Conf.
on Object-Oriented Programming, Systems, Languages, and
Applications, 2004.

114

[13] D. Gu and C. Verbrugge. Phase-based adaptive recompila-

tion in a jvm. In Int. Symposium on Code generation and
Optimization, 2008.

[14] J. L. Henning. Spec cpu2006 benchmark descriptions.

SIGARCH Comput. Archit. News, 2006.

[15] M. C. Huang, J. Renau, and J. Torrellas. Positional adapta-

tion of processors: application to energy reduction. In Int.
Symposium on Computer Architecture, 2003.

[16] Intel 64 and IA-32 Architectures Software Developer’s Man-
ual. Intel Corporation, volume 3b: system programming

guide edition, September 2010. 30.4.4 Precise Event Based

Sampling (PEBS).

[17] C. Isci, G. Contreras, and M. Martonosi. Live, runtime phase

monitoring and prediction on real systems with application

to dynamic power management. In Int. Symposium on Mi-
croarchitecture, pages 359–370, 2006.

[18] J. Kim, S. V. K. W. chung Hsu, D. J. Lilja, and P. chung

Yew. Dynamic code region (dcr)-based program phase track-

ing and prediction for dynamic optimizations. In Int. Conf.
on High Performance Embedded Architectures and Compil-
ers. Springer Verlag, 2005.

[19] J. Lau, S. Schoemackers, and B. Calder. Structures for phase

classification. In Int. Symposium on Performance Analysis of
Systems and Software, 2004.

[20] J. Lau, E. Perelman, G. Hamerly, T. Sherwood, and

B. Calder. Motivation for variable length intervals and hier-

archical phase behavior. In Int. Symposium on Performance
Analysis of Systems and Software, 2005.

[21] J. Lau, J. Sampson, E. Perelman, G. Hamerly, and B. Calder.

The strong correlation between code signatures and perfor-

mance. In Int. Symposium on Performance Analysis of Sys-
tems and Software, 2005.

[22] J. Lau, S. Schoenmackers, and B. Calder. Transition phase

classification and prediction. In Int. Symposium on High-
Performance Computer Architecture, 2005.

[23] D. Levinthal. Performance analysis guide for intel core i7

processor and intel xeon 5500 processors. Technical Report

Version 1.0, Intel Corporation, 2009.

[24] Y. Luo, V. Packirisamy, W.-C. Hsu, A. Zhai, N. Mungre,

and A. Tarkas. Dynamic performance tuning for specula-

tive threads. In Int. Symposium on Computer Architecture,

2009.

[25] P. Nagpurkar, C. Krintz, and T. Sherwood. Phase-aware re-

mote profiling. In Int. Symposium on Code generation and
Optimization, 2005.

[26] N. Peleg and B. Mendelson. Detecting change in program

behavior for adaptive optimization. In Int. Conf. on Parallel
Architecture and Compilation Techniques, 2007.

[27] C. Pereira, J. Lau, B. Calder, and R. Gupta. Dynamic phase

analysis for cycle-close trace generation. In Int. Conf. on
Hardware/software Codesign and System Synthesis, 2005.

[28] E. Perelman, M. Polito, J. yves Bouguet, J. Sampson,

B. Calder, and C. Dulong. Detecting phases in parallel appli-

cations on shared memory architectures. In Int. Parallel and
Distributed Processing Symposium, 2006.

[29] T. Sherwood, E. Perelman, and B. Calder. Basic block dis-

tribution analysis to find periodic behavior and simulation

points in applications. In Int. Conf. on Parallel Architecture
and Compilation Techniques, 2001.

[30] T. Sherwood, E. Perelman, G. Hamerly, and B. Calder. Auto-

matically characterizing large scale program behavior. In Int.
Conf. on Architectural Support for Programming Languages
and Operating Systems, 2002.

[31] T. Sherwood, S. Sair, and B. Calder. Phase tracking and pre-

diction. SIGARCH Comput. Archit. News, 2003.

[32] T. Sondag and H. Rajan. Phase-guided thread-to-core assign-

ment for improved utilization of performance-asymmetric

multi-core processors. In ICSE Workshop on Multicore Soft-
ware Engineering, 2009.

115

