
33rd Design Automation Conference
Permission to make digital/hard copy of all or part of this work for
personal or class-room use is granted without fee provided that copies
are not made
or distributed for profit or commercial advantage, the
copyright notice, the title of the publication and its date appear,
and notice is given that copying is
by permission of ACM, Inc. To
copy otherwise, to republish, to post on servers or to redistribute to
lists, requires prior specific permssion and/or a fee.
DAC 96 - 06/96 Las Vegas, NV, USA 1996 ACM, Inc. 0-89791-833-9/96/0006..$3.50

Efficient Software Performance Estimation Methods for
Hardware/Software Codesign

Kei Suzuki �y and Alberto Sangiovanni-Vincentelli z
y Central Research Laboratory, Hitachi Ltd., 1-280 Higashi-koigakubo, Kokubunji, Tokyo 185, JAPAN

z Department of Electrical Engineering and Computer Sciences, University of California Berkeley, Berkeley, CA 94720

Abstract

The performance estimation of a target system at a higher
level of abstraction is very important in hardware/software
codesign. In this paper, we focus on software performance es-
timation, including both the execution time and the code size.
We present two estimation methods at different levels of ab-
straction for use in the POLIS hardware/software codesign
system. The experimental results show that the accuracy of
our methods is usually within�20%.

1 Introduction

One of the most important purposes of hardware/software
codesign is to find the optimum hardware/software partition
of a system level specification under particular criteria. These
criteria are usually related to the performance (speed, or the
number of clock cycles) and cost (number of components, die
size, or code size) of target systems. To measure the perform-
ance and cost of a target system at a low abstraction level, such
as the gate level or assembly-language level, is easy and accur-
ate, but it requires a long design iteration time to find the best
partition or configuration for the target system. Performance
and cost estimation at a higher level of abstraction is necessary
to reduce the exploring time of the design space of the target
systems. Furthermore, it can play an important role in the syn-
thesis and optimization of hardware and software. Needless to
say, such a performance and cost estimation must be quick and
accurate.

The cost of a mixed hardware/software system based on a
standard micro-processor (including a micro-controller and a
digital signal processor) depends on the size of the hardware.
The most effective way to reduce the hardware size is to im-
plement a given functionality with a program on the micro-
processor. However, the software implementation of the func-

1* Kei Suzuki was a Visiting Industrial Fellow at University of California
Berkeley.

0

tionality often fails to meet the performance requirement. One
possible approach that avoids this problem is to choose a crit-
ical portion in the program which does not satisfy the per-
formance requirement, and then implement it through hard-
ware components. In this approach, the performance estima-
tion of software is the key to finding the critical portion in the
software implementation.

In this paper, we present two methods for accurate and fast
estimation of software performance in embedded real-time re-
active systems designed with the POLIS system[1][2]. The
POLIS system is based on a set of representations of a design at
different levels of abstraction. The highest level of abstraction
consists of a network of interacting finite-state machines of a
particular kind; these are called codesign finite state machines
(CFSMs). This representation does not discriminate between
hardware and software implementation: it is a semantically
unambiguous system level representation. In the design pro-
cess supported by POLIS, once the system description is trans-
lated into CFSMs and verified for system level properties by
either simulation or formal verification, a partitioning process
takes place to identify the components of the design that are
candidates for a software implementation. The CFSMs corres-
ponding to this partition are then mapped into another repres-
entation called a software graph (s-graph). The s-graph is ma-
nipulated to optimize the trade-off between the performance
and the code size of the final implementation in the target sys-
tem. Intelligent partitioning of CFSMs and s-graph optimiza-
tion must be based on some measure of quality in the final im-
plementation. An estimation at the CFSM level will provide
designers with preliminary timing information on the target
system, and will provide a measure for hardware/software par-
titioning. The estimation at the s-graph level will be helpful for
s-graph optimization and software module scheduling. There-
fore, we developed an estimation algorithm for each level.

A parametric model of the target processor and its compiler
as well as two estimation algorithms are presented here. Ex-
tensive experimentation has been carried out to evaluate their
accuracy. Not surprisingly, estimation at the s-graph level is
more accurate than the other two methods. Nevertheless, es-
timation at the CFSM level is sufficiently accurate for the op-
timization to be carried out in a meaningful way.

This paper is organized as follows: Section 2 describes re-
lated work in software estimation, and in Sec. 3 a formal de-
scription of the abstractions used in POLIS is given. In Sec. 4,

1

the model for the target processor and the associated compiler
is described, and the software estimation algorithms are ex-
plained. In Sec. 5, experimental results are shown, and our
conclusions are presented in Sec. 6.

2 Related work

The performance of software in embedded hardware/software
systems depends on the “structure” (instruction mix, data ac-
cesses, etc.) of the software program as well as on the com-
ponents of the target system (i.e., the instruction set and CPU
speed). An effective estimation procedure has to model both
the target system and the software program at an abstraction
level that makes the estimation time reasonable without los-
ing too much accuracy. The structure of the software program
becomes more and more difficult to take into account as the
level of abstraction rises because the assembly code is further
and further removed from the abstract representation.

Most of the results reported in the literature, are from the
object code level which is the lowest level of abstraction, and
are concerned with software that has a limited structure since
programs using constructs such as dynamic data structures, re-
cursive procedures, and unbounded looping are virtually im-
possible to evaluate [3-6].

In [7], a software synthesis system is proposed, where all
the primitives for constructing a program are defined as a fixed
sequence of instructions. The execution time and code size of
these instructions are pre-calculated, hence, they can be used
to yield accurate predictions of performance.

Software performance estimation is becoming more im-
portant as new approaches for the synthesis and verification of
real-time embedded systems are developed [8-12]. In this con-
text, several papers have proposed a number of approaches. A
simple prediction method is presented in [8], where execution
time is made proportional to the product of the number of ex-
ecuted instructions and the MIPS rating of the target system.
In [9] and [10], statistical methods are proposed to model the
performance of a target CPU so that several CPUs can be eval-
uated with respect to the code that must be run on them. A
model proposed in [11] estimates software performance by the
number of execution cycles needed for each instruction in the
program, the number of memory read/writes, and the number
of cycles per memory access. In [12], the estimation method
used in the COSYMA system is presented. In this system the
target system that runs the given software program is also syn-
thesized. The approach consists of “running” the code on an
RT-level model of the target system to extract timing charac-
teristics from the simulation results.

3 Abstraction models in POLIS

In this section, we describe two abstraction models used in
the software synthesis process: CFSMs and s-graphs. An ex-
ample of a CFSM network is shown in Fig. 1. Each CFSM
is a reactive finite state machine with a set of input and out-

put events. The specifications for this network is as follows:
If the driver’s seat belt has not been fastened, five seconds
after a car’s ignition key is turned on, an alarm will beep for
ten seconds or until the key is turned off. In this figure, for

OFF

WAIT

ALARM

*KEY = ON =>
*START

*END = 5 =>
*ALARM = ON

*KEY = OFF or
*BELT = ON =>

*END = 10 or
*BELT = ON or
*KEY = OFF =>
*ALARM = OFF

*START

BELT

*KEY=OFF

*KEY=ON

*BELT=ON

*BELT=OFF

*END=5
*END=10

*ALARM=ON
*ALARM=OFF

Figure 1: A simple example of a CFSM network

instance, a transition from the OFF state to the WAIT state
“*KEY = ON) *START” says that “if the present state is
OFF and a *KEY=ON event occurs, then the next state will be
WAIT and the *START event will be emitted”. This behavior
of CFSMs can be represented by a transition relation function,
and an MDD (multi-valued decision diagram)[13] is used as
its representation.

Each CFSM in a network is partitioned into hardware parts
and software parts. For the hardware parts, a CFSM is mapped
into an abstract hardware description format, and synthesized
into a combinational circuit and a set of latches.

A CFSM implemented as software is translated into a data
structure called an s-graph, which represents the control flow
of a given behavior. The s-graph is a directed acyclic graph
(DAG) with one source node and one sink node. Figure 2
shows an s-graph for the simple seat belt example. Here
STATE represents a state in the CFSM. Each node contained
in an s-graph can be one of four types: BEGIN, END, TEST,
and ASSIGN. The source node is a BEGIN type and the sink
node is an END type. BEGIN and ASSIGN nodes have one
child, and a TEST node has two or more children. A TEST
node is associated with a predicate P (V), and an ASSIGN
node is associated with a pair: a function A(V) and an out-
put variable z, where V is a set of input variables (events)
V � (v1; v2; : : : ; vn). The behavior represented by an s-graph
is defined by the structure of the graph and the predicates or
functions associated with each node. The semantic of an s-
graph is evaluated by the following procedure: (1) start with
the BEGIN node, (2) traverse each node along its edge, until
reaching the END node, (3) at a TEST node, select one corres-
ponding child with the value of the associated predicateP (V),
and (4) at an ASSIGN node, assign the value of the associated
function A(V) to the output variable z.

After an s-graph is constructed, it is optimized according to
criteria that reflect running time or code size. In the last stage

2

state
OFF WAIT ALARM

BEGIN

KEY=ON? END=5?

END=10?

BELT=ON?

KEY=OFF?

END

NO YES NO YES

NO YES

NO YES

NO YES

state:=WAIT

START:=1

state:=ALARM

ALARM:=ON

state:=OFF

ALARM:=OFF

START:=0

INIT

Figure 2: An s-graph for a simple seat-belt alarm system

of the software synthesis flow, the translation of an s-graph
into a C program can be done in a straightforward way. The
graph is traversed in a depth-first manner. Each node in an s-
graph is directly translated into a few C statements depending
on its node and associated variable type. A TEST node cor-
responds to an if or switch statement, and an ASSIGN node
corresponds to an assignment statement. This translation pro-
cess results in a C program that has the same structure as its
original s-graph.

POLIS has another software synthesis path which generates
the software module scheduler. The generated scheduler con-
trols the execution of each CFSM implemented as software.

4 Performance estimation methods

In the POLIS system, partitioning, timing verification, and
optimization at the CFSM level and at the s-graph level are
guided by an estimation of the final implementation. This es-
timation is based on models of the target system and of the
“structure” of the code.

4.1 Modeling the target system

This section describes a model for the target system. The
C code generated by POLIS always has the same structure
(Fig. 3).

Therefore execution timeT and code size S are modeled as
follows:

T = Tpp + kTinit + Tstruct
S = Spp + kSinit + Sstruct

Where Tpp is the execution time for entering and exiting (the
return statement) the function ((1) + (4) form Fig 3), Tinit
is the average execution time for initializing local variables

function() : : : (1)
f

Initialization of local variables(assignment statements); : : : (2)
Structure of mixed if or switch statements

and assignment statements; : : : (3)
return; : : : (4)

g

Figure 3: Structure of the generated C code

((2)), k is the number of local variables, and Tstruct is the
execution time for the structure of mixed conditional state-
ments generated from TEST nodes in the s-graph and assign-
ment statements generated from ASSIGN nodes ((3)), which
is the execution time along a path determined by the structure
of (3). Similarly, Spp is the code size for entering and exiting
the function, Sinit is the average code size for initializing the
local variables, and Sstruct is the total code size for (3).

As mentioned in the previous section, an s-graph and the C
code generated from the s-graph have the same structure, and
the kind of C statement (i.e. if, switch, or assignment) depends
on the corresponding node (TEST or ASSIGN) and the as-
sociated variable type in the s-graph. The execution time and
code size of each C statement that appears in the s-graph de-
pends on the kind of C statement, the code generated by the
target compiler, and the performance of the target CPU. There-
fore, Tstruct and Sstruct can be expressed as follows:

Tstruct = �piCt(node type of(i); variable type of(i)),

where pi takes value 1 if node i is on a path, otherwise pi takes
0, and Ct(n; v) is the execution time for node typen and vari-
able type v, and

Sstruct = �Cs(node type of(i); variable type of(i)),

where Cs(n; v) is the code size for node type n and variable
type v.

Here, the target system, including the target compiler, can
be modeled by Ct and Cs. Both Ct and Cs can be obtained as
a set of cost parameters by using simple benchmark programs
containing a mix of the C statement that appears in the gen-
erated C programs and analyzing the execution time and code
size of the programs on the target compiler and the target CPU.
Also, Tpp, Tinit, Spp, and Sinit can be determined beforehand,
because they are constant and independent of the structure of
(3).

The effect of a cache can be included in the parameters. The
C-code structure mentioned above does not include loops, so
the cache will never be hit unless the code has already been
in the cache. Whether the code has been in the cache will de-
pend on the scheduling algorithm for the CFSMs, the num-
ber of software implemented CFSMs, the average size of the
running code of programs synthesized from CFSMs, and the
size of the cache. The average cache hit rate can be extrac-
ted through the CFSM level simulation. The average number
of pipeline hazards caused by branches can also be predicted
from the CFSM level simulation.

3

Currently we use four attributes to characterize a system,
seventeen cost parameters to model the execution time, and fif-
teen cost parameters to model the code size. The attributes for
characterizing the system are:

� the name of the parameter set (such as “MC68HC11”),
� a name for a unit of execution time(e.g., cycle or �

second),
� a name for a unit of code size(e.g., byte), and
� the size of an integer variable.

The parameters for execution time or code size correspond to
the kind of C statement generated from a node in the s-graph.
These are:

� a TEST node with an event-type variable (which detects
only the existence of an event),

� a TEST node with a multi-valued variable with a bit mask
(which tests one bit of the variable),

� a TEST node with a multi-valued variable (which leads
to a switch statement),

� an ASSIGN node with an event-type variable (which
emits an event to other CFSM models),

� an ASSIGN node which assigns a constant to a variable,
and

� an ASSIGN node which assigns one variable to another
variable.

In the case of a TEST node which has two outgoing edges, the
parameters for each edge (i.e. true case and false case) are in
the set. For a TEST node which has more than three edges, the
executing time for the k-th edge is represented as Tswitch =
Cbase + kCcase, by using two parameters Cbase and Ccase.

The other parameters for the execution time and code size
are defined for:

� pre-processing and post-processing for a C function such
as the return statement (together these correspond to Tpp
and Spp),

� a branch operation (generated from a goto statement),
� initialization of a local variable (corresponds to Tinit and
Sinit),

� average execution time and size for pre-defined software
library functions,

� the size of pointers, and
� the size of integer variables.

A set of benchmark programs to determine the above cost
parameters consists of about 20 functions, each with 10 to 40
statements. The value of each parameter is determined by ex-
amining the execution time (or number of cycles) and the code
size of each function. A profiler or an assembly level code ana-
lysis tool, if available, can be used for this extraction process.

Synthesized programs may contain pre-defined functions
and user defined functions. We have twenty eight pre-defined
functions in the POLIS library, including arithmetic functions,
logical functions, and relation functions (such as equal or
greater than). To improve the accuracy of the estimation for
a program which contains these functions, the estimator ac-
cepts additional parameters for each pre-defined function or

user defined function. For example, the additional paramet-
ers for a table-look-up function are defined with a quintuple
of (name, maximum execution time, minimum execution time,
code size, and bit width for output). These parameters are re-
ferred to when an input variable of a TEST node or an AS-
SIGN node is associated with the function.

4.2 S-graph level estimation

The s-graph has a set of properties that makes it possible to
estimate the performance of software implemented in a target
system.

Property 4.1 Each node in an s-graph has a one-to-one cor-
respondence with only a few statements in the synthesized C
code.

Property 4.2 The form of each statement is determined by the
type of corresponding node.

Property 4.3 The s-graph is a DAG, hence it does not include
loops in its structure.

The reason for the third property is that each s-graph rep-
resents only input-output relations. Infinite behavior (looping)
is dealt with at the module-scheduler (the operating system)
level.

Each node in an s-graph is weighted according to pre-
calculated cost parameters in the pre-process. Each edge in
the s-graph is also weighted so that it represents a cost for
a branch instruction. Since the s-graph is a DAG, we use a
simple DFS to find both the maximum cost path and the min-
imum cost path, and to sum up the code size. A simple al-
gorithm is shown in Fig. 4, where all the costs that represent
the estimated performance are a triple (max time, min time,
and code size). Here max time represents the maximum exe-
cution time (in cycles), min time represents the minimum exe-
cution time (in cycles), and code size represents the size of the
binary program code. At the top level, the procedure SGtrace
begins at the BEGIN node as sgi and the s-graph is traversed
recursively. This procedure returns a triple which contains
both a maximum execution time and a minimum execution
time from the END node to the sgi. The computational com-
plexity of this graph traversing algorithm is O(E), where E is
the number of edges in the s-graph, because each edge in the
s-graph is traversed only once. We must also take into account
goto statements in the synthesized C code, however. The com-
piler is intelligent enough to not generate branch instructions
for redundant statements, such as a goto statement to the next
statement. Therefore, we adopt the same traversing order as
used in the C-code generation process in POLIS and add the
cost of a branch instruction to each edge only for the following
two cases: (1) a node with one child (an edge) which is the un-
visited END, and (2) all children nodes that have already been
visited, unless the current node is the last node in the traversal.

In the proposed algorithm, a maximum cost path or a min-
imum cost path can be found by saving a child node which
gives the largest cost or the smallest cost while traversing the
graph.

4

Algorithm: SGtrace(sgi)
if (sgi == NULL) return (C(0,1,0));
if (sgi has been visited)

return (pre-calculatedCi(*,*,0) associated with sgi);
Ci = initialize (max time = 0; min time = 1, code size = 0);
for each child sgj of sgi f

Cij = SGtrace(sgj) + edge cost for edge eij ;
if (Cij .max time > Ci.max time)

Ci .max time = Cij .max time;
if (Cij .min time < Ci .min time)

Ci .min time = Cij .min time;
Ci .code size += Cij .code size;

g

Ci + = node cost for node sgi;
return (Ci);

Figure 4: An algorithm for traversing an s-graph

The average execution time can be found by using a modi-
fication of the above algorithm. Here the average execution
time is represented by:

Cave = �pij(Ct(node type of(i); variable type of(i))+ Ce(i; j)) ,

where pij is the possibility of executing node i and going to
node j, and Ce(i; j) is the edge cost for edge eij. This for-
mula can be calculated in the same way that the code size is
calculated. We need to get each pij for a previously given s-
graph through an s-graph-level simulation or calculation using
the probability of the input values.

4.3 CFSM-level estimation

While the estimation at the s-graph level is intrinsically ac-
curate, estimating software models at the CFSM level is much
more difficult since a CFSM model does not closely reflect the
code “structure”.

The proposed estimation method for the CFSM is also
based on a graph-traversing algorithm. It is, in fact, almost
the same as the s-graph-level traversing method described in
the previous section. As mentioned, we use MDDs to rep-
resent the transition relation function of a CFSM. Each node
in an MDD is associated with an input variable or an output
variable (events). Both the s-graph and the MDD are decision
diagrams. The MDD is a DAG whose structure is similar to
that of an s-graph. The major differences are the ordering of
variables and the representation of multi-valued variables. A
multi-valued variable is associated with a node in the MDD,
but might not be in the s-graph, since multi-valued variables
can be represented by a set of nodes which test one bit of the
variable. The relationship between an s-graph S and the cor-
responding MDD M can be given:

Definition 4.1 Let P (z1; : : : ; zk) be a path on a decision dia-
gram that contains nodes z1; : : : ; zk. Let V (v1; : : : ; vl) be a
set of variables associated with all the nodes in P . Then V is
said to appear on P .

Property 4.4 Let V (v1; : : : ; vn) be a set of input/output vari-
ables that appear on a path on S. Then V appears on a path
in M .

Table 1: Experimental results from the s-graph-level method
model name estimated measured % difference

min 158 141 12.06
FRC max 469 496 -5.44

size 654 690 5.22
min 223 191 16.75

TIMER max 938 912 2.85
size 1573 1436 9.54
min 145 131 10.69

ODOMETER max 361 363 -0.55
size 454 457 -0.66
min 314 335 -6.27

SPEEDOMETER max 880 969 -9.18
size 764 838 -8.83
min 119 111 7.21

BELT max 322 323 -0.31
size 511 520 -1.73
min 197 171 15.20

FUEL max 533 586 -9.04
size 637 647 -1.55
min 262 221 18.55

CROSS DISPLAY max 16289 16979 -4.06
size 32592 38618 -15.60

Property 4.5 In the above property, the corresponding paths
on S and M contain the same set of input/output variables.

The estimation algorithm of the MDD is based on the as-
sumption that the maximum (minimum) cost path in an MDD
is usually the maximum (minimum) cost path in the s-graph
that is generated from the MDD. The traversing algorithm for
the MDD is also based on a recursive DFS traversing, and it is
very similar to the s-graph level algorithm shown in Fig. 4. It
is clear that there is no relation between the code size and the
number of the MDD nodes, because the number of nodes de-
pends on the order of variables in the MDD. This algorithm’s
complexity is also O(E), where E is the number of edges in
the MDD.

5 Experimental Results

The experimental results from our evaluation of the proposed
methods are shown in Tables 1 and 2. In these experi-
ments, the Motorola’s M68HC11 micro-controller[14]and the
introl C compiler, respectively, were used as the target CPU
and compiler. To measure their accuracy, we developed an
assembly-code static-analysis tool. This tool analyzes the out-
put lists from the introl C compiler and calculates both the
maximum execution time and the minimum execution time in
terms of the number of clock cycles, and the code size in bytes.
The cost parameters used in these experiments were also ex-
tracted with this tool. We used additional cost parameters for
pre-defined library functions and user defined functions.

In Tables 1 and 2, the difference D is defined as

D =
costestimated � costmeasured

costmeasured

Table 1 shows the results when the s-graph-level method was
used. The differences in the maximum number of execution
cycles are within�10%, the differences in the minimum num-
ber of execution cycles are within�20%, and the differences
in code size are also within �20%. We found several reas-
ons for these differences when we analyzed the generated as-
sembly code. One of the main reasons is the compiler optimiz-

5

Table 2: Experimental results from the CFSM-level method
model name estimated measured % difference

min 158 141 12.06
FRC max 460 496 -7.26

min 223 191 16.75
TIMER max 917 912 0.55

min 145 131 10.69
ODOMETER max 358 363 1.38

min 314 335 -6.27
SPEEDOMETER max 877 969 -9.49

min 119 111 7.21
BELT max 402 323 24.46

min 197 171 15.20
FUEL max 620 586 5.80

min 262 221 18.55
CROSS DISPLAY max 16283 16979 -4.10

ation. Synthesized C statements that have the same structure
are not always compiled into the same instruction sequence.
This is because the optimization process in a compiler con-
siders not only the kind of statement given but also the possible
values of the variables in the statement. A second reason is re-
lated to the variety in data width, data values, and types of vari-
ables. In the HC11, the number of execution cycles depends
on the bit width of variables, the assigned values (zero or not
zero), and the types of variables (local/global, auto/static). We
consider only the bit width of each variable in the cost para-
meters. A third important reason is related to long-distance
branches. In the HC11, the number of execution cycles for
conditional branches differs according to the length of the
branch. Some of these problems can be solved by using addi-
tional cost parameters, and we expect to reduce the difference
to about�5%.

The results of the MDD traversing method are shown in
Table 2. The minimum number of execution cycles was about
the same as with the s-graph level estimation. However, the
difference between the estimated and the measured maximum
number of execution cycles was larger than when the s-graph
level method was used, but the difference was still within
�10% to +25%. The major reasons for these larger differ-
ences are: (1) the s-graph is optimized by the software syn-
thesis process, and (2) the MDD traversing method does not
take into consideration the costs of the goto statements.

On the basis of the experimental results, we can draw the
following conclusions:

� The s-graph-level method provides an accurate estimation
for all the aspects of analysis: the minimum execution
time, the maximum execution time, and the code size. It is
a useful technique for optimization in software synthesis
because of its accuracy.

� The CFSM-level traversing method is less accurate in ac-
curacy than the s-graph-level estimation, but it is still ac-
curate enough when estimating the minimum and max-
imum execution time. CFSM-level estimation is import-
ant for automatic partitioning of CFSMs into hardware
and software parts, and also for scheduler generation.

The CPU time of these estimation programs is usually under
five seconds on a DEC system 5900/260. In other words, they

make it possible to estimate the minimum and maximum ex-
ecution times and the code size much faster than is possible
when using only the software synthesis process in the POLIS.

6 Conclusion

We have proposed two software performance estimation meth-
ods for use with the POLIS hardware/software codesign sys-
tem. These two methods were implemented and evaluated,
and the experimental results showed that:

� The s-graph-level method has the highest accuracy of the
two methods, being within �20% when compared to an
assembly-level analysis.

� The CFSM-level MDD traversing method has an accur-
acy ranging between �10% and +25% for the maximum
time estimation.

The accuracy of both proposed methods is high enough for
use in the processes contained in the POLIS system.

Acknowledgment
The authors would like to thank Dr. L. Lavagno, P. Giusto, and
Dr. E. Sentovich for valuable discussions and comments.

References
[1] M. Chiodo, P. Giusto, A. Jurecska, H. Hsieh, A. Sangiovanni-
Vincentelli and L. Lavagno, “Hardware- Software Codesign of Em-
bedded Systems”, IEEE Micro, Vol. 14, No. 4, pp.26-36, Aug.
1994.
[2] M. Chiodo, P. Giusto, A. Jurecska, L. Lavagno, K. Suzuki, E.
Sentovich, H. Hsieh and A. Sangiovanni- Vincentelli, “Synthesis of
Software Programs for Embedded Control Applications”, In Proc. of
DAC 95, pp.587-592, June 1995.
[3] E. Kligerman and A.D. Stoyenko, “Real-Time Euclid: A Lan-
guage for Reliable Real-Time Systems”, IEEE Trans. on Soft. Eng.,
Vol.SE-12, No.9, pp.941-949, Sep. 1986.
[4] P. Puschner and Ch. Koza, “Calculating the Maximum Execu-
tion Time of Real-Time Programs”, The Journal of Real-Time Sys-
tems, Vol. 1, pp.159-176, 1989.
[5] C. Y. Park, “Predicting Program Execution Times by Analyz-
ing Static and Dynamic Program Paths”, Real-Time Systems, Vol.5,
pp.31-62, 1993.
[6] YT. S. Li and S. Malik, “Performance Analysis of Embedded
Software Using Implicit Path Enumeration”, In Proc. of 32nd DAC,
pp.456-461, June 1995.
[7] T. E. Smith and D. E. Setliff, “Towards an Automatic Synthesis
System for Real-Time Software”, In Proc. of 12th Real-Time Sys-
tems Symposium, pp.34-42, 1991.
[8] J.G. D’Ambrosio and X. Hu, “Configuration-Level Hard-
ware/Software Partitioning for Real-Time Embedded Systems”, In
Proc. of Int. Workshop on Hardware/Software Codesign, pp.34-41,
Sep. 1994.
[9] W. Wolf and J. C. Martinez, “C Program Performance Estimation
for Embedded Systems Architecture Sizing”, In Proc. of Int. Work-
shop Hardware/Software Codesign, Oct.1993.
[10] W. Hardt and R. Camposano, “Trade-Offs in HW/SW
Codesign”, In Proc. of Int. Workshop on Hardware/Software
Codesign, Oct. 1993.
[11] R. K. Gupta and G. De Micheli, “Constrained Software Gen-
eration for Hardware-Software Systems”, In Proc. of Int. Workshop
on Hardware/Software Codesign, pp.56-63, Sep. 1994.
[12] W. Ye, R. Ernst, Th. Benner and J. Henkel, “Fast Timing
Analysis for Hardware/Software Co-synthesis”, In Proc. of ICCD,
pp.452-457, Oct. 1993.
[13] T. Kam and R. Brayton, “Multi-valued Decision Diagram”,
Technical Report UCB/ERL M90/125, U.C.Berkeley, 1990.
[14] M68HC11 Reference Manual, Motorola, 1989.

6

