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ABSTRACT 

In this work different concepts of efficient solutioos to problems of Stochastic Multiple 

Objective Prograrnming are analyzed. We centre OUT interest on problems in which sorne of 

the objective functions depelld on random parameters. The existence of different concepts of 

efficiency for oue single stochastic problem, 8uch as expected value efficiency, minimum-risk 

efficiency, etc., raise the question of their "quality". Starting from this idea we establish 

sorne relationships between the different concepts. OUT study enables liS to determine what 

type of efficient solutions are obtained by each of these concepts. 

Key Words. Stochastic multiobjective programming, expected value efficiency, minimum 
variance efficiency, minimum-risk efficiency, efficiency in probability. 
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1. lntroduction 

In many multicriteria decision problems sorne parameters take unknown values at tbe 

moment of making the decision. TItis uncertainty can be due to problems of observing the 

parameters themselves ar tbat their values depend on 8uch factors as nature, the decisions of 

other agents, etc. If tbese parameters are random variables, tbe resulting problem is called 

Stochastic Mu/tiobjective Programming. 

There is much research in the literature dealing witb the study of 5uch problems, among 

which we could mention the books by Goicoechea, Hansen and Duckstem (Ref. 1), Stancu~ 

Minasian (Ref 2), and Slowinski and Teghem (Ref 3), and the ameles by Teghem, Dufrane, 

Thauvoye and KlUlsch (Ref. 4), Stancu~Minasian and Tigan (Ref. 5), StancuHMinasian (Ref. 6), 

UrIi and Nadeau (Ref. 7), and Ben Abdelaziz, Lang and Nadeau (Rees. 8 and 9). 

111e review of these works shows that the resolution of such problems always involves 

transforming the problem into a dctenninistic one, which 1S called the equivalent determinisfic 

problem. This transformation is camed out by using sorne statistical charncteristic of the 

random variables involved in the problem (expected value, variance, etc.). In the Iiterature tbis 

has led to different deÍmitions of the efficient solution concept foc the same stochastic 

multiobjective programming problem, so tbat different efficient sets are obtained for the same 

stocbastic problem. These sets, in principIe, are non-comparable since they utilize different 

charactcristics of the initia1 problem. In this work we consider five such sets; expected vaiue, 

minimum varíance, expected vaiue mínimum standard deviation, minimum-risk efficiency, and 

ejjiciency in probability and raise the foIJowing question; do these efficiency sets have sorne 

relationship 10 each other? An ¡nttlal answer is given in Caballero, Cerdá, Muñoz and Rey (Reí. 

10), io which rclatioos between two of the efficient sets were established. SpecificaUy, it is 

fu . rta· "ondi';ons the minimum-risk efficieot solution set and the efficiency in show at, gtven ce tn ... u , 

. . . ¡ This paper deals with the analysis of other relations between the probabdity set are reciproca. 

previously mentioned sets. On the one hand we relate the concept of expected value-standard 

deviation efficiency to that of expected value efficiency and mínimum standard deviation 

ffi . d fue other hand, relate the eoncept of effieiency in probability to the expected e Cleney, an on 

value-standard deviation efficiency. 

2. Efficient Solution Concepts for a Stochastic Multiobjective Programming Problem 

Let us consider the stochastic multiobjective programming problem; 

(SMP) "Min" (z¡(x, e),z2(x, e), ... , Zq (x, e)) 
.~ 

where; 

X E Rn is the vector of decision variables of the problem and e is a random vector 

whose components are random continuo?s variables, defined on the set E c: R'. Let us 

asswne that given the fumily F of events, that ¡s, suhsets of E, and the distribution of 

probability P defined on F. so that for any subset of E, A c: E, A E F, the probability 

of A, P(A), is known. Also, we assume tbat the distribution of probability, P, 1S 

independent ofthe decision variables x!>,".,xn • 

the functions z¡(x,e), z2(x,e), ... , Zq (x,e) are defined on R'X E, 

the set of the problem opportunities, D c: Rn, is non-empty, compact and eonvex. 
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Let Zk(X) denote the expected value afthe k-th objective function and O"k(X) its standard 

deviation, k E {l, 2, .. "' q}. Let us asswne that for evcl}' k E {l,2, .. " q} and foc every feasible 

vector x ofthe (SMP) problem, the standard deviation, (7 k (x), is fínitc. 

As previously pointed out, in the literature different concepts of efficient solution exist foc 

the (SMP) problem. In this section we present sorne which share the common feature that the 

efficient solution concept is defined from a multiobjective problem which is generated by 

applying the same criterion to aH the stochastic objectives separately. 

The first concept to look at is the expected value efficient solution. This concept is obtained 

from the construction of a multiobjective problem in wmch the objective functions vector is the 

expected value ofthe vector of stochastic objectives ofthe initial problem. 

Definition 2.1: Expected value efficient solution. The point xED is an expected value ef'ficient 

solution afthe (SMP) problem ¡fit is Pareto efficient to the follawing problem: 

(E) 

Let EE be the set afexpected value efficient salutions ofthe (SMP) problem. 

The next concept considered is that ofthe minimum variance efficient solution. In this case, 

the concept comes from obtaining tbe variance af each stochastic objective and outlining the 

multiabjective problem of minimizing such variances. 

Definition 2.2. Mínimum variance efficient solutioD. The paint x E D is a mínimum 

variance efficient solution fac tbe Stochastic Multiabjective Programming (SMP) problem if it 

is a Pareta efficient saludan far the problem: 

• 

Let Ed be the set ofefficient salutians ofthe problem (d). 

Next, we define the concept of expected value-standard deviatian efficiency. In this case, 

the cancept of efficiency arises from the construction of a problem with 2q objectives involving 

the expected value and tbe standard deviation of each stochastic objective. 

Definition 2.3. Expected value-standard deviation efficient solution or Ea efficient 

solution. 

The point x ED is an expected value-standard deviation efficient solution for the stochastic 

multiobjective programming problem if it is a Pareto efficient solution to the problem: 

(fu) 

Let E be the set of expected valuc-standard deviation efficient solutions of tbe (SMP) 
Bu 

problem. 

Finally, we give the concepts of efficiency for the criteria of maximum probability. As we 

will see next, in order to define fuese two concepts, the minimum-risk criterion (concept of 

minimum-risk efficiency) and the Kataoka criterion (efficiency in probability) are respectively 

applied to each stachastic objective. 

Definidon 2.4. Minimum-risk efficient solutioD for levels 11 1 , u2 ' • • , uq (Stancu-Minasian and 

Tigan (Ref. 5)). 

TIte paint x eD is a minimum-risk vectorial solution for levels U p 1l2 , .. ,Ilq if it is a Pareto 

efficient solutioo to the problem 

(MR(u)) Max (p(z,(x, e) ~ u,), .. ,p(z,(x, e) ~ u,)) 
"D 

Let EMR(u) be the set of efficient solutions for the problem (MR(u». 



Definition 2.5. Efficient solution witb probabilities p p J, ;"'" P '1 or l3-efficient solution 

The point x ED is an efficient solution with prohahilities PI' {32' O" f3 q if there exists UE Rq 

snch that (x" Uf)' 1S a Pareto efficient solution to the prohlem 

(K(~)) Min 

5.t P{zJx,C).::>:uk};;::P¡., k=d,2, ... ,q 

xED 

EK(P) e Rn denotes the set of efficient 50lutions with probabilities p /, Pl' O" P q for the 

(SMP) problem. 

It may be Doted that these definitions of efficient solutions are obtained by applying the 

same transfonnation criterion to each one of the stochastic objectives separately (expected 

value, minimum variance, etc.), and afterwards building the resulting detenninistic 

multiobjective problem. In this sense it is necessary to point out that 

The concepts of expected value, minimurn variance, etc. weak and properly efficient 

50lutioo can be defined in a natural way. 

The concepts of minimumwrisk efficiency and ¡3-efficiency require setting, a priori, a 

vector of aspiration levels (u) or a probability vector (]3). This implies that, in both 

cases, the efficient set obtained depends on fue predetennined vectors, in such a way 

that, in general, different level and probability vectors give rise to different efficient 

sets: 

The concept of expected valuewstandard deviation efficient solution is no more than an 

extension to multiobjective cases ofthe concept ofthe mean variance efficient solution 

LQ 

that Markowitz defines (Reí 11) for the stochasttc monowobjective problem of the 

portfolio selection. Note that in the concept we have just defined, instead of using the 

variance of each stochastic objective, we take the standard deviation. In this way we 

have the two statistical moments corresponding to each stochastic objective in the same 

measuring units. Since the square root function is strictly increasing, the set of efficient 

solutions does not vary in the problem if we substitute standard deviation for variance 

(see White (Ref. 12)). 

The efficiency in probability criterion 1S a generalization of the one presented by 

Goicoechea, Hansen and Duckstein (Ref l) that defmes fue same concept taking fue 

same probability, 13, for all the stochastic objectives and with the probabilistic equality 

constraints taking the foon: P{zk(X,"f:):SUJ=Pk' 'Ibis notion was introduced by 

StancuwMinasian (Ref. 6) considering Kataoka's problem in the case of multiple 

criteria. 

Sta.rting from the given definitions, we can obtam different sets of efficient solutions for the 

(SMP) problern. This faet can give rise to sorne confusion. Although to begin with, one coutd 

consider that the concepts previously defined are not connected, since they utilize different 

statistical characteristics of the stochastic objectives, it will be shown that they are closely 

related. We begin by studying the relationsQip between the ex:pected value~standard deviation 

efficient solutions and the efficient solutions of probabilities P 1"'" Pq' Next, we analyze the 

existence of relationships between minimum expected value efficient solutions, minimum 

variance efficiency and the expected valuewstandard deviation efficient solutions, corresponding 

to the problem of 2q objectives tbat includes both fue expected value and the standard deviation 
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of the objectives. We will first present sorue results of efficient sets for deterrninistic 
Proof. 

multiobjective prograrnming problems that wiII be used to establish tbe relations in stochastic 
(i) Let x E E(I) (l E(rlf). Let us show that x E E(f, rg) by reductio ad absurdum. We assume 

multiple objective problems. 
that:x Il E(f, yg). Then, there exist a x* E D, such that: 

3. Preliminary Results 

We will now present sorne relations between efficicnt sets of several problems of 

detenninistic multiobjective programming. These rcsults will ¡ater be used for the analysis of 
there being an s E {L 2. ,q} for which the inequality is strict: 

concepts of efficient solutions for multiple objective stochastic problems. 

Let f and g be vectorial functions defined on the same set He Rn, f: H e Rn~Rq and 

g: H e Rn~Rq, and let a, r be nOllwDull vectors with q real components, that is, 0:, rE R'l, 
contrary to x E E(f) n E(nr). 

0:, r*-O and let us consider the following multiobjective problems: 
(H) Let XE E(f) U E(rtr). Let us seethat XE Ed(f, rg) by redllctio ad absllrdllm: 

Min (r, (x), ... , f, (x),y,g ,(x), ... , r ,g, (x)) 
"0 

We assume that x il Ed (f, rg). Then, there exist a vector, x* E D that weak1y dominates x and 
(1) 

so verifies: 

Min(¡;(x), ... ,.t: (x)) 
x~D q 

(2) 

(3) 

with rE R'l, r:;t: O. Let E(f, rg), E(f) and E(rtr) be the sets of efficient points ofproblems (1), 
to xc EeQ u E(yft). 

(2) and (3), respcctively. TIte following theorem relates these problems to each other. With 
(iii) Let x E Ed(f) u Ed(rtr). Let us see that x E Ed(f, rg), by reductio ad absllrdum. Wc 

superscripts d and p we denote weak and proper efficiency, respectively. 

fu E ' (1 ) TIten, there exist a vector x* E D that weak1y dominates x and, assume at x ri , yg . 

Theorem 3.1. Let us asswnc that g(x) > O for every xED, then : 

tberefore, verifies tbat: 

(i) E(n" E(yft) e E(f, yg) 

(ii) E(n u E(yft) e E'(f, yg) 

(iii) E' (n u E' (yft) e E' (f, yg). 

contrarytoxE Ed(f}uEd(rlf)· 
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From (iii), it Is obvious that Ed(f)r,Ed(yi)cEd(f, yg) is also verified. Furthcnnore, as From (5) and (6) we obtain: 

E(Q e E'(n and E(yg') e E'(yg'), Ihen, E(n u E(yg') e E'(n uE'(yg'), Ihus (ii) can be 

deduced from (iii). In particular, for k= s: 

Let us again consider the functions f and g. Let the problem be: 
• if f..cx*) < f.(x)the following is verified: 

(4) 

Let E(a) and E P (a) denote the efficient solutions set and the properly efficient set, and, the following inequality is obtamed from (6): 

respectively, for problem (4). We wil1 now present sorne relations between these sets and tbe 

sets of efficient solutions and properly efficient sets for problem (1). 
• if y,g,(x*) <r ,g,(x) the following is verificd: 

Theorem 3.2. Forevery a, rE Rq with ak> Yk ;t O and sgn (ak ) =sgn (Yk),k= 1,2, .. ,q, fs(x*) + a,g,(x*) < f,(x*) +a,g,(x) 

the following relation holds and since fs(x*)::;; fs(x) we obmin: 

E (a) e E(f, yg). 

Proof. Let x E E (a). Let us assume that x r;. E(f, yg). In this case there is a solution x* that 
Therefore, for every k E {l, 2, .. , q} the following is verified: 

dominates x, that is: 

and tbere is at least a subscript s E {1, 2, ... , q} for wruch the inequality 1S strict 

and there exist atleast one s E {l, 2, ... , q}, that is: 

which implies tbat so1ut10n x* dominates solution x and, therefore, we reach a contradiction 

and with the hypothesis ofx being the efficient solution to problem (4). 

sgn (a!):= sgn (rk)' the following inequalities are verified: A natural question is whether Theorem 3.1 is trne for the set of properly efficient solutions. 

(5) Next we prove that, given certain conditions, this relationsbip is preserved for properly 

(6) 
efficient solutions. For this purpose we define problems Pf,yg(A., Il) and P(l(ro), obtained from 

applying the weigbting method to problems (l) and (4) respectively, as follows: 



Pr,YIl 0.., ¡.t) Mio 
.w 

;\.tf(x) + "t,ukYkgk(X) 
k~l 

Pu(ro) Min 
x~D 

• ¿OJk (¡k (x) + akgk (x») 
k~l 

We use the results available in the literature about the relationships between optimal solutions to 

the weighting problem and tbe efficÍent solutioDs to the multiobjective problem, Sorne results 

(see, for example, Chankong and Haimes (Ref. 13» applied to problem (1) and jts associatcd 

weighted problem, Pr,lC (A, ¡.t.) are as follows: 

If f and (r¡g" .. "yqgq)' are convex functions, D is convex and x* is a properly 

efficient sotution for the multiobjective problem (1), there exist sorne weight vectors A, 

¡.t. with strictly positive components such that x* is the optimal solution for the 

weighted problem Pr,yg (A, ¡.t.). 

The oprimal solution to the weighted problem Pr,yg (A, ¡.t.), for each vector of weights 

with strictly positive components, is properly efficient for the multiabjective problem 

(1). 

Proposition 3.1. Iffand (y ¡g¡, ... ,yqgqr are convex functions, D is a convex set and sgn (ak ) = sgn 

(Yk) forevery k E {l, 2, ... , q}, then, E" (a) e E" (f, yg). 

Proof. Iff and (y ¡g 1> .. " Y qgq) t are corrvex functions and D is a convex set then fue set ofproperly 

efficient solutions to problems (1) and (4) are obtained from the associated weighted problems for strict1y 
positive weight vectors. We will prove that any solution lo the optimisation problem P ",(ro), with ro > O is 
the solution to problem Pr,rl: CA, fl) for somevector Q}, J.1tl > O, 

Let x E E" (a). Theo, given the established hypotheses, fuere exists a vector ro > O for 

which x is the solution fortbe problem Pu(ro), 

Let us assume that for every k E {l, 2, .. " q} ak'Yk *- O. TIten, by making Ak=Wk and 

Ji;; :=OJkak Irk , Ak,Jik >0, since ro> O, we obtain that x is the optimal soIurion to Pr,n (A, ¡.t.). 

If for sorne i E {l, 2, .. " q} a; := r, := O, theo, the proof would he the same, since in problem (1) 

function g,- is not involved and in problem (4) fue ¡-th objective would be J, 

The inverse inelusian does not hold, as it is shown by the following. 

Example 3.1. 
Let us consider the following problem: 

with/{x, y):= X, g(x,y) := y and r:= l. 

Max (x,y) 
loq') 

s.t. x· + y2 :::; J 

x,yeO 

The set of efficient points for this problem is: 

{(x,y)t E O 2 / X2 + y2 = 1, x,y > O} 

represented in the following figure: 

Figure 1 

Ifwe outline the resolution affue problem: 

Maxx+ay 
(~,yl 

s.L X2 + y2 :::;; 1 

x,yeO 



with a> 0, for cach a> ° we fix, the optimal solution of the resulting problem is one of the 

properIy efficient solutions to the original bi-criteria problcm. 

Proposition 3.2. 

If f and (rlgl, ... ,r~gq)' are convex functions, then EP(f;yg)e yEP(a), with 
~Q 

.o. "" {aE U q ! sgn(ak) ","sgn(Yk)' k"" \,2, .... , q} 

Proof. As in tlle previous case, lhe proof of!he pIoposilion is carried out by demonstrating thal any 

solution to the problem Pr.1g(/.., p.) is a solutian to fue problem P «(ID) fOI sorne vector aERn, witb 
sgn (ak):o= sgn (Yk)' k E {l, 2, ... , q}, and fur some ID> O. 

Letx E EP(f,yg). Then,as fand (y,gj, ... ,yqg
q

)' areconvexfunctions,thereexistthe 

vectors A, !l > O fur which x is the solution to the problem Pr'lR(A, J.1). By making (Ok = Ák and 

ak "" f.JkY k/Wk ' srnce ro, ¡.t. > O, we obtam that x is alsothe solution to the problem P«(ro). 

Note that from propositions 3.1 and 3.2, if f and (y¡g/, ... ,yqgql are convex functions 

and sgn (a
k

) = sgn(Yk) fur every k E {l, 2, ... , q}, the sets of properly efficient solutions to 

problems (1) and (4) verify the following: 

Every properly efficient solution to problem (4) is properIy efficient for problem (1). 

• Setting a yERq with non-null components, tite set of properly efficient solutions to 

problcm (1) ls a subset of the union in a of the sets of properly efficient solutions for 

problem (4). 

By combining both results the following corollary can be stated: 

Corollary 3.1. Hfand (y/gj, .. ,yqgq)t are convex functions, then forevery y E Rq: 

E'(f,yg)~ YE'(a), 
oeQ 

",ith n ~ {a E U q !sgn(ak) ""sgn(Yk)' k = 1,2, .... ,q}. 

4. Relations between Expected Value Efficient Solutions, Minimum Variance Efficient 

Sollltions and Expected Value-Standard Deviation Efficient Solutions 

Let us consider again the (SMP) problem and the sets of efficient solutions for expected 

value (E E)' minimum variance (E",) and expected value-standard deviation (EE<¡) associated 

with the problem. Let E; , E:, and E:", be the set ofweakly efficient solutions associated with 

problems (E), (0'2) and (EO'), respectively. 

Ifwe consider fk(X) = Zk(X) , gk(X) = O'k (x) and Y~ =1 are taken, given that for every k E 

{l, 2, ... , q} it is verified that O'k: Rn--+R+, then the relations between these efficient sets are 

directly deduced from Theorem 3.1 in Sect. 3 as follows: 

(i) E", n E ,,1 e EEa-: Every solution wrnch is both expected value efficient and minimum 

variance efficient lS also an expected value-standard deviation efficient solution. 

(ií) E u E e Ed • Eve"" expected value solution or minimum variance efficient solution is 
E al Eu' "; 

an expected value-standard deviation weakly efficient solution. 

(i¡i) E d uE d e E d • The set of expected value-standard deviation weakly efficient solutions 
E ,,' Eu' 

¡Dcludes the union of the set of expected value weakly efficient solutions and the set of 

mínimum variance weakly efficicnt solutions. 

In Sed. 6 we present an example which illustTates these results. We now move on to study 

the relations between expected value-standard deviation efficient solutions and the efficient 

solutions with probabilities PI' P2"'" P q' 

5. Relations befween Expeded Value..standard Deviation Efficlent Solutions and Efficient Solutions 

with Probabilities PI' P 1"", P q 



Next, we analysc the existing relationships between expected value-standard deviation vector follows a nonnal distribution or it verifies tbe hypothcsis of simple randonmess. Before 

efficient solutions and efficient solutions with probabilities P 1> P 2 , ••• , P ~. Given the stochastic going any further, we outline the two cases we are going to analyse. 

multiobjective progrannning problem (SMP), we consider its associated problems (Ea) and a) Normal linear case 
Let us assume tbat the k-th objective function takes the fonu Zk (x, c) = c~x, where ck is a 

(K(~)). 

random vector rnultinonnal with expectcd value ck and with positive definite variance and 

In arder to determine the set of efficient solutions Ea ofthe (SMP) problem we only need 

covariance matrix, Vk. Let us also assume that O rt. D. 

to know the expected valued and the standard deviation of each objective function of the 

Under sllch hypotheses the expected value of the random variable Zk (x, c):=: c~x is 
stochastic problem. However, obtaining the )3-efficient solution set for the (SMP) is more 

complex because the distriblltion functions of the stochastic objectives are involved in this 
Zk(X)=C~X, its standard deviation is crk(X)=~xtVkX and the distribution function of the 

definition of efficient soIution, and so it is necessary to specifY additional hypotheses about the 

stochastic objective functions and the probability distributions of the random parameters 
standardised normal distribution function. 

involved. 
From now on, the probabilistic constraint p(C~X:;Uk);?:Pk is equivalent to 

The studies carried out IIp to now have mainly focussed on linear objective functions (see, 

for example, Ref. 14) and linear fra.ctional objective functions (see Ref. 6). As for the type of 

probability distribution normally used for the stochastic vectors, multivariate nonnal 
a

k 
=<D-1(A). Since the expected value 1S linear and the functionJx'Vkx is convex (see 

distribution is generally considered, or it is assumed that the vector of random parameters Stancu-Minasian (Ref. 2)), this ineqllality defines a convex set if Pk ;?: 0.5 since, in this case, 

depends linearly on a single random variable (hypothesis ofsimple randomness). In these cases, 

and others, it is possible to obtain the distribution function of the stochastic objective, although 
b) Simple linear randomlzation case. 

Let us assume that the k-th objective function takcs the fonn Zk (x, 'C) = c:x, where el( is a 
in general this is a complex task. 

We will now analyse the existing relationship between the set of expected value-standard 
random vector, which linearly depends on the random variable ~, in such a way tbat 

deviation properly efficient solutions and the set of properly efficient sollltions with 
e" "" c~ + 4c~ . Le1 i

k 
be the expected value of "4, vk its standard deviation, V k < 00 and Fk its 

probabilities PnP2, ... ,P
q 

when the objective functions are linear and the random parameter distribution function, which we assume is strictIy increasing. We also assume that for every x E 

D it is verified that c;tx > O. 
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Ifthese hypotheses are verified we obtain that: objective, and in Seet 3 the hypothesis of sgn( r k ) "" sgn( ak ) holds, then if \Ve restriet to 

"" l in order to maintain tbe relations obtained in previous results, it will be neccssary that r, ' 

a
k 

> o. Let us see what this involvcs in each case: 

the distribution function of the random variable c~x valued in uk is 

Therefore, in both cases the fact that pararncter ak takes a strictIy positive value implies 

Having anaJysed these two cases, we see that the probabilistic constraint 
that the ÍlXed probability must bc "high". 

P(Zk (x, c)::s; IIk );::: Pk is equivalent to Zk (x) + akC!k (x)::S; Uk, and therefore, the set of j3-efficient Therefore, from Theorem 3.2, Propositions 3.1 and 3.2, and the Corollary 3.1 in Sect. 3, we 

solutions for the problem (SMP) coincides in both cases wifu that of the following can assert that ifthe stochastic objectives ofthe (SMP) problem fulfil the hypotheses in (a) or 

multiobjective problem: (b), then it 15 verified that: 

Given a fixed vector of probabilities PI' .. , Pq' such tbat the associated ak , k"" 1, 2, .'" 

that is, the j3-efficient set is obtained via a problem of q objective functions in which each q, are strictly positive, the set of efficient solutions with probabilities Pw., Pq is a 

objcctive function takes the expected valuc of the stochastic problem plus its standard deviation suhset of the set of expected valuc-standard deviation efficient solutions: E Ka; e EllO"' 

weightcd by a coefficient that depends on the prc-dctcnnined or fixed probability, 
where E Ka; will denote the set of efficient solutions for problem K.:.. 

Naturally emerging from this idea is the comparison between the set of efficient solution of 
2, Regarding properly cfficient solutions, we have to point out that, given that the 

the problem Ka, and the set of expected value-standard deviation effieient solutions of the 
funetions Zl(X) and cr~(x) are convex in botb cases, the results from Propositions 3.1 

original stochastic multiobjective problem. If we make fk(x) = Zk(X) ,gk(X)=O"k(X) and 
and 3.2 and the Corollary 3.1 are verified, with which, for each vector ofprobabilities 

y! = 1, from the results obtained in Sect. 3, we can relate the ef'ficient solutions sets of both 
/31"'" /3 q such that the associated ak are strictly positive, it Is verified that: 

problems. Since r k is the parameter that wcigbts the standard deviation of the stochastic 



thc set of properly efficient solutio05 with probabilities {JI"'" {J q is a subset of the 

set of expected value-standard deviation efficient solutioos: E%u e El". 

The uruoo of sets properly f3-efficient corresponding to probabilities such that the 

associated a k are strictly positive, gives a set that coincides with the set of 

expected value-standard deviation properly efficicllt solutions: y E ka = E I~ . 

Therefore, the criteria of expected value-standard deviation effieieney and efficiency in 

probability are closely related, at least in the cases analysed. Now we analyse the results for the 

cases studied. 

In both instanees, OUT study enables us to see how the application of the efficieney in 

probability eriteria gives an enriTe range of solutions, as a function ofthe fixed probabilities that 

inelude sorne of fue expected value~standard deviation efficieneies and more, al1 those 

corresponding to "Iow" probabilities, effieient solutions that, in genera~ are impossible to obtain 

by means ofthe expected value-standard deviation efficiency eritería. This fuet corroborates the 

idea that the expeeted value-standard deviation cfficiency is appropriate when the decision 

maker is risk averse (the hypothesis which is held, among others, in the models of portfolio 

selection in order to consider this eriterion of efficiency as an appropriate one. 

AH trus leads to the following question: would it be possible to obtain p--cfficient solutions 

vía sorne other eriteria? When we fix a "low" probability for sorne stochastie objective in cases 

(a) and (b), its standard deviation is weighted negatively; and furthennore, fue lower the 

probability, the smaller it is. If in sueh cases we consider the following problem: 

(7) 

1 
H 

1 
i 

where r k = 1 if the fixed probability is "high" and Yk = -1 if the fixed probability is "low", 

from Theorem 3.2 we can assert that the set of f3-efficieot solutions is a subset of tile set of 

efficient solutions for problem (7). Regarding the relations for the properly efficient sets shown 

in Proposition 3.1 and the Coralla!)' 3.1, these only hold ir low probabilities correspond to 

stochastic objectives that verify the hypothesis in case (b), simple randomness, since in this case 

the function - a k (x) is linear and thus convex. 

Finany, following the paper of Caballero, Cerdá, Mufioz and Rey (Ref. 10) - whieh 

anaIyses the conditions under which the analysis of efficieney with probabilities {JI' Pl , ... ,{J q 

and minimum-risk effieieney with aspiration levels of u¡,u2 , •.• ,uq ofthe (SMP) problem are 

equivalent- it can be asserted that given that the neeessary conditions fur reciprocity between 

efficient solutions with probabilitiesPl,p2, ... ,P
q 

and efficieney of minimum-risk with 

aspiration levels up u2 , ... ,uq of the (SMP) problem are verified, the relationship established 

between the set of effieient solutions with probabilities PI'P2' .... Pq and the set of expected 

value~standard deviation properly efficient solutions is also verified between the latterand tbe 

minimum-risk efficient solutions with aspiration levels uj ' u], .. , uq . 

In order to illustrare these results we present an example. 

6. Example 
Let us consider the following stochastic bi-objective problem: 

"~in" (c.IX,C;x) 

S.1. x¡+x2~1 

X¡ +3x2 :510 

-2s-x¡ +x2 s2 
x¡,x2 ~ O 



follows a normal distribution of expected value 1 and variance 4, T, - N(l, 4). and ~ follows an 

exponential distribution of the parameter A = 2. 

From this data, fue expected value-standard deviation efficiency problem of the aboye 

mentioned stochastic problem is: 

Min (- Xl - 7x2 ,12XI + IOx2 ,5xl - x2 ,2 X¡ + 4x2 ) 

s.1. x¡+x1 ;:;:1 

Xl +3xz:::;1O 

-2:::;-xl +x2 :::;2 

x¡,x2 ~O 

The following figure (Figure 2) shows the set of expected value-standard deviation efficient 

solutions forthe problem. Points El = (1, 3), E2 = (O, 2), Sl:= (O, 1) and S2 = (1, O) are optimal 

solutions fuI the expected value problem ofilie frrst and second objective functions, and for fue 

problem of minimum variance of stochastic objectives 1 and 2, respectively. This implies fuat 

the segment joining El and E2, ElE2, is the set of expected value efficient points, EE ... ElE2, 

and segment S1S2 is fue minimum variance efficient set, Ea' ... SIS2. The expected 

value-standard deviation efficient solutions are the points of the segments SIS2, SlE2 and 

As it can be observed, the expected value-standard deviation efficient set includes the 

expected va1ue and minimum variance efficient sets, which is shown in the results obtained in 

Sect. 4. 

Figure 2 

On the other hand, the problem ofthe efficiency with probabilities p" p:] is: 

s. t. x¡+x2 ;;:-:1 

Xl +3x2 :::;1O 

2:::;-x] +x2 :::;2 

xp x2 ;;:-:0 

The sets of efficient 801utions to this problem for different probability vectors is shown in 

the Table 1, where column efficien! se! cantains fue efficient set that is obtam fOI fue probability 

vector given in the second column: 

Probability Vector Efficient Set 

1. (P, ~ 0.9, p, ~ 0.99) Minimum variance efficient set 

2. (P, ~ 0.75, p, ~ 0.99) Minimum variance efficient sel and segment S IE2 

3. (P, ~ 0.6, p, ~ 0.99) Ea efficient set 

4. (P, ~ 0.3, p, ~ 0.99) Ea efficient set and segment ElP 

5. (P, ~ 0.9, p, ~ 0.8) Solution (XI = O,x:] = 1) 

6. (P, ~ 0.75, p, ~ 0.8) Segment SI E2 



second vaJue the sarue, the new set ¡neludes the previous one and aH the expected value 

7. (P, ~ Q.6. p, ~ 0.8) Expected value efficient set and segment S IE2 

8. (P, ~ 0.3, p, ~ 0.8) Expected value efficient set and segments S IE2 and ElP efficient solutions. Furthermore, in sorne cases, for example for vector (p¡ = 0.6, p] = 

9. (P, ~ 0.9, p, ~ 0.4) Segment S 1 El 0.99), the efficient set tbat give us the efficiency in probability criterion coincides with 

10. (P, ~0.75, p, ~0.4) 801ution (Xl := O,x] = 2) 
tbe efficient set Ea. 

11. (P, ~ 0.6, p, ~ 0.4) Expected value efficient set 

12. (P, ~ 0.3, p, ~ 0.4) Expected value efficient set and segment EIP 
When the fixed or predetennined probabilities are such that PI $: 0.5 or Pl :os; 

13. (P, ~ 0.9, p, ~ 0.1) Expected value efficient set and segment SI E2 0.6321205 (fue case in row 4 and from tbe seventh row onwards of the table), the 

14. (P,~ 0.75, p, ~ 0.1) Expected value efficient set 
resulting efficient set can include points which are not part of the efficient set EO'. In all 

15. (P,~ 0.6, p, ~ 0.1) Solution (Xl := 1,x2 := 3) 

16. (P, ~0.3, p, ~0.1) Expected value efficient set and segment ElP 
instances, these points are those of segment ElP. 

Table 1 

The results in the tahle show that the set of efficient solutions with probabilities PI' P2 go 

on changing according to the fixed probabilities and help to illustrate the theoretical results 

7. Condusions 

obtained in Sect. 5. The probahility vectors for which the standard deviation has an associate From the results ohtained, we can assert tbat the concepts of efficient solution considered in 

positive weightare such that PI> 0.5 and P1 > 0.6321205. From thls the following can be this work for a single problem of stochastic multiobjective prograrnming are closely related, 

outlined: 
under certain conditions. We consider that the relations established can help to obtain efficient 

In general tenns, it is necessary to point out that the "dimension" of the efficiency in solutions to a problem with the characteristics described here, since fuese concepts include 

probability set carries on varying according to the <Odisparity" existing between tbe different statistica1 characteristics of tbe stochastic objectives and, apparently, do not bave to 

fixed probabi1ities, as is sbown in lines 4, 80r 13 in the tableo 
have any relationship to each other. 

For probahility vectors snch that Pl > 0.5 and P2 > 0.6321205 (which in problem Ka 
Based 00 our results, it is possihle to deal with attaining efficient solutions from a different 

implies that a. > O) the solutions obtained are subsets of fue expected va1ne~standard 
perspective since, given a particular problem, we will be able to see from the established 

deviation efficient seto For example, for the probability vector (PI = 0.75,P2 = 0.8) tbe 
relationships what concept of efficiency is fue mast appropriate or the one tbat best fits the 

preferences ofthe decision maker. 

efficient set obtained is S1E2, hut if probability PI is lowered to 0.6, keeping the 



Therefore, this study helps to choose between different efficiency eriteria for solving 

stochastic multiple object problcms. In tbis sense, the "richness" ofthe efficiency in probability 

criterion may be highlighted, since by varying the f'i.xed probability for each stochastic 

objective, different efficient 5etS are obtained. Also, the faet that the decision-maker has to fix a 

probability for each stochastic objective is more of an advantage than a hindrance, since, in a 

certain way, it determines the risk he or she is willing to take in each of the stochastic 

objectives. 

Fina11y, it should also be noted that the preliminary results obtained in Sed. 3 are 

applicable to any detenninistic multiobjective problem. 
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