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ABSTRACT

In this work different concepts of efficient solutions to problems of Stochastic Multiple
Objective Programming are analyzed. We centre our interest on problems in which some of

the objective functions depend on random parameters. The existence of different concepts of

efficiency for one single stochastic problem, such as expected value efficiency, minimum-risk
efficiency, etc., raise the question of their "quality". Starting from this idea we establish
some relationships between the different concepts. Our smdy enables us te determine what

type of efficient solutions are obtained by each of these concepts.
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1. introduction
In many multicriteria decisi L
on problems some patameters take .
unknown valies at the
moment of making the decision. This uncertainty can be due to problems of 6bsaw‘ th
ing the
parameters themselves or that their values depend on such factors as pature, the decisions of

mhcr.:; agents, e’(cT i3 z{hes‘e parameters are random variables, the resulting problem is called

St Moty Programming.

; "'n__ﬂ}e: Ilterature dealmgwnhthestudy of such problems, amang
oks by Go oechca,Hansenand Ducksten (Ret. 1), Stancu-
. '. (Ref 2).;:afzc.l'Slowinsl'ci a.nd ;'I‘eght;m' (.I.{c.f. 3), and the articles by Teghem, Dufrane,
" Thavoye and Kunsch (Ref. 4), Stancu-Minasian and Tigan (Ref. 5), Stancu-Minasian (Ref, 6),
Urli and Nadeau (Ref. 7), and Ben Abdelaziz, Lang and Nadeau (Refs. 8 and 9).

The review of these works shows that the resolution of such problems always involves
transforming the problem into a deterministic one, which is called the equivalent deierministic
problem. This transformation is carried out by using some statistical characteristic of the
random variables mvolved in the problem (expected value, variance, etc.). In the literature this
has led to different definitions of the efficient solution concept for the same stochastic
multiobjective programming problem, so that different efficient sets are obtained for the same
stochastic problem. These sets, in principle, are non-comparable since they utilize different
characteristics of the initial problem. In this work we consider five such sets: expecied value,
minimum varianee, expected value mivinmm standard deviation, mimimum-risk efficiency, and
efficiency in probability and raise the following question: do these efficioncy dets Hﬁe s0me

relationship to each other? An initial answer is given in Caballero, Cerd.a';. Muﬁozand :Rey (Ref.

10), in which relations between two of the efficient sels were established. Specifically, it is
show that, given certain conditions, the minimum-risk efficient solution set and the efficiency in
probability set are reciprocal. This paper deals with the analysis of other relations between the

previously mentioned seis. On the one hand we rclate the concept of expected value-standard

deviation efficiency to that of expecied value efficiency and minimum standard deviation
efficiency, and on the other hand, relate the concept of efficiency in probability to the expected

value-standard deviation efficiency.

2. Efficient Solution Concepts for a Stochastic Multiobjective Programming Problem

Let us consider the stochastic multiobjective programming problem:

SMP) Mt (7 (6 (0,0, 5, (7))

where:

s x e R"is the vector of decision variables of the problem and T is a random vector
whose components are random continuous variables, defined on the set B c R*. Let us
assume that given the family F of events, that is, subsets of E, and the disiribution of

probability P defined on I, so that for any subset of E, 4 < E, 4 e F', the probability

of 4, P(4), is known. Also, we assume that the distribution of probability, P, is
independent of the decision variables x,.....%, .

»  the functions Z,(x,%),%,(x,T),..., Z,(x,€) are defined on R'x E,

»  the set of the problem opportunities, D < R, is non-empty, compact and convex.




Let 7,(x) denote the expected value of the k-th objective function and :dk (xy ifs standard
deviation, k € {1, 2, ..., q}. Let us assume that for every ¥ € {1, 2, ..., g} and for cveﬁr feasible

vector x of the (SMP) problem, the standard deviation, o, (x), is finite.

As previously pointed out, in the literature different concepts of efficient solution exist for
the (SMP) pfoblem. I this section we present some which share the commmon feature that the
efﬁcieﬁt solution concépt .is defined from a fhuitiobjectivc problem which is generated by
applying the same criterion to all the stochastic objectives separately.

Fhe first concept to look at is the expected value efficient solution. This concept is obtained
from the construction of a multichjective problem in which the objective functions vector is the
expected value of the vector of stochastic objectives of the initial problem.

Definition 2.1: Expecied value efficient solution. The point xeD is an expected value efficient

solution of the (SMP) problem if it is Pareto efficient to the following problem:

(E) Min {£,(x), 2,(2)...7, x)

Let €, be the set of expected value efficient solutions of the (SMP) problem.

The next concept considered is that of the minimum variance efficient solution. In this case,
the concept comes from obtaining the variance of each stochastic objective and outlining the
muttiobjective problem of minimizing such variances.

Definition 2.2. Minimum variance efficient solution. The point x & I} is a minimum
variance efficient solution for the Stochastic Multiohjective Programming (SMP) problem if it

is a Pareto efficient solution for the problem:

) Min (o7 (0,07 (), el (D)

Let E , bethe sct of efficient solutions of the problem (c7).

Next, we define the concept of expected value-standard deviation efficiency. In this case,
the coneept of efficiency arises from the construction of a problem with 2¢ objectives involving
the expected value and the standard deviation of each stochastic objective.

Definition 2.3. Expected value-standard deviation efficient solution or Eo efficient
solution

The point x D is an expected value-standard deviation efficient solution for the stochastic
mautiobjective programming problem if i i5 a Parcto efficient solution to the problem:

E Mo B, 7,0, 0@, 00, @)

Let E,, be the set of expected value-standard deviation efficient solutions of the (SMP)
problem.

Finalty, we give the concepts of efficiency for the criteria of maximum probability. As we
will see next, in order to define these two concepis, the minimum-risk criterion {concept of
minimum-risk efficiency) and the Kataoka criterion (efficiency in probability) are respectively
applied to each stochastic objective.

Definition 2.4, Minimum-risk efficient solution for levels u,,u,,.... %, (Stancu-Minasian and
Tigan (Ref. 5).

The point x €D is a minimum-risk vectorial sotution for levels w,,u,,...u_if it is a Pareto
efficient solution to the problem

(MR(u)) Max (P E) <8, ) PE, (D) <0, )

Let €, (u) be the set of efficient solutions for the problem (MR(n)).




Definition 2.5. Efficient solution with probabilities g . 8.. - ; 7 o B-efficient solution
Hg !

The point x €D is an efficient solution with probabilities 8,, g, B, if there exists ue RY
s By

such that (x*, u")' is a Pareto efficient solution to the problem

EEB) Min (0.2,

st PE( O <u2f,. k=12, ...g
xeD

E. {B) < R denotes the set of efficient solutions with probabilities 8,.4,,..., 4 for the
s iy

(SMP) problem.. o

It may be noted that these deﬁnitiuns of efficient solutions are obtained by applying the
same transformation criterion to each one of the stochastic objectives separately (expected
valug, mimmwm variance, etc.), and aflerwards building the resulting deterministic
muttiobjective problem. In this sense it is necessary to point out that:

*  The concepts of expected value, minimum variance, etc. weak and properly efficient
solution can be defined in a natural way.
The concepts of minimum-risk efficiency and p-efficiency require setling, a priori, a
vector of aspiration levels (w) or a probability vector (B). This implies that, in both
cases, the efficient set obtained depends on the predetermined vectors, in such a way
that, in general, different level and probability vectors give rise to different efficient
sets:

uzw = B () # Eqw) B#f = E B)=E. (B

= The concept of expected value-standard deviation efficient solution is no more than an

extension to multiobjective cases of the concept of the mean variance efficient solution

that Markowitz defines (Ref. 11) for the stochastic mono-objective pioblem of the
portfolio selection. Note that in the concept we have just defined, instead of using the
vatiance of each stochastic objective, we take the standard deviation. In this way we
have the two statistical moments corresponding to each stochastic objective in the same
measuring units. Since the square roct function is strietly increasing, the set of efficient
solutions does not vary in the problem if we substitute standard deviation for variance
(see White (Ref. 12)).

» The efficiency in probability criterion is & generalization of the ong presented by
Goicoechea, Hansen and Duckstein (Ref. 1) that defines the same concept taking the
same probability, 8, for all the stochastic objectives and with the probabilistic equality
constraints taking the form: P (x,T)< u,}= f,. This notion was introduced by
Stancu-Minasian (Ref. 6) considering Kataoka's problem in the case of multiple
criteria.

Starting from the given definitions, we can obiain different sets of efficient solutions for the
(SMP) problem. This fact can give nise {o some confusion. Although to begin with, one could
consider that the concepts previously defined are not connected, since they utilize different
statistical characteristics of the stochastic objectives, it will be shown that they are closely
related, We begin by studying the relationship between the expected vale-standard deviation

efficient solutions and the efficient solutions of probabilities 3,,..., 5, Next, we analyze the

enistence of relationships between minimum expected value efficient solutions, minimum
variance efficiency and the expected value-standard deviation efficient solutions, corresponding

to the problem of 2g objectives that includes both the expected value and the standard deviation




of the objectives. We will first present some results of efficient sets for deterministic
mujtichjective programming problems that will be used to establish the relations in stochastic
multiple objective problems.
3. Preliminary Results

We will now present some relations between efficient sets of several problems of
deterministic multiobjective programming, These results will later be used for the analysis of

concepts of efficient solutions for multiple objective stochastic problems.

Let f and g be vectorial functions defined on the same set H — R® f H c R">R9 and
g Ho R"5RY, and let @, ¥ be nonenall vectors with g real components, that is, o, v e R3,

a, ¥ # 0 and fet us consider the following multiobjective problems:

Min{/, 0. £, (30,7, 7,8, () @
Mgl 1,00) ®
Min (1,27 (x),....7,23(0) ©)

with y & RY, y# . Let &(f, yg), E(f) and E{yg’} be the sets of efficient points of problems (1),
(2) and (3), respectively. The following theorem relates these problems to each other. With
superseripts 4 and p we denote weak and proper efficiency, respectively.
Theorem 3.1. Let us assume that g(x) > 0 for every xeD, then :

(@} B(D ~ B(rg") < B, 1e)

(i) EO U ENE) = E*(Ere

(i) EY (hw EY e’y c E“ (f, ve).

Proof.

(i) Let x € E(f) » E(yg’). Let us show that x & B(f, vg) by reductio ad absurdum. We assurﬁc
that x € E(f, vg). Then, there exist 2 3* ¢ D, such that:
f®H < f(x) and 2, (x) <y, g.(x) foreveryke {12, ... q}
there being an s € {1.2. .., g} for which the inequality is strict:
F @ < f.x) or 78,65 <r.8,()
Thus x ¢ E(f), or x ¢ B(yed), due to y,g, (¥ <y, g, (x) implies y,gi(x*) <7,8/(x),
conirary to x € E(f) n Efyg’).
(i) Let xe E(f)y w2 E(yg). Let us see that xe E“{, yg) by reductio ad absurdum:
We assume that x ¢ EZ (f, yg). Then, there exist a vector, x* € D that weakly dominates x and
so verifies:
F < fix) and g, (3 <y,g,(x) forevery ke {12, ., ql,
thus, x ¢ E(f) and, due to y,g,(x*} <7,g,(x) implies y, 22(x*) < 7,87 (x), x & E(yg’), contraty
toxe E(Dw B{g).
(iii) Let x ¢ E7( v E‘(ye’). Letusseothat x & E“(f, yg), by reductio ad absurdum. We
assurne that x ¢ E¥ (£, vg). Then, there cxist a vector x* e D that weakly dominates x and,
therefore, verifies that:
Fu®) < f,(x) and 2, (%) <y,g,(x) forevery ke {12, ... q}

thus x & Ed(f) and, due to ?kgk(x*)<7kgk(x) implies ?’kgif(x*)<7kgk2(x)’ x¢ €7 (ng)’

contrary toxe  E? (DUEY (ye).




From (iii}, it is obvious that E“(D~E“(yg)<E“{f, vg) is also verified. Furthermore, as

E(f) c E4{N) and Efyg" < E¥(yg?), then, E(D) v E(yg®) = E7() wE*(yg), thus (ii) can be

deduced from (iii).
Let us again consider the functions fand g, Let the problem be:
Min (£, 1+ 2,8, (9).... £, (0) + a8, () @
Let E{at) and E?{a) denote the efficient solutions set and the propery efficient sef,

respectively, for problem (4), We will now present some relations between these sets and the

sets of efficient solutions and properly efficient sets for problem (1).
Theorem 3.2 Forevery a, y€ R with a,, 7, # 0and sgn (e, ) =sgn (y,), £=1,2, .., q,

the following relation holds

E (@) < E{f, yg).
Proof. Let x € E (). Let us assume that x ¢ E(f, yg). In this case there is a solution x* that

dominates x, that is:
SO fdx) and  pg (N <pg (0 forevery ke {1, 2, .., g}
and there exist at least one s € {1, 2, ..., g}, that is:
£60) < fox) or pg{x*) <y g, (x).
From this . point onwards, since  f,(x%}< f,(x), 7,0, (%< 7:2,(x)  and
st (e, ) = sgn (y, ), the following inequalities are verified:
JxM+az, NS B +ag %) foreveryke {1,2, ., q} [63)

S @ +ag,@Ms [ +ag(x) forevery ke {1,2, ..., g} (6)

From (5) and (6) we obtain:
[0 vog, ()= i +ag (x) forevery b e {12, . g}
In particular, for k= s
e if f(x¥) < f,(x)the following is verified:
Fx+ag (%) < f(x)+a,8. (%)
and, the following inequality is obtained from (5):
L) tag, () < f{x) +ag,(x)
s if y g (x¥) <y g.(x) the following is verified:
S e g %) < f () +a,g (0
and since £, (x*) < £.(x) we obtain:
£@ +eg, 0% < f (D +a,g, (x)
Therefore, for every k e {1, 2, ..., ¢} the following is verified:
[ %)+, g, (%) £ £ () + e, g, (%)
and thers is at least a subseripts € {1, 2, ..., g} for which the inequality is strict:
@) +ag, %) < f(x)+a.g,(x)
which implies that solution x* dominates solution x and, therefore, we reach a contradiction
with the hypothesis of x being the efficient solution to problem (4).
A natural question is whether Theorem 3.1 is true for the set of properly efficient solutions.
Next we prove that, given certain conditions, this relationship is preserved for properly

cfficient solutions. For this purpose we define problems Ppy (A, p) and Pu(w), obtained from

applying the weighting method to problems (1) and {4) respectively, as follows:




4
Pryg (b, 1) Mﬁg’ AM(x)+ Z:ukykgk {x3
x =

P“(m) B;an imk (fk (x)+ (2795 (X))
=]

We use the results available in the literature about the relationships between optimal solutions to
the weighting problem and the efficient solutions to the multiobjective problem, Some results
(see, for example, Chankong and Haimes (Ref. 13)) applied to problem (1) and its associated
weighted problem, Py, (A, p) are as follows:
v If f and (#:851-¥,8,) are convex functions, D is convex and x* is a properly
efficient solution for the multiobjective problem (1), there exist some weight vectors A,
p with stricily positive components such that x* is the optimal solution for the
weighted problem Py (A, ).
" The optimal solution fo the weighted problem Py, (A, ), for each vector of weights
with strictly positive components, is properly efficient for the multiobjective problem
(1),
Proposition 3.1. i fand (y,g,,....7,£,)" 2e convex functions, [} is a convex set and sgn (e, ) = sgn
(y,)forevery k e {1, 2,..., g}, then, E# (o) E*(f, y2).

Proof. Hfand (y,g,,..,»,8,) areconvex functions and D is a convex set then the set of properly

efficient solutions to problems (1) and (4) are obtained from the associated weighted problems for strictly
positive weight vectors. We will prove thal any solution lo the optimisation problem Po(o), with @ >0 is
the solution to problem Py q, (&, p) for some vector oL p 0.

Let x € E*{u). Then, given the established hypotheses, there exists a vector o > 0 for

which x is the solution for the problem Pa{e).

Let us assume that for every £ € {1, 2, .., ¢} a,,y, # 0. Then, by making Ay=w, and

Hme=w0, fy, , A, p, >0, since 0> 0, we obtain that x is the optimal solution to Pey, (A, ).

[fforsomeie {12, .. g} &, =y, =0, then, the proof would be the same, since in problem (1)
function g is not involved and in problem (4) the isth objective would be F,

The inverse inclusion does not hold, as it is shown by the following.

Example 3.1 )
Let us consider the following problem:

Max (x,y)
=)

stx?+y’ <)
xyz0

with fx, ¥) = x, glx, ) =y and y= 1.
The set of efficient points for this problem is:
l{(x,y)l clbzyx2eyr=y x,y>0}

represented in the following figure:

Figure 1

If we outline the resolution of the problem:

Maxx+ay
(=)

st x? 4+ <1

x,yz0




with ¢ > 0, for each a > 0 we fix, the optimal solution of the resulting problem is one of the
properfy efficient solutions to the original bi-criteria problem.

FProposttion 3.2,
¥ f and (r,g,,..7,8,) arc convex functions, then Er(f,yg)c YE* (o), with

e}
a={aell 1 /spa,)=seniy, ). k=12,...q}

Praof, As in the previous case, the proof of the proposition is caried oul by demonstrating that any
solution to the problem P ,,(A, 1) is a solution to the problem Po(@) for some vector ae R, with
sga (o, ) = sgi(y,), k € {1, 2, ..., ¢}, and for some @ > 0.

Let x & E*(f, yg). Then, as fand (y,g,....7,g,) are convex functions, there exist the
vectors A, jt > 0 for which x is the solution fo the problem Py (&, p). By making @, =1, and
@, = .7, ]@, ,since o, u >0, we obtain that x is also the solution to the problem Py(a).

Note that from propositions 3.1 and 3.2, if f and (}’Jg,,...,}'ng)‘ are cotvex functions

and sgn (a, ) =sgn(y, ) for every k € {1, 2, .., g}, the sets of properly efficient solutions to
probiers {1) and (4) verify the following:
= FEvery properly efficient soltion to problem (4) is properly efficient for problem (1),

= Setting a yeR® with non-null components, the set of properly efficient solutions to

problem (1) is a subset of the union in a of the sets of properly efficient solutions for
problem (4}.
By combining both results the following corollary can be stated:

Corollary 31, Hfand (y,g,,..,7,8,) are convex functions, then for every y € R:
Erif.ye)= YE (o).

aefl

with = foe 1l @ fsgnta,) =sgnlr,), k=12,...4} .

4. Relations between Expected Value Efficient Solutions, Minimum Variance Efficient
Solutions and Expected Value-Standard Deviation Efficient Solutions

Let us consider again the (SMP) problem and the sets of efficient solutions for expected
value (£, ), minimum variance (E ﬂ,) and expected value-standard deviation (E,,) associated
with the problem. Let EZ, B¢, and Ej, be the set of weakly efficient solutions associated with
problems (E), {o”) and (Eo), respectively.

If we consider f,(x)=Z,(x) , g,(x)=0,(x) and y, =1 are taken, given that for every k €

{1, 2, .., g} it is verified that o, R R’, then the relations between these efficient sets are

directly deduced from Theorem 3.1 in Sect. 3 as follows:

D E; nE_, < Eg,: Every solution which is both expected value cifictent and minimum

variance efficient is also an expected value-standard deviation efficient solution,

(i) E;w B ,C £2 : Bvery expected value solution or minimum variance efficient solution is

an expected value-standard deviation weakly efficient solution.
@iy E2UE?, < EZ,: The set of expected value-standard deviation weakly efficient solutions

includes the union of the set of expected valne weakly efficient solutions and the set of
minimmum variance weakly efficient solutions.

In Sect, 6 we present an example which illustrates these results. We now move onto stady
the relations between expected value-standard deviation efficient solutions and the efficient

solutions with probabilities 8,, #,,.... B

5, Relations between Expected Value-Standard Deviation Efficient Solutions and Efficient Sohitions
with Probabiliies 4, 7,,.... 8,




Next, we analysc the existing relationships between expecied value-standard deviation

efficient solutions and efficient solutions with probabilities 7,, #,,..., # . Given the stochastic

muktiobjective programming problem (SMP), we consider its associated problems (Eo) and

(K(p))-

In order to determine the set of efficient solutions Eo of the (SMP) problem we only need
to know the expected valued and the standard deviation of each objective function of the
stochastic problem. However, obtaining the P-efficient solution set for the (SMP) is more
complex because the distribution functions of the stochastic objectives are involved in this
definition of efficient solution, and so it is necessary to specify additional hypotheses about the
stochastic objective functions and the probability distibutions of the random parameters
involved.

The studies carried out up to now have mainiy focussed on lincar objective finctions (see,
for example, Ref. 14) and linear fractional objective functions (see Ref. 6), As for the type of
probability distribution normally used for the stochastic vectors, multivariate normal
distribution is generally considered, or it is assumed that the vector of random parameters
depends linearly on a single random variable (hypothesis of simple randomness). In these cases,
and others, it is possible tQ obtain the distribution function of the stochastic objective, although
in general this is a complex task.

We will now analyse the existing relationship between the set of expected value-standard
deviation properly efficient solutions and the set of properly efficient solutions with

probabilities g, 4, ...., B, when the objective functions are lingar and the random parameter

veetor follows a normal distribution or it verifies the hypothesis of simple randomness. Before
going any further, we outline the two cases we are going fo analyse.

a) Normal linear case . o .
Let us assume that the k-th objective finction takes the form Z, (x,€) =¢,x. where, is a

random vector multinormal with expected value €, and with positive definite variance and

covariance matrix, Vi. Let us also assume that 0 ¢ D.

Under such hypotheses the expected value of the random variable Z, (x,T)=C¢x is
z,(x)=Tlx, its standard deviation is c,‘(x):m and the distribution function of the
random variable calculated in u, is P(’é’,:xsuk): (D({uk —E;x)/ m), where @ is the
standardised normal distribution function.

From now on, the probabilistic constraint P(E,:xsuk )z B, is equivalent to
(%1 +0(B, )Jx—'VTx <u,, an inequality that can be expressed as Z, (x) +a, 0, (x) L, with

a, =07(F,). Since the expected value is linear and the function\[x'v—kx is convex {see

Stancu-Minasian (Ref. 2)), this inequality defines a convex set if B, 2 0.5 since, in this case,

&, =07(4,) 20.

b} Simple linear randemization case. e .
Let us assume that the k-4h objective function takes the form Z, (x,€)="¢x, where €, isa

random vector, which linearly depends on the random variable 7,, in such a way that
%, =cl +7%c2. Let £, be the expected value of %, v, its standard deviation, v, < coand F, ifs

€, =€

distribution function, which we assume is strictly increasing. We also assume that for every x €

D it is verified that ci'x > 0.




If these hypotheses are verified we obtain that:

" the cxpected value of T'x is Z(x)=cix-+7c;'x and its standard deviation is
o, (X}=vcpx

» the distribution function of the random varable Elx valued m u, is
PlE!x Su,,): F ~cix)felx), and therefore, P(Elx<u,)> g, is equivalent to
e+ F(A)eMx <, , an inequality that defines a convex set for every f,, and which
we can also express as F, (x) +a, 0, (X} <u,, with @, = (F'(8,)-)/v, .

Having analysed these two cases, we see that the probabilistic constraint

P(Z,(x,%) <u, )2 g, is equivalent to z, (x)+ o5, (x) <u,, and therefore, the set of B-efficient

solutions for the problem (SMP) coincides in both cases with that of the following

multichjective problem;

Ke Min @ +a,0,00...5, () ta,0,(x)

that is, the P-efficient set is obtained via a problem of ¢ objective functions in which each
objective function takes the sxpected value of the stochastic problem plus its standard deviation
weighted by a coefficient that depends on the pre-determined or fixed probability.

Naturally emerging from this idea is the comparison between the set of efficient solution of
the problem K,, and the set of expected value-standard deviation efficient solutions of the

original stochastic multichjective problem. H we make f,(x)=z,.(z), g,(x)=0¢,(x) and
¥, =1, fiom the results obtaired in Sect. 3, we can relate the efficient solutions sets of both

problems. Since y, is the parameter that weights the standard deviation of the stochastic

cbjective, and in Sect. 3 the hypothesis of sgn( y, ) = sgn{ey,) holds, then if we restrict to
7, =1, inorderto mainiain the relations obtained in previous resalts, it will be necessary that
@, > 0. Let us see what this involves in each case:
a) Normal linear case: o, =®7'(f,), and s0 &, =€) 0,if A, =) 0.5
b) Linear simple randomness ease: e, =(F,"(f,) -1, Yo, . and so a, () Vif g, >(5)
FAGY
Therefore, in both cases the fact that paramcter o, takes a strictly positive value implies

that the fixed probability must be “high™.
“Therefore, from Theorem 3.2, Propositions 3.1 and 3.2, and the Corollary 3.1 in Sect. 3, we

can assert that if the stochastic objectives of the (SMP) problem fulfil the hypotheses in (a) or
(b), then it is verified that:
1. Given a fixed vector of probabilities ..., #, . such that the associated o, , k=1,2, ..,
g, are strictly positive, the set of efficient solutions with probabilities £,..., 5, is a
subset of the set of expected valne-standard deviation efficient solutions: E, cEg, .,
where E,, will denotc the set of efficient solutions for problem K.

2. Regarding propecly efficient solutions, we have to point out that, given that the
fimctions Z,(x) and o (x) are convex. in both cases, the results from Propositions 3.1
and 3.2 and the Corollary 3.1 are verified, with which, for cach vector of probabilities

B,sn 8, such that the associated @, are strictly positive, it is verified that:
2oy Py




*  the set of properly efficient solutions with probabilities f,,..., 8_ is a subset of the
set of expected value-standard deviation efficient solutions: Ef, — EZ_.

" The union of sets properly B-efficient corresponding to probabilities such that the

associated ¢, are strctly positive, gives a set that coincides with the set of

expected value-standard deviation properly cfficient solutions: YE£ =Ef .

asy

Therefore, the criteria of expected value-standard deviation efficiency and efficiency in
probability are closely related, at Jeast in the cases analysed. Now we analyse the results for the
cases studied.

In both instances, our study enables us to see how the application of the efficiency in
probability criteria gives an entire range of solutions, as a finction of the fixed probabilities that
include some of the expected value-standard deviation efficiencies and more, all those
corresponding to “low” probabilities, efficient solutions that, in general, are impossible to obtain
by means of the expected valve-standard deviation efficiency criteria. This fact corroborates the
idea that the expected value-standard deviation efficiency is appropriate when the decision
maker is risk averse (the hypothesis which is held, among others, in the models of portfolio
sefection in order fo consider this criterion of efficiency as an appropriate one,

AH this leads to the following question: would it be possible to obtain f—cfficient solutions
via some other criteria? When we fix a "low" probability for some stochastic objective in cases
{(a) and (b), its standard deviation is woighted negatively; and furthermore, the lower the

probability, the smailer it is. If in such cases we consider the following problem:

Min (7,00, .. 5,0, 7,0, (0, o7,0,(5) )

e

T

where y, =1 if the fixed probability is “high” and y, = —1 if the fixed probability is “low™,

from Theorem 3.2 we can assert that the set of B-efficient solutions is a subset of the set of
efficient solutions for problem (7). Regarding the relations for the properlty efficient sets shown
in Proposition 3.1 and the Corollary 3.1, these only hold if low probabilities correspond to
stochastic objectives that verify the hypothesis in case (b), simple randomness, since in this case

the function — o, (x} is linear and thus convex.

Finally, following the paper of Caballero, Cerdd, Mufloz and Rey (Ref 10} - which
analyses the conditions under which the analysis of efficiency with probabilitics 2,,4,,..., 8,
and minimum-risk efficiency with aspiration levels of u,,u,,...,u, of the (SMP) problem are

equivalent- it can be asserted that given that the necessary conditions for reciprocity between

efficient solutions with probabilities £, ;... £, and efficiency of minimum-risk with
aspiration levels u,,u,,...u, of the {SMP) problem are verified, the relationship established
between the set of efficient solutions with probabilities 8, 5,,..., 8, and the set of expected

value-standard deviation properly efficient solutions is also verified between the latterand the
minimum-risk efficient solutions with aspiration levels u,,u,,...,u,.

In order to illustrate these results we present an example.

6. Example
Let us consider the following stochastic bi-objective problem:

"Min" (§x,&x)
st x4, 21
x+3x, <10
—28-n+x,52
X,% 20




where § =cl +7el, i = 1, 2, with o = (=712, ¢f =(6,9)" 6 = (3,-5), =(4,8)", 1,
follows a normal distribution of expected value ! and variance 4, ¥ ~N(1,4), and 7, follows an

exponential distribution of the parameter .= 2.
From this data, the expected valug-standard deviation efficiency problem of the above
mentioned stochastic problem is:

Min (—x, —7%,,12x, 4 10x;, 5%, - x,,2%, +4x,}

s.t. x+x 2l
x, +3x, <10
—2Z—x, +x, <2
x,%, 20
The following figure (Figure 2} shows the set of expected value-standard deviation efficient
solutions for the probiem. Points E1 = (1,3),B2=(0,2),81=(0, 1} and 2 = (1, 0) are optimal
solutions for the expected value problem of the first and second objective functions, and for the
problem of minimum variance of stochastic objectives 1 and 2, respectively. This implies that

the segment joining E1 and E2, E1E2, is the set of expected value efficient points, E, =E1H2,
and segment S182 is the minimum variance efficient set, E . =5152. The expected
value-standard deviation efficient solutions are the points of the segments S152, SiE2 and
E2EL. Note that E; =Ef, €, =EZ, and E, =E,.

As it can be observed, the expected value-standard deviation efficient set includes the

expected value and minirmum variance efficient sets, which is shown in the results obtained in

Sect. 4.

Figure 2

On the other hand, the problem of the sfficiency with probabilities g, 4, is:

Min (=% =7x, + @7 (B)(2x, +10x,),3x - 5x, + F(f,)4x, +8x,))
s.t. X +x, 2l
x +3x, <10
2<—x +x,<2
x,x, 20

The sets of efficient solutions to this problem for different probability vectors is shown in

the Table 1, where column efficient set contains the efficient set that is obtain for the probability

vector given in the second column:

Prohability Vecter Efficient Set
1. (8,=09, 8, =099 Minimum variance efficient set
2. (B, =075 B, =099 Minimwm variance efficient set aud segment S1E2
3. (B, =06, g, =0.99) Es efficient set
4. (p, =03, 8, =099 Eo efficient set and segment E1P
5, (8, =09, g, =03) Solution (x, = 0,x, =1)
6. (5, =075, g, =0.8) Segment S1E2




7 (g, =06, g, =038 Expected value efficient set and segment S1E2

8. (g8, =03, g, =08) Expected value efficient set and segments S1E2 and E1P

9. (#,=09 p,=04) Segment S1E2

10. (8, =075, 8, =04 Solution {(x, =0,x, =2)

11, (g, =06, 5,=04) Expected value efficient set

12. (fp, =03, g, =04) Expected value efficient set and segment E1P

13. (#,=09, 4=00 Expected value efficient sef and segment S1E2

14. (p,=015, 5, =01} Expected value efficient set

15. (p,=06, 4,=01} Solation {x, =1,x, =3)

16. (B,=03, 5,=01) Expected value efficient set and segment E1P
Table 1

The results in the table show that the set of efficient solutions with probabilities 5,8, g0

on changing according to the fixed probabilities and help to illusirate the theoretical results

obtained in Sect. 5. The probability vectors for which the standard deviation has an associate

positive weightare such that §,> 0.5 and g, > 0.6321205. From this the following can be

outlined:

» In peneral terms, i is necessary o point out that the “dimension”™ of the efficiency in

probability set camies on varying according to the “disparity” existing between the

fixed probabilitics, as is shown in lines 4, 8 or 13 in the table.

» For probability vectors such that g, > 0.5 and g, > 0.6321205 {which in problem Ka

implies that o> @) the solutions obtained are subsets of the expected value-standard
deviation efficient set, For example, for the probability vector (8, =0.75,5, =0.8) the

efficient set obtained is S1E2, but if probability #, is lowered to 0.6, keeping the

second value the same, the new set includes the previous one and alt the expected value
efficient solutions. Furthermore, in some cases, for example for vector (4, =06, g, =

0.99), the efficient set that give us the efficiency in probability criterion coincides with

the efficient set Eo.
* When the fixed or predetermined probabilities are such that 8, < 05 or g, <
0.6321205 (the case in row 4 and from the scventh row onwards of the table), the

resulting efficient set can include points which are not part of the efficient set Eo. In all

instances, these points are those of segment E1P.

7, Conclusions
From the results obiained, we can assert that the concepts of efficient solution considered in

this work for a single problem of stochastic multiobjective programming are closely related,
under cerfain conditions, We consider that the relations established can help to obtain efficient
solutions to a problem with the characteristics described here, since these concepts inchude
different statistical characteristics of the stochastic objectives and, apparently, do not have to
have any relationship to sach other.

Based on our resulis, it is possible to deal with attaining efficient sclutions from a different
perspective since, given a particular problem, we will be able to sse from the established

relationships what concept of efficiency is the most appropriate or the one that best fits the

preferences of the decision maker.




Therefore, this study helps to choose between different efficiency criteria for solving
stochastic multiple object problems. In this sense, the “richness™ of the efficiency in probability
criterion may be highlighted, since by varying the fixed probability for gach stochastic
objective, different efficient sets are obtained. Also, the fact that the decision-maker has to fixa
probability for each stochastic objective is more of an advartage than a hindrance, since, in a
certain way, it determines the risk he of she is willing to take in each of the stochastic
objectives.

Finally, it should also be noted that the preliminary results obtained in Sect. 3 are
applicable to any deterministic multiobjective problem.
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