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TECHNICAL PAPER
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Abstract An efficient finite element scheme for solving the

non-linear Reynolds equation for compressible fluid coupled

to compliant structures is presented. The method is general

and fast and can be used in the analysis of airfoil bearings with

simplified or complex foil structure models. To illustrate the

computational performance, it is applied to the analysis of a

compliant foil bearing modelled using the simple elastic

foundation model. The model is derived and perturbed using

complex notation. Top foil sagging effect is added to the

bump foil compliance in terms of a close-form periodic

function. For a foil bearing utilized in an industrial turbo

compressor, the influence of boundary conditions and sag-

ging on the pressure profile, shaft equilibrium position and

dynamic coefficients is numerically simulated. The proposed

scheme is faster, leading to the conclusion that it is suitable,

not only for steady-state analysis, but also for non-linear time

domain analysis of rotors supported by airfoil bearings.

Keywords Reynolds equation � Compressible fluid �
Finite element method

List of Symbols

Bab Damping coefficients, ab ¼ x; y

C Radial clearance

D Bearing diameter

D Diffusion

E Modulus of elasticity of foil

K Foil flexibility

Kc Foil mobility

Kab Stiffness coefficients, ab ¼ x; y

L Bearing length

N Shape function

Np Number of pads

R Journal radius

S Bump foil pitch

S Surface

V Volume

Wx;y Static load components

fc Trigonometric functions

~p0 Approximating pressure

bfoil Equivalent viscous damping of foil

ex;y Journal eccentricity components

ex0;y0
Journal equilibrium position

h Film height

h0 Steady-state film height

hc Film height correction

hr Film height (rigid)

l0 Bump half length

p Pressure

p0 Static pressure

pa Ambient pressure

px; py Perturbed pressures

pc Dynamic pressure

t Time

tb Thickness of bump foil

tt Thickness of top foil

x; y; z Cartesian coordinates
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Dex;y Perturbation of journal equilibrium position

a Convergence rate

b Relaxation factor for SUR

� Error

g Structural loss factor of foils

k Convergence factor

l Dynamic viscosity

r� Divergence

r Gradient, r ¼ o

o~h
; o

oz

n o

m Poisson’s ratio of foil

x Angular speed of journal

xs Excitation frequency of journal

/ Attitude angle

q Density

h Circumferential angle

hl First pad leading edge angle

ht First pad trailing edge angle
~h Circumferential coordinate, ~h ¼ hR

e Eccentricity ratio, e ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
e2

x þ e2
y

q
=C

ex; ey Eccentricity ratio

n; g Gauss points

B½ � Shape function derivatives matrix

Kt½ � Tangential matrix

K½ � Stiffness matrix

N½ � Shape function matrix

fP0g Static nodal pressure

fPcg Dynamic nodal pressure

fRg Residual vector

fUg Speed, fUg ¼ fxR=2; 0gT

fng Unit normal vector

fqg Right-hand side vector

1 Introduction

Gas bearings have been the subject for research within

mechanical engineering for five decades [23]. Through the

past three decades, compliant foil bearings (CFB) have

found way into an increasing number of industrial appli-

cations within high-speed rotating machinery. The current

tendency is, that the technology is progressing from small,

high-speed rotating machinery, like dental drills and mi-

croturbines and specialized equipment related to the aero-

nautical industries, toward larger, mass-produced industrial

compressors and turbines [8, 32]. In today’s industrial

compressors supported by CFB’s, the assembled rotor

weight is often above 50 kg and the rated power over

200 kW. The advantages of these compressors compared to

conventional oil-lubricated compressors are many, for

instance low mechanical power loss, clean non-contami-

nating operation and the fundamental simplicity of the

mechanical design. The main disadvantage of CFB’s is

related to their limited mechanical damping. Consequently,

rotordynamic stability of CFB-supported compressors

becomes a fundamental design issue. Though CFB’s gen-

erally offer significantly better stability characteristics

compared to rigid gas bearings, the stability of the rotor

bearing system is still a major concern seen from an

engineering perspective. As a result, much experimental

and theoretical work has been conducted to achieve accu-

rate mathematical models of the CFB dynamics.

Heshmat [9, 10] originally included the flexibility of the

compliant foil implicitly in the Reynolds equation by

introducing a linear elastic displacement as function of the

fluid film pressure, hc ¼ Kðp� paÞ. This simple elastic

foundation model (SEFM) was extended by several authors

[12, 15, 24, 25] to include a structural loss factor for the

compliant foil and a perturbation method to obtain equa-

tions for the linearised stiffness and damping coefficients,

which were solved by a finite difference scheme. San

Andrés and Kim [30] later extended the model to include

thermohydrodynamic effects (THD). Besides the theoreti-

cal work related to the SEFM, there has been many other

significant contributions dealing with the complex behav-

iour of the compliant bump foil structures interacting with

the housing surface [19, 20]. Highly worth mentioning is

the work of Peng and Carpino [4], in which, detailed FE

models of the compliant foil structure including equivalent

frictional damping are coupled to the FE model of the

lubrication film. In the attempt to couple complex struc-

tural FE models directly to the fluid film FE model, it is the

authors’ experience that there is a need for a fast con-

verging and robust solution scheme.

In this paper, an efficient FE solution scheme based on the

Newton-like (Nl) method [5] is introduced. Newton-like in

the sense that it does not implement the true Jacobian. The

solution scheme is applied to the SEFM but it is not limited to

this model alone. It is suited for models including more

detailed foil structure formulations as well. The method is

compared to a standard iterative procedure, based on suc-

cessive under relaxation (SUR). In this comparison, the

SEFM is extended to include the effect of top foil sagging.

Sagging occurs when the hydrodynamic film pressure causes

a top foil deflection between bumps. The phenomenon was

thoroughly investigated using both beam theory consider-

ations [14] as well as analytical 2D plate theory [3, 21] and

FE-based models [22, 28, 29, 34, 36]. Here, a periodic

expression, based on simple beam theory, approximates the

sagging effect analytically and is added to the foil flexibility

originally given by Wallowit and Anno [31]. It is a close-

form expression and allows for an arbitrary nodal discreti-

zation and makes numerical implementation straightforward

compared to [14]. However, this expression is only valid for

periodic bump foil distributions.
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The SEFM is perturbed using complex mathematical

notation, enabling the introduction of a complex frequency-

dependant flexibility for the compliant foil structure, and

FE formulations for the perturbed equations are derived.

The zeroth-order FE equation is non-linear, and is solved

using both SUR and the proposed Nl-based schemes. The

two solution schemes are compared and the Nl-based

scheme is found faster. The effective FE solution scheme

constitutes the main original contribution of this work.

A Siemens foil bearing from an industrial compressor is

analysed theoretically and the effect of the top foil sagging

is investigated. Static and dynamic results from the analysis

are presented for different sets of boundary conditions.

While the actual time savings for the analysis presented are

limited, the fast solution is still important in the case of a

non-linear rotor simulation in time, where bearing forces

need to be calculated between each time step. The method

described in this paper was derived to be used for non-

linear analysis as well as to be extended by incorporating

more complex foil structure models based on FEM [18].

Non-linear dynamic simulation tools applied to complex

industrial rotors supported by CFB is still demanding faster

numerical methods [2, 7, 13, 33, 35].

2 Theoretical model

For a journal bearing with the nomenclature as given in

Fig. 1a, the compressible Reynolds equation can be written

in vector form [6] as

r � ph3

12l
rp

� �
¼ r � ðphÞfUg þ o

ot
ðphÞ ð1Þ

where the film height hðh; z; pÞ is defined as the film height

of a rigid journal bearing hrðhÞ, with the addition of a

compliance, or deflection term hcðpÞ ¼ Kðp� paÞ, which is

dependant on the hydrodynamic pressure field and was first

suggested by Heshmat [9]. The film height becomes

h ¼ hr þ hc ¼ C þ ex cosðhÞ þ ey sinðhÞ þ Kðp� paÞ
ð2Þ

where K is the structural flexibility related to the area of the

compliant foil layers. With the notation defined in Fig. 1b,

K can be approximated as

Kð~hÞ � S4ð1� m2Þ
Et3

t

1

60
� 3

2p4
cos

2p~h
S

 ! !
þ 2S

E

l0

tb

� �3

ð1� m2Þ

ð3Þ

which is a superposition of the bump foil deflection given

by Heshmat [9] and the top foil deflection given in

Appendix 1. Expanding Reynolds Eq. (1) by inserting the

film height (2) leads to a modified Reynolds equation with

the structural foil flexibility included implicitly

r� ph3
r

12l
rp

� �
þr � pðp� paÞ3K3

12l
rp

 !

þr � phrðp� paÞ2K2

4l
rp

 !

þr � ph2
r ðp� paÞK

4l
rp

� �
¼ r � ðphrÞfUg

þ r � ðpðp� paÞKÞfUg

þ o

ot
ðphrÞ þ

o

ot
pðp� paÞKð Þ:

ð4Þ

ex
ey

x

y

h

θ

ω

Wx

Wy

θl

θt

(a) Shaft and bearing.

p

tb
l0

S

tt

Top foil

Bump foil

hc

Shaft

Deflected foil

hr

(b) Detailed view of bump and top foil.

Fig. 1 Schematics and nomenclature of a foil journal bearing with

compliant outer surface
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2.1 Assumptions and limitations

Solving this equation, for a given set of eccentricities (ex,

ey) and speed fUg, yields the hydrodynamic pressure p, in

the fluid film, by implicitly taking into account the defor-

mations in the compliant foil layers. In addition to the

assumptions of laminar, Newtonian, thin-film flows, which

together with the Navier–Stokes and the continuity equa-

tion leads to the Reynolds equation, the viscosity is

assumed constant, i.e. isothermal condition. Furthermore,

by including the foil flexibility in the radial direction as in

(4), it is assumed that the foil radial stiffness is linear and

that the radial deformation in any foil position ðh; zÞ is

completely independent of the radial deformation in any

neighbouring positions. Dependent on the particular foil

configuration, bump geometry and top foil thickness, this

may limit the validity of (4) and is discussed further in

Sect. 3.3.

2.2 Perturbed equations

To investigate the dynamic performance of the bearing, a

harmonic perturbation method is employed. The method,

which was first introduced by Lund [23], is a commonly

used and widely accepted method. Assuming that the shaft

exhibits small harmonic oscillations around its equilibrium

position in the bearing ðex0
; ey0
Þ, the shaft motion is given

by

ex ¼ ex0
þ Dexeixst and ey ¼ ey0

þ Deyeixst: ð5Þ

Assuming the amplitudes to be small Dex � C and

Dey � C, a first-order Taylor expansion of the pressure can

be written as

p ¼ p0 þ ðDexpx þ DeypyÞeixst: ð6Þ

According to (6), the pressure p is a harmonic oscillating

field. This enables the introduction of a frequency-depen-

dant mobility, in the film height function, rather than a

static flexibility K. The mobility can be written as

Kc ¼ K
1� ig
1þ g2

ð7Þ

where g ¼ xsbfoilK is the mechanical energy loss factor

related to the foils [11]. Implementing the mobility Kc, the

film height becomes

h ¼ hr þ hc ¼ C þ ex cosðhÞ þ ey sinðhÞ þ Kcðp� paÞ:
ð8Þ

Substituting (5), (6), (7) into (4) and (8), discarding second-

and higher-order terms yields, upon separation of variables,

the zeroth- and first-order equations:

Zeroth order

r � p0h3
0

12l
rp0

� �
�r � ðp0h0ÞfUg ¼ f0g ð9Þ

First order

r � p0h3
0

12l
rpc

� �
þr � h3

0 þ 3h2
0p0Kc

12l
rp0pc

� �

�r � ðh0 þ p0KcÞpc
� �

fUg

� ixsðh0 þ p0KcÞpc ¼ �r �
p0h2

0fc

4l
rp0

� �

þr � ðp0fcÞfUg þ ixsðp0fcÞ

ð10Þ

where

h0 ¼ hr0
þ hc0

¼ C þ ex0
cosðhÞ þ ey0

sinðhÞ þ Kcðp0 � paÞ
ð11Þ

and c ¼ x; y and fx ¼ cosðhÞ and fy ¼ sinðhÞ. Solving the

zeroth-order Eq. (9) for an eccentricity (ex0
, ey0

) and g ¼ 0

yields the static film pressure p0. This pressure is then used

when solving the first-order Eq. (10) to obtain the dynamic

pressures px and py. The bearing reaction forces are found by

integration of the static pressure p0 over the bearing surface

Wx

Wy

� �
¼ �

Z L

0

Z 2p

0

ðp0 � paÞ
cosðhÞ
sinðhÞ

� �
Rdhdz ð12Þ

and a similar integration of the dynamic pressures (px; py)

determines the dynamic stiffness and damping coefficients

as

Kxx Kxy

Kyx Kyy

	 

þ ixs

Bxx Bxy

Byx Byy

	 


¼
Z L

0

Z 2p

0

px cosðhÞ py cosðhÞ
px sinðhÞ py sinðhÞ

	 

Rdhdz: ð13Þ

3 Finite element formulation and solution

The FE formulation is divided into two parts. The first part

is dealing with the zeroth-order non-linear parabolic partial

differential Eq. (9), for the static pressure p0, which needs

to be solved iteratively. The second part deals with the

first-order linear complex differential Eq. (10), for the

dynamic pressures pc, which can be solved directly.

While the first-order equation is easily solved, the solution

of the zeroth-order equation is more complicated. Standard

FE methods, like, e.g. the Bubnov–Galerkin method [5]

could be employed to derive a system of equations of the

form Kðp0Þ½ �fp0g ¼ fqðp0Þg. The challenge in solving such

a system for the pressure fp0g lies in the pressure depen-

dency of the coefficient matrix Kðp0Þ½ � and the right-hand

side fqðp0Þg. A straightforward method of overcoming this

is to rewrite the system to an iterative form:
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Kðp0i
Þ½ �fp0iþ1

g ¼ fqðp0i
Þg for i ¼ 1; 2; . . . ð14Þ

which can be solved by consecutive updates of the pressure

fp0i
g ¼ fp0iþ1

g after each solution iteration i. However,

this method will only converge for an extremely good

starting guess of the initial pressure fp01
g. To improve the

convergence, an SUR method of the form p0iþ1
¼ bp0i

þ
ð1� bÞp0i�1

where b 2 ½0; 1� can be applied. However, the

relaxation factor b needs to be very small to achieve con-

vergence, meaning that the solution becomes slow, and

often convergence is hardly achieved. To overcome this

problem, an FE formulation which can be combined with

the iterative Newton–Raphson solution scheme, as outlined

in Appendix 2, is sought. The solution derived here, can be

seen as the equivalent to solving structural problems

including material non-linearities [5, 16]. The procedure

can be used on not only the SEFM, but also in combination

with more complex mathematical models including

detailed foil structure formulations.

3.1 Zeroth-order equation

A Bubnov–Galerkin FE procedure with implementation of

an isoparametric element formulation is followed [5]. First

(9) is rewritten into the compact form as

r � Drp0ð Þ ¼ r � ðp0hÞfUg ð15Þ

where the diffusion coefficient Dðp0Þ ¼ p0h3

12l is a scalar and

real field (only the real part of the foil mobility is used in

the zeroth-order equation). Second, an approximating

pressure field ~p0 ¼ N½ �fpe
0g over an element is introduced,

where fpe
0g is the nodal pressure and N½ � is the shape

function matrix. Thus the Galerkin residual equation for

(15), on the element level, is
Z

Ve

N½ �Tr � Dr~p0ð Þ dV �
Z

Ve

N½ �Tr � ð~p0hÞfUg dV ¼ f0g

ð16Þ

where Ve is the element volume. Applying Green’s theo-

rem on (16) yields

�
Z

Ve

B½ �T Dr~p0ð Þ dV þ
Z

Se

N½ �T Dr~p0ð Þfng dS

þ
Z

Ve

B½ �Tð~p0hÞfUg dV �
Z

Se

N½ �Tð~p0hÞfUgfng dS ¼ f0g

ð17Þ

where matrix B½ �T¼ N;~h
� �T

N;z½ �T
h i

contains the spatial

derivatives of the shape functions and fng is the outward

pointing unit normal vector of surface element dS. Due to

continuity conditions, the boundary integrals vanishes and

(17) reduces to

Z

Ve

B½ �T Dr~p0 dV �
Z

Ve

B½ �T ~p0hfUg dV ¼ f0g: ð18Þ

The spatial derivatives of the approximating pressure field

are ~p0;i¼ N;i½ �fpe
0g with i ¼ ~h; z or in vector form,

r~p0 ¼ B½ �fpe
0g. Inserting this into (18) gives

fReg ¼ fRe
extg � fRe

intg ¼ f0g �
Z

Ve

B½ �T D B½ �fpe
0g dV

þ
Z

Ve

B½ �TfUgh N½ �fpe
0g dV

ð19Þ

where fRe
intg and fRe

extg are the internal and external

residuals. The tangent matrix on element level [16] is then:

Ke
t

� �
¼ ofRe

intg
ofpe

0g
¼
Z

Ve

B½ �T D B½ � dV �
Z

Ve

N½ �TfUgT
h B½ � dV :

ð20Þ

It is important to highlight that Newton’s method, or the

frequently called Newton–Raphson method in the engi-

neering is second-order accurate when: (a) the true Jaco-

bian is used, for example, obtained explicitly from the set

of non-linear equations and (b) the solution of the linear-

ised systems of equations is obtained to machine precision.

In this framework, the procedure presented here only sat-

isfies (b) since D was kept constant when taking the

derivative ofRe
intg=ofpe

0g. Being strictly rigorous, hereby

(15) is solved using a ’Newton-like’ procedure, since the

true Jacobian is not used.

The element vectors and matrices are expanded to

structure size by the usual element summation:

Kt½ � ¼
X

e

Ke
t

� �
; fRg ¼

X
e

fReg; fpg ¼
X

e

fpeg

ð21Þ

where the volume integrals are numerically integrated

using a quadrature rule [5]. The scalar field quantities p0, h,

Kc in D are calculated in the respective Gauss points ðni; gjÞ
using the interpolation functions as:

qðni; gjÞ ¼ Nðni; gjÞ
� �

fqeg ð22Þ

where q and fqeg are the scalar field quantities and nodal

vectors, respectively. Full integration must be employed,

which in case of linear four-node quadrilateral elements (Q4)

means that 2 by 2 Gauss points are used. An algorithm for

implementing the Nl scheme (as outlined in Appendix 2) is

given as a pseudocode in Appendix 3. The Nl scheme pro-

vides the solution p0 for a given set of eccentricities ðex0
; ey0
Þ.

Upon integration of p0, using (12), a set of reaction forces

ðWx;WyÞ is obtained which needs to be balanced with the

prescribed bearing loads. This force/reaction balance is

established iteratively using common root finding
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algorithms, e.g. the Newton–Raphson method for systems of

equations. During this step, the film height h is updated in Kt½ �
and fRg based on (8). In contrary to the SEFM, h might also

be updated by means of a more complex formulation of the

foil structure, e.g. a non-linear FE model.

3.2 First-order equation

The first-order Eq. (10) is a linear complex differential

equation. Following the same Bubnov–Galerkin FE pro-

cedure as for the zeroth-order equation leads to a linear set

of complex algebraic equations

Kc
� �
fpcg ¼ fqcg ð23Þ

which can be solved by factorization for the dynamic

pressures. The coefficient matrix Kc
� �

and right-hand side

fqcg on the element level are given by

Ke
c

h i
¼
Z

Ve

B½ �TC1 B½ � þ B½ �TC2 B½ �fp0g N½ � þ B½ �TC4fUg N½ �
�

� N½ �T ixsC4 N½ �
�

dV

fqe
cg ¼

Z

Ve

B½ �TC3f c B½ �fp0g þ B½ �Tp0f cfUg � ixsp0f c N½ �T
� �

dV

ð24Þ

where the coefficients are

C1 ¼
p0h3

0

12l

C2 ¼
h3

0 þ 3h2
0p0Kc

12l

C3 ¼ �
p0h2

0

4l

C4 ¼ �ðh0 þ p0KcÞ:

ð25Þ

During the numerical integration procedure of the coeffi-

cient matrix and right-hand side vector (24), all field

quantities are calculated in the Gauss points using the

shape functions.

3.3 Mesh and boundary conditions

The boundary conditions for the zeroth- and first-order

systems (19), (20), (23), are applied following the common

methods. For a compliant foil bearing as depicted in

Fig. 1a, the boundary conditions are

p0 :
p0ðhl; zÞ ¼ p0ðht; zÞ ¼ pa

p0ðh; L=2Þ ¼ p0ðh;�L=2Þ ¼ pa

�

pc :
pcðhl; zÞ ¼ pcðht; zÞ ¼ 0

pcðh; L=2Þ ¼ pcðh;�L=2Þ ¼ 0:

� ð26Þ

The boundary condition for the zeroth-order equation of p0

is implemented in the solution algorithm, as outlined in

Appendix 3. In short, it should only be applied for the first

iteration of the solution. The boundary condition for the

first-order equation of pc is prescribed by standard FE

techniques.

As illustrated in Fig. 2, the prescribed boundary condi-

tions (26) will pose a problem for large journal eccentricities.

The foil deflection hcðp0Þ ¼ Kcðp0 � paÞbecomes zero in the

nodes where p0 ¼ pa. This is the case on the pad edges. If the

bearing pad mesh in Fig. 2a is subjected to ambient pressure

pa on its left edge and the bearing eccentricity ratio is

approaching 1, the resulting film height h and the deflected

pad profile will take a form as illustrated in Fig. 2b (Standard

BC). This is obviously incorrect, since the radial deflection

of the top foil along the axial direction z should be smooth. In

the situation illustrated, with zero film height h on the edge,

the air leakage will become zero with an elevated pressure

along the edge as a consequence. This is a problem specifi-

cally related to the SEFM. To correct it, one has to assure that

the foils take on realistic deflections on the pad edges. This

can be achieved by meshing with a narrow band of elements,

having the width of L=50 or less, along the bearing edges

subjected to ambient pressure and letting the foil deflection

hcðpÞ in the outermost nodes of these elements (on the

bearing edge), adopt the deflection values of the innermost

nodes (away from the bearing edge) on that element. This

situation is shown in Fig. 2b (BC1).

For foil configurations where the top foil is stiffer than

the bump foil, the top foil deflection can be regarded as

constant along the axial direction of the bearing [26]. In

these cases, the deflection hcðpmÞ can be used where the

pressure pm is taken as the arithmetic mean pressure along

the axial direction for a given angle h. This situation is

illustrated in Fig. 2b (BC2).

In gas bearings, where the fluid is compressible, sig-

nificant sub-ambient pressures may arise. These sub-

ambient pressures will cause the top foil to separate from

the bumps into a position in which the pressure on both

sides of the pad is equalized. Heshmat [10] introduced a set

of boundary conditions accounting for this separation

effect. However, in this work, a simple Gümbel [6]

boundary condition is imposed, which means that sub-

ambient pressures are discarded when integrating the

pressure to obtain the bearing force components ðWx;WyÞ.
This means that the parts of the bearing having sub-

ambient pressures are inactivated and hence these areas

need prescribed boundary conditions, pc ¼ 0 where p0\pa,

when solving the first-order equation.

3.4 Numerical implementation

The foil flexibility KðhÞ is a periodic expression (3) in the

circumferential direction, it is therefore important to define
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an FE mesh having a sufficient number of element divi-

sions in h, to avoid aliasing which may lead to significant

errors in the pressure solution. This means a minimum of

two element divisions per bump is required. In practice, a

larger number may be desirable to obtain an accurate

solution of the pressure field p0ðh; zÞ. The adequate number

of element divisions should be determined from case to

case by a mesh convergence study. Dependent on the

amount of top foil sagging a smaller or larger amount of

element divisions may be necessary.

To improve convergence of the outer Newton–Raphson

scheme, which balances the bearing loads ðWx;WyÞ with

the pressure p0ðex; eyÞ, the integration of the pressure (12)

should preferably be carried out by an accurate integration

algorithm. Good results are obtained using a modified

Simpson algorithm, modified to cope with uneven nodal

spacing and both equal and odd number of element divi-

sions. An accurate integration of the dynamic pressure pc

will improve the accuracy of the calculated bearing coef-

ficients (13) as well.

The coefficient matrices of both the zeroth- and first-

order systems, Kt½ � and Kc
� �

, are banded. This feature

should be exploited by utilizing a sparse matrix storage

format and a sparse solver. In the current implementation,

the LAPACK dgbsv solver is used [1].

3.5 Performance

The performance of the Nl solution scheme, for solving the

zeroth-order equation, outlined in Sect. 3.1 and Appen-

dix 2, is compared to the SUR scheme. For this compari-

son, a single pad bearing often referred to in the literature

[27], is analysed and the static shaft equilibrium position

and film pressure profile is calculated. To investigate how

the foil flexibility hc ¼ Kðp0 � paÞ affects the convergence

of the two methods, both a rigid (hc ¼ 0) version and a

flexible (hc 6¼ 0) version of the bearing are analysed. The

geometry of the bearing is outlined in Table 1.

A relaxation factor of b ¼ 0:1 is used with the SUR solu-

tion. This value is found to be near optimal for the given

bearing and operating conditions. Using a starting guess for

the eccentricity ðex; eyÞ ¼ ð0:3; 0:3Þ, the BC1 and no Gumbel

boundary condition, the solution converges to the equilibrium

positions ðex0
; ey0
Þ ¼ ð0:62; 0:42Þ with foil flexibility inclu-

ded and ðex0
; ey0
Þ ¼ ð0:36; 0:39Þ when foil flexibility is

neglected (hc 6¼ 0). The convergence, in terms of the

Euclidean norm of the pressure difference between consecu-

tive iterations, is illustrated in Fig. 3 for each of the four cases.

For all cases, a mesh consisting of 594 elements and 670

nodes is used. Refining the mesh is not found to change

pressure convergence. It is clear from Fig. 3, that the Nl

solutions converge faster than the SUR solutions. In this

example, the iterations are stopped when

kfpiþ1g � fpigk\1. However, the convergence criteria of

the Nl method is normally based on the residual (19), such

that convergence is obtained when kfRgk\10�6.

To evaluate the convergence, the error � between two

consecutive iterations is assumed to follow the relation [5]

z

θ̃1 2 3 4

5 6 7 8

9 10 11 12

13 14 15 16

17 18 19 20

21 22 23 24

25 26 27 28

29 30 31 32

(a) FE mesh of a single pad.

z

1 2 3 4

1 2
3 4 5

1

2 3 4

h

BC1)

BC2)

Standard BC)

h

hp0(θ̃, z)

p0(θ̃, z)

p0(θ̃, z)

pa

pa

pa

(b) Film height and pad deflection along ax-
ial direction.

Fig. 2 Schematics of FE mesh for a single pad and the effect of

boundary conditions on its edges
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�iþ1 ¼ k�ai ð27Þ

where a is the rate of convergence and k is the convergence

factor. If the ratio of consecutive errors is approximated by

the ratio of consecutive differences as

�iþ1

�i

� kfpiþ1g � fpigk
kfpig � fpi�1gk

ð28Þ

then the convergence rate a can be estimated as

a � logðkfpiþ1g � fpigk=kfpig � fpi�1gkÞ
logðkfpig � fpi�1gk=kfpi�1g � fpi�2gkÞ

ð29Þ

and the convergence factor k can be estimated by:

k � kfpiþ1g � fpigk
kfpig � fpi�1gka

: ð30Þ

In Table 2 the convergence rates and factors for the four

cases, estimated by (29) and (30), are listed.

The convergence rate is found to be a ¼ 1:1 for the Nl

solution of the rigid bearing and a ¼ 1 for all other cases.

This is far from second-order convergence (a ¼ 2) which is

theoretically obtainable with the Newton–Raphson method.

When taking the derivative of the residual fRig to obtain

the tangential matrix Kt½ � in (20), the diffusion coefficient

D is kept constant. In fact it is not constant but updated

between each iteration, hence the full Jacobian is not

obtained. However, the Nl solutions are found to have

lower convergence factors k than the SUR solutions which

explains the faster convergence. For both schemes, a

pressure equilibrium iteration is equivalent to inverting the

coefficient matrix K½ � or Kt½ � which in this example cor-

responds to solving a system of 670 linear equations per

pressure iteration i.

4 Analysis of industrial foil bearing

The static results of the SEFM, i.e. pressure profile, film

height, eccentricity ratio have been compared and validated

to experimental results in [17]. Here, the pressure profiles,

equilibrium position and the stiffness and damping coeffi-

cients are calculated theoretically.

The investigated bearing is that of a Siemens direct-

driven compressor with the geometry and material prop-

erties as outlined in Table 3. The real bearing has a top foil

thickness tt of twice the value given in the table, but to

exaggerate the sagging effect, only half the real thickness is

used in the calculation. The bearing is subjected to loads

Wx ¼ 115 N, Wy ¼ 0 and the shaft is rotated at

x ¼ 15:000 RPM. A total of four different cases has been

investigated. Each of these cases involves a different set of

boundary conditions outlined in Table 4 together with the

calculated eccentricity ratio e. Based on a mesh conver-

gence analysis, as illustrated in Fig. 4, a grid of 9 elements

over the length and 88 elements in circumferential

0 20 40 60 80 100 120
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101
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106

Iteration, i

‖{
p

i}
−

{p
i−

1
}‖

Nl flexible
SUR flexible

Nl rigid
SUR rigid

Fig. 3 Pressure convergence for the first eccentricity step. Successive

under relaxation with a factor b ¼ 0:1 compared to the Newton-like

method for flexible and rigid bearings

Table 2 Estimated convergence rate and factor for each calculation

case

Case a k

Nl flexible 1.0 0.52

SUR flexible 1.0 0.94

Nl rigid 1.1 0.04

SUR rigid 1.0 0.90

The values are averaged over all iterations

Table 1 Geometry, material properties and operating conditions of a

single pad foil bearing

Parameters Values

Bearing radius (R) 19.05 mm

Bearing length (L) 38.10 mm

Bearing clearance (C) 32 lm

Bump foil thickness (tb) 0.1016 mm

Top foil thickness (tt) 0.2032 mm

Bump foil pitch (S) 4.572 mm

Bump half length (l0) 1.778 mm

Young’s modulus of bump foil (E) 2.07 9 10-11 Pa

Poisson’s ratio of bump foil (m) 0.3

Loss factor (g) 0.25

Ambient pressure (Pa) 1 9 10-5 Pa

Air viscosity (l) 95 9 10-5 Pa�s
Air density (q) 1.06 kg m-3

Load [ðWx;WyÞ] (50, 0) N

Speed (x) 40,000 RPM
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direction per pad amounting to 2,670 nodes are used for all

cases. The low number of elements over the length of the

bearing is achieved by exploiting the symmetry around

z ¼ L=2.The eccentricity ratio is found to be nearly con-

stant for the four different cases. The tendency is that the

eccentricity ratio increases slightly by including the sag-

ging effect. Similarly, the eccentricity ratio is slightly

higher when using BC1 compared to BC2. This makes

sense since BC1 allows for an uneven foil deflection along

the length of the bearing. Overall, the effect of the

boundary conditions on the eccentricity ratio is regarded as

negligible for this medium loaded bearing. Previous results

[17] showed that the two boundary conditions have a sig-

nificant effect on the shape of the film pressure profiles. It

was found that the BC1 resulted in an almost flat pressure

distribution along the length of the bearing and BC2 gave a

more pointed pressure with a slightly higher maximum. In

Figs. 5 and 6, the pressure profiles for case 1 and 2 using

the BC2 are illustrated. Comparing these, it is clear that the

maximum pressure p=pa ¼ 1:35 is the same for both cases

but the shape of the pressure profile is altered for the

second case, where the sagging effect is included. The

sagging clearly alters the pressure profile, especially on the

second pad where the pressures are highest.

The stiffness and damping coefficients of the bearing are

calculated for all four cases in a range of excitation fre-

quencies xs=x ¼ ½0:1; 100�. The results are illustrated in

Fig. 7. Due to the compressibility of the lubricant, both the

stiffness and damping are highly frequency dependant. It is

observed that the direct stiffness Kxx in the load direction is

slightly dependant on the boundary conditions imposed on

the pad edges (BC1 vs. BC2). However, the effect of

including the sagging effect is regarded as being

insignificant.

For the above analysis, the zeroth-order non-linear

equation was solved using both the SUR method and the

proposed Nl solution scheme. Again, a speed up of

approximately a factor 10 was seen for the Nl solution

scheme.

5 Conclusions and future aspects

Two solutions of the non-linear Reynolds equation for

compressible fluids were compared. One based on an

iterative Nl method, and one based on a SUR solution

scheme. Both methods were found to have convergence

rates close to 1. Even though the Nl method did not achieve

a convergence rate of 2, i.e. second-order convergence, it

had a lower convergence factor and converged nearly 10

times faster than the SUR method for a flexible bearing and

more than 20 times faster for a rigid bearing.

Two different sets of boundary conditions which deal

with the lack of foil deflection on the edges subjected to
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Fig. 4 Mesh convergence curve—calculated eccentricity ratio at

different mesh sizes for Case 2

Table 3 Geometry, material properties and operating conditions of

the Siemens airfoil bearing

Parameters Values

Bearing radius (R) 50.00 mm

Bearing length (L) 78.00 mm

Bearing clearance (C) 70 lm

Number of pads (Np) 3

First pad leading edge (hl) 30�
First pad trailing edge (ht) 145�
Bump foil thickness (tb) 0.127 mm

Top foil thickness (tt) 0.127 mm

Bump foil pitch (S) 7.00 mm

Bump half length (l0) 3.30 mm

Young’s modulus of bump foil (E) 2.07 9 1011 Pa

Poisson’s ratio of bump foil (m) 0.3

Loss factor (g) 0.25

Ambient pressure (Pa) 1 9 105 Pa

Air viscosity (l) 1.95 9 10-5 Pa�s
Air density (q) 1.06 kg m-3

Table 4 Boundary conditions and calculated eccentricities for the

four cases under investigation

Case B.C. on

edges

Foil

separation

Foil

sagging

Eccentricity

ratio, e

1 BC2 Gumbel b.c. Excluded 1.218

2 BC2 Gumbel b.c. Included 1.264

3 BC1 Gumbel b.c. Excluded 1.224

4 BC1 Gumbel b.c. Included 1.262
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ambient pressure were investigated for a medium loaded

bearing. Switching between the two different boundary

conditions, BC1 and BC2, yields slightly different pressure

profiles, but the shaft equilibrium position changes by less

than 1 %. The influence on the dynamic stiffness and

damping coefficients was found to be insignificant.

Finally, the inclusion of the top foil sagging effect was

investigated. It was found that the foil sagging on a med-

ium loaded bearing does not significantly affect the equi-

librium position, which stays within 4 % of the value

obtained without the sagging effect included. Furthermore,

the dynamic stiffness and damping coefficients were not

found to be significantly affected by the sagging effect.

The mathematical model (SEFM) and solution scheme

outlined in this paper can easily be extended to incorporate

tabulated experimental values of the foil flexibility and

damping, considering them constant or frequency

dependent. Furthermore, the scheme is suitable for simu-

lating non-linear rotor bearing systems in time due to the

improved convergence.

Appendix 1: Top foil deflection

To include the ’sagging’ effect of the top foil, as illus-

trated in Fig. 8a, into the mathematical model of the foil

bearing, a periodic expression for the top foil flexibility,

dependant on the angle h, is sought. If the top foil is

assumed to have unit width, the uniform pressure

P becomes a uniformly distributed load along x (Fig. 8b).

The top foil is assumed in pure bending and the bump foil

deflection is kept at zero. Requiring the infinitesimal

element of the top foil, Fig. 8b, to be in static equilibrium

one obtain:
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Fig. 5 Pressure field for the

Siemens 3 pad foil bearing

calculated for a bearing

clearance and load of

C ¼ 70 lm and Wx ¼ 115 N.

Sagging effect of top foil

neglected (mesh size reduced

for illustration purpose)
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Fig. 6 Pressure field for the

Siemens 3 pad foil bearing

calculated for a bearing

clearance and load of

C ¼ 70 lm and Wx ¼ 115 N.

Sagging effect of top foil

included (mesh size reduced for

illustration purpose)
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M þ dM �M þ 1

2
Pd~h2 þ ðT þ dTÞd~h ¼ 0 ) dM

d~h
¼ T

� N þ N þ dN ¼ 0 ) dN ¼ 0

T þ dT � T � Pd~h ¼ 0 ) dT

d~h
¼ P ð31Þ

rewriting and differentiating (31) yields

dM

d~h
¼ T ) d2M

d~h2
¼ dT

d~h
¼ P: ð32Þ

If pure bending in one direction is assumed, then Kirch-

hoff–Love plate theory for isotropic plates, describes the

relation between the bending moment M and the curvature
d2wt

d~h2 as

M ¼ Dt

d2wt

d~h2
; Dt ¼

Et3
t

12ð1� m2Þ
ð33Þ

where Dt is the flexural rigidity. Integrating (32) twice and

inserting (33) leads to

Dt

d2wt

d~h2
¼ P2

2
~h2 þ c1

~hþ c2 ð34Þ

which upon double integration yields

wtð~hÞ ¼
1

Dt

P

24
~h4 þ c1

6
~h3 þ c2

2
~h2 þ c3

~hþ c4

� �
: ð35Þ

Since the distributed load P is assumed uniform and the

deflection of the bump foil is kept zero, the boundary

conditions for a section of the top foil between two con-

secutive bump tops over the length S, as depicted in

Fig. 8a, are

wtð0Þ ¼ w0tð0Þ ¼ wtðSÞ ¼ w0tðSÞ ¼ 0: ð36Þ

Applying these boundary conditions leads to the integra-

tion constants c1 ¼ �PS=2, c2 ¼ PS3=12 and c3 ¼ c4 ¼ 0

which by insertion in (35) leads to the foil deflection

function

wtð~hÞ ¼ ðp� paÞKt ð37Þ
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Fig. 7 Calculated stiffness and

damping coefficients for the

Siemens foil bearing. Case 1

blue, Case 2 red, Case 3 green,

Case 4 magenta
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(a) Top foil ’sagging’ between bumps
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(b) Infinitesimal element of the deformed top foil

Fig. 8 Schematics and nomenclature of a the foil structure (bump foil

and top foil) together with an infinitesimal element of the deformed

top foil between two consecutive bump tops
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where ðp� paÞ ¼ P and the top foil flexibility per unit

width is

Ktð~hÞ ¼
ð1� m2Þ

2Et3
t

~h4 � 2S~h3 þ S2 ~h2

 �

; ~h 2 ½0 : S�: ð38Þ

The top foil flexibility Ktð~hÞ is defined over a section of the

length S, i.e. in a closed interval between two bump tops.

To develop an expression for the top foil flexibility over

several bump tops, i.e. a periodic expression (38) is

expanded into a Fourier series as

Ktð~hÞ ¼
ð1� m2Þ

2Et3
t

a0

2
þ a1 cos

2p~h
S

 !
þ . . .

 !
ð39Þ

where

a0 ¼
S4

15
; a1 ¼ �3

S

p

� �4

; . . . ð40Þ

It can be shown, that the first two terms of (39) approximate

the top foil flexibility with sufficient accuracy and thereby

the top foil flexibility per unit width can be written as:

Ktð~hÞ �
S4ð1� m2Þ

Et3
t

1

60
� 3

2p4
cos

2p~h
S

 ! !
ð41Þ

Appendix 2: Iterative solution based on Nl method

The pressure p is found iteratively by trying to satisfy the

non-linear equilibrium condition [16] which can be written

in residual form as:

RðpÞ ¼ RextðpÞ � RintðpÞ: ð42Þ

If pi is an approximate solution to the exact solution p, then

a first-order Taylor expansion gives an equilibrium equa-

tion for the next Nl step as

Rðpiþ1Þ � RðpiÞ þ
dRintðpiÞ

dp
Dpi ¼ 0: ð43Þ

If we now define the tangent as

Kt �
dRintðpiÞ

dp
ð44Þ

then the equilibrium equation (43) can be written as

KtDpi ¼ �RðpiÞ ð45Þ

or inserting (42)

KtDpi ¼ �RextðpiÞ þ RintðpiÞ: ð46Þ

When the equilibrium equation (46) has been solved the

pressures are updated from

piþ1 ¼ pi þ Dpi: ð47Þ

The tangent is then updated with the new pressure pi ¼ piþ1

and the procedure is repeated. We repeat until the norm of the

residual is sufficiently small. Even though the Nl method, as

shown above, was derived for a scalar problem, it is directly

applicable to vector problems as well.

Appendix 3: Solution algorithm

Based on the iterative Nl method outlined in Appendix 2, a

pseudo algorithm is given as:

Algorithm 1 Incremental Newton-Raphson scheme
{p0} = {pa} � Set {p0} to ambient pressure (initial guess)

for i = 0 → imax do

{Ri} = {Rext({pi}) − {Rint({pi})}} � Calculate the residual

if ‖ {Ri} ‖< εstop then

Stop iteration loop � Stop at convergence

end if

Calculate [Kt({pi})]

Modify [Kt({pi})] and {Ri} to account for BC � If non-zero only in

� first iteration

� then zero for all other

{Δpi} = [Kt({pi})]−1 {Ri} � Solve equilibrium equation

if i = 0 then

{pi} = {0}
end if

{pi+1} = {pi} + α{Δpi} � Update the pressure (use α ∈ ]0, 1])

end for
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