
Computational Optimization and Applications, 1, 245-276 (1992)
@ Kluwer Academic Publishers. Manufactured in the Netherlands.

Efficient Solution of Two-Stage Stochastic Linear
Programs Using Interior Point Methods

J.R. BIRGE AND D.E HOLMES
Department of Industrial and Operations Engineering, University of Michigan, Ann Arbos MI 48109.

Received January 15, 1992, Revised August 3, 1992.

Abstract. Solving deterministic equivalent formulations of two-stage stochastic linear programs using
interior point methods may be computationally diflicult due to the need to factorize quite dense
search direction matrices (e.g., AAT). Several methods for improving the algorithmic efficiency
of interior point algorithms by reducing the density of these matrices have been proposed in the
literature. Reformulating the program decreases the effort required to find a search direction, but at
the expense of increased problem size. Using transpose product formulations (e.g., A*A) works well
but is highly problem dependent, Schur complements may require solutions with potentially near
singular matrices. Explicit factorizations of the search direction matrices eliminate these problems
while only requiring the solution to several small, independent linear systems. These systems may be
distributed across multiple processors. Computational experience with these methods suggests that
substantial performance improvements are possible with each method and that, generally, explicit
factorizations require the least computational effort.

Keywords: Interior point algorithms, stochastic programming.

1. Introduction

Many practical problems with uncertain parameters can be modeled as stochas-
tic programs. Some examples include cash and portfolio management models
([31]), electric power generation capacity planning models ([26]), and forestry
management problems ([19]). A survey of documented stochastic programming
formulations can be found in ([25]). Most basic among stochastic programs are
discretely distributed stochastic linear programs (SLPs), which are the stochastic
extensions of standard linear programs.

Even small linear programs may lead, however, to large SLPs and extensive
computational requirements since the size of these problems typically grows
exponentially with the number of stochastic parameters in the formulation. The
recent advent of interior point methods for the solution of large linear programs
([291, 1111, and [30]), h owever, holds great promise for the efficient solution
of these problems. The basic computational requirement for these algorithms
is the efficient solution of a sequence of large, symmetric, positive definite
systems of linear equations. Generally, the solutions to these systems are
obtained by factoring the coefficient matrix into some equivalent triangular

246 BIRGE AND HOLMES

matrix and backsolving with a given right-hand side. The ease with which the
factorizations are obtained decreases significantly as the density of the coefficient
matrix increases. Unfortunately, the structure of SLPs can lead to quite dense
systems, limiting the use of interior point methods for their solution.

The purpose of this paper is to review various methods for improving the
efficiency of solving the linear systems associated with (two-stage) SLPs, and
report both serial and parallel computational experience with one particularly
promising method described by Birge and Qi ([lo]). This method has been
shown to have a worst-case computational complexity at least an order of the
number of variables better than that of the standard Karmarkar projective scaling
algorithm. In Section 2, we review the structure of stochastic linear programs with
fixed recourse and the computational requirements of interior point programs. In
Section 3, we look at methods for improving the running time of the interior point
codes, and focus on an afline version of the Birge and Qi method. Computational
results appear in Section 4. A brief summary is contained in Section 5.

2. Preliminaries

2.1. Stochastic linear programs

Two-stage stochastic linear programs with fixed recourse that are defined over a
discrete probability space have the general form

minimize

subject to

cTxo + &(zo,f)

Aoxo = bo, (1)

x0 2 0,

where &(xo,f) is a recourse functional describing the expected costs of under-
taking a specific action x0 before the uncertainty characterized by the random
variable c is resolved. The expectation of the recourse cost is obtained by

where pl is the probability that the Ith scenario occurs (i.e., pi = P[(f) = El] where
EI is a realization of the random variable [, defined on the probability space
(.Z, A, P)); and Q(z,, El) is the recourse cost obtained by solving the following
recourse problem:

Q(xo, t) = inf {&(W~y~ = 4 - Xx0, YI 2 0, YI E R”’) , t = (4 1 h, z, WC), (2)

for each scenario 1 = 1,. . . N. Here, a decision 20 is made before <I is known,
and an optimal “corrective” action yi is taken after <a is known. The cost of

EFFICIENT SOLUTION OF TWO-STAGE STOCHASTIC LINEAR PROGRAMS 247

the second action is Q(z~,&), and the expected cost with respect to the random
variable E is &(x0, 0. Note here that the solution to Q(zs, 6) assumes that 20 has
been fixed. This nonanticipativity restriction requires that all first-stage decisions
are invariant with respect to future outcomes.

Substituting the recourse program into (1) and simultaneously minimizing over
(ZO,?/l,... v~), we obtain

minimize +o + qz,cT!h

subject to -40x0 = bo
(3)

%x0 + W,y, = bl 1 = l,...N

x0, Yl L 0,

where %,x0 E R”O;Tr E lRPxno;Ao E IRmoxnn;W~ E lPixnr; and c1 = p& E EP
for I = 1 , . . . N. Note that this problem has rz = no + CE,nr columns and
m = mo + CE,mr constraints. For purposes of discussion, we assume that &
and Wr have full row rank, mr 5 rrl,Z = 0,. . .N, and no 5 CI&nl.

This problem, classified as a dual block angular linear program, was first studied
by Beale ([5]) and Dantzig ([14]). S everal special-purpose algorithms for solving
linear programs with this special structure have been developed, including the
L-shaped method of Van Slyke and Wets ([35]) and the decomposition method of
Dantzig and Madansky ([HI). Interior point algorithms such as those proposed
by Karmarkar ([24]) and Marsten et al. ([29]) applied to these problems have
been discussed by Birge and Qi ([lo]) and Lustig et al. ([28]).

2.2. Interior point methods

In the last decade, several breakthroughs in general-purpose linear programming
algorithms have been made using interior point methods ([29]). Karmarkar ([24])
pioneered these breakthroughs with the first practical interior point method that
could be proven to converge to an optimal solution in polynomial, or O(n3L)
time, where R. is the size of the problem and L is a measure of the problem’s
data. By contrast, the worst-case complexity of the simplex method cannot be
bounded by a polynomial.

For the purposes of discussion, we focus on what is generally called the dual
affine scaling method ([l]) as applied to the dual block angular program described
above. Consider a linear program in the following standard equality form:

(P> minimize crs

subject to AZ = b,

x 2 0,

248 BIRGE AND HOLMES

where A E IR”“” and has full row rank; b E B” is a resource vector; and c E W”
is the objective function vector. The dual affine scaling variant finds an optimal
solution to the dual (D) to the problem (P):

CD) maximize b*y

subject to ATy I c,

where y E R” is a dual vector to the equality constraints of (P). In general,
we could also rewrite (P) in the polyhedral inequality form of (D) and apply
the same algorithm. In this case, the method performs the same steps as the
procedure called primal affine scaling ([4], [16], and [37]). The only difference
is in the form of the matrix factorization ([S]). We can, therefore, use simply
afine scaling to refer to these methods.

Given a dual feasible interior point, the dual affine algorithm described below
may be used to find an optimal solution.

Procedure DualAtIine(A, b, c, stopping criterion).

1. k=O
2. Stop if optimality criterion is satisfied.
3. Let uk = c - ATyk.
4. Calculate the search direction.

(a) Let Dk = diag{(l/&, . . . , (l/v&)}.
(b) Let dy = (A(Dk)“AT)-‘b.
(c) Let dv = -ATdy.

5. Calculate a step size.

(a) Let Q: = 7 x min{$/ - (dv)i : (dv)i < 0, i = 1,. . . ,m}, where 0 < 7 < 1.

6. Update dual variables, primal variables, and counters.

(a) Let y”+’ = yL + ady.
(b) Let a?+’ = (Dk)2dv.
(c) Let Ic = k + 1.
(d) Goto 2.

The vast majority of the computational effort required in the above procedure is
to calculate a solution to the symmetric positive definite system (AD2AT)dy = b
(the iteration counter will be dropped whenever the context is clear), or to
calculate some factorization of the matrix to enable quick solution of the system.
These computations are common to every interior point algorithm developed thus
far ([34]). There are two main strategies for solving the system (AD2AT)dy = b.

EFFICIENT SOLUTION OF TWO-STAGE STOCHASTIC LINEAR PROGRAMS 249

They are iterative methods, which generate sequences of approximations to dy
using simple matrix-matrix multiplications, and direct methods.

Direct methods calculate the exact solution to the set of equations (AD2AT)dy =
b by factoring the matrix (AD2AT), and using backwards/forwards substitution to
find dy. The most common schemes in use are (LU) factorization and Cholesky
(LLr) factorization. The effectiveness of these methods depends on the use
of special data structures and pivoting rules, and on the characteristics of the
coefficient matrix itself. Examples of software implementations include YSMP
([lS]) and SPARSPAK ([13]). Direct and iterative methods can also be combined
by using ideas from the direct solution procedures to generate an effective pre-
conditioner that improves the convergence of iterative methods. This paper will
focus on implementations of interior point algorithms that use direct methods
only.

The ease with which direct methods may be used depends heavily on the
amount of fibin, or density of the factorized matrix. Rearranging matrices to
minimize fill-in reduces memory usage and the number of operations to update
the factorization or obtain a solution. However, matrices that are ill-structured
may not yield sparse Cholesky factorizations. Problems with these types of
matrices may be quite difficult to solve.

The density of the matrix (ADSAT) largely depends on the number of
dense columns that are contained in the original matrix A. Unfortunate-
ly, the dual block angular program (3) described in Section 2.1 (potential-
ly) contains many dense columns. To see this, let 0: E R”‘x”l be de-

fined by 0; = diag {(of))“, . . . , (v;,))“},Z = 0,. . . ,N. Suppose further that

T’ = T,WL = W,l = 1 , . . . , N. Then solving the system requires a factorization
of

&D$-- .”

TO;&* TD;p + WDfW= TD2TT . . .

= TD2AT 0 0 TD2TT
0

TD$?” +‘WD;W* . .

. .

A; TT . . . p
WT

-.

WT

AoD:p

TDop

TDoTT

L TD;h* TD;p TD2TT
0

. . TOOT= + WD$W* _

Clearly, the presence of the columns associated with the T matrices creates an
extremely dense matrix to factorize. For this reason, Arantes and Birge ([3])
found that dual block angular programs in the primal form are expensive (if
possible) to solve, even with basic preprocessing or row reordering to reduce fill-in
(see also [28]). The extent to which the fill-in affects computational performance

250 BIRGE AND HOLMES

will be explored empirically in Section 4. As we will see in the next section,
there are many ways to approach the problem of dense columns in a coefficient
matrix to reduce fill-in and improve solution times.

3. Methods for reducing computational requirements

Several modifications have been proposed to both the formulation of the block
angular program and the implementation of the interior point algorithm re-
quired for its solution. Their intent is either to reduce the number of dense
columns that are in the coefficient matrix of the linear program or to sepa-
rate them explicitly from the other (nondense) columns. Four alternatives will
be explored in this section: reformulation of the program to split up dense
columns ([28]), solution of the dual to the program (or a factorization formed
from the dual, [3] and [8]), the use of the Schur complement to remove dense
columns ([27] and [28]), and direct solution by a special factorization of the ma-
trix AD2AT ([lo]).

3.1. Reformulation of the program

Lustig et al. ([28]) consider a two-stage generalized stochastic network derived
from a portfolio management model (developed in [32]). The model can be
written in the standard form given in (3), where ACJ constrains the flow of capital
between assets in the first stage of the problem, and W contains the stochastic
arc multipliers that describe the yields of each asset modeled.

To remove the dense columns associated with the first-stage decisions, they
split the first T-Q columns into scenario-dependent variables. Instead of enforcing
nonanticipativity in the original formulation (3) by keeping the first no columns
invariant with respect to each scenario, they enforce nonanticipativity by including
explicit constraints that guarantee the invariance. Specifically, if z&) is the first-
stage decision given that scenario 1 occurs, nonanticipativity requires that

4 + 1) = zo(Z) for all 1 = l,...,N- 1.

The resulting formulation (called the full-splitting formulation) removes nonzeros
from the first-stage columns for scenario I from all constraints except those
associated with first-stage columns for scenarios 1 - 1 and I + 1, and is

EFFICIENT SOLUTION OF TWO-STAGE STOCHASTIC LINEAR PROGRAMS 251

min <Z:O + CT 1 y1 + ‘.a +cT,YN

st Aox0 = b”

Ix0 -Ix1 = 0

Txl +wYl
=

bl (4)

1x1 -Ix2 = 0

TIN +wyN = bN

By concentrating the nonzero elements of the constraint matrix of (4) around
the diagonal, the density of the matrix AD2AT is reduced. However, the full-
splitting formulation also increases the overall size of the problem. In a set of
10 portfolio test problems run in ([28]), the average increase in the number of
rows was 47.2%, and the average increase in the number of columns was 12.8%.

Further improvements to the full-splitting formulation can be made by only
splitting those first-stage variables that have nonzero elements in the rows of TI,
and leaving the remaining first-stage decision variables in the A matrix only. This
partial-splitting representation can effectively limit the increase in problem size that
occurs in the full-splitting formulation. For the stochastic network test problems
in the paper, the average row and column growths for the partial-splitting model
were 12.8% and 5.2%, respectively.

Although reformulating the dual block angular problem increases its size, the
resulting improvement in AD2AT fill-in can be substantial. On the same test
problems mentioned above, the Cholesky factorizatiors of the AD2AT matrices
with splitting were on average 2.8 times less dense than those obtained from the
original formulation without splitting. The split formulations themselves were
solved using a commercial implementation of a primal-dual interior point algo-
rithm, OBl ([27]), 10.8 times faster than the original formulation. The splitting
formulation was (on average) 10.8 times faster than the original formulation. On
average, solving the split formulations using OBl was 5.58 times faster than the
simplex method MINOS 5.3, developed by Murtagh and Saunders ([33]).

Unfortunately, the effectiveness of reformulating the linear program is largely
dependent on the relative sizes and forms of the first-stage coefficient matrices. In
general, two-stage stochastic linear programs may have large first-stage coefficient
matrices or many first-stage decision variables that are in linking constraints to
recourse decisions. An example from the test set used here ([7] and [22]) is
SCFXMl, which has 52 of 114 first-stage variables linked to second-stage variables.
For this problem (see Section 4.3) splitting variables and dual formulations offer
no computational advantage.

252 BIRGE AND HOLMES

3.2. Using the transpose product factorization

The density of the matrix AD2AT was shown in Section 2.2 to be quite high
when a problem that exhibits a dual block angular structure is solved using
dual affine scaling. Arantes and Birge ([3]) suggested that reformulating the
primal problem in the polyhedral inequality form would allow more efficient
computation since the relevant matrix for computation is ATD2A, which is much
sparser than AD2AT. Reformulation is, in fact, not necessary (see [S] where
it is shown that computations with the ADZAT matrix structure can always be
replaced by computations with the ATD2A structure).

It is, however, illustrative to think of this approach as solving the dual to the
original problem using again the dual affine scaling method. The dual of (3) is

Since the resulting coefficient matrix B of the dual formulation has n =
no + Clflnl rows and m = mo + Z’&rnl columns, BD2BT is of order n x n,
and so may be considerably larger than the coefficient matrix of (3). However,
the matrix BD2BT exhibits the ATD2A matrix structure and enables an efficient
Cholesky factorization. Here,

A;D;Ao + .$!,TTDIT TTDtW ... TTD$W

WTD;T WD,WT 0 0
BD2BT =

*. 0 * 0 I
(6)

WTD;T 0 0 WD$WTj

As an example of the different fill-in characteristics of the primal and dual
problems, pictures of the AD2AT and BD2BT matrices are shown in Figure 1
for a test problem. (~~205 with 16 scenarios. For problem characteristics, please
refer to Section 6.)

The Cholesky factorization of the matrix (6) is generally also sparse. Solution
times reported by Arantes and Birge for a common test set ([7] and [22])
were much faster using the BD2BT form over the AD2AT form. The largest
problem they tried (32 scenarios, 7,023 nonzeroes in AD2AT) was a full order of
magnitude faster with BD B . 2 T However, the off-diagonal blocks of the matrix
BD2BT contain matrix products with the recourse matrix W, whereas the matrix
AD2AT does not. Hence, if W is unusually large or dense, solving BD2BT may
not be as efficient. More extensive comparisons may be found in Section 4. In
general, solving stochastic linear programs with the form based on the ATD2A
structure (as in BD2BT) appears preferable to solving using the ADZAT structure.

EFFICIENT SOLUTION OF TWO-STAGE STOCHASTIC LINEAR PROGRAMS 253

Figure 1. Nonzero structure of ~~205, 16 scenarios: (Top) Dual; (Bottom) primal.

254 BIRGE AND HOLMES

3.3. Schur complement

Many implementations of interior point algorithms avoid dense columns in coef-
ficient matrices by explicitly removing them and accounting for them separately.
The mechanism for solving the system (AD2AT)dy = b is the Schur complement,
which involves solving a small, dense matrix derived from a larger sparse matrix.

Consider a coefficient matrix A that can be partitioned into [&:A,], where A, E
R mxn* is a submatrix containing only sparse columns, and Ad E Rmxnd contains
only dense columns. In the case of the two-stage dual block angular program,
& contains (at most) the columns corresponding to the first-stage decisions, and
A, contains the columns corresponding to the second-stage decisions.

Let D, and Dd be diagonal matrices corresponding to A, and Ad. Then
AD2AT = A D2AT + AdD;Az. 9 s s Let the Cholesky factorization of A,DzAF be
LLT, V = AdDd, and b = -VTdy. Then VV T = AdD$4z and solving the system

[% -iy [T] = [i] (7)

is equivalent to solving (AD2AT)dy = b. From the first set of equations in (7),
we get

LLTdy = b+V6 or

dy = (LLT)-‘(b + V6). (8)

From the second set of equations in (7) we find that

VTdy + 16 = 0 (9)

Substituting (8) into (9),

[I + VT(LLT)-‘V]G = -VT(LLT)-lb. (10)

The matrix I + VT(LLT)-‘V is a Schur complement, a dense matrix of order
nd x nd. Methods specific to the solution of dense matrices (e.g., a dense Cholesky
factorization) can be used to solve (lo), while sparse solution methods can be
used to calculate (8) and the right-hand side of (10). Once b has been calculated,
then the search direction is the solution to

LLTdy = b + V6.

The entire method requires 71d + 1 sparse Cholesky backsolution (72d solutions to
(LLT)a = (V).i and one solution to (LLT)z = b) as well as a dense backsolution
for 6.

As shown in ([27]), use of the Schur complement can significantly reduce
the overall effort needed to solve the search direction system, since removal
of dense columns results in quite sparse Cholesky factorizations. The overall
effort required to obtain the sparse factorization is still 0(nz), so efficiency gains

EFFICIENT SOLUTION OF TWO-STAGE STOCHASTIC LINEAR PROGRAMS 255

cannot be guaranteed. However, as reported by Choi et al. ([12]), there are two
disadvantages to using the Schur complement. As the number of dense columns

grows large, the effort needed to solve the dense matrix I + VT(LLT)-‘V grows
markedly. As an example, they solved the ISRAEL problem in the NETLIB test
set ([20]) with different sizes of the dense submatrix. With the number of dense
columns set at 40, the time required to solve the problem was over twice that
when six columns were included in the dense partition.

The second disadvantage is possible numerical instability. For dual block
angular programs, moving a first-stage column into Ad may leave a column
with no nonzeros in A,DfAT. For example, consider a one-scenario problem,

with coefficient matrix A = If all first-stage columns are dense,

AZ = [GUT’] and AD2AT = AdDsA: + ABDzAT =

P:l[A~~Tl+ ; [~;I[0 W*l [1
1 [

0 0
+ 0 I WD;WT ’

(12)

As long as there are rows with nonzeros in dense columns but not in sparse
columns, A,DzAz is singular, and the Schur complement procedure fails. Even
if A, is forced to have full rank, the procedure is likely to suffer from numerical
instability (this is investigated empirically in the next section). To address this
problem, various methods have been proposed to improve the accuracy of the
algorithm. For example, Lustig et al. ([27]) uses iterative refinement to improve
the accuracy of solutions to equations involving LLT. For some problems in the
NETLIB test set ([20]), however, they were only able to guarantee the solution
to one decimal place. This reflects the inherent difficulty with problems with
many dense columns.

While loss of numerical accuracy may be a problem for dual block angular
programs with many dense columns, the use of the Schur complement may
improve solution times substantially for problems with a few dense columns.
For a class of stochastic network models, Lustig et al. ([28]) halved solution
times using the Schur complement over a splitting reformulation (Section 3.1).
Since these problems may be split so that each row contains a nonzero in a
dense column and a nonzero in a sparse column (which maintains the full row
rank of the sparse Cholesky factorization), they encountered no significant loss
of accuracy. However, the possible loss of accuracy associated with the Schur
complement suggests that it may not be desirable for solving genera1 dual block
angular programs.

In many genera1 linear programs, an identity (or a substantial part of an
identity) matrix exists in the original constraint matrix, A, due to slack or
surplus variables. In this case, AAT may be written as AdA: + I,. Now, the

256 BIRGE AND HOLMES

Schur complement approach can be used to write (AAT)-’ = (I8 + AdAT)-’ =

I, - Ad(Id + AzAd)-‘A:, where we use Id to denote an identity of rank n. Other
diagonal coefficients corresponding to slack variable values can be used in place
of 1, and Id with the same basic result. In this way, solution using the AAT
structure is replaced by solution with the ATA structure, which may be sparser.
This is the approach in ([S]) that allows the dual factorization form to be used
in solving the primal problem.

Even when an identity does not exist, one can be added to the ABDiAF part
of ADZAT and subtracted from A&A~. This allows 1. + A&AT to remain
well conditioned. The next section describes this method to maintain accuracy
in a form similar to the Schur complement.

3.4. Explicit factorization of dual block angular programs

The solution to the set of equations that determine search directions in afhne
scaling algorithms may also be accomplished by decomposition procedures spe-
cific to the dual block angular structure. Birge and Qi ([lo]) proposed a
better-conditioned method using a generalized version of the Sherman-Morrison-
Woodbuty formula. While the full calculation of the step size in affine scaling may
be performed generally in O(m*n) operations, the decomposition they propose
reduces the computational complexity to O(n*) operations (assuming nl N rz for
all I = O,..., N). In this subsection, we review the theoretical result obtained and
discuss the procedure for its implementation. Serial and parallel computational
results for this particular method are reported in Section 4.

The main result obtained by Birge and Qi notes that the matrix AD2AT may
be written as the sum of a block diagonal matrix D (the 1, + A,D:AT segment)
and the product of two similar matrices U and V (defined below). Given this
representation, the Sherman-Morrison-Woodbury formula, which is reproduced
here for convenience, may be used to find the inverse of the matrix. The notation
used follows that of Section 2.2.

LEMMA 1. For any matrices A, U, V such that A and (I + VTA-lU) are invertible,

(A + UV*)-’ = A-’ - A-$-J(I + VTA-‘@VTA-‘. (13)

ProojY

(A + UV=)-*(A + UVT) = I + A-‘UVT - A-%(I + VTA-‘U)-lVT -

A-lU(I + VTA-‘U)-lVTA-‘UVT

= I + A-‘UVT - A-%(I + VTA-‘U)-I

(I + VTA-‘U)VT

= I + A-‘UVT - A-‘UVT = I.

EFFICIENT SOLUTION OF TWO-STAGE STOCHASTIC LINEAR PROGRAMS 257

Lemma 1 is the main tool in deriving the factorization in Birge and Qi’s paper
([lo]) (which we refer to as the BQ factorization). We slightly change the form
of the M matrix they use to obtain the following result. The proof follows the
same development as in ([lo]).

THEOREM 1. Consider the feasible region of the dual block angular program given
in (3), written as Ax = b, x > 0. Let M = ADZAT, S = diag(S0, S1,. . . , SN}, where

S,=WLD;Wl’,Z = l,..., IV, S, = I2 EBY@~, and 0: =diag{(vi)-*, . . . ,(I&)-*}.
Furthermore, let I1 and I2 be identity matrices of dimension no and q, respectively.
Also, let

G = (Do) -2 + hT& + eTyS,-
I=1

-12

0

iI

G= [-Gd, +f]

i.

If & and Wl,Z = l,..., N have fill row rank, then M and G2 E -&G;‘AT are
invertible and

M-1 = s-1 _ s-‘~~-‘vTs-‘.
(14)

Proof In the affine scaling algorithm, Vk > 0 for all Ic, so D is always invertible.
By assumption, Wl has full row rank, so S’l is invertible for I = 1,. . . , N. Since
S = diag{S,..., 5’~) augmented with an identity matrix, S is also invertible. Let
D = diag{Do, I.}, 0 = UD and V = VB. By construction, M = S + OPT.

To apply Lemma 1, I + VTS-‘i7 must be invertible. Now, I + VTS-‘U =

I + z7vTs-lui7
- A-2

= D(D + VTS-‘U)B will be invertible if and only if n is

invertible and z-* + VT,9’U is invertible. Since

and D is invertible, I + VTS-‘U will be invertible if and only if G is invertible.
By construction, (DO)-* and &At, are positive definite and symmetric. Since Sl

is positive definite for all 1 = 1,. . . , IV, vS;‘Tl is positive definite and symmetric.
The sum of positive definite matrices is again positive definite, so G1 is positive
definite and symmetric, and hence invertible. The symmetric matrix G;’ has

258 BIRGE AND HOLMES

rank no, and can be written as G1 = Gi’*G:‘*, where G:‘” is also symmetric. By

assumption, A0 has full row rank, so AoGii2 has full row rank. Consequently,
Gz = -&G;‘Ai is invertible. Also, the rank of G is no + no, so G is invertible.

Applying Lemma 1, M is invertible and

Using Theorem 1 to explicitly compute the inverse of the matrix M is not the
most efficient way to determine the search direction dy. However, the system
of equations Mdy = b may be efficiently solved using Theorem 1 by solving (in
order)

Sp = b, Gq = V’p, ST = Up

and setting dy = p - r. To verify that dy = M-lb, note that

dy = p-r= S-‘b-S-‘Uq

= [S-l - S-‘U(G-‘VTS-‘)]b

= M-lb.

(15)

Further simplification of the second equation of (15) may be made by symbolically
expanding G into its components G1 and AIJ, Let qT = (q:, q;), where q1 E IV+
and q2 E IRY. Then solving

(16)

implies that

42 = (AoG;~A;)-~(~~~ + AoG,‘f+)

= -G;%32 + AoG;‘&)

Ql = (W-%3 - -$d.

Solving (15) requires Cholesky factorizations of Sl, Gr, and Gz. At each
iteration of the affine scaling algorithm, an update of Sl to reflect the current
dual solution must precede the solution of Mdy = b. Given the updated matrices

EFFICIENT SOLUTION OF TWO-STAGE STOCHASTIC LINEAR PROGRAMS 259

(D# and subsequent updates of the Cholesky factorizations of S’l, dy may be
found using the algorithm (using Birge and Qi’s decomposition) described below.

Procedure finddy (S, Ao, Tl . . . TN, b, dy).
begin.

1. (Solve S, = b). Solve Slpr = br for PI, 1 = 0,. . . , N.
2. (Solve G, = VTp).

(a) Form G1 by solving Sr(ur){ = (T& for (uOi, 1 = 0,. . . , N,i = 1,. . . , rz[and
setting (Gi), = (DO),, + C,“=,T~(u&.

(b) Form $I and fi using (16).
(c) Solve Giu. = Iz, for u and set v = j& + &u.
(d) Form G2 by solving (G1)wi = (&),i for wi and setting Gz = -Ao[wl . . . wm].
(e) Solve Gzq2 = v for q2, and solve Glql = & - &q2 for ql.

3. (Solve Sr = Uq). Set r-0 = Aoql + q2 and solve Slrl = Tlql for rl E W”‘, 1 =
1 N. ,-*-,

4. (Form dy). Set (dy)l = p[- rr for 1 = 0,. . . , N. Return dy, = (dye,. . . , dyN).

end.

There are four advantages to using this approach to find the search direction
dy. Unlike the Schur complement, the method does not generally suffer from ill-
conditioned working matrices and requires no iterative improvement to maintain
solution accuracy. To illustrate this point, consider a one-scenario problem with Ao 0 constraint matrix, A = T W . [1 In this case, ADZAT = S + ITT =

I 0

1 [
+ A,,D;&- I &D,2TT

0 WD:WT TD,2& I TD;TT ’
(17)

Comparing (17) to (12) shows the effect of adding the identity matrix to
eliminate the singularity in the sparse system. We note also that this approach
can in general be used to obtain better-conditioned factorizations for problems
with dense columns. Although we have only considered dual block angular

problems so far, this is not necessary. In the case of A = Aa Q [1 T W , we can

write AD2AT = S + BVT =

I+ QDfQT 0

0 WDfWT + 1 [
AoD;Ao’ - I &D;TT + QDfWT

TD;Ao’ + WD;QT TD2TT
. (18)

0 1
An implementation based on (18) can use S =

I+ QDfQT 0 .

0 WD~WT Just 1

260 BIRGE AND HOLMES

as in Theorem 1, where Q = 0. In this way, instability in &of&r can be
countered.

Note that this approach does not increase problem size as in splitting or dual
factorizations. Birge and Qi ([lo]) I a so show that the decomposition given in
Theorem 1, when applied to the dual problem (6), allows efficient updating from
a smaller stochastic linear program with few scenarios to a larger problem with
more scenarios.

The third advantage of this approach is the natural theoretical limit on the
number of operations required to solve the search direction system. The
computational complexity of the procedure is given in Birge and Qi ([lo])
as O(N(nT + n:ns + non; + ninf)). Although more effort is necessary to calculate
the working matrices G1 and G2 than is required by the Schur complement, the
overall complexity is linear in the number of scenarios. The Schur complement’s
arithmetic complexity, in contrast, is O(N3rzT).

Finally, since the factorizations of each Sr may be performed independently,
coarse-grained parallelization or distributed processing may be used to provide
a substantial gain in computational efficiency. With one processor for each
scenario, the simultaneous running time to solve for the search direction may
be reduced from O(N(n: + nfns + ,CPZ~ + n&i)) as given by Birge and Qi to
O(n: + n& + non: + iVn$, a reduction of roughly min{N, 7~~). Finer-grain systems
with many processors could achieve further reductions by performing matrix
additions and multiplications in parallel, but we concentrate on distributed systems
due to their wide availability. In the next section, we provide computational
experience on both serial and distributed implementations.

4. Computational experience

In [lo], only the theoretical efficiency of the BQ decomposition was demonstrated.
We wish to demonstrate that practical computational advantages also exist by
comparing this factorization with the other methods mentioned for stochastic
linear programs. We chose to compare the method against the interior point
solver in IBM’s Optimization Subroutine Library (OSL, version 1) ([23]) since
that package is widely available and, as such, represents a benchmark for general-
purpose interior point implementations. Our goal was to determine whether the
specialized BQ factorization improves upon general-purpose performance mainly
in terms of the effort required in each iteration of the respective methods. We
also wished to see whether a distributed computing implementation of the BQ
decomposition could provide further efficiencies.

The OSL interior point approach is a primal barrier method described in
[21]. In the current study, we compare the BQ decomposition to the OSL
implementation for three formulations: (1) the primal problem (3); (2) the dual
of (3) (so that the transpose factorization was used); and (3) the split variable
formulation (4) of the primal problem. Stability comparisons between the BQ

EFFICIENT SOLUTION OF TWO-STAGE STOCHASTIC LINEAR PROGRAMS 261

decomposition and the Schur complement are also given.

4.1. Problem characteristics

The test problems used in the current study are stochastic versions of a set of
staircase test problems ([22]) as in [7]. The problems in the test include:

l ~~205 -A dynamic multisector development planning model.
l SCRS8 -A technological assessment model for the study of the transition from

fossil fuel use to renewable energy sources.
l SCAGRT-A multiperiod dairy farm expansion model.
l SCSD~-A model to find the minimal design of a multistage truss.
l SCFXMl -A production scheduling problem.

Deterministic equivalent problems (3) and split variable formulations (4) were
created using a test problem generator developed by Birge et al. ([9]). Dual
problems were generated from the original deterministic formulations prior to
any input into an LP solver. Linear programs were converted by all LP solution
implementations into the standard equality form given in Section 2.2 prior to
solution.

For each problem in the test set, deterministic equivalents with 4, 8, 16, 32,
and 64 scenarios (distinct realizations of <) were created. The exceptions are
SCFXM~ and SCSD~, which were only solved to 32 scenarios. The characteristics
of each problem are given in Table 1. The number of nonzeros in the Cholesky
factorizations of the AD2AT matrices for the various formulations is also given
in Table 1. Figure 2 graphically shows the number of Cholesky nonzeros for the
sc205 and SCSD~ problems.

As can be seen from Table 1, the SCFXM~ and SCSD~ problems contained
many more nonzeros in the dual Cholesky factorization than in the primal
Cholesky factorization. This behaviour runs counter to the supposition given in
Section 3.2 that solving the dual problem reduces the fill-in in the projection
matrix factorization.

Resolving this discrepancy requires the consideration of the sizes of the sub-
matrices Ao,T, and W of the deterministic equivalent problem. The major
block components off the diagonal of the matrix AD2AT are TA;f and TV.
In contrast, the block components of the system ATD2A [shown in (6)] off the
diagonal are matrices with the same nonzero structure as WTT. If this matrix
is comparatively large or dense, then the dual projection matrix may be more
dense than the primal projection matrix. Table 2 shows the block component
densities and sizes for each of the test problems considered. The two exception-
al problems, scn<~l and SCSD~, have many columns and have relatively dense
TWT blocks. These results imply that consideration of the block characteristics
of the deterministic equivalent problem is important before deciding which form

262 BIRGE AND HOLMES

T&k 1. Problem characteristics.

Problem

SC205.1

SC205.2

x205.3

x205.4

SC205.5

ScAGR7.1

SCAGR7.2

SCAGR7.3

SCAGR7.4

SCAGR7.5

SCFXMl.1

SCFXM1.2

SCFXM1.3

SCFXM1.4

SCRS8.1

~cRS8.2

scRS8.3

sc~s8.4

scRs8.5

SCsD8.1

SCsD8.2

ScsD8.3

SCsD8.4

A Matrix Density ADZAT Cholesky Nonzeroes

Scenarios Rows Columns1 Nonzeros (Percent) Dual Primal Split

4 101 102 270 2.62% 367 4% 623

8 189 190 510 1.42% 695 1,200 1,441

16 365 366 990 0.74% 1,343 3,454 3,323

32 717 718 1,950 0.38% 2,639 11,236 8,316

64 1,421 1,422 3,870 0.19% 5,231 39,882 18,928

4 167 180 546 1.82% 1,164 1,191 1,129

8 319 340 1,050 0.97% 2,248 3,443 2,546

16 623 660 2,058 0.50% 4,416 11,123 5,417

32 1,231 1,300 4,074 0.25% 8,752 39,155 11,593

64 2,447 2,580 8,106 0.13% 17,424 145,907 25,743

4 684 1,014 3,999 0.58% 28,564 7,669 9,585

8 1,276 1,914 7,319 0.30% 56,111 14,997 18,449

16 2,460 3,714 13,959 0.15% 125,689 31,819 38,952

32 4,828 7,314 27,239 0.08% 249,402 75,641 90,220

4 140 189 457 1.73% 1,877 1,235 1,367

8 252 341 849 0.99% 5,195 4,771 3,550

16 476 645 1,633 0.53% 4,955 23,137 10,251

32 924 1,253 3,201 0.28% 9,563 88,732 29,337

64 1,820 2,469 6,337 0.14% 18,779 347,247 89,687

4 90 630 1,890 3.33% 31,677 1,433 2,673

8 170 1,190 3,650 1.80% 59,595 3,916 7,066

16 330 2,310 7,170 0.94% 117,113 12,112 19,892

32 650 4,550 14,210 0.48% 232,287 41,588 65,143

’ Slack columns not attached.

of the problem to solve. (We should note that Vanderbei and Carpenter ([36])
recently proposed another alternative for use in a primal-dual algorithm, which
allows some compromise between the AD2AT or ATD2A factorization forms.)

Another statistic that may help distinguish which form of the problem to solve
is the relative row and column densities of the deterministic equivalent linear
program. Table 3 shows these densities for the two largest instances of each
problem. The row (column) density is defined as the number of nonzeros in a
row (column) divided by the number of rows (columns) in the entire constraint
matrix. Since the problem SCFXMl has an unusually low maximum column
density, solving the dual problem may not necessarily remove many nonzeros
from its Cholesky factorization. Likewise, the problem SCSD~ has an unusually

EFFICIENT SOLUTION OF TWO-STAGE STOCHASTIC LINEAR PROGRAMS 263

, .mE*m

Figure 2. Cholesky nonzeros for ~205 SCSD8..

Table 2. Block characteristics.

Problem

SC205

SCFXl

ScAGR7

scas8

SCsD8

T Matrix W matrix Primal Dual Primal and Dual

Rows Columns Rows Columns T4 Tp TWT WWT &b$

13 14 22 22 26 22 25 102 54

92 114 149 225 2,129 12,996 168 5,937 3,450

19 20 39 40 73 80 67 370 124

28 37 28 38 98 185 100 248 221

10 70 21 140 1,732 9,900 1,732 4,880 1,420

high maximum row density, which is consistent with the small number of rows
in its primal problem.

4.2. Computational test parameters and algorithms

The deterministic equivalent test problems, described in the previous section,
were solved using OSL (subsequent improvements to OSL show substantially
lower solution times than those quoted here) and an implementation of the
BQ decomposition on an IBM RS/6000 320H workstation (system performance
measures are given as: 41.2 SPECS, 37 IMIPs, and 11.7 MFLOPs) for the

264 BIRGE AND HOLMES

Table 3. Row and column densities.

serial comparisons and a network of six DEC 5000/320 workstations for the
distributed implementation of BQ. An implementation of the dual affine scaling
algorithm using Schur complements was also developed for the RS/6000 for
stability comparisons. The data structures used were extentions of those found
in ([2]), while the recommended parameter values followed those in ([l]). The
implementations were written in the FORTRAN programming language and
compiled using the RS/6000 XLF compiler with all applicable optimizations.

The solution of the sparse systems of equations required to find the search
direction dy in the standard dual affine method were obtained using Cholesky
factorizations of each St in the BQ decomposition. These factorizations were
computed using SPARSPAK, developed by Chu et. al ([13]). The SPARSPAK
routines use a minimum degree ordering heuristic to permute the columns
and rows to obtain relatively sparse factorizations. (The computational results
obtained were insensitive to the heuristic type.) Since the nonzero structure of
the ADZAT matrix remains the same on each iteration, only the entries of the
matrix are updated at each iteration. Dense working matrices were solved using
LINPACK ([17]).

Feasibility in the BQ implementation was obtained using a Big M scheme
(proposed by Ad1 er et al. in [l]) and a phase I/phase II stopping criterion.
Specifically, a feasible solution may be obtained by solving

max bTy - MY,

subject to ATy - eTya 5 c.

EFFICIENT SOLUTION OF TWO-STAGE STOCHASTIC LINEAR PROGRAMS 265

2

. 6 163264 4 6 161264 4 6 16 32 4 6 16 32 64 4 6 16 32

-

-L?u6lv6.F?md - spat n Mmd

Figure 3. Speedups associated with solving the primal (based on solution time per iteration).

The artificial variable column was not stored explicitly, so its search direction
component was computed symbolically. If the algorithm stops and y: < 0, then
the algorithm proceeds without the artificial variable and yk as an interior point
to the original problem. If y,” < ef(ef = 10e6, in the implementations used here)
then the problem is unbounded or an optimal solution was found. Otherwise,
the problem is infeasible. The initial interior point used for each phase one
procedure was y” = (11~11 /IIA%(()b.

Obtaining the search direction dy using the BQ decomposition requires many
solutions to linear systems of the form $a: = W@Wrr’z = y for all I = 0,. . . , N.
Since these systems are independent of each other, and their symbolic Cholesky
factorizations need to be performed only once, they are ideal “processes” to
compute in a distributed computing environment. As part of this study, a
parallel implementation of the BQ decomposition that assigns groups of scenario
blocks Sl to different processors was developed. The implementation consists of
several node programs and a host program. Each node program uses SPARSPAK
to compute and solve Cholesky factorizations for each block in a set of blocks for
which it is responsible (blocks were spread as evenly as possible across processors).
At each iteration, the host program sends a set of right-hand side vectors
yi,, . . . , yili.V to each node program and collects the solutions SE;‘yil,. . . , Sz;‘yi,.
The host program also performs all other tasks, such as setting up the problem,
finding the search direction dy from the solutions given by the node programs,
and printing the final results.

266

(based an lime per ibraim)

BIRGE AND HOLMES

/ d

l)isGq

I'

: ro

4 6 163264 4 8163264 4 61632 4 6161264 4 6 16 12

Sonmlos

Fig. 4. Speedups associated with using the BQ decomposition (based on solution time per iteration).

Communications between the host program and each node program were
managed by the Parallel Virtual Machine (PVM) package, developed by Beguelin
et. al ([6]). PVM allows rapid prototyping of distributed applications across a
number of UNIX-based environments. Testing was performed on a network of
six DEC 5000/320 workstations connected by a shared ethernet.

The primal barrier point method implemented in the OSL package is described
in ([21]). Given a feasible interior point, the algorithm projects the steepest
descent direction of a barrier problem onto the null space of a set of equality
constraints. This algorithm is fundamentally different from the dual affine scaling
method used in the BQ implementation, since primal feasibility is maintained at
all times. Like the dual affine scaling algorithm, however, the majority of the
computational effort is spent solving linear systems of the form AD2ATdy = b.
OSL also uses a minimum degree row-ordering heuristic to find an efficient
Cholesky factorization of the projection matrix. The OSL implementation used
for this study was programmed to consider all columns as sparse columns in a
full-sized Cholesky factorization. All default parameters were used to solve the
problems, except that the stopping criterion was designed to solve problems to
six significant digits. No preprocessing was performed on the problems prior to
solution. The method to find a feasible interior point used was the same as that
employed in the BQ decomposition.

EFFICIENT SOLUTION OF TWO-STAGE STOCHASTIC LINEAR PROGRAMS 267

4.3. Computational results

All problems were solved using only interior point iterations. As mentioned
above, no preprocessing was used and all system parameters were set to their
system defaults. Solutions were obtained to within six significant digits of (known)
optimality except for the 32 scenario instances of the SCFXM~ and SCSD~ problems.
These problems were not solved to optimality due to computational difficulties
with the BQ implementation. These difficulties will be discussed in Section 4.4.

Table 4 shows the interior point solution times and the total solution times
for the dual, primal and split formulations (as solved by OSCs primal barrier

Table 4. Solution times.

Problem

SC2051

sc205.2

~~205.3

~~205.4

~~205.5

SCAGR7.1

SCAGR7.2

SCAGR7.3

SCAGR7.4

SCAGR'I.5

SCFXMl.1

SCFXM1.2

SCFXM1.3

SCFXM1.4

SCRS8.1

sc~s8.2

sc~s8.3

sc~s8.4

sc~s8.5

SCsD8.1

scs~8.2

scs~8.3

scs~8.4

Notes:

Solution Time (seconl

Dual Primal Split

0.59 0.70 0.76

1.07 1.32 1.46

2.03 3.07 2.82

4.08 9.33 6.64

9.42 44.74 15.44

2.66 1.31 1.32

4.80 2.92 2.66

9.56 8.03 5.33

14.55 41.84 11.48

27.29 263.17 33.23

20.67 10.03 10.29

43.57 21.30 19.37

104.00 50.78 46.73

NA 135.02 144.03

1.92 1.07 1.23

4.57 2.53 2.55

5.55 12.39 6.18

11.52 63.10 34.08

25.30 459.20 60.06

11.25 2.66 2.75

21.40 5.44 5.76

44.93 13.32 13.47

93.82 42.25 39.58

ds)’
BQ

0.243

0.481

1.014

1.987

4.219

0.391

0.861

1.831

4.011

9.124

4.76

6.91

10.46

NA

0.651

1.46

1.836

4.691

11.997

0.909

1.693

3.139

NA

1 Includes factorization time and interior point solution time.

2 Includes solution time, reading and printing time.

Total Time (second

Dual Primal Split

0.87 1.00 1.05

1.56 1.78 1.98

2.87 3.94 3.75

5.55 10.86 8.45

12.56 47.87 18.97

4.22 1.95 1.90

5.79 3.96 3.72

11.45 9.89 7.33

18.02 45.57 15.34

34.19 270.27 40.82

23.30 12.89 13.27

48.14 26.82 24.86

112.74 60.99 57.07

NA 154.72 164.27

2.40 1.53 1.80

5.44 3.37 3.58

6.99 13.88 8.14

14.38 66.03 37.91

30.86 464.90 67.55

12.75 4.28 4.42

24.29 8.61 8.85

50.24 19.24 19.60

104.50 54.30 51.58

BQ

0.264

0.52

1.102

2.206

4.828

0.444

0.971

2.089

4.673

11.064

5.239

8.701

12.56

NA

0.693

1.544

2.022

5.155

13.292

1.065

2.01

3.832

NA

268 BIRGE AND HOLMES

66 46c- ‘6 6conaIlos 166~on~l0a 32 memwlo8

s1234 S¶2346 S123466 s 2 3 4 S 2 3 4 6

PWXSWl-S

Figure 5. Distributed solution times.

method), as well as the BQ decomposition. As might be expected, the dual
requires less time to solve than the primal problem, except when the number of
columns in the primal problem is unusually large or the product TF is unusually
dense. Considering the split formulation-may considerably reduce computational
requirements, but is not as advantageous as the dual problem when the number of
scenarios grows large. Finally, finding the solution using the BQ decomposition
embedded in the dual ajjine algotithm is the fastest option.

Since two different methods and implementations were used in this study, direct
solution time comparisons between problems solved with the BQ decomposition
and the primal, dual, and split variable formulation do not accurately represent the
relative merits of each solution method. Since this study is ultimately concerned
with the efficiency of solving linear systems of the form AD2ATdy = b, more
meaningful comparisons may be made by comparing the CPU time required per
interior point iteration.

Table 5 (and Figures 5 and 6) shows the (average) CPU time in seconds required
per interior point iteration performed on each problem. With the exception of
some smaller problems (e.g., sc205.1, SCFXM1.1, and SCFXM1.2), using the BQ
decomposition is considerably faster than any nondecomposition-based solution
technique. As the number of scenarios in the deterministic equivalent increases,
the BQ decomposition becomes particularly attractive.

The merits of each solution method are highlighted by their relative speedup
factors. Table 6 gives these statistics for the stochastic test set. The absolute
speedup factors shown in Table 6 (Figures 3 and 4) are the ratios between the
solution times for each of the solution methods being compared. Likewise, the

EFFICIENT SOLUTION OF TWO-STAGE STOCHASTIC LINEAR PROGRAMS 269

Z&k 5. Solution time per iteration.

l7-
Problem

~~205.1

SC2052

~~205.3

~~205.4

sc205.5

SCAGR7.1

SCAGR7.2

SCAGR7.3

SCAGR7.4

SCAGR7.5

SCFXMl.l

SCF'XM1.2

SCFXM1.3

ScFxM1.4

SCRS8.1

sc~s8.2

sc~s8.3

SCRS8.4

SCRS8.5

ScSD8.1

SCSD8.2

scs~8.3

SCSD8.4

T Iterations

Primal Dual Split

26 52 33

25 20 34

30 21 34

32 22 36

21 24 38

23 121 33

24 74 35

31 73 34

33 51 34

37 39 53

42 35 46

48 37 42

49 38 50

18 NA 61

20 39 24

26 38 24

22 33 28

28 32 82

28 30 27

18 17 20

20 17 20

20 17 20

20 17 20

-

BQ -

19

22

23

23

24 -

24

27

28

32

34
-

15

15

14

14 -

24

17

25

33

32 -

18

18

24

22
-

T Tie per Iteration t

Primal Dual Split

0.027 0.011 0.032

0.053 0.054 0.058

0.102 0.097 0.110

0.292 0.185 0.235

2.130 0.393 0.499

0.057 0.022 0.058

0.122 0.065 0.106

0.259 0.131 0.216

1.268 0.285 0.451

7.113 0.700 0.770

0.239 0.591 0.288

0.444 1.178 0.592

1.036 2.737 1.141

7.501 NA 2.693

0.054 0.049 0.075

0.097 0.120 0.149

0.563 0.168 0.291

2.254 0.360 0.462

16.400 0.843 2.502

0.148 0.662 0.221

0.272 1.259 0.443

0.666 2.643 0.980

2.113 5.519 2.579

1
cs)

BQ

0.014

0.024

0.048

0.096

0.201

0.019

0.036

0.075

0.146

0.325

0.349

0.460

0.747

0.933

0.029

0.091

0.081

0.156

0.415

0.059

0.112

0.160

0.271

speedup factors based on time per iteration are the ratios between the average
CPU time per iteration for each solution method.

In terms of absolute solution time, Table 6 shows that solving the dual is
not necessarily faster than solving the primal for small problems. However, as
the number of scenarios increases, solving a problem that does not have an
exceptionally dense or large projection matrix is much easier when the dual
formulation is used. In the extreme, solving the dual to problem sc~~8.5 (64

scenarios) was over 18 times faster than solving the primal. As the SCFXM~ and
SCSD~ problems show, the ratios of solution times for solving the dual compared
to the primal are limited to at most approximately 2.5. Solving the split variable
formulation offers smaller performance gains (over solving the primal) than
solving the dual problem, but works for all problems. The problem SCFxM1.4

270 BIRGE AND HOLMES

SC205 - 32 ScenarIoa

= lE+lZ
4 t

Figure 6. Condition estimates-Working matrices.

suggests that these performance gains may be limited for exceptionally large
problems and that there may be a break-even point for each problem where the
performance loss resulting from matrix size increase associated with solving the
split formulation offsets the gain obtained through reduced Cholesky fill-in.

Comparisons of speedup factors based on solution time per iteration show
similar results. With the exception of the SCSD~ problem, the BQ decomposition
is on average 1.95 (standard deviation 0.59) times faster than solving with the dual
factorization. These results confirm the claims made in ([lo]). The problems
SCSD8 and SCFXM~ offer higher speed-ups, and show trends toward increasing
speedup with problem size. The same conclusions appear to hold, though with
less certain speedup factors, when the BQ decomposition is compared with the
split variable formulation.

As mentioned previously, the structure of the BQ decomposition lends itself
to distributed processing. Table 7 (and Figure 5 in the appendix) give the best
run times for the ~~205 problem (run times were obtained using a network
of six DEC 5000/320 workstations) obtained using a parallel version of the BQ
implementation with those obtained using the serial version of the decomposition.
The solution times given in Table 7 are “wall clock” times necessary to calculate
the iterations required by the dual affine scaling algorithm. (Unfortunately, since
the network connecting the processors was a shared resource, obtaining accurate
solution times for larger numbers of processors was quite difficult. Fully utilizing
the parallel implementation requires communications bandwidths unobtainable
over a shared ethernet.) The parallel implementation clearly gives a substantial

EFFICIENT SOLUTION OF TWO-STAGE STOCHASTIC LINEAR PROGRAMS 271

performance improvement over a serial implementation of the BQ decomposition
for large problems. For example, solving the 64-scenario ~~205 problem is almost
three times faster using four processors than the serial version. Speedups are
not linear with the number of processors since the communication requirements
quickly overtake the benefits provided by the distribution of computational work.
The 8- and 16-scenario problems suggest that three or four scenarios per processor
offer the best performance.

Tnbk 6. Speedup comparisons.

Problem

SC2051

x205.2

~~205.3

~~205.4

~~205.5

SCAGR’J.l

SCAGR7.2

SCAGR7.3

SCAGR7.4

SCAGR7.5

SCFXM1.l

SCFXM1.2

SCFXM1.3

SCFXM1.4

SCRS8.1

SCRS8.2

sc~s8.3

SCRS8.4

SCRS8.5

SCSD8.1

SCSD8.2

scs~8.3

scs~8.4

Notes:
L

Speedups based on time per iteration’

Primal Primal puaJ Split

Dual Split BQ BQ

2.37 0.85 0.82 2.29

0.99 0.91 2.26 2.46

1.06 0.93 2.02 2.30

1.57 1.24 1.93 2.45

5.43 4.27 1.95 2.48

2.59 0.99 1.19 3.11

1.88 1.14 1.80 2.96

1.98 1.20 1.76 2.89

4.44 2.81 1.95 3.09

10.16 9.24 2.15 2.37

0.40 0.83 1.69 0.83

0.38 0.75 2.56 1.29

0.38 0.91 3.66 1.53

2.79 NA NA 2.89

1.09 0.71 1.70 2.60

0.81 0.65 1.32 1.64

3.35 1.94 2.08 3.59

6.26 4.87 2.30 2.96

19.45 6.56 2.03 6.02

0.22 0.67 11.18 3.74

0.22 0.61 11.27 3.96

0.25 0.68 16.55 6.14

0.38 0.82 20.38 9.52

’ Ratio of solution times.

272 BIRGE AND HOLMES

Table 7. Speedup comparisons.

Solution Time (seconds)’

Serial Number of Processors
f

Problem Scenarios Algorithm 1 2 3 4 5 6

SC2051 4 3 5555--

sc20.5.2 8 6.7 9 7 8 7 9 11

~~205.3 16 13.2 17 13 12 12 14 15

~~205.4 32 28 38 22 22 19 23 23

~~205.5 64 55.5 -2 34 31 20 93 -2

Notes: 1 Solution times are best encountered in at least 10 runs.

* Blank times unavailable due to system limitations.

4.4. Stability issues

As mentioned previously, a major advantage of the BQ method over the Schur
complement is its natural numeric stability. On the problems currently un-
der study, the BQ decomposition proved to be much more stable than our
implementation of the dual affine scaling algorithm using Schur complements.

The Schur complement suffered numeric instability from two sources. As
mentioned previously, the sparse matrix AsOfA: may be rank deficient and,
hence, ill-conditioned. Rows with dense nonzeros that have no sparse nonzeros
become “null” rows that reduce the rank of the system. Table 8 shows this
behavior on two relatively easy (Sc205 and SCAGR7) problems and one quite
difficult problem (SCFXM~). The easy problems had a small number of basic
variables in the optimal solution. Two approaches were used to solve the SCFXM~

problem. SCFXM~ has the interesting property that only eight of 92 rows of T
contain nonzeros. The first approach placed all columns with nonzeros in both
A0 and T in Ad, while the second approach placed the densest 15% (maximum)
of the A0 columns in A,+ Neither approach worked well. In many cases, we
were unable to get the Schur complement implementation to converge to the
optimal solution.

The second source of instability arises when the Schur complement I +

VT(LLT)-‘V becomes unstable due to dual slack variables corresponding to basic
dense columns approaching zero. In contrast, the main working matrix of the BQ
decomposition (Gr) was more stable, but tended to become more unstable as the
algorithm progressed. Condition estimates for each iteration of a typical problem
are shown in Figure 6. Since G1 is defined as Gi = 0; + ATAo + L’f=,Tf’S,-‘Tl,
it should tend to reduce the effect of instabilities in any given component, until
the diagonal entries of 0: dominate the matrix. Table 8 shows this effect for

EFFICIENT SOLUTION OF TWO-STAGE STOCHASTIC LINEAR PROGRAMS 273

the ~~205 problem. If there are many columns in (Az,!P’)T basic in the opti-
mal solution, G1 may become unacceptably unstable. Table 9 summarizes these
characteristics for the problems in Table 8.

Table 9 suggests that the number of dense basic columns is the most important
factor that affects the stability of the dual afiine scaling algorithm, regardless of
the factorization used to solve the search direction system AD2ATdy = b. Table 9
also suggests that an excessive number of null rows for large problems adversely
affects the stability of the Schur complement procedure.

Table 8. Condition estimate comparisons.

Log of A.DfA~Cholesky Log of Gl Condition Average Log of S,

Condition Estimate After Estimate After Condition Estimate After

Problem 5 its 10 its 15 its 20 its 5 its 10 its 15 its 20 its 5 its 10 its 15 its 20 its

SC2051 -I.% 10.65 15.07 -2 2.53 4.81 9.15 13.98 12.43 10.23 5.76 -1

~C205.2 4.31 6.09 13.41 -2 3.00 3.20 5.75 11.68 12.90 12.42 8.84 4.99

SC205.3 7.65 8.22 14.46 -2 3.49 2.88 5.60 9.97 12.92 12.50 8.28 4.41

x205.4 8.59 9.28 13.84 15.64 3.99 2.80 5.24 9.54 12.95 12.60 938 6.10

x205.5 9.61 8.04 15.72 -* 4.26 .3.06 5.53 8.08 12.81 12.73 10.33 6.45

SCAGR7.1 6.65 6.27 9.69 13.86 3.52 6.02 8.31 12.51 9.28 10.06 10.24 9.66

scxck~7.2 7.13 7.01 9.43 12.86 3.16 6.04 6.73 10.85 8.61 9.22 10.43 10.34

SCAGR7.3 7.67 8.69 -1 -1 3.75 6.29 6.65 9.98 8.57 8.26 9.50 10.71

SCFXMl run with columns in A,J and T removed.

sCFXM1.1 14.35 14.94 -2 - 5.05 6.79 -2 - 4.70 4.70 - -

sCFXM1.2 15.80 -2 -2 - 5.37 6.93 -2 - 4.65 4.65 - -

scFXM1.3 Could not run 5.72 6.93 -2 - 4.65 4.65 - -

SCFXMl.4 Could not run 6.03 6.18 -2 - 4.65 2.24 - -

SCFXMl run with all dense columns removed.

SCFXM1.1 11.08 15.15 -2 - 5.05 6.79 -2 - 4.70 4.70 - -

SCFXM 1.2 11.39 14.79 -2 - 5.37 6.93 -2 - 4.65 4.65 - -

1 Matrix declared effectively singular by SPARSPAKUNPACK.

* LINPACWSPARSPAK unable to estimate condition number.

Overall, the BQ method appears generally more stable for these dual block an-
gular programs than the Schur complement decomposition. Other factorizations
of this type that take even finer structural details into account might improve
this further.

5. Conclusions

This paper reviewed the need for and characteristics of solving (discrete) stochastic

274 BIRGE AND HOLMES

Table 9. Stability measures.

Dense Basic First-Stage

Null Columns Basic Columns

Problem Rows (Dense Columns) (First-Stage Columns)

sc205.1 1 W ll(14)

SC2052 1 w ll(14)

~~205.3 1 VI 9(14)

~~205.4 1 v-9 9(14)

~~205.5 1 5(g) 9(14)

SCAGR7.1 25 3(12) 9(20)

SCAGR7.2 52 5~2) 14(20)

SCAGR7.3 20 5(12) 14(20)

SCFXM1.l 0 30(57) 70(114)

scFxM1.2 0 30(57) 70(114)

SCFXM1.3 0 30(57) 70(114)

SCFXM1.4 0 30(57) 70(114)

linear programs with tied recourse (or more generally, dual block angular
linear programs) using interior point methods. Direct application of interior
point methods to larger problems of this nature is computationally difficult if
not infeasible. The reason for this lies in the many dense columns that are
characteristic of these problems. To resolve this problem, four methods that
directly address the problem of dense columns were reviewed. Reformulation of
the program to break up these dense columns can improve the performance of
interior point methods, but may require a substantial increase in problem size.
Solving the problem’s dual (or using the transpose factorization) is also possible
and generally works well in practice. However, solving the dual for problems with
dense or large recourse matrices does not work well. Partitioning the constraint
matrix into two matrices with dense and nondense columns is another alternative
but suffers from inherent numerical instability.

Decomposing the constraint matrix into the sum of two matrices and applying
the Sherman-Morrison-Woodbury formula is the BQ decomposition alternative
studied here in detail. Computational experience with this method suggests
that it substantially reduces the effort needed to solve for the search direction
at each iteration, and is also numerically stable. Solving the dual or primal
requires a Cholesky factorization of a sparse, but still large matrix. By contrast,
the BQ decomposition technique requires several smaller, but independent,
factorizations. In practice, this effort is small compared to that required by
nondecomposition-based techniques. Computational experience indicates that
speedups may increase with the number of scenarios. Taking advantage of

EFFICIENT SOLUTION OF TWO-STAGE STOCHASTIC LINEAR PROGRAMS 275

the ease with which the decomposition may be parallelized further reduces the
computational requirements necessary to solve dual block angular programs and,
in practice, offers substantial performance improvements.

Acknowledgments

This material is based upon work supported by the National Science Foundation
under award No. EECS-8815101.

References

[l] 1. Adler, N. Karmarkar, M.G.C. Resende, and G. Veiga, “An implementation of Karmarkar’s
algorithm for linear programming,” Math. Programming, 44, 297-335, 1989. Errata in Math.
Programming, vol. 50, p. 415, 1991.

[2] I. Adler, N. Karmarkar, M.G.C. Resende, and G. Veiga, “Data structures and programming
techniques for the implementation of Karmarkar’s algorithm,” OR&l J. on Comput., vol. 1, pp.
84-106, 1989.

[3] J. Arantes and J. Birge, “Matrix structure and interior point methods in stochastic programming,”
Presentation at Fifth Int. Stochastic Programming Con{, Ann Arbor, MI, 1989.

[4] E. R. Barnes, “A variation on Karmarkar’s algorithm for solving linear programming problems,”
Math. Programming, vol. 36, pp. 174-184, 1986.

[5] E.M.L. Beale, “On minimizing a convex function subject to linear inequalities,” J. Royal Stat.
Sot. vol. B, 17, pp. 173-184, 1955.

[6] A. Beguelin, J. Dongarra, A. Geist, R. Mancheck, and V. Sunderam, “A user’s guide to PVM:
Parallel virtual machine,” Report ORNVM-11826, Oak Ridge Nat. Lab., Dept. of Energy,
Oak Ridge, TN, 1991.

[7] J. R. Birge, “Decomposition and partitioning methods for multistage stochastic linear programs,”
Oper. Res., vol. 33, pp. 989-1007, 1985.

[8] J. R. Birge, R. M. Freund, and R. J. Vanderbei, “Prior reduced fill-in in the solution of equations
in interior point algorithms,” Tech. Report, Sloan School of Management, M.I.T. Cambridge,
MA, 1990.

[9] J. R. Birge, H. I. Gassman, and D. Holmes, STOPGEN stochastic linear program deterministic
equivalent problem generator, 1991.

[lo] J. R. Birge and L. Qi, “Computing block-angular Karmarkar projections with applications to
stochastic programming,” Mgt. ScL, 34:12, 1472-1479, 1988.

[ll] W.J. Carolan, J.E. Hill, J.L. Kennington, S. Niemi, and S.J. Wichmann, “An empirical evaluation
of the KORBX algorithms for military airlift applications,” Oper. Res. vol. 9:2, pp. 169-184, 1990.

[12] I.C. Choi, C.L. Monma, and D.F. Shanno, “Further development of a primal-dual interior point
method,” Report 60-88, Rutgers Ctr. for Oper. Res., Rutgers Univ., New Brunswick, NJ, 1988.

[13] E. Chu, A. George, J. Liu, and E. Ng, “SPARSPAK: Waterloo sparse matrix package user’s
guide for SPARSPAK-A,” Res. Report CS-84-36, Dept. of Comput. Sci., Univ. of Waterloo,
Waterloo, Ontario, 1984.

[14] G. Dantzig, “Linear programming under uncertainty,” Mgt. Sci., vol. 1, pp. 197-206, 1955.
[15] G. Dantzig and A. Madansky, “On the solution of two stage linear programs under uncertainty,”

From. of the Fourth Berkely Symp. on Math. and Probability Vol. 1, Univ. of California Press,
Berkely, CA, pp. 165-176, 1961.

276 BIRGE AND HOLMES

[16] 1.1. Dikin, “Iterative solution of problems of linear and quadratic programming,” Soviet Mu&
Doklady, vol. 8, pp. 674-675, 1967.

[17] J. Dongarra, J.R. Bunch, C.B. Moler, and G. W. Stewart, LINPACK Users Guide, SIAM
Publications, Philadelphia, PA, 1978.

[18] S.C. Eisenstadt, M.C. Gurshy, M.H. Shultz, and A.H. Sherman, “The Yale sparse matrix package,
I. The symmetric codes,” ACM Trans. on Math. Software, 1981.

[19] HI. Gassman, “Optimal harvest of a forest in the presence of uncertainty,” Can. i. forest Res.,

vol. 19, pp. 1267-1274, 1989.
[20] D.M. Gay, “Electronic mail distribution linear programming test problems,” Math. Programming

Sot. COAL Newsletter, December, 1985.
[21] P.E. Gill, W. Murray, M.A. Saunders, J.A. Tomlin, and M.H. Wright, “On projected Newton

methods for linear programming and equivalence to Karmarkar’s projection method,” Math.
Programming, vol. 36, pp. 183-201, 1986.

[22] J.K. Ho and E. Loute, “A set of linear programming test problems,” M&/r. Progrumming, vol.

20, pp. 245-250, 1981.
[23] Int. Business Machines Corp. (IBM) “Optimization subroutine library guide and reference,”

document SC23-0519-01, 1991.
[24] N. Karmarkar, “A new polynomial time algorithm for linear programming,” Combinatoricu, vol.

4, pp. 373-395, 1984.
[25] A.J. King, “Stochastic programming problems: Examples from the literature,” Numerical Tech-

niques for Stochastic Optimization, Yu. Ermoliev and R.J.-B. Wets, (eds), 543-567, 1988.
[26] F.V. Louveaux, “A solution method for multistage stochastic programs with recourse with

application to an energy investment problem,” Oper: Res. vol. 28, pp. 889-902, 1980.
[27] I. Lustig, R. Marsten, and D. Shanno, “Computational Experience with a primal-dual interior

point method for linear programming,” Linear Algebra and its Applications, vol. 152, pp. 191-222,
1991. (also Technical Report SOR 89-17, Dept. of Civ. Engg. and Oper. Res., Princeton Univ.,
Princeton, NJ).

[28] I Lustig, J. Mulvey, and T. Carpenter, “Formulating stochastic programs for interior point
methods,” Oper: Res. vol. 39:5, pp. 757-770, 1991.

[29] R. Marsten, R. Subramanian, M. Saltzman, I. Lustig, and D. Shanno, “Interior point methods
for linear programming: Just call Newton, Lagrange, and Fiacco and McCormick!” Interfaces,
vol. 20:4, pp. 105-116, 1990.

[30] C.L. Monma and A.J. Morton, “Computational experience with a dual affine variant of Kar-
markar’s method for linear programming,” Oper: Res. Letters, vol. 6, pp. 261-267, 1987.

[31] J.M. Mulvey, “A network portfolio approach for cash management,” J. Cash A4gl. vol. 4, pp.
46-48, 1984.

[32] J.M. Mulvey and H. Vladimirou, “Stochastic network optimization models for investment plan-
ning,” B. Shelby, ed., to appear, Ann. Oper. Res., special issue on Networks and Applications,
1989.

[33] B.A. Murtaugh and M.A. Saunders, “MINOS 5.1 user’s guide,” Tech. Report SOL 83-2OR,
Systems Optimization Lab., Stanford Univ., Stanford, CA, 1983.

[34] DE Shanno, and A. Bagchi, “A unified view of interior point methods for linear programming,”
Ann. of Open Res., vol. 22, pp. 55-70, 1990.

[35] R. Van Slyke and R. Wets, “L-shaped linear programs with applications to optimal control and
stochastic programming,” SIAM J. Appl. Math., vol. 17, pp. 638-663, 1969.

[36] R.J. Vanderbei and TJ. Carpenter, “Symmetric indefinite systems for interior point methods.”
Tech. Report SOR 91-7, Dept. of Civ. Engg. and Oper. Res., Princeton Univ., Princeton, NJ,
1991.

[37] R.J. Vanderbei, M.S. Meketon, and B.A. Freedman, “‘A modification of Karmarkar’s linear
programming algorithm,” Algorithmica, vol. 1, pp. 395-407, 1986.

