
Efficient Solutions for Stochastic Shortest Path Problems with Dead Ends

Felipe Trevizan
Data61, CSIRO

Australian National University
felipe.trevizan@anu.edu.au

Florent Teichteil-Königsbuch
Airbus

Central Research & Technology
florent.teichteil-koenigsbuch@airbus.com

Sylvie Thiébaux
Data61, CSIRO

Australian National University
sylvie.thiebaux@anu.edu.au

Abstract

Many planning problems require maximizing the
probability of goal satisfaction as well as min-
imizing the expected cost to reach the goal. To
model and solve such problems, there have been
several attempts at extending Stochastic Shortest
Path problems (SSPs) to deal with dead ends and
optimize a dual optimization criterion. Unfortu-
nately these extensions lack either theoretical ro-
bustness or practical efficiency. We study a new,
perhaps more natural optimization criterion cap-
turing these problems, the Min-Cost given Max-
Prob (MCMP) criterion. This criterion leads to
the minimum expected cost policy among those
with maximum success probability, and accu-
rately accounts for the cost and risk of reaching
dead ends. Moreover, it lends itself to efficient
solution methods that build on recent heuristic
search algorithms for the dual representation of
stochastic shortest paths problems. Our experi-
ments show up to one order of magnitude speed-
up over the state of the art.

INTRODUCTION

Stochastic Shortest Path Problems (SSPs) [Bertsekas and
Tsitsiklis, 1991] are the de facto model for planning in
stochastic environments in which an agent need to reach a
goal state while minimizing the cost of doing so. Most theo-
retical results regarding SSPs assume that there are no dead
ends in the environment, yet this is hardly the case in prac-
tice. Unfortunately, if dead ends are unavoidable, i.e., the
probability of reaching the goal is always less than 1, SSPs
implicitly become a multi-objective optimization problem
with two potentially conflicting objectives: the maximiza-
tion of the probability to reach the goal and the minimiza-
tion of the expected cost to reach the goal.

To illustrate the conflict between these two objectives, con-
sider a factory that can use either a human employee or a
robot to manufacture a fragile good. Let the cost of the ac-
tions represent the cost in dollars of the actions for both
the human (e.g., fraction of their salary) and the robot (e.g.,

cost of energy to perform the action) and the dead ends
represent states in which the good cannot be manufactured
anymore and the source materials are wasted. For this ex-
ample, the robot is not capable of perfectly grasping the
fragile source materials but if it succeeds (pr = 0.9), the
good can be perfectly manufactured due to the robots pre-
cision at an expected cost of $100 for the electric energy
used. Alternatively, human employees perfectly handle the
fragile source materials; however, they lack the precision
of the robot and can only complete the manufacture of the
good with probability ph = 0.95 with an expected labour
cost of $500. The conflict appears when these two options
are compared: is it worth paying the extra $400 to increase
the probability of producing the good from 0.9 to 0.95?

One approach, known as Finite-Penalty [Mausam and
Kolobov, 2012], is to assign a finite and fixed penaltyD for
not reaching the goal. For instance, the expected cost of as-
signing a human employee and a robot in the factory exam-
ple is 475 + 0.05D and 90 + 0.1D, respectively. Although
intuitive, Finite-Penalty has the drawback of labelling any
state with expected cost greater than D as a dead end. In
our example, if the source materials cost $10 and we use
this value as dead-end penalty D, then using either the hu-
man or the robot are considered solutions that never reach
the goal since their expected costs is greater than D = 10.
Although it might be easy to derive a good value for D
in our factory example, this is not the case for domain-
independent planning (i.e., for algorithms that do not use
knowledge of the problem being solved) which is the scope
of this paper. For instance, there is no domain-independent
method to deriveD automatically given a problem descrip-
tion. There is also no known method to learn a function
that returns, for all planning problems, a value of D that
is always large enough but never so large that it leads to
numerical instability or increased CPU time.

In order to avoid the need for the fixed penalty D (and its
drawbacks), one can ignore the expected cost and maxi-
mize only the probability to reach the goal. This approach,
known as Max-Prob [Kolobov et al., 2011], would always
choose the human employee in the factory example; how-
ever it would be unable to distinguish between different
employees with the same probability of success but with
different pay rates. To be able to distinguish such cases in

addition to getting rid of finite penalties for dead ends, two
similar approaches have been proposed: S3P [Teichteil-
Königsbuch, 2012] and iSSPUDE [Kolobov et al., 2012].
Both approaches minimize the expected cost to reach the
goal in a transformed SSP in which dead ends are removed
and whose feasible solutions are exactly the same as the
solutions that maximizes the probability of reaching the
goal in the original problem. Unfortunately, computing this
dead-end-free SSP potentially requires enumerating all the
possible Max-Prob solutions which, as we later show, can
be extremely inefficient.

In this paper, we introduce a new optimization criterion
for SSPs with dead ends, the Min-Cost given Max-Prob
(MCMP) criterion, which leads to the minimum expected
cost policy among those with maximum success probabil-
ity. MCMP differs from S3P and iSSPUDE on how paths
leading to dead ends are accounted for. This difference re-
sults in no transformation from the original SSP to a dead-
end-free SSP being required, whether a priori or on-the-fly.
As we show in our experiments, the optimal MCMP solu-
tion for SSPs can be computed up to 1 order of magnitude
faster than its respective S3P and iSSPUDE solution.

This performance improvement is due to how search is per-
formed in the space of Max-Prob solutions: S3P and iS-
SPUDE potentially compute the probability of reaching the
goal for all the states reachable under any Max-Prob pol-
icy from the initial state. In contrast, MCMP need only
find the maximum probability of reaching the goal from
the initial state, and then search in the original SSP search
space for a solution that minimizes the expected cost and
reaches the goal with that probability. This allows MCMP
to explore the original SSP search space using heuristics
for both the probability of reaching the goal and the ex-
pected cost of reaching the goal. Moreover, the MCMP
criterion is naturally expressed using dual formulation of
SSPs and can trivially accommodate cost constraints; there-
fore, it also trivially applies to Constrained SSPs [Altman,
1999], which is not possible using S3P or iSSPUDE.

NOTATION AND BACKGROUND
A Stochastic Shortest Path problem (SSP) [Bertsekas and
Tsitsiklis, 1991] is a tuple S =〈S, s0,G,A, P, C〉 in which:
S is the finite set of states; s0 ∈ S is the initial state; G ⊆ S
is the non-empty set of goal states; A is the finite set of
actions; P (s′|s, a) is the probability that s′ is reached after
applying action a in state s; and C(s, a) ∈ R∗+ is the cost
of applying action a in state s. We represent by A(s) the
actions applicable in state s.

A solution to an SSP is a policy π mapping from states to
actions. We denote by Π the set of all (deterministic) poli-
cies for S. A trace Tπ,s is a sequence of states s s1s2 . . . vis-
ited when following π ∈ Π from s. We denote the i-th state
of Tπ,s by T iπ,s and require thatP (T i+1

π,s |T iπ,s, π(T iπ,s)) > 0

for all pairs T iπ,sT
i+1
π,s ∈ Tπ,s. If s is omitted, then s0 is im-

plied. Also, π is omitted when clear from context.

A trace T can be finite or infinite. If finite, the last state s of
T is either a goal state (i.e., s ∈ G) or there is no applicable
action in s (i.e., A(s) = ∅). Moreover, for a finite trace T ,
its probability is P (T) =

∏|T |
i=1 P (T

i+1|T i, π(T i)) and its
cost is C(T) =

∑|T |
i=1 C(T

i, π(T i)). Infinite traces happen
when the execution of π enters a cycle that never reaches
the goal, getting trapped there forever. Since action costs
are strictly positive, the cost of any infinite trace is infinity.

We denote by Tπ,s the set of all traces of π from s. Notice
that Tπ,s may be an infinite set (e.g., if an action prescribed
by π has a positive probability of looping). We also parti-
tion Tπ,s into the set of traces that reach the goal (TG

π,s)
and its complement TDE

π,s, i.e, the set of traces that do not
reach the goal. While every trace in TG

π,s is finite (because
its last state must be a goal state), TDE

π,s can have infinite
traces, that is, traces that loop indefinitely without reaching
a goal state. We use the same notation simplifications for
Tπ,s and its partitions as for traces.

Most results and algorithms for SSPs assume that there are
no unavoidable dead ends, i.e., there exists a policy for
which the goal can be reached from the initial state with
probability 1. Using our trace notation, this is equivalent to
assuming that there exists a policy π such that TDE

π,s0 = ∅.
When this assumption holds, the optimal solution of an SSP
is characterized by a unique fixed-point solution for the fol-
lowing set of equations, known as Bellman equations:

V ∗(s) = mina∈A(s) C(s, a) +
∑
s′∈S P (s

′|s, a)V ∗(s′)
for all s ∈ S \ G and V ∗(sg) = 0 for all sg ∈ G. Any
greedy policy w.r.t. to the optimal value function V ∗ (i.e.,
by applying argmin instead of min) is an optimal policy.

In the presence of dead ends, the Bellman equations might
diverge resulting in the optimal solution to be ill-defined.
This is always the case when the problem has unavoidable
dead ends. Several criteria have been proposed to charac-
terize the optimal solution of SSPs with dead ends, such as
the Finite-Penalty criterion:

Definition 1 (Finite-Penalty). Given a dead-end penalty
D ∈ R∗+, find a greedy policy for the unique fixed-point
solution of:

V ∗FP(s) = min{D, min
a∈A(s)

C(s, a)+
∑
s′∈S

P (s′|s, a)V ∗FP(s
′)}

for all s ∈ S \ G and V ∗FP(sg) = 0 for all sg ∈ G.

The Finite-Penalty criterion is equivalent to solving the
SSP S′ = 〈S, s0,G,A′, P ′, C ′〉 where, for all s ∈ S,
A′(s) = A(s)∪{give-up},C ′(s, give-up) = D,C ′(s, a) =
C(s, a) for a ∈ A(s), and P (sg|s, give-up) = 1 for any
sg ∈ G. Notice that S′ has no dead ends and can be solved
using any algorithm for SSPs.

A drawback of the Finite-Penalty criterion is that every
state with expected cost of reaching the goal greater than
the dead-end penalty D is considered a dead end, regard-
less of its maximum probability of reaching the goal. E.g.,

d3 d2 d1s0

0a

1asg

0.5

0.5

Figure 1: Example of SSP with multiple fixed-point solu-
tions for P ∗. The goal set is G = {sg} and P ∗(s0) = 0.5.

consider a simple SSP with two states s0 and sg (G={sg})
and one action a s.t. P (sg|s0, a)=p>0 and P (s0|s0, a)=
1−p. If C(s, a)/p is greater thanD then s0 is considered a
dead end under the Finite-Penalty criterion and its optimal
policy prescribes the “give-up” action for s0 even though
the probability of reaching sg from s0 is 1. To overcome
this, an alternative is to directly maximize the probability
of reaching the goal, a criterion known as Max-Prob:
Definition 2 (Max-Prob). Find a policy π that maximizes
the probability of reaching any goal state sg ∈ G when
following π from s0, i.e., argmaxπ∈Π P (T

G
π,s0). We denote

by pmax this maximum probability and by ΠMP the set of all
Max-Prob policies, i.e., {π ∈ Π|P (TG

π,s0) = pmax}.
The optimal solution under the Max-Prob criterion can
be computed by solving a problem M in which every-
thing stays the same as in the original SSP S except that
we want to maximize the expected sum, over all traces
T ∈ Tπ,s0 , of the function R(s, a) =

∑
sg∈G P (sg|s, a).

We denote the solution of the Bellman equations for M
as P ∗ and P ∗(s) represents the maximum probability of
reaching the goal from s ∈ S (thus pmax equals P ∗(s0)).
Also, P ∗(s) ∈ [0, 1] for all s even if M has unavoidable
dead ends; however, the Bellman equations forM can have
several non-optimal fixed-point solutions. For instance, the
SSP in Fig. 1 has the following non-optimal fixed-point so-
lution forM: P (d1) = 0 and P (sg) = P (s0) = P (d2) =
P (d3) = 1.

One approach to compute P ∗ (and avoid being trapped in
a non-optimal solution) is to apply value iteration on M
after initializing the algorithm with 1 for all sg ∈ G and 0
otherwise. Another approach is to solveM using heuristic
search algorithms such as FRET [Kolobov et al., 2011] and
FRET-π [Steinmetz et al., 2016]. Both these algorithms it-
erate between: (i) finding a fixed-point solution for P ∗ us-
ing any optimal heuristic search algorithm for SSPs; and
(ii) post processing the candidate solution to remove cycles
that have not converged to P ∗. In our example from Fig. 1,
step (ii) would identify the loop between d2 and d3 and up-
date P (d2) and P (d3) to 0.

In addition to the non-optimal fixed-point solutions, the
Max-Prob criterion has another drawback: all policies in
ΠMP are equally good for Max-Prob, independently of their
expected cost. The S3P criterion addresses this isssue:
Definition 3 (S3P [Teichteil-Königsbuch, 2012]). Find a
policy

π = argmin
π∈ΠMP

E[C(T) |T ∈ TG
π,s0].

The S3P criterion is inspired by the evaluation metric
used at the International Probabilistic Planning Competi-
tion (IPPC) up to 2008 [Younes et al., 2005, Bryce and

Buffet, 2008] that accounted both for the proportion of sim-
ulations of a policy that reached the goal and for the av-
erage cost accumulated by these policies only when they
reached the goal. Thus, S3P only considers policies in ΠMP

and the traces of these policies that reach the goal. More-
over, given our assumption of C(s, a) > 0 for all s ∈ S and
a ∈ A(s), the S3P criterion is equivalent to the iSSPUDE
criterion [Kolobov et al., 2012]. Given P ∗, the S3P optimal
solution of an SSP is equivalent to the optimal solution of
the following transformed SSP [Kolobov et al., 2012]:

Definition 4 (P ∗-SSP). Given an SSP 〈S, s0,G,A, P, C〉
and its P ∗, the P ∗-SSP is the tuple 〈S, s0,G,A′, P ′, C〉
where: A′(s) = A(s) if P ∗(s) > 0 and empty otherwise;
and P ′(s′|s, a) = P (s′|s, a)P ∗(s′)/P ∗(s) if P ∗(s) > 0
and 0 otherwise.

Since P ∗-SSP has no dead ends, any SSP algorithm can be
used for solving it. In practice, P ∗ can be computed on-the-
fly while solving the P ∗-SSP, as we do in our experiments.

MCMP CRITERION
As shown in the previous section, the S3P criterion extends
the Max-Prob criterion by ranking Max-Prob policies ac-
cording to their expected cost when the traces reaching
dead ends are ignored. One drawback of this approach is
that, when executing an S3P optimal policy π∗S3P, unavoid-
able dead ends will still be reached and the cost of doing so
will also be incurred; therefore the optimal value computed
by the S3P algorithms might be different from the expected
cost obtained by an execution π∗S3P. In this section we ad-
dress this issue, but first let us define the function ψ that
truncates a trace at the first encountered dead end state:

Definition 5 (ψ). Let ψ : T 7→ T be the function:

ψ(sisi+1 · · ·)=

{
si if |T |=1 or P (TG

si)=0

si ψ(si+1 · · ·) otherwise

Notice that the ψ(T) is always a finite trace since either a
goal is reached or a state si with probability 0 of reach-
ing the goal (P (TG

si) = 0) is reached and si+1si+2 · · · are
ignored. Moreover, ψ(T) = T for all T ∈ TG.

Our optimal criterion for SSPs with dead ends, the Min-
Cost given Max-Prob (MCMP) is defined in Definition 6
and, although it does not distinguish the different traces
reaching the same dead end, it differs from S3P because
MCMP considers the complete set of traces Tπ,s0 . Exam-
ple 1 illustrates the differences between S3P and MCMP
and show that their optimal policies can be different.

Definition 6 (MCMP). The Min-Cost Max-Prob (MCMP)
problem is to find a policy

π = argmin
π∈ΠMP

E[C(ψ(T))].

Example 1. Consider the SSP in Fig. 2. There are two pos-
sible policies in this SSP: π0 that always applies a0 and π1
that always applies a1. The probability of reaching sg for

s0

d1 s1

s2

0a
1a

s0 1 1

s2 −− 2

s1 3 −−

Costs

d2 d3

gs

0.5

0.5 0.5

0.
5

0.25

0.5
0.25

Figure 2: Example of SSP. The goal is G = {sg}. The ini-
tial state is s0 and states d1, d2 and d3 are dead ends. See
Example 1 for more details.

each one of them is: P (TG
s0,π0

)= .5(.5+.5P (TG
s0,π0

))=1/3

and P (TG
s0,π1

) = .25+ .25P (TG
s0,π1

) = 1/3, thus ΠMP =

{π0,π1} and pmax=1/3. For the S3P criterion, we have:
π0: Only traces of the form (s0s1)

+sg are considered,
where (s0s1)

+ represent 1 or more repetitions of the
sequence s0s1. The expected cost of π0 is V π0

S3P(s0) =

(
∑∞
i=1(0.5×0.5)i(1 + 3)i)/pmax=16/3.

π1: Only (s0s2)
+sg traces are considered. The expected

cost of π1 is V π1

S3P(s0)=(
∑∞
i=1(1×0.25)i(1+2)i)/pmax=4.

For MCMP, we have:

π0: All traces in Tπ0,s0 are finite since A(d1) = ∅. Thus
ψ(T) = T for all T ∈ Tπ0,s0 . Since sg is reached with
probability pmax = 1/3, then s1 is visited in expectation
pmax/0.5 = 2/3 and s0 visited (2/3)/0.5 = 4/3. Thus,
V π0

MCMP(s0)=4/3+3×2/3=10/3.

π1: Since d2 is the first state in the infinite loop d2d3d2 · · · ,
ψ(s0 · · · s2d2d3d2 · · ·) = s0 · · · s2d2. Thus, we only
need to consider the expected number of times the costs
C(s0, a1) = 1 and C(s2, a1) = 2 are incurred. Since
sg is reached with probability pmax = 1/3, then s0 and
s1 are visited in expectation pmax/0.25 = 4/3. Therefore
V π1

MCMP(s0) = 4/3(1 + 2) = 4.

Therefore, V π0

MCMP(s0) < V π1

MCMP(s0) = V π1

S3P(s0) <
V π0

S3P(s0), and the optimal policy according to the MCMP
and S3P criteria is π0 and π1, respectively.

As illustrated above, ignoring the traces that reaches dead
ends can lead to unexpected optimal policies. In the case of
our factory scenario from the introduction, the S3P criterion
would consider that we do not have to pay for electricity or
the employee wages if a failure happened when producing
the good. In contrast, the MCMP criterion accounts for all
the cost until a dead end is reached, therefore, the electricity
and employee wages are considered.

ALGORITHM FOR MCMP
Although it might seem costly to detect the infinite traces
and prune them, this can be efficiently done by solving LP 1
using the heuristic search algorithm i-dual [Trevizan et al.,
2016] (more below). This LP is a modified version of the
dual LP for SSPs with no dead ends [Altman, 1999]. Its
variables are the policy’s occupation measures xs,a repre-
senting the expected number of times action a ∈ A(s) will
be executed in state s.

min
x

∑
s∈S,a∈A

xs,aC(s, a) s.t. (C1) – (C6) (LP 1)

xs,a ≥ 0 ∀s ∈ S, a ∈ A(s) (C1)

in(s) =
∑

s′∈S,a∈A(s′)

xs′,aP (s|s′, a) ∀s ∈ S (C2)

out(s) =
∑
a∈A(s)

xs,a ∀s ∈ S \ G (C3)

out(s)− in(s) ≤ 0 s ∈ S \ (G ∪ {s0}) (C4)
out(s0)− in(s0) ≤ 1 (C5)∑
sg∈G

in(sg) = pmax (C6)

The modifications in LP 1 from the regular dual LP are on
constraint C4 – C6. These modifications implicitly allow
states to choose a give-up action as in the Finite-Penalty
criterion; however, this implicit give-up action has cost
zero. The implicit give-up actions are encoded in C4 and
C5 by upper bounding the conservation of flow instead
of using an equality constraint. Formally, C4 is equiva-
lent to out(s)− in(s)+xs,give-up = 0 for xs,give-up ≥ 0 and
C(s, give-up) = 0, thus not affecting the objective value.
Moreover, C6 constrains the solution found by LP 1 to be in
ΠMP because it enforces that, from the one unit of flow in-
jected in the system (C5), pmax units of flow reach the goal
(pmax is a constant for LP 1). Therefore, the implicit give-up
actions are only used when strictly necessary, as otherwise
not enough flow would reach the goal. They are used in a
state s that either: has no applicable action, in which case
out(s) can only be zero while in(s) might be greater than
0; or is an infinite loop that never reaches the goal, in which
case the give-up action avoids an infinite cost.

Computing the MCMP solution using LP 1 has the advan-
tage that it only requires pmax, which can be computed by
finding any Max-Prob policy π ∈ ΠMP. In contrast, the S3P
criterion requires the P ∗-SSP, thus all Max-Prob policies
will be considered in the worst case. Another advantage is
that we can solve LP 2 to compute pmax and, since the op-
timal solution x∗ for LP 2 (below) is a feasible solution for
LP 1, we can use x∗ to warm start the search in LP 1.

max
x

∑
sg∈G

in(sg) s.t. (C1) – (C3), (C7) – (C8) (LP 2)

out(s)− in(s) = 0 ∀s ∈ S \ (G ∪ {s0}) (C7)
out(s0)− in(s0) = 1 (C8)

LP 2 uses the original dual SSP flow constraints (C7 and
C8) and it represents the dual formulation for the Max-
Prob problem: we inject one unit of flow in s0 and max-
imize the flow reaching the sink, i.e., the goal. Its opti-
mal value is pmax and its optimal solution x∗ can be con-
verted into an optimal Max-Prob policy π∗MP(s) = a where
a ∈ A(s) is the only action such that xs,a > 0 [Altman,

1999]. Differently from the space explored by Value Itera-
tion, FRET, and FRET-π, the dual space explored by LP 2
does not contain non-optimal fixed-point solutions. For in-
stance, in the SSP shown in Fig. 1, the dual formulation pre-
vents any flow from reaching d2 because, by C7, we have:
out(d2)−in(d2)=xd2,a1−(xs0,a1+xd3,a1)=xs0,a1 =0.

Lastly, i-dual [Trevizan et al., 2016] can be used to effi-
ciently solve LP 1 and LP 2 using heuristic search. Given
an SSP, i-dual generates and solves increasingly large LPs
(in the dual representation) to solve the current SSP. A pa-
rameter of i-dual is a cost heuristic for SSPs and this heuris-
tic is used for choosing what states should be expanded to
generate the next LP. I-dual can be trivially adapted for the
MCMP criterion as follows. For solving LP 1 (MCMP sec-
ond phase), LP 1 is used as template in line 12 of the orig-
inal i-dual pseudo-code. Notice that, the heuristic for this
stage is any cost heuristic for SSPs, e.g., hmax [Teichteil-
Königsbuch et al., 2011], hroc and hpom [Trevizan et al.,
2017]. Similarly, the first stage of MCMP (Max-Prob) can
be solved by using LP 2 as template for the generation of
LPs in line 12 of i-dual. It is important to notice that, for the
first stage of MCMP, the cost of actions is ignored (LP 2
does not uses the cost function of the SSP) and the heuris-
tic passed as a parameter to i-dual is a (admissible) Max-
Prob heuristic, i.e., a (upper) bound on P ∗. For both stages,
the dead-end penalties required by i-dual are ignored since
both LP 1 and LP 2 do not use them. The parameter pmax

of LP 2 is obtained as the objective function of the last LP
generated by i-dual when solving the first stage of MCMP.

RELATIONS BETWEEN CRITERIA
A property of the MCMP criterion, independently of the
approach used to solve it, is that a dead-end penalty can
be easily incorporated to the MCMP solution without the
need to re-solve the problem. Formally, given pmax and
V ∗MCMP(s0), the optimal solution cost for s0 with dead-end
penalty D is V ∗MCMP(s0) + (1− pmax)D. This is equivalent
to useC(ψ(T))+D as the cost for all traces T ∈ TDE since
E[C(ψ(T)) +D|T ∈ TDE] = E[C(ψ(T))|T ∈ TDE] +D.

The advantage of this approach over Finite-Penalty is that
states s s.t. P (TG

s) > 0 can have expected value greater
than D, that is, the planner cannot avoid a large expected
cost solution from s by using the give-up action. For in-
stance, consider Example 1 and let the dead-end penalty be
D=0.5. For Finite-Penalty, we have V π0

FP (s0)=V
π1

FP (s0)=
0.5 since C(s0, a0) = C(s0, a1) = 1 > D; moreover,
π∗FP(s0) = give-up. Alternatively, for MCMP, the optimal
policy is π0 and its expected cost with the dead-end penalty
is 10/3 + 0.5× 2/3 = 11/3.

This intuition that the MCMP criterion captures the ex-
pected cost from s0 more accurately than Finite-Penalty is
formalized in the following theorem:

Theorem 1. Let V ∗FP and V ∗MCMP be the optimal solution of
Finite-Penalty and MCMP, respectively, for the same SSP
and D ∈ R∗+ be the dead-end penalty used by Finite-

Penalty. Then
V ∗FP(s0) ≤ V ∗MCMP(s0) + (1− pmax)D

Proof Sketch. Notice that V ∗FP(d) = D for all d ∈ S such
that P (TG

d) = 0 since d either (i) has no applicable ac-
tion and thus it is assigned a cost of D; or (ii) is in a loop
that never reaches the goal, thus it has infinite expected
cost and the min operator of Finite-Penalty limits its ex-
pected cost to D. Therefore, (1 − pmax)D is equivalent
to the expected cost incurred in the Finite-Penalty for all
such states d. Moreover, by the definition of Finite-Penalty,
V ∗FP(s) ≤ D for all s ∈ S even if P (TG

s) = 1. Thus
Finite-Penalty considers states with expected cost greater
than D as dead ends. However, this is not the case for
MCMP and V ∗MCMP(s) can be arbitrarily large since it ac-
counts for the real costs of transitions independently of D.
Thus, V ∗FP(s0)− (1− pmax)D ≤ V ∗MCMP(s0).

Similarly to MCMP, we can add a dead-end penalty in S3P
criterion, i.e., define C(T) = D for T ∈ TDE. Formally,
E[C(T)]

= pmax E[C(T)|T ∈ TG] + (1− pmax)E[C(T)|T ∈ TDE]

= pmaxV ∗S3P(s0) + (1− pmax)E[C(T)|T ∈ TDE]

≥ pmaxV ∗S3P(s0) + (1− pmax)D

Thus, we are effectively approximating the cost of all traces
reaching a dead end by D. Unfortunately, it is not always
the case that this extension of the S3P criterion captures the
expected cost from s0 more accurately than Finite-Penalty
as shown in the following theorem:
Theorem 2. Let V ∗FP and V ∗S3P be the optimal solution of
Finite-Penalty and S3P, respectively, for the same SSP and
D ∈ R∗+ be the dead-end penalty used by Finite-Penalty.
Then pmaxV ∗S3P(s0)+ (1−pmax)D is neither a lower nor an
upper bound for V ∗FP as a function of D.

Proof. Consider the SSP in Fig. 2 with the following mod-
ifications: (i) there is only action a0; and (ii) C(s0, a0) =
C(s1, a0) = c ∈ R∗+. As shown in Example 1, pmax =
1/3 and V ∗S3P(s0) = 8c/3. For Finite-Penalty, we have:
V ∗FP(s0)=min{D,c+.5D+.5V ∗FP(s1)}=min{D,c+.5D+
.5(min{D,c+ .5V ∗FP(s0))} = min{D,2c+2D/3}. Thus,
if 0 < c < 3D/8 then V ∗S3P(s0)/p

max + (1− pmax)D =
8c/3 + 2D/3 < V ∗FP(s0) ≤ D and if c > 3D/8, then
V ∗FP(s0) = D < 8c/3 + 2D/3.

Lastly, the following theorem shows that, by considering
the traces leading to dead ends, the MCMP criterion cap-
tures the expected cost from s0 more accurately than S3P:
Theorem 3. Let V ∗S3P and V ∗MCMP be the optimal solution
of S3P and MCMP, respectively, for the same SSP. Then
pmaxV ∗S3P(s0) ≤ V

∗
MCMP(s0).

Proof. This follows from their respective definitions:
V ∗MCMP(s0) = E[C(ψ(T)] = pmax E[C(ψ(T))|T ∈ TG] +
(1− pmax)E[C(ψ(T))|T ∈ TDE] ≥ pmax E[C(ψ(T))|T ∈
TG] = pmaxV ∗S3P(s0).

MCMP FOR CONSTRAINED SSPs

Another advantage of implementing the MCMP criterion
via LP 1 and LP 2 is that we can add cost constraints to
both LPs, and thus easily apply the MCMP criterion to
Constrained SSPs (C-SSPs) [Altman, 1999]. In a C-SSP,
multiple cost functions capture potentially competing ob-
jectives (e.g., time, money). One of these objectives is op-
timized whilst constraining the others.

Formally, a C-SSP 〈S, s0,G,A, P, ~C, ~u〉 is an SSP whose
cost function is replaced by a vector of n + 1 cost func-
tions ~C = [C0, . . . , Cn] and a vector of n bounds ~u =
[u1, . . . , un] (uj > 0 for all j). We call C0 the primary cost
and the other cost functions the secondary costs. An opti-
mal solution for a C-SSP is a stochastic policy π : S 7→
A × [0, 1], which minimizes the expected primary cost C0

to reach the goal G from the s0, subject to the expected
values of the secondary cost Cj being upper bounded by
uj for j ∈ {1, . . . , n}. These stochastic policies are needed
to optimally account for trade-offs between the various cost
functions, but do not alter the complexity of optimally solv-
ing C-SSPs which remains polynomial in the size of the
C-SSP [Dolgov and Durfee, 2005].

Currently, the only approach to solve C-SSP with dead ends
is Finite-Penalty [Trevizan et al., 2016] and, as shown in
Section 3, the MCMP criterion has several advantages over
Finite-Penalty. We can apply MCMP to C-SSPs by replac-
ing C(s, a) with C0(s, a) in LP 1 and augmenting both
LP 2 and LP 1 with constraints of the form:∑
s∈S,a∈A(s)

xs,aCj(s, a) ≤ uj ∀j ∈ {1, . . . , n} (C9)

As before, i-dual can be used to optimally solve these
LPs using heuristic search, provided admissible heuristics
Hj(s) ≤ V ∗j (s) are available for each of the cost functions
Cj . The only difference with the SSP case is that the poli-
cies in ΠMP are now potentially stochastic.

EMPIRICAL EVALUATION

In this section, we empirically evaluate different algorithms
for solving SSPs using the S3P and MCMP criteria and C-
SSPs using the Finite-Penalty and MCMP criteria. All our
experiments were conducted on a cluster of Intel E5-2660
run at 2.60GHz and, unless noted otherwise, we enforced
a cputime and memory cutoff of 30 minutes and 10Gb, re-
spectively. We used Gurobi 6.5 as LP solver and our results
are averaged over 30 runs using different random seeds.
The coverage for each planner is the number of runs in
which a given planner successfully finds the optimal so-
lution for the same problem under different random seeds.

Experiments on SSPs

We implemented two planners for S3P. The first plan-
ner computes P ∗ using FRET [Kolobov et al., 2012]

1

2

3

4

5

Row

L
0

L
G

L
F

Figure 3: Map for the triangle tireworld problem #2. The
goal is to reach location LG from location L0. Location
LF represents the opposite corner from L0 and LG.

(LRTDP [Bonet and Geffner, 2003] is used as Find-and-
Revise algorithm) and then solves P ∗-SSP using LRTDP.
The second planner is the same as the first one but FRET-π
is used instead of FRET. We implemented the P ∗-SSP us-
ing a lazy evaluation of P ∗, i.e., FRET and FRET-π are
called on-demand to give values for P ∗. Every time we
computed P ∗(s), we also cached the values of any other
state s′ in which P ∗(s′) has also converged. This lazy ap-
proach is particularly beneficial for FRET-π since its fo-
cused search can find P ∗(s) for a single optimal policy
as opposed to FRET that converges over the union of the
greedy policies; therefore, the heuristic search performed
by LRTDP in the second stage can avoid the query of P ∗

for states that are too expensive to visit. We refer to these
planners for S3P as FRET and FRET-π.

To solve SSPs using the MCMP criterion, we implemented
i-dual to solve both LP 2 and LP 1 and use the solution of
the former to warm start the latter. For all planners consid-
ered in this section, we used hmax over the all-outcomes
determinization as heuristic for both stages [Teichteil-
Königsbuch et al., 2011]. The Max-Prob version of hmax

returns 0 if no solution is found, i.e., a queried state is a
dead end, and 1 otherwise. We consider problems in the
following domains:

Exploding Blocks World. From the IPPC’08 [Bryce and
Buffet, 2008], this domain is a probabilistic extension of
the deterministic blocks world in which blocks can explode
and destroy other blocks or the table. All actions have the
same effects as in their deterministic blocks world counter-
part and put-down and put-on-block have the probabilistic
side effect of detonating the block being held and destroy-
ing the table or the block below with probability 0.4 and
0.1, respectively. Once a block or the table is destroyed,
nothing can be placed on them, and destroyed blocks can-
not be moved; therefore, problems in this domain can have
unavoidable dead ends. Also, each block detonates only
once and, after its detonation, the block can be safely
moved. We use the corrected version of this domain that
forbids a block to be placed on top of itself.

Triangle Tireworld. From [Little et al., 2007] and used in
the IPPCs, this domain represents a car that has to travel
between locations in triangular map (Fig. 3) to reach a goal

Avg. Time (s) Avg # States Expl.
planner cov. Total MaxPr 1st stage 2nd stage
1 MCMP 30 0.1 0.1 746 197

FRET 30 0.5 0.4 3676 92
FRET-π 30 0.2 0.1 676 95

2 MCMP 30 0.7 0.4 1639 1205
FRET 30 2.7 2.7 5631 188
FRET-π 30 9.6 1.6 2112 202

3 MCMP 30 0.2 0.1 730 447
FRET 30 8.6 8.4 63160 452
FRET-π 30 54.9 0.6 4871 493

4 MCMP 30 0.7 0.4 1987 1868
FRET 30 20.5 20.4 32358 1227
FRET-π 30 48.4 7.2 11826 1337

5 MCMP 30 0.3 0.3 1107 210
FRET 30 89.0 88.9 60040 249
FRET-π 30 19.7 14.3 6525 272

7 MCMP 30 114.3 1.3 2675 50519
FRET-π 7 1568.2 764.8 2316519 77928

9 MCMP 30 108.2 31.2 19209 40553

Table 1: Results for the Exploding Blocks World problems.
is the problem number in IPPC’08.

location from its initial location. When the car moves, a flat
tire happens with probability 0.5 and the car becomes un-
able to move if neither the car nor the location have a spare
tire. Problems in this domain are such that only the longest
path (i.e., to move from L0 to LF then to LG) has enough
spare tires to reach the goal with probability 1; therefore,
these problems have avoidable dead ends.

Reversed Triangle Tireworld. This is a variation of the
triangle tireworld that we designed to illustrate the tradeoffs
between the S3P and MCMP algorithms. The difference be-
tween the original and the reverse triangle tireworld is only
the location of the spare tires: for the reversed tireworld,
the spare tires are available in every locations in rows 1 to
r (Fig. 3) where r is a parameter of the problem. Therefore,
for all r, the policy representing the shortest path from L0

to LG has probability 1 of reaching the goal in the reversed
tire world; moreover, this policy is always the optimal pol-
icy. As with the original triangle tireworld, the problems in
this domain have avoidable dead ends. The reversed tire-
world problems highlight the tradeoffs between the differ-
ent algorithms because the parameter r controls the size
of ΠMP while maintaining the same optimal policy under
all SSP criteria. Moreover, the cost heuristic hmax used for
solving these problems guides the cost optimization of the
different criteria directly to the optimal policy; therefore,
narrowing down the differences in performance to the dif-
ferences in the search approaches over ΠMP.

Results. For the exploding blocks world (Tab. 1), i-dual is
the only planner to obtain 100% coverage in all the prob-
lems and to scale up to problem #9. Moreover, i-dual is
always the fastest planner and its speed-up ranges from 2x
to 40x compared to the second best planner. The perfor-
mance gains from i-dual come mainly from its first stage
(columns 5 and 6 in Tab. 1) that efficiently computes pmax

without exploring too many states. This efficiency is due
to the search in the dual space which does not contain lo-
cal maxima, as opposed to the search in the primal space

Avg. Time (s) Avg # States Expl.
planner cov. Total MaxPr 1st stage 2nd stage
3 MCMP 30 1.4 0.2 2454 6459

FRET 30 4.3 3.5 41944 17706
FRET-π 30 3.9 3.1 32151 17750

4 MCMP 30 125.4 1.0 6973 108097
FRET 30 115.9 98.8 777722 299921
FRET-π 30 95.8 79.0 555260 299734

Table 2: Results for the Triangle Tireworld problems. # is
the problem number in IPPC’08.

performed by FRET and FRET-π that need to escape lo-
cal maxima (i.e., fixed-point solutions for P ∗ that are not
optimal). For instance, both FRET and FRET-π need to es-
cape loopy policies in which a detonated block is picked
up and then placed in its previous location similarly to loop
between d2 and d3 in Fig. 1. Notice that these loopy poli-
cies can happen in any problem with reversible actions, i.e.,
loops between doing and undoing an action.

For the triangle tireworld (Tab. 2), all planners scaled up
to instance #4 and both FRET and FRET-π are faster
than i-dual in the largest instance. Although this domain
is acyclic and represents the best case scenario for FRET
and FRET-π (there is only one fixed-point solution for P ∗),
i-dual still spends less time computing pmax. Moreover,
i-dual explores considerably fewer states in both stages: up
to 80x less for the first stage and 3x less for the second
stage. The underperformance of i-dual is because the trian-
gle tireworld was designed to mislead planners and heuris-
tics based on the all-outcomes determinization: the second
stage of i-dual is constantly misdirected towards dead ends
by hmax and has to infer that those states do not reach the
goal with probability 1 (this can be verified by the average
time spent in the second stage, i.e., column 5 minus column
6 in Tab. 2). In other words, the main advantage of i-dual,
namely the usage of the cost heuristics to prune the search
in the Max-Prob space, is lost and becomes an overhead
since we still need to compute the heuristic cost. Notice
that both FRET and FRET-π do not suffer for the misdi-
rection of hmax in the second stage because the P ∗-SSP is a
trivial SSP since it has only one policy. As we demonstrate
in the reversed triangle tireworld experiments, this behavior
is an exception caused by the fact that |ΠMP| = 1.

For the reversed triangle tireworld (Tab. 3), i-dual scales
up to all problems while: FRET solves only the instances
with small r since |ΠMP| is small for them; and FRET-π
scales up to all values of r for tire04 but fails to obtain
100% coverage for the larger values of r for tire05. The
total time speed up obtained by i-dual is up to 293x and
17x w.r.t. FRET and FRET-π. This large difference in per-
formance is due to how i-dual combines the search for the
policy with minimal cost and a policy with maximum prob-
ability to reach the goal in its second phase, enabling it to
prune large areas of the state space when these are proven
too costly, irrespective of their P ∗ value. Notice that our
implementation of the P ∗-SSP performs a lazy evaluation
of P ∗, which also allows both FRET and FRET-π to avoid

Avg. Time (s) Avg # States Expl.
r planner cov. Total MaxPr 1st stage 2nd stage
4 1 MCMP 30 0.8 0.2 1014 3766

FRET 30 1.3 1.0 6186 3011
FRET-π 30 1.2 1.0 5877 3006

2 MCMP 30 3.1 0.7 4949 7500
FRET 30 92.1 89.8 808958 27396
FRET-π 30 30.6 29.6 227976 27520

3 MCMP 30 3.7 0.6 3937 8573
FRET 30 481.7 470.9 4394767 40018
FRET-π 30 53.7 52.2 418872 39978

4 MCMP 30 4.0 0.8 4790 8699
FRET 30 1174.6 1148.3 10695787 43191
FRET-π 30 84.3 82.5 654374 43214

5 MCMP 30 4.2 1.0 5716 8692
FRET-π 30 83.6 81.7 662169 43260

6 MCMP 30 4.2 1.0 5491 8695
FRET-π 30 86.3 84.5 682331 43549

7 MCMP 30 4.1 0.9 5218 8698
FRET-π 30 86.2 84.4 681039 43280

8 MCMP 30 4.2 1.0 5553 8695
FRET-π 30 87.1 85.3 682876 43280

9 MCMP 30 4.1 0.9 5211 8688
FRET-π 30 85.9 84.1 682290 43280

5 1 MCMP 30 6.4 0.4 1948 15780
FRET 30 8.1 6.9 25192 12223
FRET-π 30 7.3 6.1 23911 12225

2 MCMP 30 43.7 2.2 10067 41243
FRET-π 30 386.0 375.4 1999963 190251

3 MCMP 30 75.5 2.2 9018 52572
FRET-π 29 789.9 771.5 4180058 313663

4 MCMP 30 80.9 2.4 9392 54931
FRET-π 28 1217.6 1193.7 6599042 359568

5 MCMP 30 83.3 2.5 10568 55315
FRET-π 26 1268.4 1244.3 6987555 366708

6 MCMP 30 83.3 3.6 13869 55300
FRET-π 25 1384.1 1358.9 7517924 368086

7 MCMP 30 82.6 3.2 12211 55189
FRET-π 26 1395.6 1369.6 7635691 366690

8 MCMP 30 82.4 3.2 12684 55282
FRET-π 24 1381.5 1356.5 7481011 366047

9 MCMP 30 79.8 3.6 13588 55261
FRET-π 25 1374.6 1349.3 7612778 364596

10 MCMP 30 81.4 3.2 12174 55303
FRET-π 24 1380.3 1354.9 7489997 366921

11 MCMP 30 81.0 2.9 11705 55246
FRET-π 26 1406.8 1381.5 7707530 367452

Table 3: Results for the Reversed Triangle Tireworld prob-
lems. # is of the problem number of the original Triangle
Tireworld and r is number of rows with spare tires.

querying P ∗ for regions of the state space that have a high
expected cost. Nonetheless, both FRET and FRET-π still
compute P ∗ for a large number of states due to their pri-
mal space search procedure: they explore millions of states
to answer the P ∗ queries while i-dual explores less than
15000 states, resulting in up to 1435x and 476x speed-up
w.r.t. FRET and FRET-π in the first stage.

The reversed tireworld experiment also shows that the
worst-case scenario for FRET and FRET-π is more
than simply problems without dead ends, as claimed
in [Kolobov et al., 2012, Sec. 8]: rather, their worst-case
scenarios are problems with a large number of Max-Prob
solutions (i.e., large |ΠMP|) with small intersection between
the reachable states of the policies π ∈ ΠMP. This is be-
cause S3P minimizes the expected cost in the P ∗-SSP thus,
in the worst case, the complete space of the P ∗-SSP is ex-
plored and this space is exactly the union of all states reach-
able from s0 using any Max-Prob policy.

Avg Time (s) Avg # States Expl. Pr.
r b criteria Total MaxPr 1st stage 2nd stage Goal
4 10 D=25 19.19 – – 31769 0.45

D=50 32.50 – – 42085 0.64
MCMP 74.23 25.20 38020 48742 0.66

12 D=25 18.72 – – 32501 0.54
D=50 95.08 – – 55039 0.76
MCMP 255.00 96.28 60338 60217 0.76

14 D=25 21.78 – – 33455 0.62
D=50 66.99 – – 56489 0.84
MCMP 145.59 61.71 63504 60256 0.84

16 D=25 21.31 – – 34954 0.70
D=50 61.47 – – 59496 0.91
MCMP 136.12 52.65 68378 60607 0.91

18 D=25 17.95 – – 30920 0.77
D=50 83.94 – – 63682 0.99
MCMP 183.88 77.96 85720 62185 0.99

20 D=25 19.09 – – 31092 0.83
D=50 68.10 – – 53574 1.00
MCMP 174.48 90.05 88807 53581 1.00

5 10 D=25 44.84 – – 55658 0.45
D=50 219.54 – – 87220 1.00
MCMP 298.50 11.95 30801 87177 1.00

12 D=25 47.12 – – 57209 0.54
D=50 146.11 – – 88210 1.00
MCMP 213.32 19.30 41866 88276 1.00

14 D=25 51.43 – – 58558 0.62
D=50 158.94 – – 90003 1.00
MCMP 230.69 24.74 47667 89812 1.00

16 D=25 57.42 – – 58811 0.70
D=50 160.72 – – 90074 1.00
MCMP 262.99 58.33 69568 90127 1.00

18 D=25 31.54 – – 47196 0.77
D=50 163.79 – – 90329 1.00
MCMP 257.68 46.60 64807 90352 1.00

20 D=25 31.80 – – 47295 0.83
D=50 161.53 – – 90484 1.00
MCMP 321.12 109.91 92912 90465 1.00

Table 4: Results for the constrained reversed tireworld
problems. All problems considered are based on the prob-
lem #4 of the original tireworld domain. r and b represent
the number of rows with available spare tires and the bud-
get to buy spare tires, respectively. For Finite-Penalty, the
dead-end penaltyD is displayed on the criteria column. All
planners obtained 100% coverage for these problems.

Experiments on Constrained SSPs

To illustrate the feasibility of solving C-SSPs using the
MCMP criterion, we compare i-dual using the Finite-
Penalty and MCMP criteria in an extension of the reversed
tireworld domain. In this extension, the main cost function
is the same as before and represents travel time, and we
added a secondary cost function to represent the money
spent buying spare tires. For these problems, if a location l
has an available spare tire, the planner has to pay $1, $5, or
$10 to buy that spare if l is, respectively, a cheap, regular, or
expensive location. We set all the outside locations (i.e., in
the direct path from L0 toLF andLF toLG) as cheap loca-
tions. All internal locations from rows 1 to dn/3e, dn/3e+1
to 2dn/3e, and 2dn/3e+1 to n (where n is the total num-
ber of rows) are, respectively, expensive, regular and cheap.
Thus, the more direct a path from L0 to LG is, more money
is necessary in expectation to buy spare tires.

For the constrained reversed tireworld, we use a cost con-
straint over the secondary cost function, that is, we enforce
a maximum expected amount of money that can be used for

buying spare tires. Therefore, if spare tire budget b is too
small, no policy will be able to reach the goal with proba-
bility 1 even if the unconstrained problem has no dead end.
For this experiment, we used the tire04 problem and let the
parameters r and b vary, and we also used a different values
of dead-end penaltyD. Tab. 4 shows the results for selected
combinations of r, b, and d. As the last column shows,
D = 25 is too small as a dead-end penalty and solutions
that can reach the goal with higher probability are unduely
pruned, while D = 50 is large enough for all parametriza-
tions, except r = 4 and b = 10 in which the MCMP reaches
the goal with a larger probability. Regarding runtime, i-dual
using the MCMP criterion takes close to the double of the
time of the finite-penalty D = 50, showing that it is fea-
sible to use MCMP as a criterion for C-SSPs. Moreover,
the solution for the Max-Prob stage (i.e., solution of LP 2)
is computed quite fast (which can be as small as 1/10 of
the total time of the finite-penalty approaches) and already
satisfies the cost constraints by design; therefore, the Min-
Cost stage can be seen as an iterative refinement procedure
that can be stopped at anytime.

CONCLUSION AND FUTURE WORK
In this paper, we presented MCMP, a natural optimization
criterion for stochastic shortest paths problems with dead
ends, which results in the minimum expected cost policy
among those with maximum success probability. We also
proposed an efficient solution method for MCMP, which
leverages recent work on heuristic search in the dual space.
Unlike the Finite-Penalty method [Kolobov et al., 2012],
our approach does not suffer from having to guess an ap-
propriate dead-end penalty. In comparison to other robust
criteria such as S3P and iSSPUDE [Teichteil-Königsbuch,
2012, Kolobov et al., 2012], MCMP more accurately re-
flects the expected cost of reaching dead ends, and as
shown by our experiments, often provides a substantial
computational advantage.

This computational advantage comes from applying heuris-
tic search on the dual representation of SSPs: the Max-Prob
problem is directly optimized by the flow objective func-
tion of the dual space which prevents heuristic search algo-
rithms to be trapped in non-optimal fixed-point solutions.
Alternatively, heuristic search algorithms in the primal rep-
resentation optimize a reward function that indirectly rep-
resents the Max-Prob problem and are susceptible to con-
verge to non-optimal fixed-point solutions. Thus, they need
to detect if the current fixed-point solution is optimal or not
and post-process the solution in the latter case. Moreover,
our approach to solve MCMP is able to prune the search
space using simultaneously heuristics for both the proba-
bility of reaching the goal and the expected cost of reach-
ing the goal. Observe that this computational advantage of
our approach does not transfer to S3P or iSSPUDE, as they
require (a priori or on-the-fly) the Max-Prob solution.

Another optimization criterion that can avoid the infinite
cost associated with being trapped in a dead end is the Av-

erage Reward criterion [Puterman, 1994]. For SSPs, this
criterion minimizes the average cost of the traces Tπ,s gen-
erated by π of size 1 to N for N → ∞. This limiting
sum allows policies to always have a finite value regardless
of their probability of reaching dead ends. The drawback
of the Average Reward criterion is that neither heuristic
search algorithms nor heuristics for them have been pro-
posed; therefore the full state space reachable from the ini-
tial state must be considered to solve any given problem.
As a result, any algorithm for solving SSPs using the Aver-
age Reward criterion will not scale up to the large problems
considered in this paper.

The related work for explicitly handling the conflict of op-
timizing goal probability reachability and expected cost
includes three classes of approaches. The first, to which
MCMP belongs, is ordered objective optimization where
goal probability reachability is the primary objective. This
includes S3P and iSSPUDE, as well as earlier work study-
ing the merits of Max-Prob, SSP, and discounted MDP
models to handle robotics environments with dead ends
[Koenig and Liu, 2002].

The second class of approaches are constrained MDPs,
where one of the objective is viewed as a constraint while
the other is optimized. Work in this area ranges from the
seminal work of Altman [1999] to the recent work by Tre-
vizan et al [2016] on i-dual which our approach builds on.
Steinmetz et al. [2016] also consider the At-Least-Prob cri-
terion for which an extra parameter p ∈ (0, 1] is given
and the solution is to find a policy that reaches the goal
with probability greater or equal to p. LP 1 can be trivially
adapted by replacing C6 with

∑
sg∈G in(sg) ≥ p to effi-

ciently generate policies that minimize the expected cost
whilst satisfying At-Least-Prob criterion.

A third class of relevant approaches are multi-objective
MDPs viewing goal probability reachability and cost
as competing objectives. However, multi-objective ap-
proaches are often more appropriate in a setting where a
set of alternative policies (e.g. pareto sets of non-dominated
policies) needs to be computed because the way of priori-
tising these objectives is unknown or too difficult to elicit
a priori [Roijers et al., 2013]. Also, multi-objective MDPs
are rather expensive to solve [Chatterjee et al., 2006], and
existing work has focused on discounted MDPs.

As future work, we plan to improve our algorithm for
MCMP even further. We suspect that i-dual is somewhat
overkill as it can also solve problems requiring stochastic
policies whereas MCMP only requires deterministic poli-
cies for SSPs. It is known that in the general case, it is
harder to compute deterministic than stochastic policies
for C-SSPs (NP-hard vs polynomial) [Dolgov and Durfee,
2005]. However, it should be possible to avoid this com-
plexity increase in the case of MCMP and take advantage
of the deterministic nature of optimal policies for SSPs.

Acknowledgements
This research was funded by AFOSR grant FA2386-15-1-4015.

References

[Altman, 1999] Altman, E. (1999). Constrained Markov Deci-
sion Processes, volume 7. CRC Press.

[Bertsekas and Tsitsiklis, 1991] Bertsekas, D. and Tsitsiklis, J.
(1991). An Analysis of Stochastic Shortest Path Problems.
Mathematics of Operations Research, 16(3):580–595.

[Bonet and Geffner, 2003] Bonet, B. and Geffner, H. (2003). La-
beled RTDP: improving the convergence of real-time dynamic
programming. In Proc. Int. Conf. on Automated Planning and
Scheduling.

[Bryce and Buffet, 2008] Bryce, D. and Buffet, O. (2008). 6th
Int. Planning Competition: Uncertainty Track. In 3rd Int. Prob-
abilistic Planning Competition (IPPC-ICAPS’08).

[Chatterjee et al., 2006] Chatterjee, K., Majumdar, R., and Hen-
zinger, T. A. (2006). Markov decision processes with multi-
ple objectives. In STACS 2006, 23rd Annual Symposium on
Theoretical Aspects of Computer Science, Marseille, France,
February 23-25, 2006, Proceedings, pages 325–336.

[Dolgov and Durfee, 2005] Dolgov, D. A. and Durfee, E. H.
(2005). Stationary deterministic policies for constrained mdps
with multiple rewards, costs, and discount factors. In Proc. Int.
Joint Conf. on Artificial Intelligence.

[Koenig and Liu, 2002] Koenig, S. and Liu, Y. (2002). The
interaction of representations and planning objectives for
decision-theoretic planning tasks. J. Exp. Theor. Artif. Intell.,
14(4):303–326.

[Kolobov et al., 2012] Kolobov, A., Mausam, and Weld, D. S.
(2012). A theory of goal-oriented mdps with dead ends. In
Proc. Conf. on Uncertainty in Artificial Intelligence (UAI).

[Kolobov et al., 2011] Kolobov, A., Mausam, Weld, D. S., and
Geffner, H. (2011). Heuristic search for generalized stochas-
tic shortest path mdps. In Proc. International Conference on
Automated Planning and Scheduling (ICAPS).

[Little et al., 2007] Little, I., Thiebaux, S., et al. (2007). Proba-
bilistic planning vs. replanning. In ICAPS Workshop on IPC:
Past, Present and Future.

[Mausam and Kolobov, 2012] Mausam and Kolobov, A. (2012).
Planning with Markov Decision Processes. Morgan & Clay-
pool.

[Puterman, 1994] Puterman, M. (1994). Markov Decision Pro-
cesses: Discrete Stochastic Dynamic Programming. John Wi-
ley & Sons, Inc.

[Roijers et al., 2013] Roijers, D. M., Vamplew, P., Whiteson, S.,
and Dazeley, R. (2013). A survey of multi-objective sequential
decision-making. J. Artif. Intell. Res. (JAIR), 48:67–113.

[Steinmetz et al., 2016] Steinmetz, M., Hoffmann, J., and Buffet,
O. (2016). Revisiting foal probability analysis in probabilis-
tic planning. In Proc. Int. Conf. on Automated Planning and
Scheduling.

[Teichteil-Königsbuch, 2012] Teichteil-Königsbuch, F. (2012).
Stochastic safest and shortest path problems. In Proc. AAAI
Conf. on Artificial Intelligence.

[Teichteil-Königsbuch et al., 2011] Teichteil-Königsbuch, F., Vi-
dal, V., and Infantes, G. (2011). Extending Classical Planning
Heuristics to Probabilistic Planning with Dead-Ends. In Proc.
AAAI Conf. on Artificial Intelligence.

[Trevizan et al., 2017] Trevizan, F., Thiébaux, S., , and Haslum,
P. (2017). Occupation Measure Heuristics for Probabilistic
Planning. In Proc. of 27th Int. Conf. on Automated Planning
and Scheduling (ICAPS).

[Trevizan et al., 2016] Trevizan, F., Thiébaux, S., Santana, P.,
and Williams, B. (2016). Heuristic Search in Dual Space for
Constrained Stochastic Shortest Path Problems. In Proc. Int.
Conf. on Automated Planning and Scheduling (ICAPS).

[Younes et al., 2005] Younes, H. L. S., Littman, M. L., Weiss-
man, D., and Asmuth, J. (2005). The first probabilistic track
of the international planning competition. J. Artif. Int. Res.,
24(1):851–887.

