
Purdue University Purdue University

Purdue e-Pubs Purdue e-Pubs

Department of Computer Science Technical
Reports Department of Computer Science

1987

Efficient Solutions to Some Transpsortation Problems with Efficient Solutions to Some Transpsortation Problems with

Applications to Minimizing Robot Arm Travel Applications to Minimizing Robot Arm Travel

Mikhail J. Atallah
Purdue University, mja@cs.purdue.edu

S. Rao Kosaraju

Report Number:
87-666

Atallah, Mikhail J. and Kosaraju, S. Rao, "Efficient Solutions to Some Transpsortation Problems with
Applications to Minimizing Robot Arm Travel" (1987). Department of Computer Science Technical
Reports. Paper 577.
https://docs.lib.purdue.edu/cstech/577

This document has been made available through Purdue e-Pubs, a service of the Purdue University Libraries.
Please contact epubs@purdue.edu for additional information.

https://docs.lib.purdue.edu/
https://docs.lib.purdue.edu/cstech
https://docs.lib.purdue.edu/cstech
https://docs.lib.purdue.edu/comp_sci

EFFICIENT SOLUTIONS TO SOME TRANSPORTATION
PROBLEMS WITH APPLICATIONS TO
MINIMIZING ROBOT ARM TRAVEL

Mikhail J. Alallah
S. Rao Kosaraju

CSD-TR-666
March 1987

Revised October 1987

» y

EFFICIENT SOLUTIONS TO SOME TRANSPORTATION PROBLEMS
WITH APPLICATIONS TO

MINIMIZING ROBOT ARM TRAVEL

Mikhail J. Atallah1

Dept. of Computer Science
Purdue University

West Lafayette, IN 47907
2

S. Rao Kosaraju
DepL of Computer Science
Johns Hopkins University

Baltimore, MD 21218

Abstract. We give efficient solutions to transportation problems motivated by the fol-
lowing robotics problem. A robot arm has the task of rearranging m objects between n
stations in the plane. Each object is initially at one of these n stations and needs to be
moved to another station. The robot arm consists of a single link that rotates about a
fixed pivot The link can extend in and out (like a telescope) so that its length is a vari-
able. At the end of this "telescoping" link lies a gripper that is capable of grasping any
one of the m given objects (the gripper cannot be holding more than one object at the
same time). The robot arm must transport each of the m objects to its destination and
come back to where it started. Since the problem of scheduling the motion of the gripper
so as to minimize the total distance traveled is NP-hard, we focus on the problem of
minimizing only the total angular motion (rotation of the link about the pivot), or only
the telescoping motion. We give algorithms for two different modes of operation: (i)
no-drops', no object can be dropped before its destination is reached, (ii) with-drops: any
object can be dropped at any number of intermediate points. Our algorithm for case (i)
runs in 0 (m+nlogn) time for angular motion, in O (m +n a(n)) time for telescoping
motion. Our algorithm for case (ii) runs in in O (m+n) time for angular motion, and with
the same time bound for telescoping motion. The most interesting problem turns out to
be that of minimizing angular motion for the with-drops mode of operation.

1 This research was supported by the Office of Naval Research under Grams N00014-84-K-Q502 and N00014-86-K-0689.
and the National Science Foundation under Grant DCR-8451393, with matching funds from AT&T.
2 This research was supported by the National Science Foundation under Gran). DCR-856361.

r
- 2 -

1. Introduction

A robot arm has the task of rearranging m objects between n stations in the plane.

Each object is initially at one of these stations and needs to be moved to another station

(its destination). The robot arm consists of a single link that rotates about a fixed pivot

(see Figure 1). The link can extend in and out (like a telescope) so that its length is a

variable. At the end of this "telescoping" link lies a gripper that is capable of grasping

any one of the m given objects.

The gripper can pick up an object and drop it at another station, then, can move to

another station and can continue with the transfers. Many objects can simultaneously be

located at the same station, but the gripper cannot be holding more than one object at a

time. When the gripper is empty and is at a station, it is free to pick up any of the objects

at that station. We also require that the gripper must terminate at the station where it

started. Scheduling the motion of the gripper so as to minimize the total distance it trav-

els can be shown to be NP-hard from the NP-hardness of the Euclidean Traveling

Salesperson problem [P2]. Here we focus on the problem of minimizing only the total

angular motion (rotation of the link about the pivot), or only the total telescoping motion.

For the case of minimizing angular motion we henceforth assume, without loss of

generality, that

(a) the n stations are positioned on a circular track centered at the pivot, and

(b) the motion of the gripper is always along the circumference of this circular track.

Pivot Gripper

Figure 1. The robot arm can pivot, and can extend like a telescope

- 3 -

The problem is then to minimize the total length of the circular arcs traversed by the

gripper. The input specification is by listing the destinations of the objects at each station

on the circular track. The stations, in clockwise cyclic order, are denoted by the integers

1 to n, and one of them is designated as being the initial position of the gripper (we call it

the start station). The input therefore describes a directed multigraph having n vertices

and m edges (we draw a directed arc for each object — the head and the tail correspond-

ing to the destination and the source stations, respectively). Figure 2 illustrates a 4 sta-

tion 4 object transfer problem.

The problem of minimizing the total telescoping motion rather than the angular one,

can be viewed as a linear track problem rather than as a circular one. The circular track

case is considerably more difficult than the linear track one.

We develop fast algorithms for two different modes of operation: (i) no-drops:

once an object is picked up by the gripper, it cannot be dropped before its destination is

reached, (ii) with-drops: any object can be dropped at any number of intermediate

points. The algorithm for the no-drops case runs in O (m +n logn) time for a circular

track (i.e. minimizing angular motion), in O (m+n a(n)) for a linear track (i.e. minimiz-

ing telescoping motion); here a(n) is the extremely slowly growing functional inverse of

Ackermann's function. The no-drops problem can be cast as a graph augmentation prob-

lem [ET,P1] — augmentation of a graph to an eulerian graph. The with-drops problem is

' 1
- 4 -

more interesting and does not seem to translate into a natural graphical problem. Some-

what surprisingly, we are able to design a faster algorithm for this problem - an 0(m+rc)

time algorithm (for either circular or linear track). One of the difficulties in the with-

drops problem for a circular track is that an optimal transportation may have to transport

an object through the longer of the two circular arcs between its source and destination

(such an arc is henceforth called major, the other arc being minor). In Section 4 we give

an example for which any optimal transportation must transport an object through the

major arc. However, we prove that in a with-drops problem, an optimal transportation

transports at most one object through the major arc. This nontrivial result is only one of

the ingredients in our linear time solution to this problem; another ingredient is a method

for quickly identifying which of the m objects (if any) should be transported through the

major arc.

Throughout the paper, all graphs are actually multigraphs (i.e. can have many edges

with same head and tail). A graph is directed unless we explicitly state that it is

undirected. All the graphs we refer to are embedded on the (circular or linear) track, i.e.

their vertices are the stations on the track and their edges are directed arcs drawn along

the track. Therefore when we henceforth refer to an edge e of a graph G, we are really

talking about a particular drawing of that edge (for a circular track, the edge can be

drawn two ways). We use | e | to denote the length of the portion of the track covered by

e.

For a circular track we assume, without loss of generality, that the circle's cir-

cumference equals unity. The complement of an edge e is the edge ec with the same

source as e, same destination as e, and such that e and ec together cover the complete

circumference (see Figure 3). Note that (ec)c=e, and that \e \ + \ec |=1. An edge e is

major iff [e | >1/2, and is minor otherwise (in Figure 3, e is minor and ec is major).

Note that if [e] =1/2 then both e and ec are minor. Shortening a major edge means

- 5 -

replacing it with its complement

Figure 3. An arc and its complement

We adopt the convention that, when depicting a transportation, we draw an input

source-to-destination pair as a directed (circular or linear) arc coinciding with the actual

path that this transportation uses to take the object to its destination (in the with-drops

case, the object transported along such an arc may be dropped many rimes on the way to

its destination).

We assume that none of the n stations is useless, i.e. each is the source or destina-

tion of at least one object (useless stations are easily eliminated with an O (m+n) prepro-

cessing step). This implies that n <lm.

2. No-drops problem

In this section we prove the following result.

Theorem 1. An optimal transportation for any no-drops problem can be calculated in

O (m +n a(n)) for a linear track, O (m +n logn) time for a circular track.

The rest of this section proves the above theorem.

First, observe that in a circular no-drops problem we never need to take an object to

its destination using the major arc, and therefore we always draw the input edges so that

they are minor.

- 6 -

The no-drops problem is a graph augmentation problem: we want to add edges to

the input graph so as to make it eulerian [E], such that the total lengths of the added

edges is minimum. Any euler tour of the resulting eulerian graph then gives an optimal

transportation. These added edges are called augmenting edges, and correspond to

motion of the gripper when it is not holding any object. In future drawings, we distin-

guish such augmenting edges by drawing their arrowhead dashed, whereas that of an

input edge is drawn solid.

Since the minimum eulerian augmentation does not depend on the start vertex, the

length of an optimal transportation does not depend on which vertex is the start (and

hence finish) vertex. (In the with-drops case, considered in Section 3, the start vertex is

significant.)

Recall that a graph G is eulerian if and only if (i) every vertex of G has its in-

degree equal to its out-degree (we call this the degree-balance property), and (ii) the

undirected version of G is connected. Condition (ii) can be replaced by "G is strongly

connected", because if (i) holds then G is strongly connected if and only if its undirected

version is connected [E]. In the rest of this paper we restrict the augmenting edges to be

of the form (f,i+l) or (i+l,i), i.e. each augmenting edge covers only one of the n inter-

vals (gaps) between adjacent stations. There is no loss of generality in doing so, since an

augmenting edge that covers I intervals can always be broken into I smaller edges

without increasing the total edge length, without disturbing degree balance, and without

damaging undirected connectivity. Of course if there are many such augmenting edges

covering an interval (/,i+l) then we do not store each of them individually since this

might take a total of O (mn) space; instead, we store a count of the number of such edges

going in each direction across that interval. Thus the total storage needed for augmenting

edges is O (n).

Observe that in any optimal augmentation, if any pair of antiparallel edges (i,i+l)

- 7 -

and (j+1,0 are augmenting edges, then in between i and i+ l there cannot be any other

augmenting edge (otherwise removal of (/,/+l) and (i+l,i) preserves the degree-balance

and undirected connectivity, contradicting the optimality of the original augmentation).

1.1. Linear track

We first prove the linear track part of Theorem 1, an example of which is given in

Figure 4a, where n =8 and m =5. We make a few trivial observations.

• • • • •
• » • • • •
1 2 3 4 5 6 7 8 ^ «

(a)

• K
• jp.
1 2 3 4 5 6

n 4
(b)

is*
1 2 3 4 5 6 7 8 < • <1 a

o '(JO St»

(C)

Figure 4. A linear track problem (a), its degree-balanced
augmentation (b), and the optimal augmentation (c)

Observation 1. In any transportation, at any point, x, in between the leftmost and the

rightmost stations, the number of times the gripper moves left to right across x is the

same as the number of times the gripper moves right to left across x . In addition each of

these crossings is > 1.

Based on this observation, we add across each interval the smallest number of aug-

menting edges that will make the total number of edges that cross that interval from left

to right equal to the number of edges that cross it from right to left. The "augmenting

edges" needed for Figure 4a are shown in Figure 4b. When the graph is augmented in

this manner, every vertex will have the degree-balance property. Let this augmentation

1
- 8 -

process be denoted as the degree-balanced augmentation.

Observation 2. If the resulting degree-balanced augmented graph is strongly connected,

then it has an euler tour and hence it represents an optimal transportation.

However the augmented graph need not be strongly connected (sc). For example,

Figure 4b has three strongly connected components (scc's): {1,4,5,2}, {3,6}, {7,8}. If

the augmented graph is not sc then its scc's are disjoint in the sense that there is no edge

between any rwo of them (because for a graph having the degree-balance property, the

scc's are the connected components of the undirected version of the graph).

Now the problem reduces to adding more augmenting edges, with minimum total

length, to make the graph sc without disturbing its degree-balance property. An example

of this augmentation is shown in Figure 4c. In general, augmentation of a q -see degree-

balanced graph can be achieved by including q—1 antiparallel pairs of augmenting edges

(we needed two such pairs to go from Figure 4b to 4c: one between 5 and 6, the other

between 6 and 7). To find the q—\ antiparallel pairs needed to minimally make the

degree-balanced graph sc, we create a q -vertex edge-weighted undirected graph, one ver-

tex for each see. In that undirected graph, an edge between i and j is present if and only

if a station x in the ith see is adjacent to a station y in the jth see (i.e. |x—y |=1). The

weight of this edge {i J} is the distance between stations x and y. If there are many

such pairs x,y for a particular {i J}, then the weight of {i,j} is the minimum over all

such pairs x ,y.

Observation 3. The minimum total length augmenting pairs needed to make the

degree-balanced graph sc correspond to the undirected edges of a minimum spanning tree

(MST) of the above-mentioned -vertex undirected graph of scc's. (Of course, we have

to map each undirected edge {i J } of the MST into one antiparallel pair of augmenting

edges: (x,y),(yjc) in which x and y are the stations in scc's i and j, respectively, which

contributed to the weight of the {i J } edge.)

- 9 -

The above discussion implies an O(m+na(n)) time algorithm for computing the

minimum eulerian augmentation in the linear track version of the problem, using the

MST algorithm of [FT]. Any euler tour of the resulting eulerian graph gives an optimal

transportation. Such an euler tour can easily be found in an additional 0(m) time (exer-

cise 5.9 in [AHU]).

Thus the overall time for the linear track case is 0 (m+na{n)). We now complete

the proof of Theorem 1 by considering the circular track case.

1.2. Circular track problem

If we know that there exists an optimal transportation in which at least one interval

is not covered by any augmenting edge, then we can solve n separate straight line prob-

lems: the / th one assuming that there is no augmenting edge in between stations / and

i+1 (assume that station n+1 = station 1). Then the transportation corresponding to the

minimum of these n solutions gives the optimal transportation. However, it is not hard

to come up with an example in which any optimal solution must have augmenting edges

covering the (complete) circumference.

The circular track equivalent of Observation 1 does not hold, i.e. for the circular

track it is no longer true that at every point the number of clockwise crossings of the

gripper is the same as the number of counterclockwise crossings. However, if we define

the, flux across an interval to be the number of clockwise crossings minus the number of

counterclockwise crossings (counting both the input edges and the augmenting ones),

then we have the following.

Lemma 1. For any augmentation, the degree-balance property is satisfied if and only if

the flux is the same across all intervals.

Proof. It suffices to show that degree balance holds if and only if, for any i, the flux

across interval (i - 1 , i) is the same as that across interval (/,i+l). The difference between

these two fluxes equals the difference between the in-degree of i and its out-degree. •

- 10-

The flux across an interval is the sum of two components. One component is the

augmenting flux across that interval: the number of clockwise augmenting* edges across

that interval minus the number of counterclockwise augmenting edges across i t The

other component is the input flux across that interval and is the number of clockwise

input edges across it minus the number of counterclockwise input edges across it. Let

<)>(;) denote the input flux across the interval (i,i+1). In Figure 2,

<Jj(l)=<K2)=l,<j>(3)=0,<K4)=2. Note that <j>(i) is the number of counterclockwise augment-

ing edges that must be added to interval (i ,i'+l) in order to make its total flux equal to

zero (a negative value signifies adding clockwise edges).

The next two lemmas impose constraints on the augmenting edges and possible flux

values that an optimal augmentation can have.

Lemma 2. There exists an optimal augmentation in which for some i the number of aug-

menting edges in between i and i+1 is no more than one.

Proof. Let an optimal augmentation result in at least two augmenting edges between

every i and i+l . Among all such optimal augmentations, select one with fewest clock-

wise augmenting edges. Select any undirected circuit of n augmenting edges covering

the circumference (ignoring the directions of these augmenting edges). We distinguish

two cases.

Case I. On this circuit, the total length of the clockwise edges is not equal to the total

length of the counterclockwise edges. If it is larger (resp. smaller), then remove the

clockwise (resp. counterclockwise) edges and duplicate the counterclockwise (resp.

clockwise) edges one more time. This preserves undirected connectivity and also the

degree-balance property. In addition, this transformation decreases the total length. This

contradicts the optimality of the original augmentation.

Case 2. On this circuit, the total length of the clockwise edges is equal to the total length

of the counterclockwise edges. Remove the clockwise edges and duplicate the counter-

-11 -

clockwise edges one more time. This preserves undirected connectivity, the degree-

balance property, and the total length. However it results in an optimal augmentation

having fewer clockwise edges than the original one, a contradiction. •

Note that Lemma 1 implies that for every optimal transportation there exists a value

such that the flux across every interval is that value. In addition, Lemma 2 implies that

there are only 3n relevant values of flux worth considering, namely

u M O - W X W H l } -
i=i

Lemma 3. There exists an optimal augmentation whose flux is between -m—1 and m+1.

Proof. Lemma 2 implies that there exists an optimal augmentation in which at least one

interval has at most one augmenting edge across it The absolute value of the flux of

such an augmentation is no more than 1+max | <|>(i) I ̂ 1+m. •
l<i<n

It is easy to come up with examples in which there is a unique optimal augmenta-

tion and it has flux Q(m). The range "~m~ 1 to m+1" of Lemma 3 can be narrowed to

"-m 12 to m 11" but we avoid doing so for simplicity of exposition.

Observe that fixing the value of the flux (at, say, y) entirely determines the cost of

the m i n i m u m augmentation achieving degree balance at that flux value, because every

interval (i,i+l) needs to add across it \y-<j>(0 clockwise augmenting edges in order for

the flux across it to become xj/. The resulting graph, however, may not be sc, and addi-

tional pairs of antiparallel edges may need to be added in order to make it sc. For a given

flux value, the antiparallel pairs needed to make the degree-balanced graph sc can be

determined by a minimum-cost spanning tree computation similar to the one described

for the linear track case. Our main problem is therefore that of determining which flux

value Yq is such that there is an optimal eulerian augmentation whose flux is i|/0.

Let the cost of flux y be the total length of the minii-norn eulerian augmentation

whose flux is constrained to be if. This cost consists of two components: (i) a degree-

- 12-
n

balance component db (y) equal to £ |) I /,• where I; is the length of the interval
i=i

(z ,i'+l), and (ii) a connectivity component cc(\|/) which accounts for the length of the

antiparallel pairs of augmenting edges needed to make sc the degree-balanced graph

resulting from (i). (The cc (y) results from the previously mentioned MST computation.)

If we knew db(\\f) and cc(\j/) values for all -m-l<\j/<m+l, then the optimal y

would be the one which minimizes db (\jr)+cc (y). The next two lemmas show how to

compute all the <ib(\|/)'s and cc (y)'s efficiently (the nontrivial part is computing the

CC (\j/)'s).

Lemma 4. The db (i]/)'s (-m-l<\|/<m-J-l) can all be computed in O (m) time.

Proof. It suffices to show that the description of the function db (-) can be computed in
n

0(m) time. Note that db (y) = £ |—<f)(i")] is piecewise linear and has at most n angu-
i=i

lar points (at \y=<{>(0, l^i'^n). It is easy to compute (J>(1), • • • ,0(n) in O (m) time. If we

knew the slope of db (y) at every value of y , -m- l<y<m+l , then we could easily obtain

all the db(\\r)'s with 0(m) additional work. The slope at xf=-m-\ is equal to
n n

= -1, and at y=m+l it equals = 1; in between it changes only at values of \|/
/=i ;=i

that belong to {<j>(l), • • • ,<Kn)}. Therefore we sort {(|>(1), • • • ,<{>(«)} in 0(m) time, and

then we scan the resulting sorted sequence, updating the slope of db (•) as we go along.
•

Lemma 5. The cc(y)'s (—m-l<\y<m+l) can all be computed in O (m+nlogn).

n
Proof. First observe that if then cc(v|/)=0 because in that case the degree-

/=i

balanced graph of flux \|f is already sc (it has an augmenting edge across every one of the

n intervals). We therefore need only concern ourselves with computing the cc(y)'s for
n

all \j/e)}• By its definition, cc(xjr) is equal to twice the cost of the MST of the

- 13-

undirected graph CC (\j/) whose vertices are the n stations, and whose edges consist of:

(i) the undirected versions of the input edges, and

(ii) one edge {i , i+l} for each interval (i ,i+l).

The edges in (i) have zero cost in CC(\j/), while an edge {i,i+1} in (ii) has zero cost if

Y^CO (because in that case the minimum degree-balanced augmentation for flux value

V already places at least one augmenting edge across the interval (t ,i+l)), and cost equal

to the interval's length /,- if V=<J)(i). Note that all CC(\|/)'s have the same set of edges,

the only difference being in the weights of the n edges in (ii). Since the edges in (i) have

zero cost in all CC0]/)'s, we can "collapse" each connected component of the edges in (i)

into a single vertex: let v • • • ,vq be the vertices resulting from this collapsing opera-

tion; if the endpoints of an edge in (ii) collapse into a single v; then the edge vanishes,

otherwise it survives (of course its endpoints become the collapsed vertices rather than

the original stations). This collapsing operation can easily be done in 0 (m) time as a

pre-processing step. Assume from now on that this has already been done, so that every

CC (y) is now a #-vertex multigraph having as edges the (at most n, at least q) edges in

(ii) that survived the collapsing operation. Each of the (possibly many) edges between v,-

and Vj corresponds to an interval between one of the stations that collapsed into v,- and

one of the stations that collapsed into Vj. Of course cc (y) is still twice the cost of the

MST of the new (collapsed) CC(y). Let CC be identical to the (collapsed) CCty),

except that in CC the costs associated with the edges of CC (ij/) are replaced by labels:

the edge of CC that corresponds to interval (i,i+l) is labeled by <f>(z"). Note that CC(ifO

can be obtained from CC by assigning to each edge with label <j)(j') a cost of zero if

<KO*V> a c o s t the length of (i\/+l) if <j>0)=Y- Let the intervals that correspond

to edges of CC be denoted by OVi+1), • • • ,(ir,ir+l). Find the median of

<j)(ii). • • • ,<J>(ir) (call it <J>0), then partition the set {ij, • • • ,ir] into A JB,C as follows:
A={ij : §(ij)<$0},B={ij : <j)(/7)=(j)0}, C={i; : Wj)>$o}- (Note that each of A and C has

- 14-

at most r!2 elements.) The important thing to notice is that, if ŷ <f>o (resp. -^o) and

i belongs to A (resp. B,C), then in CC(y) the edge corresponding to interval (z ,i+l) has

zero cost. This suggests the following recursive procedure for computing the cc(y)'s for

all y e {§(i):ieA{jB{jC}. First, create the undirected graph QA (resp. QB,QC) whose

vertices are v1? • - • ,vq and each of whose whose edges corresponds to an interval (i.z'+l)

withzdA (resp. B ,C). Let CCA (resp. CCB ,CCq) be obtained from CC by collapsing

each connected component of QA (resp. QE ,Qc) into a single vertex. Note that CCA

(resp. CCg ,CCc) has no more than] A \ (resp. \B |, | C |) edges, and no more vertices

than it has edges. Recursively compute the ccA (y) values for all y e {<j>(i):/ e A }.

Note. ccA (y) (resp. ccB (y),ccc (y)) denotes twice the cost of the MST of CCA (y) (resp.

CC5(y),CCc(y)). Note that if y=<J)(z) for some / in A (resp. B ,C) then cc(y) equals

ccA (y) (resp. ccB (y), ccc (y)).

Next, recursively compute the ccc (y) values for all y e {<|)(z):z e C }. Then find CCB (<|)0),

and compute its MST in 0{\B \a(\B |)) time [FT] {ccB(4>0) is twice the cost of this

MST). If T(r) denotes the overall time for this recursive procedure, then we have:

T(r)m\A\)+T(\C\)+cir+c2\B |cc(|B |),

where |A |<r/2, |C |<r/2, and |A | + | S] + |C \=r. This imphes that T(r)=0(r\ogr).
•

This completes the proof of Theorem 1.

Now we consider the more interesting with-drops mode of operation.

3. With-drops Problem

The main result of this section is the following.

Theorem 2. When drops are allowed, an optimal transportation for the circular track

problem (and hence for the linear track one as well) can be computed in O (m +n) time.

- 1 5 -

The proof of the above theorem is developed through the end of this section, and

involves several nontrivial insights into the structure of the with-drops problem. We con-

cern ourselves with the circular track problem only, since an 0(m+n) time solution to

the circular track problem automatically implies an 0 (m+n) time solution to the linear

track problem (by first embedding the linear track problem on a very small circular arc of

a circular track and then using the circular track algorithm). Since n<2m it suffices to

give an 0(m) time algorithm.

First, observe that eveiy object can be moved to its target station by moving it in

one direction only. However this observation still allows two possibilities for transport-

ing an object: along the minor arc between its endpoints, or along the major arc. For

example, Figure 5 proves that an optimal transportation for some problems must include

transporting an object by the major arc. The (1,2), (1,4) and (2,4) distances are 1/3 each,

and the (3,4) distance is very small. If we transport (1,2) and (2,1) by the minor arcs

(Fig. 5a) then the complete transportation length is 4/3 (a pair of antiparallel augmenting

edges between 2 and 3 is then needed). However if we transport (1,2) by the major arc,

as in Figure 5b, we can drop it at station 4 (we henceforth call such a drop an intermedi-

ate stop), then complete the (4,3) and (3,4) transports and finally resume the transporta-

tion of the (1,2) arc. In this case the total path length is approximately one.

(a) (b)

Figure 5. A with-drops problem (a), and its optimal transportation (b)

- 1 6 -

As in Section 2, each augmenting edge corresponds to motion of the gripper when it

is not holding any object, and covers only one interval (if the motion spans more than

one interval then each interval will get an augmenting edge). Also as before, if there are

many augmenting edges across an interval then we store only a count of the number of

such edges going in each direction across that interval.

Lemma 1 obviously still holds. Note that the fact that the transportation may move

objects to their destinations using the major arc implies that there are 2m possible ways to

draw the m input source-to-destination pairs (whereas in Section 2 there was only one

way to draw them). Lemma 10 will establish that we can restrict our attention to only m

possibilities.

Let T be any transportation (with drops). We associate with T a graph G(T) whose

vertices are the n stations, and whose edges are the m edges corresponding to the input

source-to-destination pairs, plus any augmenting edges. Each input edge in the transpor-

tation might have been covered by many intermediate stops, but in the graph G(T) we

simply draw the edge from its source to its destination. For example, in the transporta-

tion of Figure 5b, the edge (1,2) is a single edge even though this object gets dropped at

station 4 and picked up from there later on. Note that G (T) has the degree-balance pro-

perty, and hence the flux corresponding to T is the same across every interval. Since

G(T) is degree-balanced, its scc's are also the connected components of the undirected

version of G(7). Therefore G(T) is the union of disjoint scc's. For example, in figure

5b, the graph depicted has two scc's: {1,2}, {3,4}. A graph G is transportable from ver-

tex x iff there exists a transportation T with x as its start (and hence finish) vertex, and

such that G (T)=G. The graph shown in Figure 5b is not transportable from vertex 3, but

it is transportable from vertex 1. This example also illustrates how the length of an

optimal transportation now depends on where the start vertex is.

In the following, we first establish that the graph G (T) of an optimal transportation

- 17-

T can be computed in 0(m) time (Lemma 19). Then we show that T can be calculated

from G (T) in 0 (m) time (Lemma 20).

For the next three lemmas, BAL is any degree-balanced graph, and the scc's of BAL

are denoted by scci, • • • >scch. Observe that any scci can individually be transported

using any vertex in scc-L as the start vertex (even without drops).

Now we define the reachability graph of BAL to have vertices see • • - ,scch, and

to have an edge from sccj to sccj iff there exists a vertex x of sccj on some edge e of

scci (i.e. x occurs on the circular arc covered by e). This is represented by scc^sccj,

and we say that sccj is directly reachable from see;.

The above definition of direct reachability implies that, if edges e1 and e 2 of BAL

overlap and neither one of them properly contains the other, then either e^ and e 2 ^ i11

the same see of BAL or the scc's containing e1 and e2 are directly reachable from each

other.

We say that sccj is reachable from scci iff there is a directed path from scci to sccj

in the reachability graph.

Lemma 6. In the reachability graph, if scc^sccj, then scci {jsccj can be transported

using any vertex of scc^ as the start vertex.

Proof. Since scci —>sccj, there exists an edge e of see; that covers a vertex x of sccj.

Transport scc(- until point x of e is reached, drop the object, finish sccj, and then com-

plete SCC{. •

In fact the following generalization of Lemma 6 holds.

Lemma 7. If H is any directed spanning subtree of the reachability graph with scc(as

the Toot, then the union of all the scc's in H is transportable using any vertex of scci as

the start vertex. In addition the total number of intermediate stops is no more than (the

number of vertices of H) - l .

- 1 8 -

Proof. The transportation process resembles a depth-first search of H, begun at see,-:

First we mark every see j e H as being "new", then we mark scc£ as being "old" and begin

transporting see,- from any start vertex in see;. Whenever we are transporting an edge e

of the see currently being transported, we go through every edge / that has an endpoint

covered by e: if / is in a child see of the current see, and if the see of / is still marked

"new", we mark the see of / as being "old", interrupt the transportation of the see of e ,

and recursively transport the see o f f using as start (and hence finish) vertex the endpoint

of / covered by e. Every sccjE.H eventually gets transported, and every such sccj

(except the root, see,) causes one intermediate stop to occur during the transportation of

its parent. •

Corollary 1. A graph is transportable from vertex jr iff it has degree-balance and, in its

reachability graph, every see is reachable from the see that contains x.

Proof. The "only if ' part of the proof is trivial, the "if1 part follows from Lemma 7. •

Corollary 2. If G is transportable from vertex x, then there is a transportation T of G

(i.e. G (7 > G) from x such that, in T, the number of intermediate stops is no more than

n~ 1.

Proof. Immediate consequence of Lemma 7. •

Lemma 8. Let S be a subset of the scc's of BAL such that every see in S is reachable

from scci. Suppose that the union of the scc's in S covers the circumference. Then for

any degree-balanced graph G (G may be disconnected), BAL\jG is transportable from

any vertex in see;.

Proof. Since the union of the scc's in S covers the circumference, every see of BAL is

reachable from at least one see in S. This, and the fact that every see in S is reachable

from seei, implies that every see of BAL is reachable from see,-. Therefore (by Corollary

1) BAL is transportable from any vertex in see;. While transporting BAL, we are bound

to reach a vertex in each of the scc's of G. At such vertices interrupt the main

- 19-

transportation of BAL and finish the scc's of G. •

Lemma 9. Let T be an optimal transportation and let e be a major edge in G(T). Then

the see of G (T) that contains e must cover the circumference.

Proof. Let see (e) be the see containing e, and see l be the see containing the start ver-

tex. Since T is a transportation, see (e) is reachable in G(T) from see1. If see (e) does

not cover the circumference then its individual flux (the flux due to its edges only) is zero

and hence any interval covered by see (e) is covered by at least two edges of see (e).

Therefore, in G (T)-e+ec, the see containing ec is still reachable from jcc^ and it now

covers the circumference. Therefore, by Lemma 8, all the other scc's of G (T)~e+ec are

transportable from the start vertex. Thus G(T)~e+ec is transportable from the start ver-

tex, which contradicts the optimality of T (since e is longer than e c) . •

Lemma 10. In any optimal transportation, at most one object is moved to its destination

along the major arc.

Proof. Let T be an optimal transportation, let sec l3 • • • jee^ be the scc's of G (T), and

let the start vertex be in scc^ Suppose that G (T) has two major edges et and ej, respec-

tively in scct and sccj. By Lemma 9, see,- covers the circumference, and so does sccj.

Case 1: scc^sccj. Without loss of generality, we can assume that, in the reachability

graph, sccj is reachable from scci without going through sccj. Now, modify scc-} by

shortening ej. Because scci is still reachable from scc± and still covers the circumfer-

ence, even this modified sccj along with all the other scc's are transportable from the

start vertex (by Lemma 8). Since we made ej shorter, the new transportation has smaller

length than T, a contradiction.

Case 2: scci =sccj. We distinguish two sub-cases.

Sub-case 2.1: Every interval covered by e-t is covered by at least one other edge of

seei. Consequently, modifying scci by shortening et leaves the circumference covered

- 2 0 -

by the new sec;, which is still reachable from sccv Therefore, by Lemma 8, the graph

obtained from G (T) by shortening et is still transportable. This contradicts the optimal-

ity of T.

Sub-case 22: Some interval is covered by e-t and by no other edge of JCC,-. Then

the individual flux of see, is +1 or —1, and therefore every interval in the region covered

by both ei and is also covered by at least one other edge of scci (because the indivi-

dual flux of seei is an odd number). In this case simultaneously shortening both et and ej

leaves the new sec -, still covering the circumference, leading to a contradiction. •

Lemma 10 reduces from 2m to m the number of possible drawings of the m input

edges that need to be considered, but it does not yet give an O (m) time algorithm. We

must still identify, in O (m) time, which edge (if any) needs to be drawn along the major

arc. Even if we knew which drawing of the m input edges is best, it is not clear how to

augment these into a minimum-length graph that is transportable (from the start vertex).

All these nontrivial issues are addressed below.

Lemma 11. Let T be an optimal transportation, and let e be a major edge of G(T).

Then at least one interval covered by e is not covered by any other edge of G (T).

Proof. Suppose to the contrary that the region covered by e is also covered in G (T)-e.

Then there exists in G(T)~e a sequence of edges / 1 (• • • J~s such that f • • • \ j f s

covers e, and every /,- contains an endpoint of / i + 1 , l<i <s. Figure 6 illustrates this

(i=5), ignoring edge directions as well as the distinction between input edges and aug-

menting ones. We assume that the sequence / j, - • • J s has smallest number of elements

(=£), among all such sequences covering e; this implies that neither one of and / / + 1

contains the other. Note that Lemma 10 implies that s >1. Let scci be the see of G(T)

that contains the start vertex, and for any edge x, see (x) denotes the see that contains x.

We distinguish two cases.

- 2 1 -

(a) (b)

Figure 6. Illustrating the two cases of the proof of Lemma 11

Case 1: e°, the complement of e, covers at least one endpoint of at least one of the/,- 's

(see Figure 6a). For every 1 <i<s, the fact that / ; and f i + x overlap without containment

implies that we have either scc{fi)=scc(fi+\), or sec (/,•) and scc(fi+1) are directly

reachable from each other. Therefore the sec (/;) 's are reachable from one another and

from scc(e). Now, in G(T)~e+ec, scc(ec) is still reachable from scclt and every

scc(fi) is still reachable from see(ec) (because e° contains an endpoint of some /,-).

Since the union of the see (f;)'s with sec(ec) covers the circumference, it follows (by

Lemma 8) that the graph G(T)-e+ec is transportable (from the start vertex). This con-

tradicts the optimality of T.

Case 2: ec does not cover any endpoint of any fi (see Figure 6b). Note that this implies

that some /,-, say / contains ec. Let / be the shortest distance between any endpoint of

e (say, x) and any endpoint of any / j (say, endpoint y o f / a). Now, in G (T), simultane-

ously shorten e and add two antiparallel augmenting arcs of length / each between x and

y. In the resulting graph, the two additional augmenting edges that were added make

sec (,ec)=sce(f a), and therefore every scc{f i) is reachable from ^ccj. Since the union of

the sccifiYs covers the circle, Lemma 8 implies that the new graph is transportable. The

decrease in cost with respect to the original G (T) is given by

- 2 2 -

\e \-\ec\-2-l = l - 2 (| e c 1+0 > 1 - 2 1 / j ^ O

(note that \ec | + / < | / 1 | ^ l / 2 , and recall that the circle's circumference is unity). Thus

the new transportable graph is shorter than G (T), a contradiction. •

Corollary 3. Let T be an optimal transportation, and let y(T) denote the flux of T. If

G (T) contains a major edge, then | y(T)] =1.

Proof. The interval covered by e and by no other edge, in Lemma 11, has flux value of

+1 or —1. •

We henceforth use D q to refer to the graph which consists of all m input edges,

drawn so that each of them is minor.

Lemma 12. If Dq covers the circumference, then no optimal transportation can contain a

major edge.

Proof. Let T be an optimal transportation, e be a major edge of G (7). Since e is major,

its complement ec is in D0. Since D0 covers the circumference, DQ—ec covers e. Since

G [T)-e contains D0-ec, G(T)-e covers the region covered by e. This contradicts

Lemma 11. •

If two edges of DQ overlap without either of them containing the other, then in

every degree-balanced augmentation of Dq, these two edges either belong to the same

see or to two scc's that are directly reachable from each other. Based on this observation

let us define a relation, =, between any two edges of D0 , as follows:

(a) For any two input edges e j and e1=e2 ® either these two edges share a common

endpoint, or they overlap but neither one of them contains the other.

(b) Transitively close the relation =.

Note that = is an equivalence (eq.) relation, and, in addition, no two eq. classes of =

have a vertex in common. Also note that in any degree-balanced augmentation of D 0,

two input edges in the same eq. class of = belong to scc's that are reachable from each

- 2 3 -

other.

Define an ordering < among the eq. classes of - as follows: If Q and Cj are any

two distinct eq. classes of =, then C,- <Cj iff some edge of Cj covers all the vertices of C-t

(and hence no edge of Q covers any vertex of Cj). Note that = is independent of the

drawing of the edges, whereas < does depend on it. Based on this ordering we can draw

a forest of trees F whose nodes are the eq. classes of = (the parent of C(- is the "smallest"

class above it according to the < relation). An example of such a forest is shown in Fig-

ure 7. Let • • • ,zk be the trees of F, listed in clockwise cyclic order and such that

contains the start vertex. Let r<%>?(Tt) denote the eq. class at the root of tree Let

81> ' ' ' be the lengths of the gaps that separate, on the circumference, the regions

covered by the t j ' s ; g; is the gap between x; and xi+1 (in Figure 7, g j is the arc length

from the head of edge h to the tail of edge z, and g2
 3 1 0 length from the head of

edge j to the head of edge a).

Lemma 13. The eq. classes of =, and the forest F of eq. classes, can be computed in

0 (m) time.

Proof. See Appendix A. •

Let G be any degree-balanced augmentation of DQ. (Note that G is not necessarily

Figure 7. The forest (b) corresponds to the input edges shown in (a)

- 24-

transportable and, since it is degree-balanced, its scc's are the same as the connected

components of the undirected version of it.) We say that eq. classes C; and Cj of = are

directly linked in G iff at least one of the scc's of G contains vertices from both Q and

Cjm, they are linked iff there is a sequence of eq. classes beginning with C(- and ending

with Cj such that every two eq. classes in the sequence are linked.

Let DB (y) be the graph corresponding to the minimum degree-balanced augmenta-

tion ofD0 that results in flux ij/; note that DB (\j/) is unique but need not be transportable.

Figure 8a shows DB (0) for the D0 of Figure 7. Let db (\|/) be the total length of the aug-

menting edges in DB (y) (i.e. edges in DB (\]/)-£>0). By Lemma 4, it takes 0(m) time to

compute all the db (\j/) values, —m -l<\j/<m+l.

(a) (b)
Figure 8. Illustrating DB (0), LR (0), and OPT(Q) for the input edges of Figure 7

Let Criflrt be the eq. class containing the start vertex (recall that is the tree of F

that contains Cs[art). Let LR (\j/) be a minimum augmentation of DB (\|/) that makes C ^ ,

linked to root(z{) while keeping the flux equal to ty. Hence LR (\|/) consists of DB (\|/)

plus some augmenting pairs of antiparallel edges (in Figure 8b there is one such pair,

marked "in LR (0)"). Let Ir (y) be the total length of the augmenting edges in LR (y) but

not in DB (\j/).

Lemma 14. The Irty)'s, for -m-l£y<m+l, can all be computed in O (m) time. For

- 2 5 -

any given flux value LR (Yo) c a n be computed in O (m) time.

Proof. See Appendix B. •

In the next two lemmas, we show how to compute the optimum among all transpor-

tations in which no edge is major.

Let OPTrinor (V) be the graph corresponding to a transportation that is optimal

among all transportations of flux Y and that do not have any major edge. If LR (\jr) is

transportable from the start vertex, then OPTminor (y)=U? (y). Otherwise, pairs of

antiparallel edges are needed across some of the gaps (intervals not covered by D0) in

order to turn LR(y) into OPTminor(yf). In Figure 8b there is one such antiparallel pair,

and each of the two edges in it has length gv (Recall that gj , • • • ,gk are the lengths of

the gaps separating the x,-'s, listed in clockwise cyclic order, and such that contains the

Stan vertex.)

Lemma 15. Let § (y) be the total length of the augmenting pairs of antiparallel edges in
it

OPTminor (¥)• ^ ^ e n £(y)=0, otherwise g(0>=2- (£g;-maxg;).

i=i

Proof. £(y) is the length of the additional edges needed for linking all the root fa)1 s

together at flux y. No additional edges are needed if y^O because then every root(Z;) is

already linked to root(xi+1) in LR (y). If y=0 then we link the root(x^'s by adding an

antiparallel pair across every gap except the longest. •

The above lemma immediately implies the following.

Corollary 4. The pairs of antiparallel augmenting edges in 0PTminOr(W)-LR (y) can be

computed in O (m) time.

Lemma 16. It is possible to compute, in O (m) time, a graph G (T0) for some transporta-

tion T0 which is optimal among all transportations none of whose edges is major.

Proof. Note that such a graph is simply an OPTminor (\j/) of minimum total length. The

-26 -

total length of such a graph is equal to (length of edges of D0)

+min{ J&(Y)+/r(\j/)+/(y) }. Therefore lemmas 4,14,15 immediately imply that we can
v

find a flux value Yo s u c h that the length of OPTminor (y) is minimum for Y=Vo- We now

show that, once we know OPTmilwr (Yo) itself can be computed in O (m) time. It is

trivial to obtain DB (\]/0) in O (m) time. By Lemma 14, LR (Yo) can be obtained from

DB (Yo) in O (m) time. By Corollary 4, OPT^^ (Yo) can be obtained from LR (Yo) in

<9 (m) time. •

We now consider transportations that have exactly one major edge.

Lemma 17. Let E be any set of edges on the circle, exactly one of which is major (call it

e). Let G be any degree-balanced augmentation of E. If E covers the circumference,

then every see of G is reachable from the see that contains e.

Proof. Let sec (e) denote the see of G containing edge e. Since E covers the circumfer-

ence, there exists in £ a sequence of edges / j , • • • js such that f i^j • • • K j f s covers

ec, and every/,• contains an endpoint of / 1 + 1 , l<i <s. We assume that the sequence has

smallest number of elements (=5), and hence none of /,• and/,-+1 contains the other. See

Figure 9, and note that because e is the only major edge of E, it must contain at least one

endpoint of one of the /,- 's. Therefore at least one sec (f t) is reachable from see (e). For

every 1 </<,?, the fact that / ; and / i + 1 overlap without containment implies that they

belong to scc's that are reachable from one another. Therefore every see (f () is reachable

from see (e), and hence (by Lemma 8) any see of G is also reachable from see (e). •

Recall that we have already stated (in Lemma 10) that in an optimal augmentation

at most one edge is major. The next lemma refines this statement.

Lemma 18. There exists an optimal transportation T such that, if e e G (T) is major, then

its complement ec eD 0 is in a root eq. class of = and is the longest edge in that class.

Proof. Let there exist an optimal transportation T in which edge e is major, and hence

- 27-

Figure 9. Illustrating the proof of Lemma 17

its complement ec is inD0) . Note that] e [=1-] e c j, and | e c [<1/2. Let ec be in eq.

class C of tree T;- (recall that the eq. classes as well as the t,-'s are defined using D0,

where all edges are minor).

By Lemma 12, Dq does not cover the circumference. Lemma 11 implies that e is

the only input edge that covers the k gaps not covered by D 0.

Let G'=G (T)-e+ec, and note that G' is degree-balanced and contains D0. No see

of G ' covers the circumference, because otherwise G' is transportable (from the start

vertex), contradicting the optimality of G(T). Therefore every see of G ' has an indivi-

dual flux of zero, which implies the following:

(*) If an interval is covered by an see of G ' then it is covered by at least two edges of

that see.

Now we prove that ec is longest in C. Suppose to the contrary that edge feC is

longer than ec. Consider the see of G' that contains ec (call it see(ec)). In G\ sec(ec)

and see (f) are mutually reachable from one another because G ' contains D 0 and, in Dq,

ec and / are in the same eq. class. Now, since T is a transportation, the see of G (T) that

contains e is reachable from the see of the start vertex, and therefore in G ' see (ec) is

reachable from the see of the start vertex. Therefore in G s e e (f) is reachable from the

see of the start vertex. Consequently, we have:

- 2 8 -

(**) In G'-f +fc ,scc(fc) is reachable from the see of the start vertex.

Now, (*) implies that in G e v e r y interval covered by / is also covered by at least

one edge of sec i f) other than / . Therefore sec (f) - / + / c covers the circumference, and

hence by Lemma 17 every see of G - / + / c is reachable from sec i f c) . This and (**)

together imply that in G —/+/ c , every see is reachable from the see of the start vertex.

Thus the graph obtained from G (!T) by shortening e and simultaneously lengthening/ is

also transportable. This contradicts the optimality of T. Thus ec must be longest in its

eq. class.

Now we prove that there is always an optimal T in which C is root in its eq. class,

i.e. C =root (xp. Suppose that C^root(Zj). Then the parent of C in Xy surely contains an

edge/ which is longer than ec and covers it entirely. Let G =G(T)-e + e c - / + / c . Let

CYCLES be the set of augmenting edges defined as follows: across every interval

covered by / but not by ec, add two antiparallel edges. Thus the length of CYCLES is

2-(]/] - | ec]). Simple arithmetic shows that adding CYCLES to G results in a graph of

total length no more than that of G (T). We now show that G+CYCLES is transportable.

First note that G+CYCLES has degree-balance. Now observe that, because of the pres-

ence of CYCLES, ec a n d / c are in the same see of G+CYCLES (call it sccx). Further-

more, since T is a transportation, the see of G(T) that contains e is reachable from the

sec of the start vertex, and therefore in G+CYCLES, sccx is reachable from the see of

the start vertex. This and the fact that sccx covers the circle implies that G+CYCLES is

transportable. Since G+CYCLES is transportable and has length no more than that of

G CO, we have obtained from G (7) another transportable graph of optimal length, one in

which the complement of the major edge is in an eq. class that is one level higher in t j .

We can repeatedly do this until we end up with an optimal transportation whose major

edge's complement belongs to root (ij). •

Lemma 19. It is possible to compute, in O (m) time, a graph G(T) for some optimal

-29 -

transportation T.

Proof. Use Lemma 16 to compute G(T0) and let Cost0 be its total length. Use Lemma

13 to compute F: if F has one tree only then return G(r0) . Now, suppose that F has

more than one tree, i.e. k>l. Let Cost1 be the length of a transportation having

exactly one major edge in it, and which is optimal among all transportations that have

exactly one major edge. The optimal transportation T will have length

min{ Cosi0,Costi }. If Costi<CostG then Lemma 11 tells us that in our search for the

value CostlT we can restrict our attention to transportations Xj such that there exists at

least one interval covered by only the major edge of G (T{). Within this class of tran-

sportations, any Tj will have to be such that G (7^) has the following properties (i)-(iii),

where e denotes the major edge and ec its complement

(i) G (T{)-e +ec has flux equal to zero and thus contains DB (0) (which contains D 0).

(ii) In G(T1)-e+e c , C ^ , is linked to the root eq. class of its tree (x^. Therefore

G (Tl)-e+ec contains LR (0) as well.

(iii) In G (T{)-e+ec, the root eq. class of the tree %y that contains e, is linked to root (x:)

(simply because T1 is a transportation). The augmenting edges that cause root(Ty)

and root (x:) to be linked are pairs of antiparallel edges across either all of gaps

#1, • • • ,#(/'-l), or all of gaps # / , - - - ,#k (depending on whichever of

81+ ' ' ' i orSj+ ••m+8k is smaller).

Thus G(T{)~e+ec equals LR (0) plus the augmenting edges referred to in (iii). The

length of G (T^-e+e0 is therefore equal to

(length ofD0)+d&(Q)+!r (0)+2-min{<g• • • +gj_l , gj+ • ••+&}.

The length of G (7^) therefore equals (using \e\ + \ec\ =1):

(length o f D o y + d b (0) + l r (0) + 2 m i n { g , gj+ •••+gk]+l-2\ec | (t).

-30 -

The first three terms of the sum (t) are the same for any such transportation T v

Now, the edge e of G(Tj) for which the sum of the last two terms of (t) is smallest

should be the one to follow the major arc. It is trivial to identify this edge in 0(m) time

and compute the corresponding sum (t): If this sum is smaller than CostQ then this

G (!T i) corresponds to the optimal transportation, otherwise it is G (7"0). •

Lemma 20. Let G be transportable from a designated start vertex. A transportation T

such that G (T)=G can be found in 0 (m) time.

Proof. The proof of Lemma 7 suggests an algorithm for obtaining such a transportation.

However, we cannot afford to create the graph of the reachability relation among scc's,

because such a graph can be dense. Instead, we create a graph EQUTV', defined as

EQUP/ in the proof of Lemma 13 (appendix A) except that we now use the input edges

as they are drawn in G rather than as they are drawn in Dq (G may include a major

edge). In addition, we compute the eq. classes of a relation - and forest of eq. classes F '

defined as = and F were before, except that we now use the input edges as they are in G

rather than in D0. For each eq. class C that is parent in F' of class C', we arbitrarily

select an edge e in C and an edge / in C' such that e properly contains / (at least one

such pair e J exists); we call edge e the parent o f / , and we call / a child of e. Note

that the forest F' induces at most n - 1 such parent-child pairs. For each edge e, let the

list of edges ADJ{e) be the union of (i) the children of e induced by F\ and (ii) the adja-

cency list of e in the undirected graph EQUIV'. We are now ready to describe how to

obtain T such that G (T)=G. The transportation process resembles a depth-first search of

the scc's, begun at j c c j : First we mark all scc's of G as being "new", then we mark sccY

as being "old" and begin transporting .rccj from the start vertex of G (recall that any see

can individually be transported using any vertex in it as start and finish). Whenever we

are transporting an input edge e of the see currently being transported, we go through the

list ADJ(e): for e a c h / e A D J (e) that is in a "new" see, we mark the see o f f as being

-31 -

"old", interrupt the transportation of the see of e, and recursively transport the see o f /

using as start (and hence finish) vertex an endpoint of / covered by e. It is trivial to

implement this procedure in 0(m) time. Correctness follows from the facts that (i)

EQUIV', even though it is sparse, captures all the "overlap without containment"

relashionships between pairs of input edges, and (ii) the parent-child pairs induced by F '

capture enough of the "proper containment" relationships between pairs of edges. More

precisely, (i) guarantees that once an edge of eq. class C is reached by the transportation,

eventually every edge of that class C will be transported. On the other hand, (ii) guaran-

tees that once an edge of an eq. class C is reached by the transportation, eventually every

eq. class in the subtree of C in F' will be transported. •

The last two lemmas imply Theorem 2, which is the main result of this section.

4. Concluding Remarks

It is easy to see that our solutions to the angular motion problem (with or without

drops) also work in the presence of obstacles. A pre-processing step computes the visi-

bility polygon from the fixed pivot point of the robot arm (of course all n stations must

be visible from the pivot, since an invisible station is unreachable by the robot arm). The

robot arm must remain within the visibility polygon while performing the transportation.

While this does not affect the rotational distance function, the telescoping distance func-

tion has to be modified appropriately because the robot arm may have to be drawn in so

as to clear an obstacle.

It would be interesting to investigate the with-drops circular track problem when the

gripper can simultaneously hold c objects, where c is a constant larger than one. We

conjecture that Lemma 10 generalizes to that case, i.e. no optimal transportation can

transport more than c objects along the major arc. A special case of this problem for a

linear track was treated in [K].

- 3 2 -

Acknowledgement The authors arc grateful to an anonymous referee for his comments

on the case with obstacles.

References

[AHU] A. V. Aho, J.E. Hopcroft and J.D. Ullman, The Design and Analysis of Computer
Algorithms, Addison-Wesley, Reading, Mass., 1974.

[ET] K. P. Eswaran and R. E. Taijan, "Augmentation Problems," SI AM J. on Comput-
ing, 1976, 653-665.

[E] S. Even, Graph Algorithms, Computer Science Press, Potomac, Maryland, 1979.
[FT] M. L. Fredman and R. E. Taijan, "Fibonacci Heaps and their Uses in Improved

Network Optimization Algorithms," Proc. 25th Annual IEEE Symp. on Founda-
tions of Computer Science, 1984, pp. 338-346.

[K] R. M. Karp, "Two Combinatorial Problems Associated with External Sorting,"
Combinatorial Algorithms, ed. by R. Rustin, Courant Computer Science Sym. 9,
Algorithmics Press, New York, 1972.

[PI] C. H. Papadimitriou, "On the Complexity of Edge Traversing," JACM, 1976, 544-554.

[P2] C. H. Papadimitriou, "The Euclidean traveling salesman problem is NP-
complete," Theoretical Computer Science, 1977,237-244.

Appendix A

This appendix proves Lemma 13. Computing F in linear time when we know the

eq. classes is easy and this construction is omitted. We give an O (m) time algorithm for

computing the eq. classes of = For the purpose of this computation all the edges in D 0

can be considered undirected. An edge covers the circular region going clockwise from

its beginning to its end. For an edge ee i) 0 , let CW(e) (resp. CCW(e)) be the set of

edges of D 0 whose beginning (resp. end) is in the region covered by e and whose end

(resp. beginning) is in the region not covered by e. Note that feCW(e) iff

eeCCW (f) . The clockwise (resp. counterclockwise) successor of e is the edge of

CW(e) (resp. CCW(e)) whose beginning (resp. end) is encountered first by a clockwise

(resp. counterclockwise) sweep starting at e 's beginning (resp. end). In Figure 10a,

CW(e)={c ,d }, CCW (e)={a ,b }, the clockwise successor of e is d and its counterclock-

wise successor is a .

•l
J

- 3 3 -

(a) (b)
Figure 10. Illustrating EQUIV

The clockwise and counterclockwise successors of every edge of D 0 can easily be

computed in 0(m) time. Assume this has already been done. Now create, in 0(m)

time, the undirected graph EQUIV whose vertex set is D 0 and such that {e / } is an edge

in it iff one of e and / is (clockwise or counterclockwise) successor of the other. Figure

10b shows the graph EQUIV corresponding to Figure 10a. Obviously, EQUIV has at

most 2m edges, since every e e D 0 has at most two successors (one clockwise, one coun-

terclockwise). Hence the connected components of EQUIV can be computed in 0(m)

time. Thus the lemma will follow immediately when we establish that the connected

components of EQUIV are the equivalence classes of =. To prove this, it suffices to

show that, if any two edges e and / overlap without containment (i.e. without either one

of them properly containing the other), then there is a path between e and / in EQUIV.

If edges e and / overlap without containment, then we define the overlap number of the

pair {e / } to be the number of stations covered by both e and / , not counting the end-

points of e a n d / . In Figure 10a, the overlap number of {e,d] is 2, that of {a,w} is 0,

and that of {e ,w} is undefined because e properly contains w. We prove the desired

result by contradiction: suppose there exist pairs of edges that overlap without contain-

ment and have no path between them in EQUIV. Among all such pairs, choose {e / } to

have maximum overlap number. Without loss of generality, assume feCW(e). Let g

be the clockwise successor of e, and let h be the counterclockwise successor of / (see

-34 -

Figuie 11). Since {e ,g } and {f ,h} are edges in EQUIV, and since e and / are in dif-

ferent connected components of EQUIV, we must have g^f and h^e. Note that, as

shown in Figure 11, the end of g must occur after that of / in the clockwise direction,

because otherwise the overlap number of { # / } would exceed the overlap number of

{e f }, a contradiction. Similarly, the beginning of h comes before that of e, since other-

wise the overlap number of {e ,h } would exceed the overlap number of {e / }, a contrad-

iction. But then, the overlap number of {g,h} exceeds the ovelap number of {e /} , a

contradiction. This completes the proof of Lemma 13.

Figure 11. Illustrating clockwise and counterclockwise successors

Appendix B

This appendix proves Lemma 14.

For every eq. class CeXj, let L(C) (resp. R (C)) be the vertex of C such that a

clockwise sweep of the region covered by C starts at L (C) (resp. ends at R (C)). In Fig-

ure 7, L ({c }) is the head of edge c ,L({j ,z }) is the tail of edge z. If C is not root (ij), let

the left (resp. right) neighbor of C be the first vertex of x : -C that is is encountered by a

counterclockwise (resp. clockwise) sweep begun at L(C) (resp. R (C)). In Figure 7, the

left neighbor of eq. class {c } is the tail of edge b, its right neighbor is the tail of edge g.

We use LN(C) and RN(C) to denote the left and right neighbors of C, respectively.

Note thatZJV(C)=L(C)-l, and/W(C)=i?(C)+l- Therefore we can talk about the inter-

vals (LN(C)JL(C)) and (R (C),RN (C)). Let the eq. class containing any vertex x be

denoted by ClassQc). Note that Class(LN(C)) (resp. Class(RN(C))) is either the left

(resp. right) sibling of C in Xj, or the parent of C in Xj. Also note that

-35 -

Class (LN (C))=Class (RN (C)) is possible (if both are the parent of C). Now, imagine

starting at Cslar{ and repeatedly applying the function Class (LN(-)) until root(z1) is

reached. This defines a sequence S ^ of eq. classes from C , ^ to root(i{). Starting at

Cstart repeatedly applying the function Class (RN (•)) similarly defines a sequence of

eq. classes SR-lghi. Let us draw a directed graph Q to depict what S^ and S}Ught might

look like; i.e. the vertices of Q are the eq. classes of S^\jSRigk{ and Q has an edge

from C; to Cj iff Cj immediately follows C,- in S ^ or in S ^ ^ . Figure 12 shows such a

graph Q. Note that the two paths corresponding to S^ and SRighl are not necessarily

vertex-disjoint and may come together at articulation points more than once. Let these

articulation points be A l7A 2» • • • , listed by increasing distance from Caarl in Q. Let
A (rCvart • At+1=rOOt (Tj).

Let the interval that corresponds to the pair {C,Class (LN(C))} be (LN(C)L(C)),

and let the interval that corresponds to the pair {C,Class (RN(C))} be (R (C)JZN(C)).

Now, let Q (\|/) be the undirected graph obtained by removing from the undirected ver-

sion of Q all the edges {C,Class (LN (C))} and [C,Class (RN(C))} whose correspond-

ing intervals are not covered by any augmenting edge of DB (\]/). Note that if Q (y) does

not contain a path between A0 and Ar+1, then antiparallel pairs need to be added to

DB (\|/) to turn it into LR (\jr); we next investigate which such antiparallel pairs should be

added (the total length of these pairs is /r(\j/)). Let £ (y) be a subset of edges in the

undirected version of Q such that adding these edges to Q (y) causes a path to exist

between A0 to Af+1; choose is (\|/) to be such that the sum of the lengths of the intervals

corresponding to its elements is minimum. It is not hard to see that LR (y) is obtained by

-36 -

adding to DB (y) an antiparallel pair across every interval corresponding to an element of

E (y). Thus lr (y) is twice the total length of the intervals corresponding to the elements

of E (y); let us call this the cost of E (y). Now our problem is to keep track of the cost

of E(y) as y changes from -m-1 to m+1. Write £ (y) as £0(y)+£1(y)+ • • • +E,(y)

where Ei (y) is the subset of E (y) that is in the biconnected component of the undirected

version of Q having A-t and Ai+l as articulation points. Now, as y changes, Q (y)

changes as well, but it changes at no more than 3n values of y . Each such change in

Q (y) is due to the appearance or disappearance of an augmenting edge of DB (y) across

an interval, and it is trivial to update, in constant time per interval affected, the cost of

each EI (y) affected (once one realize that the portion of Q between At and Ai+l consists

of two disjoint paths, one can easily supply the other details). Thus it is possible to com-

pute a description of the costs of all the E-t (y)'s in O (m) time. Getting the description of

the cost of £ (y) takes an additional O (m) time, which completes the proof of the first

part of the lemma.

For a given flux value y0 , computing the actual set E (y0) (and the intervals correspond-

ing to its elements) is easily done in O (m) time, in view of the preceding discussion: first

we compute Q, then Q (y0), then £ (y0). This completes the proof of Lemma 14.

	Efficient Solutions to Some Transpsortation Problems with Applications to Minimizing Robot Arm Travel
	Report Number:
	

	tmp.1307986960.pdf.Yy52a

