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Abstract

Many researchers seek factors that predict the cross-section of stock returns. The

standard methodology sorts stocks according to their factor scores into quantiles and forms

a corresponding long-short portfolio. Such a course of action ignores any information on

the covariance matrix of stock returns. Historically, it has been difficult to estimate the

covariance matrix for a large universe of stocks. We demonstrate that using the recent

DCC-NL estimator of Engle et al. (2017) substantially enhances the power of tests for

cross-sectional anomalies: On average, ‘Student’ t-statistics more than double.

KEY WORDS: Cross-section of returns, dynamic conditional correlations, GARCH,

Markowitz portfolio selection, nonlinear shrinkage.

JEL CLASSIFICATION NOS: C13, C58, G11.

∗We thank Rob Engle for helpful comments.

1



1 Introduction

The search for factors that predict the cross-section of stock returns generates an abundant

literature. Instead of “factors”, some authors may use alternative terms such as signals,

predictors, characteristics, anomalies, cross-sectional patterns, forecasting variables, etc. What

we mean specifically is a function of historical data that can explain the cross-section of

subsequent stock returns: discriminate between the stocks that will tend to outperform their

peers and the ones that will tend to underperform their peers. Both Green et al. (2013) and

Harvey et al. (2016) find more than 300 articles and factors in this strand of literature.

Going back to at least Fama and French (1993), the preferred method for establishing

the validity of factors has been to construct portfolios based on sorting. For example, one

can form a dollar-neutral long-short portfolio by going long the stocks that are in the top

quintile according to their factor scores, and short the stocks in the bottom quintile. Instead

of quintiles, some authors may prefer terciles, deciles, etc. The portfolio is then held for a

certain period of time, at which point it is rebalanced according to freshly updated factor data.

This procedure generates a time series of portfolio returns. The factor is deemed successful if

the average portfolio return exceeds some benchmark, generally zero percent, at a suitable level

of statistical significance. Thus, the central quantity is the ‘Student’ t-statistic of the long-short

portfolio return. This test is called predictive in the sense that, at any point in time, portfolio

construction rules involve only data that were acquired earlier. Such investment strategies are

realistic and can be implemented by a quantitative fund manager.

This status quo poses a conundrum: How come we have a quantitative investment strategy

that does not employ the covariance matrix of asset returns? Indeed, the historical foundation

of finance as a mathematically rigorous discipline can be traced back to the discovery of

Markowitz (1952) portfolio selection. He proved that optimal portfolio weights depend not

only on (a factor that proxies for) the first moment of returns, but also on the second moment:

the covariance matrix — or, to be precise, its inverse. A more powerful test for cross-sectional

anomalies can be designed by replacing the traditional portfolio construction rule based on

sorting with a more efficient one that incorporates the (inverse) covariance matrix, at least in

theory.

From theory to practice there is a gap: The true covariance matrix is unobservable;

therefore, it needs to be estimated somehow. At the epoch when the standard procedure

for testing factors crystallized around sorting, there was no covariance matrix estimator that

could cope with inversion in large dimensions. Indeed, Michaud (1989) described portfolio

optimization as an “error-maximization procedure”. Ledoit and Wolf (2004b) showed that the

textbook estimator, the sample covariance matrix, is ill-conditioned when the dimension is

not negligible with respect to sample size: inverting it amplifies any estimation error. This

unfortunate behavior is pushed to a numerical extreme when the number of stocks exceeds the

number of time series observations, at which point the supposedly optimal portfolio weights

blow up to plus or minus infinity, which violates economic sense. Even with two years of daily

data at hand, this systemic breakdown happens as soon as we consider the universe of S&P 500
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constituents.

Abandoning mean-variance optimization for portfolio selection would amount to ‘throwing

the baby out with the bathwater’. The way forward instead is to consider an improved

covariance matrix estimator that fixes the weaknesses of the sample covariance matrix, so

that the profession as a whole can upgrade from quantile-based portfolios to a more efficient

weighting scheme. This is the purpose of the present paper. As it turns out, covariance matrix

estimation has been an active field of research over the recent years. Substantive progress has

been achieved in two complementary directions.

The first direction is time series. Variances and covariances move over time, and they need

to be tracked accordingly, which the sample covariance matrix is not geared to do. Early

success in this area was achieved in the univariate case by the ARCH model of Engle (1982),

followed by generalizations such as the GARCH model of Bollerslev (1986), and too many

others to review here. Extension to the multivariate case, however, has been slowed down

by the curse of dimensionality. The main breakthroughs in this challenging area have been:

(i) volatility targeting (Engle and Mezrich, 1996); (ii) the Dynamic Conditional Correlation

(DCC) model of Engle (2002); and (iii) composite likelihood estimation (Pakel et al., 2017).

Together they solve the difficulties attributable to the time-varying aspects of the covariance

matrix — but only provided that cross-sectional issues intrinsic to the estimation of large-

dimensional unconditional covariance matrices can be fixed on their own terms.

This leads us to the second direction where substantive progress has been accomplished: the

cross-section. Stein (1986) showed that, absent a priori structural information, the eigenvectors

of the sample covariance matrix can be preserved, but its eigenvalues must be nonlinearly

shrunk towards their cross-sectional average due to systematic in-sample overfitting. He

also hinted that a nonstandard asymptotic theory might shed some light: large-dimensional

asymptotics, where the matrix dimension is assumed to go to infinity along with the sample size.

However, much work remained to be done by a variety of authors such as Silverstein and Bai

(1995) until Ledoit and Péché (2011) derived the theoretically optimal nonlinear shrinkage

formula, and Ledoit and Wolf (2012, 2015) developed a statistical implementation that works

even when dimension exceeds sample size: the NonLinear (NL) shrinkage estimator of the

unconditional covariance matrix.

The state-of-the-art developments in these two streams of covariance matrix estimation

literature are brought together for the first time in the DCC-NL model of Engle et al. (2017).

These authors examine the performance of mean-variance efficient portfolios subject to two

linear constraints: the unit vector (for the global minimum variance portfolio) and the

momentum factor. They find that, indeed, the DCC-NL estimator generates economically

and statistically significant improvements in both cases.

There are two important differences between the present paper and Engle et al. (2017).

First, we do not just look at two linear constraints in the mean-variance optimization problem

but instead at a large ensemble of 60-plus different factors culled from the literature on cross-

sectional anomalies. Second, we use dollar-neutral portfolios, whose weights sum up to zero,

instead of fully-invested portfolios, whose weights sum up to one.
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Our main original contribution is to demonstrate that using the DCC-NL estimator of

the covariance matrix in a large investment universe multiplies the ‘Student’ t-statistics for

cross-sectional anomaly detection, on average, by a factor of more than two relative to the

status quo. Therefore, it is in everybody’s interest to upgrade the theoretically and empirically

underpowered portfolio-construction procedure based on sorting into quantiles.

The power boost from using DCC-NL is significant because it enables factor candidates

that have a short history to get a chance at getting detected. Multiplying the t-statistic by two

is equivalent to multiplying the number of years in the dataset by approximately four. Thus,

if a given factor requires 40 years of historical data to achieve statistical significance with

sorting into quantiles, with DCC-NL the same factor can attain the same level of statistical

significance in only ten years. This is especially relevant for all factors that are extracted from

traffic on social networks, as these have only been active on a massive scale for a relatively

small number of years. Given the explosion in data collection driven by the precipitous fall in

storage cost per petabyte in recent years, this is just the tip of the iceberg: Big data is young

data.

On a separate but equally important note, given that Harvey et al. (2016) claim that the

significance threshold for t-statistics should be raised from two to three due to multiple-testing

issues, it will be much harder for subsequent authors to meet this hurdle. Any candidate needs

all the power boost he or she can get. Having a more accurate telescope to detect elusive

objects always constitutes scientific progress.

The methodology we use in this paper — that is, harnessing a wide variety of cross-sectional

anomalies to shed new light on an important problem in financial econometrics — is very

much in tune with recent developments in other strands of the literature that are unrelated to

covariance matrix estimation. For example, Hou et al. (2015) argue that the usefulness of a

parsimonious model of expected stock returns should be judged against its ability to explain

away a large number of cross-sectional anomalies. McLean and Pontiff (2016) measure the

speed of convergence of financial markets towards informational efficiency by computing the

decay rate of a large number of cross-sectional anomalies subsequent to academic publication.

Just as the merit for inventing DCC-NL does not belong to the present paper, the burden

of proving that it is better than the multitude of covariance matrix estimators that have been

proposed by countless authors does not fall on the present paper either. DCC-NL is the

default choice at this juncture because it is the only one that addresses concomitantly the two

major issues in the estimation of the covariance matrix of stock returns, namely conditional

heteroskedasticy and the curse of dimensionality. Our point is only to establish that DCC-NL,

as representative of best practices in covariance matrix estimation, has enough accuracy to

reinstate the covariance matrix in its rightful place at the center of the Markowitz (1952)

program and empirical asset pricing: The time has come to upgrade the practice of sorting

into quantiles.

The paper is organized as follows. Section 2 gives a brief presentation of the DCC-NL

covariance matrix estimator. Section 3 describes the empirical methodology for comparing

test power with and without DCC-NL. Section 4 contains the empirical results. Section 6
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concludes. Appendix A contains all tables and figures; Appendix B details the technique of

‘Winsorization’ that is applied to cross-sectional vectors of factors in our empirical work; and

Appendix C details the set of factors we consider and how these factors are constructed in

practice.

2 The DCC-NL Estimator of the Covariance Matrix

This brief recapitulation is only intended to make the present paper self-contained. The

interested reader is referred to Engle et al. (2017) for the original exposition.

2.1 Time Variation in the Second Moments

The modelling and estimation of time-varying variances, covariances, and correlations requires

aggregating the contributions from three different ideas.

2.1.1 Dynamic Conditional Correlation (DCC)

A key idea promoted by Engle (2002) is that modelling conditional heteroskedasticity is easy

and successful in the univariate case, so we should take care of that prior to looking at the

covariance matrix as a whole. Thus, for every asset i = 1, . . . , N , we fit a GARCH(1,1) or

similar model to the series i individually. Dividing the raw returns by the corresponding

conditional standard deviations yields devolatilized returns that have unit variance. Call st

the N -dimensional column vector of devolatilized residuals at time t ∈ {1, 2, . . . , T}. Then the

dynamics of the pseudo-correlation matrix Qt can be specified as:

Qt = Θ + α st−1s
′
t−1 + β Qt−1 , (2.1)

where α and β are non-negative scalars satisfying α+β < 1 that govern the dynamics, and Θ is

an N -dimensional symmetric positive definite matrix. Qt is called a pseudo-correlation matrix

because its diagonal terms are close, but not exactly equal to, one. Therefore, the following

adjustment is needed to recover the proper correlation matrix Rt:

Rt
..= Diag(Qt)

−1/2QtDiag(Qt)
−1/2 , (2.2)

where Diag(·) denotes the function that sets to zero all the off-diagonal elements of a matrix.

2.1.2 Volatility Targeting

The second ingredient is the notion of “variance targeting” introduced by Engle and Mezrich

(1996). Although originally invented in a univariate context, the extension to the multivariate

case of interest here is straightfoward (Engle, 2002, Eq. (11)). The basic idea is that a suitable

rescaling of the matrix Θ in equation (2.1) can be interpreted as the unconditional covariance

matrix. Therefore, it can be estimated using standard techniques that ignore time series effects,

separately from the other parameters. This approach yields the reparametrized model

Qt = (1− α− β)Γ + α st−1s
′
t−1 + β Qt−1 , (2.3)
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where Γ is the long-run covariance matrix of the devolatilized returns st for t = 1, . . . , T .1

2.1.3 Composite Likelihood

After having dealt with the conditional variances and partialled out the problem of estimating

the unconditional covariance matrix, the only remaining task is to estimate the dynamic

correlation parameters α and β. These two scalars play the same role as their counterparts

in the more familiar ARMA(1,1) and GARCH(1,1) models, but for conditional correlation

matrices.

When the matrix dimension is large, say N = 1000, the standard likelihood maximization

technique would require inverting T matrices of dimension 1000 × 1000 at every iteration,

which is numerically challenging. Pakel et al. (2017) found a more efficient solution called the

2MSCLE method: combine the individual likelihoods generated by 2× 2 blocks of contiguous

variables. Maximizing this composite likelihood yields asymptotically consistent estimators

for α and β, as long as the DCC model is well-specified. The intuition is that every individual

correlation coefficient shows traces of the dynamic parameters α and β in its own time series

evolution, so a sufficiently large subset of individual correlations will reveal (a consistent

approximation of) the true parameters. The advantage of this procedure is that it is numerically

stable and fast in high dimensions; for example, Engle et al. (2017) manage to take it to a large

universe of N = 1000 stocks.

2.1.4 DCC Estimation Procedure

To summarize, the estimation of the DCC model unfolds in three steps:

1. Fit a univariate GARCH(1,1) model to every stock return series individually, and divide

the raw returns by their conditional standard deviations to devolatilize them.

2. Estimate the unconditional covariance matrix of devolatilized returns somehow.

3. Maximize the 2MSCLE composite likelihood to obtain consistent estimators of the two

parameters of correlation dynamics in a numerically stable and efficient way.

At this juncture, it becomes apparent from step 2 that we need an estimator of the

unconditional covariance matrix of devolatilized returns that performs well when the dimension

is large.2

2.2 Estimation of Large-Dimensional Unconditional Covariance Matrices

The reader is invited to peruse Ledoit and Wolf (2012, 2015) for a more detailed treatment.

1Since the devolatilized returns all have unit variance, Γ is actually a proper correlation matrix, that is, its

diagonal elements are all equal to one.
2Note that in practice the devolatilized returns have to be based on estimated univariate GARCH models

rather than the ‘true’, unobservable univariate GARCH models.
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2.2.1 Spectral Decomposition

The textbook estimator of Γ is the sample covariance matrix C ..=
∑T

t=1 sts
′
t/T . Both matrices

admit spectral decompositions:

C =
N∑
i=1

λi · uiu
′
i and Γ =

N∑
i=1

τi · viv′
i , (2.4)

where (λ1, . . . , λN ;u1, . . . ,uN ) denotes a system of eigenvalues and eigenvectors of the

sample covariance matrix C, and (τ1, . . . , τN ;v1, . . . ,vN ) denotes a system of eigenvalues and

eigenvectors of the population covariance matrix Γ . Eigenvalues are indexed in ascending order

without loss of generality.

In the traditional asymptotic framework, where the sample size T goes to infinity, while

the number of assets N remains constant, the sample eigenvalue λi is a consistent estimator

of its population counterpart τi, and the sample eigenvector ui is a consistent estimator of its

population counterpart vi, for i = 1, . . . , N . However, this asymptotic framework is not robust

against the curse of dimensionality. When N is no longer negligible with respect to T , the

sample spectrum is far from its population counterpart.

This is why it is necessary to turn to another asymptotic framework that offers a different

family of analytical solutions. Unlike the formulas from traditional asymptotics, they work

also if N is not negligible with respect to T , and even if N is greater than T . The key

assumption is that the ratio N/T converges to some limit c ∈ [0,+∞) called the concentration

(ratio). This framework is called large-dimensional asymptotics, and it includes traditional

(fixed-dimensional) asymptotics as a special case when the concentration c is equal to zero.

Thus, it is a generalization of traditional asymptotics that is able to cope with the curse of

dimensionality by making necessary corrections (whose intensity increases in c) to the standard

formulas.

2.2.2 Portfolio Selection

Stein (1986) argued that, in the absence of a priori knowledge about the structure of the

eigenvectors of the (unobservable) population covariance matrix Γ , estimators should preserve

the sample covariance matrix eigenvectors (u1, . . . ,uN ), and correct the sample eigenvalues

only. This framework is called rotation-equivariant because the economic outcome is immune

to repackaging the N original stocks into a collection of N funds investing in these stocks,

as long as the funds span the same investment universe as the stocks.

It is easy to show that, among rotation-equivariant estimators of the covariance matrix,

the one that performs the best across all possible linear constraints for the purpose of portfolio

selection in terms of minimizing out-of-sample variance is:

C̃ ..=

N∑
i=1

(
u′
iΓui︸ ︷︷ ︸
ϕi

)
· uiu

′
i . (2.5)
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This makes economic sense because u′
iΓui is the out-of-sample variance of the portfolio whose

weights are given by the ith sample eigenvector ui. Thus we notice the emergence of a third

quantity, after the sample eigenvalue λi = u′
iCui, and the population eigenvalue τi = v′

iΓvi:

the hybrid ϕi
..= u′

iΓui, which represents the best we can do with the sample eigenvectors.

The key is that, under large-dimensional asymptotics, the vectors λ ..= (λi)i=1,...,N ,

τ ..= (τi)i=1,...,N , and ϕ ..= (ϕi)i=1,...,N are all far apart from one another. It is only as the

concentration c goes to zero, that is, as we approach standard (fixed-dimension) asymptotics,

that their mutual differences vanish. When c > 0, which is the case when the investment

universe is large, appropriate corrections must be applied to go from λ to τ to ϕ.3 Qualitatively,

λ, τ , and ϕ have the same cross-sectional average, but λ is more dispersed than τ , which in

turn is more dispersed than ϕ.

2.2.3 NonLinear (NL) Shrinkage Estimator of the Covariance Matrix

The ideal would be to have two deterministic functions ΛN,T and ΦN,T from [0,+∞)N to

[0,+∞)N mapping out the two important expectations:

τ 7−→ΛN,T (τ ) ..=
(
ΛN,T
1 (τ ) , . . . ,ΛN,T

N (τ )
)
=

(
E[λ1] , . . . ,E[λN ]

)
=

(
E[u′

1Cu1] , . . . ,E[u′
NCuN ]

)
τ 7−→ΦN,T (τ ) ..=

(
ΦN,T
1 (τ ) , . . . , ΦN,T

N (τ )
)
=

(
E[ϕ1] , . . . ,E[ϕN ]

)
=

(
E[u′

1Γu1] , . . . ,E[u′
NΓuN ]

)
Then we would use the observed eigenvalues of the sample covariance matrix, λ, to reverse-

engineer an estimator of the population eigenvalues by solving the optimization problem

τ̂ ..= argmin
t∈[0,+∞)N

1

N

N∑
i=1

(
ΛN,T
i (t)− λi

)2
, (2.6)

and the nonlinear shrinkage estimator of the covariance matrix would follow as

Ĉ ..=
N∑
i−1

ΦN,T
i (τ̂ ) · uiu

′
i . (2.7)

Due to tractability issues, however, we only know approximations to the functions ΛN,T

and ΦN,T that are valid asymptotically as the universe dimension N goes to infinity along with

the sample size T , with their ratio N/T converging to the concentration c. Ledoit and Wolf

(2012, 2015) show that replacing the true expectation functions with their approximations

can be done at no loss asymptotically. Therefore, this procedure yields a nonlinear shrinkage

estimator of the covariance matrix that is optimal in the large-dimensional asymptotic limit.

Qualitatively speaking, the effect of composing ΦN,T with the inverse of ΛN,T (or

approximations thereof) moves the sample eigenvalues closer to one another, while preserving

their cross-sectional average. The effect is increasing in N/T and highly nonlinear; for example,

isolated eigenvalues that lie near the bulk of the other eigenvalues move in the direction of

the bulk more than those distant from the bulk.
3Correcting these relationships when the ratio of variables to observations is significant is analogous to

correcting Newtonian relationships when the ratio of velocity to speed of light is significant (Einstein, 1905).
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2.3 DCC-NL Model

In summary, the estimation of the DCC-NL model of Engle et al. (2017) proceeds as follows:

1. Fit univariate GARCH models to devolatilize returns.

2. Compute the sample covariance matrix of devolatilized returns.

3. Decompose it into eigenvalues and eigenvectors.

4. Invert an approximation of the function ΛN,T to estimate population eigenvalues.

5. Apply an approximation of the function ΦN,T to shrink eigenvalues nonlinearly.

6. Recompose with the sample eigenvectors to estimate the unconditional covariance

matrix Γ in (2.3).

7. Transform the resulting estimator of Γ from a covariance matrix to a proper correlation

matrix.4

8. Maximize the 2MSCLE composite likelihood to estimate the correlation dynamics.

9. Recombine the estimated conditional correlation matrix with the estimated univariate

GARCH processes to obtain an estimated conditional covariance matrix.

The outside steps (1–2 and 7–9) compose the DCC part, while the inside steps (3–6) compose

the NL part of the DCC-NL estimation procedure. The final product is a time series of

N -dimensional conditional covariance matrix estimates, which we call {Ht}Tt=1. More explicit

formulas are provided in Engle et al. (2017).

3 Empirical Methodology

The goal is to construct long-short portfolios exposed to a given factor. The size of the

investment universe is denoted by N , and stocks in this universe are indexed by i. Days

on which trading takes place are indexed by t. The cross-sectional vector of factor scores

observable at the beginning of day t is denoted by mt
..= (mt,1, . . . ,mt,N )′. A portfolio of the

type that we consider is defined by a weight vector wt
..= (wt,1, . . . , wt,N )′ that satisfies∑

wt,i<0

|wt,i| =
∑

wt,i>0

|wt,i| = 1 .

Note that the weights of such a long-short portfolio necessarily sum to zero, that is, the portfolio

is dollar-neutral (on the day of portfolio construction). Furthermore, the gross exposure of the

portfolio is two dollars (on the day of portfolio construction).

3.1 Quantile-Based Sorting Portfolios

Let B be the number of quantiles considered; for example, B = 3 for terciles, B = 5 for

quintiles, and B = 10 for deciles. Let d be the largest integer that is smaller than or equal

4Doing so is motivated by the fact that Γ itself is a proper correlation matrix, as pointed out previously.
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to N/B. Finally, let {(1), (2), . . . , (N)} be a permutation of {1, 2, . . . , N} that results in ordered

factor scores (from smallest to largest):

mt,(1) ≤ mt,(2) ≤ . . . ≤ mt,(N) .

Then the quantile-based portfolio is given by the weight vector wQu
t with

wQu
t,(1) = . . . = wQu

t,(d)
..= −1/d ,

wQu
t,(d+1) = . . . = wQu

t,(N−d)
..= 0 , and

wQu
t,(N−d+1) = . . . = wQu

t,(N)
..= 1/d .

The resulting portfolio return on such a portfolio-construction day is denoted by rQu
t

..= x′
tw

Qu
t ,

where xt is the N×1 vector of returns at date t. In case the portfolio is not updated every day,

it is customary to hold number of shares, rather than portfolio weights, constant until the next

portfolio construction. (Holding portfolio weights constant would require daily rebalancing,

which would incur additional trading costs.) In this case, the portfolio return rQu
t on a given

day depends on how the vector of portfolio weights has ‘evolved’ over time due to the price

movements of the various stocks in the portfolio.5

3.2 Efficient Sorting Portfolios

The alternative investment problem we propose is formulated as

min
w

w′Ĥtw (3.1)

subject to m′
tw = m′

tw
Qu
t and (3.2)∑

wi<0

|wi| =
∑
wi>0

|wi| = 1 , (3.3)

where Ĥt is the DCC-NL estimator of the (conditional) covariance matrix Ht of xt. Denote a

solution of this investment problem by wEf
t . The resulting portfolio return on such a portfolio-

construction day is denoted by rEft
..= x′

tw
Ef
t . In case the portfolio is not updated every day, it

is customary to hold number of shares, rather than portfolio weights, constant until the next

portfolio construction; in this case, the portfolio return rEft on a given day depends on how the

vector of portfolio weights has ‘evolved’ over time due to the price movements of the various

stocks in the portfolio.

The motivation here is that we want to construct a portfolio that (i) has the same exposure

to the vector of factors mt as the quantile-based sorting portfolio because of (3.2), but (ii)

has a smaller variance because of (3.1). If this goal is accomplished, then the resulting

portfolio returns will generally result in a larger (in magnitude) ‘Student’ t-statistic (cf. (3.10)

below), since the smaller variance of the returns will result in a smaller standard error in the

denominator of the t-statistic whereas the sample average in numerator will be roughly the

5In particular, the portfolio will no longer be necessarily dollar-neutral until the next portfolio construction.
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same. This means the power of the test should increase. It is key to have an accurate estimate

of the covariance matrix of xt in order to achieve this goal: this is where the DCC-NL model

comes in.

The part “sorting” in the name of the portfolios can be attributed to the fact that we

tend (on average, everything else being equal) to go long the stocks that are ranked highest

according to the signal mt, and short the ones that come out at the bottom of the sort. The

part “efficient” can be attributed to the fact that equations (3.1)–(3.3) modulate the pure

alpha rank by using information from the covariance matrix in order to make the resulting

long-short portfolio more discriminating between the performances of the higher-ranked stocks

on the long side versus the performances of the lower-ranked stocks on the short side.6

Remark 3.1 (Expected Portfolio Returns). Since the factor mt is only a proxy for expected

returns, equalizing the factor exposure of the Ef portfolio with that of Qu portfolio as per

equation (3.2) does not guarantee the out-of-sample average returns will be the same. It is

only a question of whether there is a discernable pattern and whether it matters.

One theory is that the Ef portfolio might get an unfair advantage because minimizing the

variance picks up on a variety of risk-based pricing anomalies, leading to higher Sharpe ratios;

for example, see Haugen and Baker (1991) and Scherer (2011). However, such arguments only

apply to portfolios that are fully invested, not to the dollar-neutral long-short portfolios under

consideration here. Any ‘systematic’ effect based on picking up risk-based pricing anomalies

would apply both to the long portfolio and to the short portfolio, and thus would tend to

cancel out in the final long-short portfolio.

Within dollar-neutral long-short portfolios, things could easily go the other way: The most

volatile stocks may deliver ‘more bang for the buck’, that is, more expected return per unit of

factor exposure. The problem is that such fringe stocks also make the anomaly less exploitable

for portfolio managers who — in the real world — are afraid of investor lawsuits, regulated by

government entities, and hit by transaction costs (as volatile stocks are harder to trade).

We address this issue empirically by looking at boxplots of out-of-sample average returns

across strategies separately for N ∈ {100, 500, 1000}; see Figure 1. Note that, for ease

of interpretation, the average returns based on the daily data have been annualized by

multiplication with 250. It can be seen that, if anything, the average returns of the Ef portfolio

tend to be somewhat smaller than the average returns of the Qu portfolio, although the effect

is not large.

This finding implies that the Ef portfolio will be ‘fighting with one hand tied behind its back’

in its bid to produce larger t-statistics. But it is well worth it, since reducing the prominence

of volatile stocks makes the investment policy more exploitable.

Remark 3.2 (Estimator of the Covariance Matrix). The Ef portfolio is not necessarily

tied to the DCC-NL estimator of the covariance matrix. One could use other estimators

6Strictly speaking, one ought to use the term “more efficient” because the term “efficient” would require the

use of true covariance matrix Ht as opposed to the estimated covariance matrix Ĥt in (3.1); this having been

pointed out, we stick with the term “efficient” for brevity of exposition.
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of the covariance matrix of xt in (3.1) instead, such as the linear shrinkage estimators of

Ledoit and Wolf (2003, 2004a,b) or the nonlinear shrinkage estimator of Ledoit and Wolf

(2017). Note that all these estimators are static estimators, that is, unlike the dynamic DCC-

NL estimator, they do not incorporate the time-varying nature of the (conditional) covariance

matrix of xt.

In the empirical analysis of Section 4, we update the portfolios only once per month, which

is standard in the finance literature. In such a scheme, static estimators of the covariance

matrix might work similarly well as a (sophisticated) dynamic estimator. But our methodology

should also be of interest to real-life portfolio managers. Such managers generally update their

portfolios on a daily basis, which certainly motivates the use of a (sophisticated) dynamic

estimator of the covariance matrix.

Theoretical reasons for using the DCC-NL estimator include: (i) it is state-of-the-art;

(ii) ARCH/GARCH effects are real and have been known for decades, so ignoring them is hard

to justify; (iii) any estimation method overweights the recent past and underweights (or zero-

weights) the distant past, and the exponential-type decay implicit in a GARCH model is a more

meaningful way to do that smoothly compared to an ‘awkward’ choice of the (relatively short)

window length for a static model, that is, the length of the period where all the observations

receive equal weight before the weights drop to zero in a discontinuous fashion.

For all these reasons, we promote the use of the DCC-NL estimator.7

3.3 Connection with Markowitz Portfolio Selection

There is a direct connection with the well-known mean-variance portfolio optimization problem

for dollar-neutral long-short strategies:

min
w

w′Ĥtw (3.4)

subject to m′
tw = γt and (3.5)∑

wi<0

|wi| =
∑
wi>0

|wi| , (3.6)

where γt denotes some target exposure to the factor mt. The formulation in (3.6) is

traditionally expressed as
∑

iwi = 0, which is mathematically equivalent. We only state

it in the shape of (3.6) to emphasize the analogy with (3.3). The difference is that (3.3)

constrains the gross portfolio size to be equal to that of the long-short portfolio based on

sorting, which is two, in order to make the two strategies directly comparable. The general

solution to (3.4)–(3.6) is of the form

wt = κt ·wMV
t , where wMV

t
..=

Ĥtmt

1′Ĥtmt︸ ︷︷ ︸
tangency portfolio

− Ĥt1

1′Ĥt1︸ ︷︷ ︸
global minimum variance portfolio

. (3.7)

7An extensive comparison to other estimators of the covariance matrix in the empirical analysis of Section 4

would have been computationally prohibitive.
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In (3.7), 1 denotes the unit vector of dimension N , κt denotes some scaling parameter

proportional to the target exposure γt, and the superscript MV stands for mean-variance

optimization. Mathematically speaking, the scaling factor κt is strictly positive if and only

if the target exposure γt is itself strictly positive (except in the degenerate case where the

factor mt is proportional to 1); this is the only economically relevant case, as we seek positive

exposure to any candidate factor.

In plain terms, the minimum-variance weights require going long one dollar in the tangency

portfolio and short one dollar in the global minimum variance portfolio, up to some multiplier κt.

This is not exactly what we do in wEf
t , since our purpose is to make an apples-to-apples

comparison with sorting, but on a stand-alone basis (3.7) may make more sense. As for the

scaling parameter κt, there are two obvious proposals:

• wMV
t : Take κt = 1 so that there is ±1 dollar in the two ‘basis’ portfolios: the tangency

portfolio and the global minimum variance portfolio.

• w
|MV|
t : Choose the unique κt > 0 that satisfies (3.3), so that there is ±1 dollar in the

combined portfolio. Thus,

w
|MV|
t = 2

wMV
t∥∥wMV
t

∥∥
1

, (3.8)

where ∥ · ∥1 denotes the L1-norm of a vector.

The gross exposure of w
|MV|
t is two dollars by construction, whereas the gross exposure of wMV

t

can be anything in principle. Due to the fact that the offset between the long and short

positions in the tangency portfolio and the global minimum variance portfolio varies through

time with probability one, there will be a difference in the resulting t-statistics, but it is hard

to ascertain ex ante which one is to be favored. If anything, the first one, being based on the

matrix algebra of mean-variance optimization, has more appeal to financial econometricians;

whereas the second one makes more sense for long-short market-neutral hedge fund managers

whose prime brokers limit gross leverage. What wMV
t and w

|MV|
t have in common is that they

are both less constrained than the estimator we focus on for the purpose of an apples-to-apples

comparison with quantile-based weighting, namely, wEf
t .

Other choices for the scaling parameter κt are possible, such as the inverse of the L2-norm

of the original weight vector wMV
t , a volatility budget, etc. This opens up the door to a whole

new family of variance-minimizing factor portfolio weighting schemes. A full investigation

of this line of research, however, lies well outside the scope of the present paper because we

only aim to establish that a sophisticated estimator of the (inverse) covariance matrix boosts

the power of predictive tests for cross-sectional anomalies relative to common, quantile-based

portfolios.

3.4 Tests for Predictive Ability

The ability of a factor to forecast the cross-section of stock returns is judged by whether a

long-short portfolio exploiting the factor can deliver returns with a positive expected value. In
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particular, we consider the hypothesis testing problem

H0 : E(rSt
t ) ≤ 0 vs. H1 : E(rSt

t ) > 0 , (3.9)

where St ∈ {Qu,Ef} stands for one of the two portfolio strategies, quantile-based or efficient

sorting.

The test is based on observed strategy returns rStt , t = 1, . . . , T . The ‘Student’ t-statistic

of the test is given by

tSt ..=
r̄St

SE(r̄St)
with r̄St ..=

1

T

T∑
t=1

rStt , (3.10)

where SE(r̄St) denotes a standard error of r̄St. The common choice in the literature for such

a standard error is the ‘näıve’ standard error based on an assumption of independent and

identically distributed (i.i.d.) returns. Specifically, it is given by sSt/
√
T , where sSt denotes

the sample standard deviation of the observed returns rStt , t = 1, . . . , T .

Instead, we consider it important to use a HAC standard error that is robust against

heteroskedasticity and serial correlation in the returns. In particular, we use the standard

error based on the quadratic spectral (QS) kernel with automatic choice of bandwidth as

detailed in Andrews (1991).

The common critical value in the literature is two: If the t-statistic is larger than two,

the factor is deemed successful. By constrast, Harvey et al. (2016) call for a more demanding

critical value of three due to multiple-testing issues.

4 Empirical Analysis

4.1 Data and General Portfolio-Construction Rules

We download daily stock return data from the Center for Research in Security Prices (CRSP)

starting in 01/01/1980 and ending in 12/31/2015. We restrict attention to stocks from the

NYSE, AMEX, and NASDAQ stock exchanges.

For simplicity, we adopt the common convention that 21 consecutive trading days constitute

one ‘month’. The out-of-sample period ranges from 01/08/1986 through 12/31/2015, resulting

in a total of 360 ‘months’ (or 7560 days). All portfolios are updated monthly.8 We denote

the investment dates by h = 1, . . . , 360. At any investment date h, the Ef portfolio (3.1)–(3.3)

uses the DCC-NL estimate Ĥt of the covariance matrix based on the most recent 1250 daily

returns, which roughly corresponds to using five years of past data. The Qu portfolio uses

quintiles, which seems to be the most common choice in the literature.

We consider the following portfolio sizes: N ∈ {100, 500, 1000}. For a given combination

(h,N), the investment universe is obtained as follows. We find the set of stocks that have

a complete return history over the most recent T = 1250 days as well as a complete return

8Monthly updating is common practice to avoid an unreasonable amount of turnover and thus transaction

costs. During a month, from one day to the next, we hold number of shares fixed rather than portfolio weights;

in this way, there are no transactions at all during a month.
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‘future’ over the next 21 days.9 We then look for possible pairs of highly correlated stocks,

that is, pairs of stocks that have returns with a sample correlation exceeding 0.95 over the past

1250 days. With such pairs, if they should exist, we remove the stock with the lower volume

of the two on investment date h.10 Of the remaining set of stocks, we then pick the largest

N stocks (as measured by their market capitalization on investment date h) as our investment

universe. In this way, the investment universe changes slowly from one investment date to

the next.

We consider a total of 62 factors taken from Green et al. (2013) and Hou et al. (2015);

the corresponding data are downloaded from the merged CRSP/Compustat database. Table 1

lists the factors and Appendix C contains a detailed description of how the factor scores are

computed. Note that for N = 1000, there are not sufficient data available for factors 23, 32, 37,

and 52–57. We apply ‘Winsorizaton’ to any cross-sectional vector of factor scores mt in order

to mitigate potential problems with ‘outlying’ scores that are unusually large in magnitude;

see Appendix B for the corresponding details.

4.2 Main Results

The individual t-statistics are detailed in Table 2. Not surprisingly, in some cases the t-statistic

for the Qu portfolio is negative (though generally not significantly so). It can be assumed

that the corresponding factors will be discarded immediately by a researcher, since they can

never be established as successful based on a negative t-statistic. For each universe size

N ∈ {100, 500, 1000}, we therefore restrict attention to factors for which the Qu portfolio

yields a positive t-statistic. For such factors, we also present the value of the ratio of the two

t-statistics: the one for the Ef portfolio divided by the one for the Qu portfolio.

Table 3 presents the average ratio for each universe size N ∈ {100, 500, 1000}. The average
ratio is always larger than two, meaning that, on average, the t-statistic more than doubles

when a researcher upgrades from the Qu portfolio to the Ef portfolio.

It is natural to ask whether these averages might be influenced by a few ‘outlying’ ratios

which can occur when the t-statistic for the Qu portfolio (which appears in denominator) is

close to zero. For example, take the case of factor 33 with a universe size N = 100. In this

case, the t-statistic for the Qu portfolio equals 0.020 whereas the t-statistic for the Ef portfolio

equals 1.048, resulting in a ratio of 52.4. Consequently, we also compute averages only for

cases where the t-statistic for the Qu portfolio is bounded away from zero. First, we only

consider cases where the t-statistic is is larger than 0.5; second, we only consider cases where

the t-statistic is larger than 1.0. The corresponding averages are also found in Table 3. It

can be seen that the averages decrease as the lower bound increases (from 0 to 0.5 to 1.0),

especially for N = 100. But when the lower bound is 0.5, the averages for N = 500, 1000 still

exceed two; and when the lower bound is 1.0, the averages for N = 500, 1000 are still close

9The latter, ‘forward-looking’ restriction is not a feasible one in real life but is commonly applied in the

related finance literature on the out-of-sample evaluation of portfolios.
10The reason is that we do not want to include highly similar stocks. In the early years, there are no such

pairs; in the most recent years, there are never more than three such pairs.
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to two (if less than two now). Therefore, the impressive power gains of the Ef portfolio over

the Qu portfolio are not solely driven by a few t-statistics for the Qu portfolio that are close

to zero.

Arguably, it is of main interest how much the number (and proportion) of significant factors

increase when a researcher upgrades from the Qu portfolio to the Ef portfolio. The common

critical value in the literature for the value of a t-statistic is two. In a recent paper, Harvey et al.

(2016) argue that a critical value of three should be used instead because of multiple-testing

issues. We consider both critical values, two and three, in Table 4. One can see that for both

portfolio strategies, the proportion of significant factors increases in N ;11 therefore, it is in

the best interest of researchers to use as large an investment universe as possible. One can

further see that the numbers/proportions of significant factors are always much larger for the

Ef portfolio compared to the Qu portfolio. In particular, when a critical value of three is used,

the number/proportion of significant factors more than doubles for all universe sizes when a

researcher upgrades to the Ef portfolio.

5 Further Results and Related Literature

5.1 Robustness Check: Filtering through Fama-French Factors

Instead of focusing on the expected value of the ‘raw’ portfolio returns, we now shift focus to the

intercept (alpha) of a regression of the portfolio returns on the five factors of Fama and French

(2015). The numerator of the t-statistic now is the ordinary least squares estimator of the

intercept of this regression and the denominator of the t-statistics now is the corresponding

HAC standard error.12

The results are presented in Tables 5 and 6.13 It can be seen that the relative power gains

of the Ef portfolio over the Qu portfolio are somewhat reduced. (In particular, the proportion

of significant factors compared to using the raw portfolio returns generally increases for the Qu

portfolio whereas it generally decreases for the Ef portfolio.) Nevertheless, efficient weighting

is still generally more powerful than quantile-based weighting.14

Note that when the main interest of the portfolio construction is the intercept with respect

to a certain factor model, as opposed to the expected value of the raw returns, it stands to

reason that a better-performing efficient portfolio can be constructed by incorporating factor

neutrality in the portfolio constraints, such as proposed by Bell et al. (2014).

11This is not always true for the number of significant factors, which is due to the fact that we only have 53

factors available for N = 1000 compared to 62 factors for N ∈ {100, 500}, as detailed in Section C.
12We again use the QS kernel with automatic choice of bandwidth as detailed in Andrews (1991).
13We also carried out the analysis by using the traditional three factors of Fama and French (1993) for filtering

and the results are qualitatively similar.
14The only exception is the case N = 100 with a critical value of three.
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5.2 Spanning Test

It would be interesting to find out where the empirical advantage of the Ef procedure comes

from: Is it because the procedure selects stocks that are more informative or because it

minimizes diversifiable — and hence unpriced — risks? One way to distinguish between the

two possible explanations is to check whether the efficient factors span conventional portfolios,

such as the 25 Fama-French size and value portfolios, in the spirit of Welch (2008, Section IV).

Table 7 shows that the conventional Qu factors do not span the 25 Fama-French size and

value portfolios, which extends the results of Welch (2008) from 6 size and value portfolios

to 25. The same is true for the Ef factors. Therefore, the empirical advantage of our new

proposed procedure does not come from its ability to select more informative stocks; it must

come instead from its ability to minimize exposure to unpriced risk.

5.3 Summary Statistics of Portfolio Weights

We compute some summary statistics on the vectors of portfolio weights wSt
t over time, for

St ∈ {Qu,Ef}. In each month, we compute the following four characteristics:

• Min: Minimum weight

• Max: Maximum weight

• SD: Standard deviation of weights

• MAD: Mean absolute deviation of Ef portfolio from Qu portfolio computed as

1

N

N∑
i=1

∣∣wEf
t,i − wQu

t,i

∣∣ .
For each characteristic, we then compute the average outcome over the 360 portfolio formations

(that is, over the 360 ‘months’) and summarize the resulting numbers — 62 numbers for

N ∈ {100, 500} and 53 numbers for N = 1000 — by means of a boxplot. (Note that for

the first three characteristics, the summary statistic for the Qu portfolio is constant over all

the factors under consideration, and so the boxplot really involves the summary statistics for

the Ef portfolio only, apart from a dashed line which indicates the corresponding, constant

summary statistic for the Qu portfolio.) These boxplots are displayed in Figures 2–4.

Given that the Qf portfolios have uniform weights, clearly the mininum and maximum

weights of the Ef portfolios will extend further out; the question is by how much? In

the case N = 100, they are typically three times larger in absolute value, that is, a ±5%

minimum/maximum weight becomes of the order of ±15%. A multiplicative factor of three

is relatively acceptable, given that we make no effort to control extreme weights, and that

quantile-based weights are the tamest by construction. In the case N = 1000, the extreme

weights of the Ef portfolios are even smaller in magnitude, typically on the order of ±4%

only, which is reasonable for a well-diversified strategy. The case N = 500 is essentially an

interpolation between the other two dimensions.
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In addition, we provide boxplots for average turnover15 for any given combination (St, N).

These boxplots are displayed in Figure 5; note that for both Qu and Ef a number of 1

corresponds to a turnover of 100% per month. This scale may appear high on paper, but

in practice it is fairly representative of the volume executed by Statistical Arbitrage hedge

funds that specialize in systematically exploiting large ensembles of cross-sectional anomalies:

Their automated order-placing system usually brings the transaction cost down to a range as

low as 3–5 basis points.

Similarly to extreme positions, it is to be expected a priori that the Ef portfolios will turn

over more than the Qu portfolios; the question, again, is by how much? The median of the

average turnovers (across factors considered) typically goes up by a multiplicative factor of

less than 1.5, which is in the reasonable zone, given that we make no effort to control turnover.

This statistic implies that most of the average turnover is due to changes in the factor scores

themselves, rather to the covariance matrix. Interestingly, average turnover tends to decrease

as the number of stocks in the investment universe, N , increases, for both the Qu and Ef

portfolios.

In summary, not only does power increase in N , as described in Section 4.2, but also

maximum absolute weights and turnover decreases in N : It is thus in everyone’s interest to

use a large investment universe, indeed.

5.4 Related Literature

A recent working paper by Cattaneo et al. (2018) tries to improve upon the common choice

of sorting into five or ten portfolios, that is, using quintiles or deciles, by developing a data-

driven procedure to select the optimal number of quantiles. They merely modulate the sorting

mechanism, whereas we inject new information by playing the covariance-matrix card.

The general thrust of their paper is to slice up the universe using more than ten quantiles,

and pitch a very narrow selection of the top-scoring stocks against a very narrow selection of

the bottom-scoring stocks. This approach may work well statistically. But from the point of

view of investability, it focuses a lot of the trading volume onto such a small number of stocks

that it may not be implementable in practice without dire price impact for institutional asset

sizes. As Korajczyk and Sadka (2004) argue, exploitability is a key feature of an anomaly.

Cattaneo et al. (2018) also estimate nonlinearities in the mapping from factor score to

expected returns, whereas we just work within the much simpler linear framework. They find,

for example, that the size effect is convex and that the momentum effect is concave. However,

in order to identify the shape, they must first data-snoop (cf. Lo and MacKinlay (1990)) the

whole sample, which would make any test utilizing such knowledge non-predictive.

Another recent related working paper is the one by Daniel et al. (2017). The major

commonality is their equation (18), which is quite close to the way we construct the efficient

portfolio weights wEf
t , up to suitable rescaling. However, this is not the approach that they use

in practice because, as they themselves acknowledge, “there are well-known issues associated

15The average is taken over the 359 turnovers from the end of a given month to the start of the next month.
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with estimating [the covariance matrix of a large universe of stocks] and using it to do portfolio

formation.” As a result, they develop an alternative approach that only uses covariances

between a small set of factor returns (up to five), which is completely different from our own

approach. Indeed, one of our major contributions is to solve the well-known issues associated

with estimating large-dimensional covariance matrices by employing the DCC-NL model.

6 Conclusion

This paper demonstrates that, in accordance with the theory of mean-variance optimization,

portfolio construction in predictive tests of cross-sectional anomalies should incorporate a

suitable estimator of the covariance matrix of stock returns. When a researcher upgrades

from quantile-based sorting portfolios to efficient sorting portfolios based on the DCC-NL

covariance matrix estimator of Engle et al. (2017), ‘Student’ t-statistics, on average, more

than double — across a large panel of return-predictive signals (or “factors”) — when the

investment universe is large. This power boost is especially needed because multiple-testing

issues may justify raising the t-statistic significance threshold from its usual level of two to a

more demanding level of three, as proposed by Harvey et al. (2016). The power boost also

cures the inherent handicap of short-history datasets by multiplying the effective number of

years by approximately four in large dimensions. Cross-sectional testing methodologies that

do not use a suitable estimator (such as DCC-NL) of the covariance matrix are underpowered

and their use should be discouraged.

Directions for further research include (i) exploring the performance of the alternative,

Markowitz portfolios described in Section 3.3; (ii) using more accurate univariate models

than the straightforward GARCH(1,1) to devolatilize individual return series in the first step

of the procedure (such as models that incorporate asymmetric responses and/or intraday

prices); (iii) pre-conditioning the cross-section of stock returns by a low-dimensional model

with exogenous risk factors; and (iv) using the inverse of the DCC-NL covariance matrix to

construct portfolios that would yield a more efficient test of an asset-pricing model, in the

spirit of Nagel and Singleton (2011).
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A Tables and Figures

Table 1: List of factors

Number Name

1 11-month momentum, 11-MM

2 1-month momentum (reversal), 1-MM

3 6-month momentum, 6-MM

4 Maximum daily return in prior month (reversal), Mxret

5 Change in 6-month momentum (reversal), ∆6-MM

6 Cumulative abnormal stock returns around earnings announcement, Abr

7 Dollar trading volume from month t− 2 (reversal), Dvol

8 Log firm size (reversal), logME

9 Book-to-market, B/M

10 Asset growth, Agr

11 Earnings-to-price, E/P

12 Change in long-term debt (reversal), ∆lgr

13 Change in common shareholder equity, ∆ceq

14 Cash flow from operation, Cflow

15 Cash-to-price (reversal), Cash

16 Dividend yield, D/P

17 Payout yield, O/P

18 Net payout yield, NO/P

19 Sales growth, SG

20 Market leverage, A/ME

21 Abnormal volume in earnings announcement month, Aevol

22 Earnings surprise, Sue

23 Change in order backlog, OB

24 Working capital accrual (reversal), Acc

25 Capital expenditures and inventory (reversal), ∆capx

26 Changes in inventory (reversal), Cii

27 Abnormal corporate investment (reversal), Aci

28 Net stock issues (reversal), Nsi

29 Net operating assets (reversal), Noa

30 Investment growth (reversal), IG

31 Net external financing (reversal), Nxf

32 Composite issuance (reversal), Cei

33 Total accruals (reversal), TA/A

34 Inventory growth (reversal), Ivg

35 Percent operating accruals (reversal), Poa
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Table 1 continued

Number Name

36 Percent total accruals (reversal), Pta

37 Change in deferred revenues, ∆drev

38 F-score

39 Change in profit margin, ∆PM

40 Asset turnover, Ato

41 Change in tax expense, ∆tax

42 Return on assets, Roa

43 Gross profits-to-assets, Gma

44 Return on invested capital, Roic

45 Return on equity, Roe

46 Return on net operating assets, Rna

47 Taxable income-to-book income, TI/BI

48 Capital turnover, Cto

49 O-score

50 Operating profitability, OP

51 Employee growth rate (reversal), Egr

52 Change in advertising expense, ∆ade

53 R&D increase, Rdi

54 Advertisement expense-to-market, Ad/M

55 R&D-to-sales, RD/S

56 R&D-to- market, RD/M

57 R&D capital-to-assets, Rc/A

58 Operating leverage, OL

59 Turn (reversal)

60 Total Volatility (reversal), Tvol

61 Accrual Volatility (reversal), Avol

62 Cash flow volatility (reversal), Cvol
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Table 2: t-statistics and their ratios. The columns labeled Qu contain the t-statistics (3.10)

for the Qu portfolio; the columns labeled Ef contain the t-statistics (3.10) for the Ef portfolio;

the columns labeled Ef/Qu contain the corresponding ratios Ef/Qu for the cases when Qu is

positive. NaN denotes missing values due to lack of sufficient data. NoI stands for “Not of

Interest” and corresponds to cases when the t-statistic for Qu is negative.

Number N = 100 N = 500 N = 1000

Qu Ef Ef/Qu Qu Ef Ef/Qu Qu Ef Ef/Qu

1 1.441 2.611 1.81 1.398 1.758 1.26 1.402 1.671 1.19

2 0.115 2.664 23.18 0.816 4.862 5.96 1.074 5.064 4.71

3 −0.296 0.051 NoI 0.312 -0.397 1.27 0.560 −0.595 1.06

4 0.483 0.710 1.47 −0.156 −0.820 NoI −0.498 −2.812 NoI

5 0.217 0.623 2.88 1.198 2.422 2.02 1.342 2.433 1.81

6 1.259 1.698 1.35 2.658 3.066 1.15 3.219 4.460 1.39

7 −0.529 0.222 NoI 1.612 4.202 2.61 2.998 4.100 1.37

8 0.219 1.092 4.99 1.147 4.598 4.01 2.323 4.992 2.15

9 −0.123 −0.550 NoI 0.640 1.116 1.74 1.047 1.736 1.66

10 −0.056 0.249 NoI 0.016 0.235 14.62 0.573 1.050 1.83

11 2.411 4.672 1.94 4.544 11.085 2.44 5.345 15.716 2.94

12 0.517 1.854 3.58 0.849 2.875 3.39 2.056 4.257 2.07

13 1.006 0.717 0.71 2.671 4.075 1.53 3.308 7.862 2.38

14 5.306 6.088 1.15 6.713 9.825 1.46 7.108 16.031 2.26

15 1.820 3.361 1.85 2.807 5.667 2.02 3.864 6.434 1.67

16 −0.417 1.201 NoI −0.291 0.995 NoI −1.160 0.399 NoI

17 0.857 1.519 1.77 0.892 2.888 3.24 0.726 3.418 4.71

18 0.729 1.467 2.01 0.503 3.373 6.70 0.536 4.981 9.29

19 0.282 1.066 3.78 1.533 4.779 3.12 2.752 7.416 2.69

20 −0.661 −0.922 NoI 0.133 0.388 2.91 0.451 0.884 1.96

21 0.889 1.028 1.16 2.212 1.976 0.89 2.259 4.263 1.89

22 2.417 3.260 1.35 4.854 10.062 2.07 8.116 16.914 2.08

23 −0.064 −0.180 NoI −0.300 1.683 NoI NaN NaN NaN

24 3.046 4.703 1.54 5.102 7.006 1.37 7.363 10.803 1.47

25 0.631 1.883 2.98 1.579 3.964 2.51 3.287 5.050 1.54

26 1.340 2.221 1.66 1.886 3.748 1.99 2.715 4.589 1.69

27 1.406 2.581 1.84 3.346 3.975 1.19 3.760 5.354 1.42

28 −0.382 1.507 NoI 1.531 2.718 1.78 1.411 3.437 2.44

29 2.741 1.823 0.67 3.697 4.012 1.086 3.486 5.296 1.52

30 0.929 1.499 1.61 2.461 4.305 1.75 2.759 4.033 1.46

31 2.309 1.548 0.67 2.595 2.766 1.07 2.726 5.671 2.08

32 -0.056 2.008 NoI 1.647 3.756 2.28 NaN NaN NaN
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Table 2 continued

Number N = 100 N = 500 N = 1000

Qu Ef Ef/Qu Qu Ef Ef/Qu Qu Ef Ef/Qu

33 0.020 1.048 52.40 1.857 3.354 1.81 3.068 3.422 1.12

34 1.516 2.138 1.41 1.874 4.336 2.31 2.945 4.801 1.63

35 1.736 2.975 1.71 2.174 3.461 1.59 4.229 6.919 1.64

36 1.397 1.711 1.22 1.555 3.418 2.20 2.450 3.249 1.33

37 2.257 1.069 0.47 3.491 4.098 1.17 NaN NaN NaN

38 0.541 1.304 2.41 1.505 3.097 2.06 1.368 4.478 3.27

39 2.012 2.500 1.24 3.482 7.704 2.21 5.778 11.764 2.04

40 1.427 2.452 1.72 2.339 3.259 1.39 2.802 4.576 1.63

41 1.761 2.924 1.66 4.557 8.957 1.97 6.968 15.678 2.25

42 2.302 3.641 1.58 3.538 6.453 1.82 4.459 10.142 2.27

43 1.963 3.798 1.93 2.424 4.320 1.78 2.964 6.265 2.11

44 2.435 4.010 1.65 3.105 5.941 1.91 4.165 9.310 2.24

45 2.537 3.207 1.26 4.297 7.340 1.71 4.975 11.897 2.39

46 3.243 4.532 1.40 3.869 5.956 1.54 4.506 9.812 2.18

47 1.414 2.424 1.71 1.031 2.626 2.55 0.752 3.208 4.26

48 1.822 1.964 1.08 1.605 2.543 1.58 2.435 3.876 1.59

49 −2.158 −0.915 NoI −1.474 −0.620 NoI 0.532 −1.696 −3.19

50 2.330 2.543 1.09 3.562 4.340 1.22 4.353 9.080 2.09

51 0.573 0.350 0.61 0.802 2.028 2.53 1.261 2.701 2.14

52 0.919 0.320 0.35 −0.011 0.657 NoI NaN NaN NaN

53 −0.638 0.174 NoI −0.614 −0.320 NoI NaN NaN NaN

54 0.213 1.200 5.63 2.018 1.110 0.55 NaN NaN NaN

55 0.719 1.204 1.67 1.550 3.333 2.15 NaN NaN NaN

56 1.553 1.312 0.84 3.348 4.737 1.42 NaN NaN NaN

57 1.132 1.762 1.56 1.960 5.521 2.82 NaN NaN NaN

58 1.463 1.899 1.30 1.718 2.370 1.38 2.675 3.376 1.26

59 −0.211 −0.882 NoI −0.347 0.213 NoI −0.175 0.691 NoI

60 0.114 1.244 10.95 −0.251 0.408 NoI −0.548 −1.158 NoI

61 1.653 1.172 0.71 1.138 1.087 0.95 0.602 1.955 3.25

62 2.486 1.738 0.70 2.758 2.257 0.82 2.862 2.999 1.05
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N Qu > 0 Qu > 0.5 Qu > 1.0

100 3.32 1.45 1.34

500 2.23 2.04 1.79

1000 2.06 2.07 1.95

Table 3: Averages based on the columns labeled Ef/Qu in Table 2. The second column reports

averages when the t-statistic for Qu is positive; the third column reports averages when the t-

statistic for Qu is greater than 0.5; and the fourth column reports averages when the t-statistic

for Qu is greater than 1.0.

Critical value = 2

N Qu Ef Qu Ef

100 14 22 0.23 0.35

500 25 46 0.40 0.74

1000 34 42 0.64 0.79

Critical value = 3

N Qu Ef Qu Ef

100 3 10 0.05 0.16

500 15 36 0.24 0.58

1000 19 39 0.36 0.74

Table 4: Number (columns two and three) and proportion (columns four and five) of the

t-statistics in Table 2 whose value exceed two (left panel) and three (right panel), respectively.
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N Qu > 0 Qu > 0.5 Qu > 1.0

100 3.55 0.98 0.88

500 3.89 1.67 1.52

1000 3.44 1.61 1.66

Table 5: Similar to Table 3, except that these results are for the portfolio returns filtered

through the Fama-French five-factor model.

Critical value = 2

N Qu Ef Qu Ef

100 22 22 0.35 0.35

500 30 44 0.48 0.71

1000 30 42 0.57 0.79

Critical value = 3

N Qu Ef Qu Ef

100 11 8 0.18 0.13

500 25 34 0.40 0.55

1000 25 38 0.47 0.72

Table 6: Similar to Table 4, except that these results are for the portfolio returns filtered

through the Fama-French five-factor model.

FF Factors Ef Factors

γ̂∗0 0.08 0.08

t 3.58 3.60

pv 0.00 0.00

Table 7: This table extends the analysis of Welch (2008, Section IV) from 6 size and value

portfolios to 25. The first row (γ̂∗0) contains the point estimates for the parameter γ∗0 in

his regression model (8); the second row (t) contains the corresponding t-statistics; and the

third row (pv) contains the bootstrap p-values for the null hypothesis H0 : γ∗0 = 0. The

first column (FF Factors) contains the results for the three (demeaned) original Fama-French

factors as regressors in his model (8); the second column (Ef Factors) contains the results when

our (demeaned) ‘efficient’ factors 8 and 9 are used as size and value regressors, respectively,

instead.
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Figure 1: Boxplots of (annualized) out-of-sample average returns for the factors under

consideration. There are 62 factors for N ∈ {100, 500} and 53 factors for N = 1000.
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Figure 2: Boxplots of summary statistics of the Ef portfolio weights for the 62 factors

under consideration for N = 100. (In the first three panles, the dashed line indicates the

corresponding, constant summary statistic for the Qu portfolio weights.)
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Figure 3: Boxplots of summary statistics of the Ef portfolio weights for the 62 factors

under consideration for N = 500. (In the first three panles, the dashed line indicates the

corresponding, constant summary statistic for the Qu portfolio weights.)
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Figure 4: Boxplots of summary statistics of the Ef portfolio weights for the 53 factors

under consideration for N = 1000. (In the first three panles, the dashed line indicates the

corresponding, constant summary statistic for the Qu portfolio weights.)
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Figure 5: Boxplots of average turnover for the factors under consideration. There are 62 factors

for N ∈ {100, 500} and 53 factors for N = 1000.
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B Winsorization of Factor Scores

‘Outlying’ factor scores that are unusually large in magnitude can have undesirable impacts

when used as input in Markowitz optimization. We mitigate this potential problem by properly

truncating very small and very large values in any cross-sectional vector of factor scores mt.

Such truncation is commonly referred to as ‘Winsorization’, a method that is widely used by

quantitative portfolio managers; for example, see (Chincarini and Kim, 2006, Appendix 5B).

Consider a generic vector a ..= (a1, . . . , aN )′. We first compute a robust measure of location

that is not (heavily) affected by potential outliers. To this end, we use the trimmed mean of

the data with trimming fraction η ∈ (0, 0.5) on the left and on the right. This number is simply

the mean of the middle (1− 2η) · 100% of the data. More specifically, denote by

a(1) ≤ a(2) ≤ . . . ≤ a(N) (B.1)

the ordered data (from smallest to largest) and denote by

M ..= ⌊η ·N⌋ (B.2)

the smallest integer less than or equal to η · N . Then the trimmed mean with trimming

fraction η is defined as

aη
..=

1

N − 2M

N−M∑
i=M+1

a(i) . (B.3)

We employ the value of η = 0.1 in practice.

We next compute a robust measure of spread. To this end, we use the median absolute

deviation (MAD) from the median given by

MAD(a) ..= med
(
|a−med(a)|

)
. (B.4)

where med(·) denotes the sample median of a vector and | · | denotes the element-wise absolute-

value function of a vector.

We next compute upper and lower bounds defined by

alo
..= a0.1 − 5 ·MAD(a) and aup

..= a0.1 + 5 ·MAD(a) . (B.5)

The motivation here is that for a normally distributed sample, it will hold that a ≈ a0.1 and

s(a) ≈ 1.5 · MAD(a), where a and s(a) denote the sample mean and the sample median of

a1, . . . , aN , respectively. As a result, for a ‘well-behaved’ sample, there will usually be no points

below alo or above aup. Our final truncation rule is that any data point ai below alo will be

changed to alo and any data point ai above aup will be changed to aup.

We then apply this truncation rule to the cross-sectional vector of factor scores mt in place

of the generic vector a.
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C Description of Factors

Daily data used are from the Center for Research in Security Prices (CRSP), including holding

period returns (item ret), return without dividends (item retx), prices (item prc), number of

shares traded (item vol), number of shares outstanding (item csho), factor to adjust shares

(item ajex), and value-weighted return (item vwretd). The other data are from the Compustat

Annual and Quarterly Fundamental Files. For each factor, we describe how the factor scores

are computed at a generic investment date h = 1, . . . , 360.

C.1 Momentum

C.1.1 11-MM

Following Fama and French (1996), we calculate 11-month momentum (11-MM) as the average

return over the previous 12 months but excluding the most recent month. That is, we compute

the average return from day h− 252 through day h− 22.

C.1.2 1-MM

Following Jegadeesh and Titman (1993), we calculate 1-month momentum (1-MM) as the

average return from day h− 21 through day h− 1. Reversal of 1-MM (that is, the negative of

1-MM) is used as the actual factor.

C.1.3 6-MM

Following Jegadeesh and Titman (1993), we calculate 6-month momentum (6-MM) as the

average return over the previous seven months but excluding the most recent month. That is,

for any investment date date h, we compute the average return from day h − 147 through

day h− 22.

C.1.4 Mxret

Following Bali et al. (2011), Mxret is the maximum daily return from day h − 21 through

day h− 1. Reversal of Mxret is used as the actual factor.

C.1.5 ∆6-MM

Following Gettleman and Marks (2006), change in 6 month momentum(∆6-MM) is calculated

as current 6-MM minus previous 6-MM (that is, 6-MM at investment date h− 1). Reversal of

∆6-MM is used as the actual factor.
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C.1.6 Abr

Following Chan et al. (1996), we measure cumulative abnormal stock return (Abr) around the

latest quarterly earnings announcement date as

Abri ..=
1∑

d=−2

(rid − rmd) , (C.1)

where rid and rmd are, respectively, the return of stock i and the value-weighted return of the

market index (item vwretd) on day d, where d = 0 represents the earnings announcement day

(quarterly item rdq). For stock i, at every investment date h, we use the most recent earnings

announcement day as long as the day is at least two days earlier than the investment day

(to make sure that ri(d=1) is available).

C.2 Value-versus-Growth

C.2.1 Dvol

Dvol is the dollar trading volume in the latest-but-one month (that is, from day h−42 through

day h− 22). As in Chordia et al. (2001), we measure it as the natural log of the sum of daily

dollar trading volume during that period. Daily dollar trading volume is share price (item prc)

times the number of shares traded (item vol). Reversal of Dvol is used as the actual factor.

C.2.2 logME

Banz (1981) proposes firm size as a factor. We use the logarithm of market capitalization (ME)

of one day before the investment day (that is, on day h− 1) as firm size. ME is calculated as

price (item prc) times shares outstanding (item csho). Reversal of logME is used as the actual

factor

C.2.3 B/M

Rosenberg et al. (1985) propose book-to-market as a factor. We measure it as the ratio of book

equity to market capitalization on the day before the investment day (that is, on day h − 1);

here, book equity is computed from the most recently announced quarterly data. Our measure

of the book equity is the quarterly version of the annual book equity measure in Davis et al.

(2000). In particular, it is the book value of common equity (item ceqq) plus the par value

of preferred stock (item pstkq), plus balance-sheet deferred taxes and investment tax credit

(item txditcq), and then minus the book value of preferred stock. We use redemption value

(item pstkrq, zero if missing) for the book value of preferred stock.

C.2.4 Agr

To construct the Cooper et al. (2008) asset growth (Agr) factor, we divide the total assets

(item atq) by 1-quarter-lagged total assets; item atq uses the most recently announced quarterly

data. Reversal of Agr is used as the actual factor.

36



C.2.5 E/P

Following Basu (1983), earnings-to-price (E/P) is calculated as income before extraordinary

items (item ibq) divided by the market capitalization (ME) on day h − 1; item ibq uses the

most recently announced quarterly data.

C.2.6 ∆lgr

Following Scott et al. (2005), we measure change in long-term debt (∆lgr) as long-term debt

(item lt) divided by 1-year-lagged long-term debt minus one; item lt uses the most recently

announced quarterly data. Reversal of ∆lgr is used as the actual factor.

C.2.7 ∆ceq

Following Scott et al. (2005), we measure change in common shareholder equity (∆ceq) as

common shareholder equity (item ceqq) divided by 1-quarter-lagged common shareholder

equity minus one; item ceqq uses the most recently announced quarterly data.

C.2.8 Cflow

Following Houge and Loughran (2000), we define cash flow from operation (Cflow) as net cash

flow from operations in the most recently announced quarter scaled by the average of total

assets (item atq) for the two previous quarters. Instead of using the item oancf (net cash flow

from operations) directly, we use net income (item niq) minus operating accruals (OA) because

these items have a broader coverage than oancf, and they have quarterly data. To measure OA,

we use the balance-sheet approach of Sloan (1996), that is,

OA ..= (∆actq−∆cheq)− (∆lctq−∆dlcq−∆txpq)− dpq , (C.2)

where ∆ represents the change in the corresponding item, and items actq, cheq, lctq, dlcq,

txpq, dpq are corresponding to the quarterly data of current assets, cash and cash equivalents,

current liabilities, debt included in current liabilities (zero if missing), income taxes payable

(zero if missing), depreciation and amortization(zero if missing), respectively. Note that the

number of stocks for which this factor is available during the first eight investment periods

is less than 1000. As a result, for dimension N = 1000, we start the portfolio formation on

investment date h = 9.

C.2.9 Cash

Following Chandrashekar and Rao (2009), cash to price (Cash) is computed as

Cash ..= (ME+ dlttq− atq)/cheq , (C.3)

where ME is the market capitalization on day h − 1, and items dlttq, atq, and cheq are all

quarterly data corresponding to long-term debt, total asset, and cash or cash equivalents,

respectively; all these items use the most recently announced quarterly data. Reversal of Cash

is used as the actual factor.
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C.2.10 D/P

As in Litzenberger and Ramaswamy (1979), dividend yield (D/P) is measured as the total

dividends paid out from the previous year (that is, from day h−252 through day h−1) divided

by ME on day h − 1. The total dividends are calculated by accumulating daily dividends,

and the daily dividends is measured as the difference between cum- and ex-dividend returns,

which are respectively corresponding to holding period returns (item ret) and return without

dividends (item retx), times the 1-day-lagged ME.

C.2.11 O/P

Following Boudoukh et al. (2007), total payouts (O/P) are dividends on common stock (dvc)

plus repurchases of the previous year (that is, from day h − 252 through day h − 1) divided

by ME on day h− 1. Repurchases are the total expenditure on the purchase of common and

preferred stocks (item prstkc) minus the change over the previous year in the value of the net

number of preferred stocks outstanding (item pstkrv).

C.2.12 NO/P

Following Boudoukh et al. (2007), net payouts (NO/P) are the same as total payouts except

that the equity issuances have to be subtracted from the total payouts. Equity issuances are

the sale of common and preferred stock (item sstk) minus the change over the previous year

in the value of the net number of preferred stocks outstanding (item pstkrv).

C.2.13 SG

Lakonishok et al. (1994) propose sales growth (SG) as a factor. We measure it as the growth

rate in sales (item saleq) from quarter t− 2 through quarter t− 1, where t denotes the current

quarter.

C.2.14 A/ME

Following Bhandari (1988), A/ME is measured as the ratio of total assets in quarter t − 1

to ME on day h− 1, where t denotes the current quarter.

C.2.15 Aevol

As in Lerman et al. (2008), the abnormal earnings announcement period volume (Aevol) is

defined as average daily share trading volume over the three days from d = −1 through

d = 1 divided by the average daily share volume over days d = −8 through d = −63, and

then subtracting one, where d = 0 denotes day of the most recent earnings announcement

(item rdq):

Aevoli ..=
Avgd∈[−1,1](volid)

Avgd∈[−63,−8](volid)
− 1 . (C.4)
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Note that the day of the most recent earnings announcement most be at least two days before

the investment day h (to make sure that voli(d=1) is available).

C.2.16 Sue

Following Foster et al. (1984), we measure earnings surprise (Sue) as the change in the most

recently announced quarterly earnings per share (item epspxq) from its value four quarters

ago, divided by the standard deviation of this change in quarterly earnings over the previous

eight quarters.

C.2.17 OB

Following Gu et al. (2009), we measure OB as annual order backlog (item ob) in year t − 1

scaled by the average of total assets (item at) for calendar years t−2 and t−1, where t denotes

the current calendar year. Note that the number of stocks for which this factor is available

during the first 65 investment periods is less than 500, and the number is less than 1000 for the

entire investment period. As a result, for dimension N = 500, we start the portfolio formation

on investment date h = 66 whereas for dimension N = 1000, we do not consider this factor.

C.3 Investment

Considering the general negative relation between investment and expected return, all factors

in this section are used in reversal.

C.3.1 Acc

Following Sloan (1996), we measure working capital accruals (Acc) as operating accruals (OA)

in quarter t − 1 scaled by the average of total assets (item atq) for quarters t − 2 and t − 1,

where t denotes the current quarter and OA is the same as in equation (C.2). Note that the

number of stocks for which this factor is available during the first eight investment periods

is less than 1000. As a result, for dimension N = 1000, we start the portfolio formation on

investment date h = 9.

C.3.2 ∆capx

Following Lyandres et al. (2008), we measure capital expenditures and inventory (∆capx) as

changes in gross property, plant, and equipment (item ppegt) plus changes in inventory (item

invt) scaled by 1-year-lagged total assets (item at). Note that the number of stocks for which

this factor is available during the first two investment periods is less than 1000. As a result,

for dimension N = 1000, we start the portfolio formation on investment date h = 3.

C.3.3 Cii

Following Thomas and Zhang (2002), we measure change in inventory (Cii) as the change in

the most recently announced annual inventory from its value one year previous to that, scaled
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by the average of total assets (item at).

C.3.4 Aci

Following Titman et al. (2004), we measure abnormal corporate investment (Aci) as

Acit ..= 3∗CEt−1

CEt−2+CEt−3+CEt−4
− 1 , (C.5)

where t denotes the current calendar year and CEt−j is capital expenditure (item capx) scaled

by sales (item sale) in calendar year t − j. Note that the number of stocks for which this

factor is available during the first three investment periods is less than 1000. As a result, for

dimension N = 1000, we start the portfolio formation on investment date h = 4.

C.3.5 Nsi

Pontiff and Woodgate (2008) propose net stock issues (Nsi) as a factor. We measure it as the

natural log of the ratio of the average split-adjusted shares outstanding over the previous year

(that is, from day h− 252 through day h− 1) to the average split-adjusted shares outstanding

over the year previous to that (that is, from day h−504 through day h−253 ). We measure the

daily split-adjusted shares outstanding as shares outstanding (item csho) times the adjustment

factor (item ajex).

C.3.6 Noa

As in Hirshleifer et al. (2004), we measure net operating assets (Noa) as operating assets minus

operating liabilities. Operating assets are total assets (item atq) minus cash and short-term

investment (item cheq). Operating liabilities are total assets minus debt included in current

liabilities (item dlcq, zero if missing), minus long-term debt (item dlttq, zero if missing), minus

minority interests (item mibq, zero if missing), minus preferred stocks (item pstkq, zero if

missing), and minus common equity (item ceqq). We use quarterly data instead of annual

data.

C.3.7 IG

Following Xing (2008), we measure investment growth (IG) as the growth rate in capital

expenditure (item capx) from calendar year t − 2 to calendar year t − 1, where t denotes the

current calendar year.

C.3.8 Nxf

Following Bradshaw et al. (2006), we measure net external financing (Nxf) as the sum of net

equity financing and net debt financing in year calendar t − 1 scaled by the average of total

assets, where t denotes the current calendar year. Net equity financing is the proceeds from

the sale of common and preferred stocks (item sstk) less cash payments for the repurchases

of common and preferred stocks (item prstkc) less cash payments for dividends (item dv).
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Net debt financing is the cash proceeds from the issuance of long-term debt (item dltis) less

cash payments for long-term debt reductions (item dltr) plus the net changes in current debt

(item dlcch, zero if missing). Note that the number of stocks for which this factor is available

during the first 13 investment periods is less than 1000. As a result, for dimension N = 1000,

we start the portfolio formation on investment date h = 14.

C.3.9 Cei

Following Daniel and Titman (2006), we define composite issuance (Cei) as the growth rate in

market capitalization (ME) during the previous five years (that is, from day h− 1260 through

day h− 1) not attributable to the stock return. It is calculated as

Ceit ..= log(MEt −MEt−5)− logr(t− 5, t) , (C.6)

where r(t − 5, t) is the cumulative return on the stock from day h − 1260 through day h − 1,

MEt is the ME on day h− 1, and MEt−5 is the ME on day h− 1260. Note that the number of

stocks for which this factor is available during some middle investment periods (for example,

from 08/29/2011 through 12/31/2012) is less than 1000. As a result, for dimension N = 1000,

we do not consider this factor.

C.3.10 TA/A

Following Richardson et al. (2005), we measure TA/A as total accruals scaled by 1-year-lagged

total assets (item at). Total accruals (TA) are calculated as

TA ..= ∆WC+∆NCO+∆FIN , (C.7)

where∆ represents the change in the corresponding item, and items WC, NCP, FIN are net non-

cash working capital, net non-current operating assets, and net financial assets, respectively:

WC ..= act− che− (lct− dlc) (C.8)

NCO ..= at− act− ivao− (lt− lct− dltt) (C.9)

FIN ..= ivst + ivao− (dltt + dlc + pstk) . (C.10)

Here, act, che, lct, dlc, at, ivao, lt, lct, dltt, ivst, pstk are all annual items corresponding to

current assets, cash and short-term investment, current liabilities, debt in current liabilities,

total assets, long-term investments (zero if missing), total liabilities, current liabilities, long-

term debt (zero if missing), short-term investment (zero if missing), and preferred stock (zero if

missing), respectively. Note that the number of stocks for which this factor is available during

the first 5 investment periods is less than 1000. As a result, for dimension N = 1000, we start

the portfolio formation on investment date h = 6.
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C.3.11 Ivg

Following Belo and Lin (2012), we define inventory growth (Ivg) as the growth rate of inventory

(item invt) from calendar year t − 2 to year calendar year t − 1, where t denotes the current

calendar year.

C.3.12 Poa

Following Hafzalla et al. (2011), percent operating accruals (Poa) is measured as operating

accruals (OA) in quarter t − 1, scaled by net income (item niq) in the same quarter, where

t denotes the current quarter; see equation (C.2) for the definition of OA. Note that the

number of stocks for which this factor is available during the first eight investment periods

is less than 1000. As a result, for dimension N = 1000, we start the portfolio formation on

investment date h = 9.

C.3.13 Pta

Following Hafzalla et al. (2011), percent total accruals (Pta) is measured as total accruals (TA)

scaled by net income (item ni); see equation (C.7) for the definition of TA. Considering the

broader coverage, we use annual data instead of quarterly data to calculate this factor. Note

that the number of stocks for which this factor is available during the first 6 investment periods

is less than 1000. As a result, for dimension N = 1000, we start the portfolio formation on

investment date h = 7.

C.4 Profitability

C.4.1 ∆drev

Following Prakash and Sinha (2013), we measure change in deferred revenues (∆drev) as the

growth rate of deferred revenues (item drcq) from quarter t−2 to quarter t−1, where t denotes

the current quarter. Note that the number of stocks for which this factor is available is less

than 1000 during the entire investment period; therefore, we do not consider this factor for

dimension N = 1000. According to the available number of stocks, for dimension N = 100,

we start the portfolio formation on investment date h = 221 whereas for dimension N = 500,

we start the portfolio formation on investment date h = 229.

C.4.2 F-score

Following Piotroski (2000), we define F-score as the sum of nine individual binary signals:

F ..= FRoa + F∆Roa + FCfo + FAcc + F∆Margin + F∆Turn + F∆Lever + F∆Liquid + FEQ (C.11)

where Roa is income before extraordinary (item ib) scaled by 1-year-lagged total assets

(item at); ∆Roa is the increase in Roa compared to the previous year; Cfo is cash flow

from operation (we use funds from operation (item fopt) minus the annual change in working
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capital (item wcap) scaled by 1-year-lagged total assets; Acc is defined as Cfo minus Roa;

∆Margin is gross margin (item sale minus cogs, and then divided by sale) in calendar year

t−1 less gross margin in calendar year t−2; ∆Turn is the change in the current calendar year’s

asset turnover ratio, which is measured as total sales (item sale) scaled by 1-year-lagged total

assets (item at), compared to the previous calendar year; ∆Lever is the decrease in the current

calendar year’s lever, which is measured as total long-term debt (item dltt) scaled by average

total assets over the previous two calendar years; ∆Liquid is the change in the current calendar

year’s current ratio compared to the previous calendar year, which is measured as the ratio

of current assets (item act) to current liabilities (item lct); EQ, which measures whether the

firm issue common equity in the current calendar year, equals the increase in preferred stock

(item pstk) minus the sales of common and preferred stocks (item sstk). For our definition, the

indicator variable always is equal to 1 if the corresponding variable is positive and is equal to

zero otherwise.

C.4.3 ∆PM

Following Soliman (2008), we measure change in profit margin (∆PM) as profit margin in

quarter t − 1 less profit margin in quarter t − 2, where t denotes the current quarter. Profit

margin is operating income after depreciation (item oiadp), scaled by sales (item saleq).

C.4.4 Ato

Following Soliman (2008), we measure asset turnover (Ato) as sales (quarterly item saleq),

divided by 1-quarter-lagged Noa (net operating assets); see Section C.3.6 for a description

of Noa.

C.4.5 ∆tax

Following Thomas and Zhang (2011), we measure changes in tax expense (∆tax) as tax expense

(item txtq) in quarter t minus tax expense in quarter t − 4, scaled by total assets (item atq)

in quarter t− 4, where t denotes the current quarter.

C.4.6 Roa

Following Balakrishnan et al. (2010), we measure return on assets (Roa) as income before

extraordinary items (item ibq) divided by 1-quarter-lagged total assets (item atq).

C.4.7 Gma

Following Novy-Marx (2010), we measure Gross profitability (Gma) as sales (item saleq) minus

cost of goods sold (item cogsq), then divided by 1-quarter-lagged total assets (item atq).
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C.4.8 Roic

Following Brown and Rowe (2007), we measure return on invested capital (Roic) as operating

income after depreciation (quarterly item oiadpq) divided by 1-quarter-lagged operating assets,

which are total assets (item atq) minus cash and short-term investment (item cheq).

C.4.9 Roe

Following Haugen and Baker (1996), we measure return on equity (Roe) as income before

extraordinary items (quarterly item ibq) divided by 1-quarter-lagged book equity; book equity

is computed as in Section C.2.3.

C.4.10 Rna

Following Soliman (2008), we measure return on operating assets (Rna) as operating income

after depreciation (quarterly item oiadpq) divided by 1-quarter-lagged net operating assets

(Noa); see Section C.3.6 for a description of Noa.

C.4.11 TI/BI

Following Green et al. (2014), we measure taxable income-to-book income (TI/BI) as pretax

income (quarterly item piq) divided by net income (item niq).

C.4.12 Cto

Following Haugen and Baker (1996), we measure capital turnover (Cto) as sales (quarterly

item saleq) divided by 1-quarter lagged total assets (item atq).

C.4.13 O-score

Following Ohlson (1980), we define the O-score as

O ..= −1.32− 0.407log(at) + 6.03tlta− 1.43wcta + 0.076clca

−1.72oeneg − 2.37nita− 1.83futl + 0.285intwo− 0.521chin
(C.12)

where tlta ..= (dlc+dltt)/at, wcta ..= (act-lct)/at, clca..=lct/act, nita..=ni/at, and futl..=pi/lt.

that oeneg is equal to 1 if lt exceeds at and is equal to zero otherwise. intwo is equal

to 1 if ni for the last two calendar years is negative and is equal to zero otherwise.

chine = (nit − nit−1)/(|nit|+ |nit−1|). at, dlc, dltt, act, lct, ni, pi, lt are all annual items

corresponding to total assets, debt in current liabilities, long-term debt, current assets, current

liabilities, net income, pretax income, and total liabilities, respectively. Note that the number

of stocks for which this factor is available during the first 5 investment periods is less than 1000.

As a result, for dimension N = 1000, we start the portfolio formation on investment date h = 6.
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C.4.14 OP

Following Fama and French (2015), we measure operating profitability (OP) with accounting

data for quarter t − 1 as revenues (item saleq ) minus cost of goods sold (item cogsq), minus

selling, general, and administrative expenses (item (item xsgaq), minus interest expense (item

xintq) all divided by book equity. Book equity is the same as described in Section C.2.3.

C.5 Intangibles

C.5.1 Egr

Following Bazdrech et al. (2008), we measure employee growth rate (Egr) as the growth rate

in the number of employees (item emp) from calendar year t− 2 to calendar year t− 1, where

t denotes the current calendar year. Reversal of Egr is used as the actual factor.

C.5.2 ∆ade

Following Chemmanur and Yan (2010), we measure change in advertising expense (∆ade) as

the the natural log of the ratio of advertising expenses in calendar year t − 1 to advertising

expenses in calendar year t − 2, where t denotes the current calendar year. Note that the

number of stocks for which this factor is available during some of the first 181 investment

periods is less than 500, and the number available from the 182th investment date to the end

is always less than 1000. As a result, for dimension N = 500, we start the portfolio formation

on investment date h = 182 whereas for dimension N = 1000, we do not consider this factor.

C.5.3 Rdi

Following Eberhart et al. (2004), we measure R&D increase (Rdi) as the growth rate in R&D

expenses (item xrd) from calendar year t−2 to calendar year t−1, where t denotes the current

calendar year. Note that the number of stocks for which this factor is available during some

of the first 26 investment periods is less than 500, and the number available from the 27th

investment date to the end is always less than 1000. As a result, for dimension N = 500, we

start the portfolio formation on investment date h = 27 whereas for dimension N = 1000, we

do not consider this factor.

C.5.4 Ad/M

As in Chan et al. (2001), we measure advertisement expense-to-market (Ad/M) as advertising

expenses (item xad) for calendar year t − 1 divided by the market capitalization (ME) on

day h− 1, where t denotes the current calendar year. Note that the number of stocks for

which this factor is available during some of the first 169 investment periods is less than 500,

and the number available from the 170th investment date to the end is always less than 1000.

As a result, for dimension N = 500, we start the portfolio formation on investment date

h = 170 whereas for dimension N = 1000, we do not consider this factor.
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C.5.5 RD/S

Following Chan et al. (2001), we measure R&D-to-sales (RD/S) as R&D expenses (annual

item xrd) divided by sales (item sale). Note that the number of stocks for which this factor

is available during some of the first 22 investment periods is less than 500, and the number

available from the 23th investment date to the end is always less than 1000. As a result, for

dimension N = 500, we start the portfolio formation on investment date h = 23 whereas for

dimension N = 1000, we do not consider this factor.

C.5.6 RD/M

As in Chan et al. (2001), we measure R&D-to-market (RD/M) as R&D expenses (annual item

xrd) for calendar year t− 1 divided by the market capitalization (ME) on day h− 1, where t

denotes the current calendar year. Note that the number of stocks for which this factor is

available during some of the first 22 investment periods is less than 500, and the number

available from the 23th investment date to the end is always less than 1000. As a result, for

dimension N = 500, we start the portfolio formation on investment date h = 23 whereas for

dimension N = 1000, we do not consider this factor.

C.5.7 Rc/A

Following Li (2011), we measure R&D capital-to-assets (Rc/A) as the ratio of R&D capital (Rc)

to total assets (item at). Rc is a weighted average of R&D expenses (annual item xrd) over

the last five calendar years with a depreciation rate of 20%:

Rc ..= xrdt−1 + 0.8xrdt−2 + 0.6xrdt−2 + 0.4xrdt−4 + 0.2xrdt−5 , (C.13)

where t denotes the current calendar year. Note that the number of stocks for which this factor

is available during some of the first 30 investment periods is less than 500, and the number

available from the 31st investment date to the end is always less than 1000. As a result, for

dimension N = 500, we start the portfolio formation on investment date h = 31 whereas for

dimension N = 1000, we do not consider this factor.

C.5.8 OL

Following Novy-Marx (2011), we measure operating leverage (OL) as cost of goods sold

(quarterly item cogsq) plus selling, general, and administrative expenses (item xsgaq), then

divided by total assets (item atq). Note that the number of stocks for which this factor is

available during the first 32 investment periods is less than 1000. As a result, for dimension

N = 1000, we start the portfolio formation on investment date h = 33.
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C.6 Trading Frictions

C.6.1 Turn

Following Datar et al. (1998), we measure the share turnover (Turn) as its average daily share

turnover over the previous six months from t − 6 to t − 1 (that is, from day h − 126 through

day h− 1). Daily turnover is the number of shares traded (item vol) divided by the number of

shares outstanding (item csho). To account for the institutional features of the way NASDAQ

and NYSE volume are reported, we adjust the trading volume for NASDAQ stocks as in

Gao and Ritter (2010): Previous to 02/01/2001, we divide NASDAQ volume by 2.0; from

02/01/2001 through 12/31/2001, we divide NASDAQ volume by 1.8; for 2002 and 2003, we

divide NASDAQ volume by 1.6; and from 2004 on, we use the original NASDAQ volume.

Reversal of Turn is used as the actual factor.

C.6.2 Tvol

Following Ang et al. (2006), we measure total volatility (Tvol) as the standard deviation of a

stock’s daily returns over the previous month t−1 (that is, from day h−21 through day h−1).

Reversal of Tvol is used as the actual factor.

C.6.3 Avol

Following Bandyopadhyay et al. (2010), we measure accrual volatility (Avol) as the standard

deviation of the ratio of total accruals (TA) to total sales (item saleq) over the previous

16 quarters from quarter t − 16 to quarter t − 1, where t denotes the current quarter. TA is

defined in their equation (7); the only difference is that we use quarterly data here. Reversal

of Avol is used as the actual factor. Note that the number of stocks for which this factor is

available during the first 27 investment periods is less than 1000. As a result, for dimension

N = 1000, we start the portfolio formation on investment date h = 28.

C.6.4 Cvol

Following Huang (2009), we measure cash flow volatility (Cvol) as the standard deviation of

cash flow (CF) over the previous 16 quarters from quarter t − 16 to quarter t − 1, where t

denotes the current quarter. CF is defined as the sum of income before extraordinary items

(item ibq), depreciation and amortization expense (item dpq, zero if missing), and the increase

in net non-cash working capital (∆WC in Section C.3.10 with quarterly data). Reversal of

Cvol is used as the actual factor. Note that the number of stocks for which this factor is

available during the first six investment periods is less than 1000. As a result, for dimension

N = 1000, we start the portfolio formation on investment date h = 7.
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