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Abstract—Pose graphs have become a popular representation
for solving the simultaneous localization and mapping (SLAM)
problem. A pose graph is a set of robot poses connected by
nonlinear constraints obtained from observations of features
common to nearby poses. Optimizing large pose graphs has
been a bottleneck for mobile robots, since the computation
time of direct nonlinear optimization can grow cubically with
the size of the graph. In this paper, we propose an efficient
method for constructing and solving the linear subproblem,
which is the bottleneck of these direct methods. We compare our
method, called Sparse Pose Adjustment (SPA), with competing
indirect methods, and show that it outperforms them in terms of
convergence speed and accuracy. We demonstrate its effectiveness
on a large set of indoor real-world maps, and a very large
simulated dataset. Open-source implementations in C++, and the
datasets, are publicly available.

I. INTRODUCTION

The recent literature in robot mapping shows an increasing

interest in graph-based SLAM approaches. In the most general

form, the graph has nodes that represent both robot poses

and world features, with measurements connecting them as

constraints. The goal of all approaches is to jointly opti-

mize the poses of the nodes so as to minimize the error

introduced by the constraint. One classical variant of this

problem comes from computer vision and is denoted as Bundle

Adjustment [25], which is typically solved with a specialized

variant of the Levenberg-Marquardt (LM) nonlinear optimizer.

In the SLAM literature, Lu-Milios [18], GraphSLAM [24], and√
SAM [4] are all variants of this technique.

Since features tend to outnumber robot poses, more compact

systems can be created by converting observations of fea-

tures into direct constraints among the robot poses, either by

marginalization [1, 24, 4], or by direct matching – for example,

matching laser scans between two robot poses yields a relative

pose estimate for the two. Pose constraint systems, in typical

robotic mapping applications, exhibit a sparse structure of

connections, since the range of the sensor is typically limited

to the vicinity of the robot.

Solving pose graphs efficiently (i.e., finding the optimal

positions of the nodes) is a key problem for these methods

especially in the context of online mapping problems. A

typical 2D laser map for a 100m x 100m office space may

have several thousand nodes and many more constraints (see

Figure 1). Furthermore, adding a loop closure constraint to

this map can affect almost all of the poses in the system.

Fig. 1. Large MIT corridor map, unoptimized (left) and optimized (right).
A full nonlinear optimization of this map (3603 nodes and 4986 constraints),
starting from the odometry positions of the left-side figure, takes just 150 ms
with our method.

At the heart of the LM method lies the solution of a large

sparse linear problem. In this paper, we develop a method

to efficiently compute the sparse matrix from the constraint

graph, and use direct sparse linear methods to solve it. In

analogy to Sparse Bundle Adjustment in the vision literature,

we call this method Sparse Pose Adjustment (SPA), since it

deals with the restricted case of pose-pose constraints. The

combination of an SBA/GraphSLAM optimizer with efficient

methods for solving the linear subproblem has the following

advantages.

• It takes the covariance information in the constraints into

account which leads to more accurate solutions.

• SPA is robust and tolerant to initialization, with very

low failure rates (getting stuck in local minima) for both

incremental and batch processing.

• Convergence is very fast as it requires only a few itera-

tions of the LM method.

• Unlike EKF and information filters, SPA is fully non-

linear: at every iteration, it linearizes all constraints

around their current pose.

• SPA is efficient in both batch and incremental mode.

We document these and other features of the method in

the experimental results section where we also compare our

method to other LM and non-LM state-of-the-art optimizers.

One of the benefits of the efficiency of SPA is that a

mapping system can continuously optimize its graph, pro-

viding the best global estimate of all nodes, with very little



computational overhead. Solving the optimization problem for

the large map shown in Figure 1 requires only 150 ms from an

initial configuration provided by odometry. In the incremental

mode, where the graph is optimized after each node is added,

it requires less than 15 ms for any node addition.

Although SPA can be parameterized with 3D poses, for

this paper we have restricted it to 2D mapping, which is

a well-developed field with several competing optimization

techniques. Our intent is to show that a 2D pose-based

mapping system can operate on-line using SPA as its optimiza-

tion engine, even in large-scale environments and with large

loop closures, without resorting to submaps or complicated

partitioning schemes.

II. RELATED WORK

Lu and Milios [18] presented the seminal work on graph-

based SLAM, where they determine the pairwise measure-

ments between scans via ICP scan-matching and then optimize

the graph by iterative linearization. At that time, efficient

optimization algorithms were not available to the SLAM

community and graph-based approaches were regarded as

too time-consuming. Despite this, the intuitive formulation of

graph-based SLAM attracted many researchers with valuable

contributions. Gutmann and Konolige [12] proposed an effec-

tive way for constructing such a network and for detecting loop

closures while running an incremental estimation algorithm.

Since the Lu and Milios paper, many approaches for graph

optimization have been proposed. Howard et al. [13] apply

relaxation to localize the robot and build a map. Duckett

et al. [6] propose the usage of Gauss-Seidel relaxation to

minimize the error in the network of constraints. To overcome

the inherently slow convergence of relaxation methods, Frese

et al. [9] propose a variant of Gauss-Seidel relaxation called

multi-level relaxation (MLR). It applies relaxation at different

resolutions. MLR is reported to provide very good results in

2D environments, especially if the error in the initial guess is

limited.

Olson et al. [21] proposed stochastic gradient descent to

optimize pose graphs. This approach has the advantage of

being easy to implement and exceptionally robust to wrong

initial guesses. Later, Grisetti et al. [10] extended this approach

by applying a tree based parameterization that significantly

increases the convergence speed. The main problem of these

approaches is that they assume the error in the graph to be

more or less uniform, and thus they are difficult to apply to

graphs where some constraints are under-specified.

The most intuitive way to optimize a graph is probably

by nonlinear least-squares optimization, such as LM. Least-

squares methods require to repetitively solve a large linear

system obtained by linearizing the original likelihood function

of the graph. This linear system is usually very large; accord-

ingly, the first graph-based approaches were time consuming,

because they did not exploit its natural sparsity. One promising

technique is Preconditioned Conjugate Gradient (PCG) [2],

which was later used by Konolige [15] and Montemerlo

and Thrun [20] as an efficient solver for large sparse pose

constraint systems; the preconditioner is typically incomplete

Cholesky decomposition. PCG is an iterative method, which

in general requires n iterations to converge, where n is the

number of variables in the graph. We have implemented a

sparse-matrix version of PCG from Sparselib++ and IML++

[5], and use this implementation for comparison experiments

in this paper.

More recently, Dellaert and colleagues use bundle adjust-

ment, which they implement using sparse direct linear solvers

[3]; they call their system
√

SAM [4]). Our approach is

similar to
√

SAM; we differ from their approach mostly in

engineering, by efficient construction of the linear subproblem

using ordered data structures. We also use LM instead of

a standard nonlinear least-square method, thereby increasing

robustness. Finally, we introduce a “continuable LM” method

for the incremental case, and an initialization method that is

a much more robust approach to the batch problem.

Kaess et al. [14] introduced a variant of
√

SAM, called

iSAM, that performs incremental update of the linear matrix

associated with the nonlinear least-squares problem. Relin-

earization and variable ordering are performed only occa-

sionally, thereby increasing computational efficiency. In our

approach, relinearization and matrix construction are very

efficient, so such methods become less necessary. Currently

we do not have an implementation of either iSAM or
√

SAM

to test against for performance.

Relaxation or least-squares approaches proceed by itera-

tively refining an initial guess. Conversely, approaches based

on stochastic gradient descent are more robust to the initial

guess. In the SLAM literature the importance of this initial

guess has been often underestimated. The better the initial

guess is, the more likely it is for an algorithm to find the

correct solution. In this paper, we address this point and

evaluate three different strategies for computing the initial

guess.

In contrast to full nonlinear optimization, several researchers

have explored filtering techniques to solve the graphs incre-

mentally, using an information matrix form. The first such

approach was proposed by Eustice et al. and denoted Delayed

Sparse Information Filter (DSIF) [7]. This technique can be

very efficient, because it adds only a small constant number

of elements to the system information matrix, even for loop

closures. However, recovering the global pose of all nodes

requires solving a large sparse linear system; there are faster

ways of getting approximate recent poses.

Frese proposed the TreeMap [8] algorithm that captures the

sparse structure of the system by a tree representation. Each

leaf in the tree is a local map and the consistency of the

estimate is achieved by sending updates to the local maps

through the tree. Under ideal conditions, this approach can

update the whole map in O(n log n) time, where n is the

numbers of elements in the map. However, if the map has

many local connections the size of the local maps can be

very large and their updates (which are regarded as elementary

operations) become computationally expensive as shown in the

remainder of this paper.
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Fig. 2. Typical graph-based SLAM system. The front-end and the back end
are executed in an interleaved way.

To summarize the paper: we propose an efficient approach

for optimizing 2D pose graphs that uses direct sparse Cholesky

decomposition to solve the linear system. The linear system

is computed in a memory-efficient way that minimizes cache

misses and thus significantly improves the performance. We

compare our method, in both accuracy and speed, to existing

LM and non-LM approaches that are avaiable, and show

that SPA outperforms them. Open source implementations are

available both in C++ and in matlab/octave.

Efficient direct (non-iterative) algorithms to solve sparse

systems have become available [3], thus reviving a series

of approaches for optimizing the graphs which have been

discarded in the past. In this paper,

III. SYSTEM FORMULATION

Popular approaches to solve the SLAM problem are the so-

called “graph-based” or “network-based” methods. The idea is

to represent the history of the robot measurements by a graph.

Every node of the graph represents a sensor measurement

or a local map and it is labeled with the location at which

the measurement was taken. An edge between two nodes

encodes the spatial information arising from the alignment of

the connected measurements and can be regarded as a spatial

constraint between the two nodes.

In the context of graph-based SLAM, one typically con-

siders two different problems. The first one is to identify the

constraints based on sensor data. This so-called data associ-

ation problem is typically hard due to potential ambiguities

or symmetries in the environment. A solution to this problem

is often referred to as the SLAM front-end and it directly

deals with the sensor data. The second problem is to correct

the poses of the robot to obtain a consistent map of the

environment given the constraints. This part of the approach is

often referred to as the optimizer or the SLAM back-end. Its

task is to seek for a configuration of the nodes that maximizes

the likelihood of the measurements encoded in the constraints.

An alternative view to this problem is given by the spring-

mass model in physics. In this view, the nodes are regarded as

masses and the constraints as springs connected to the masses.

The minimal energy configuration of the springs and masses

describes a solution to the mapping problem.

During its operation a graph-based SLAM system inter-

leaves the execution of the front-end and of the back-end, as

shown in Figure 2. This is required because the front-end needs

to operate on a partially optimized map to restrict the search

about potential constraints. The more accurate the current

estimate is, the more robust the constraints generated by the

front-end will be and the faster its operation. Accordingly, the

performance of the optimization algorithm, measured in terms

of accuracy of the estimate and execution time, has a major

impact on the overall mapping system.

In this paper we describe in detail an efficient and com-

pact optimization approach that operates on 2D graphs. Our

algorithm can be coupled with arbitrary front-ends that handle

different kinds of sensors. For clarity of presentation we

shortly describe a front-end for laser data. However, the

general concepts can be straightforwardly applied to different

sensors.

IV. SPARSE POSE ADJUSTMENT

To optimize a set of poses and constraints, we use the well-

known Levenberg-Marquardt (LM) method as a framework,

with particular implementations that make it efficient for the

sparse systems encountered in 2D map building. In analogy

to the Sparse Bundle Adjustment of computer vision, which

is a similarly efficient implementation of LM for cameras and

features, we call our system Sparse Pose Adjustment (SPA).

A. Error Formulation

The variables of the system are the set of global poses

c of the robot, parameterized by a translation and angle:

ci = [ti, θi] = [xi, yi, θi]
⊤. A constraint is a measurement

of one node cj from another’s (ci) position. The measured

offset between ci and cj , in ci’s frame, is z̄ij , with precision

matrix Λij (inverse of covariance). For any actual poses of ci

and cj , their offset can be calculated as

h(ci, cj) ≡
{

R⊤

i (tj − ti)
θj − θi

(1)

Here Ri is the 2x2 rotation matrix of θi. h(ci, cj) is called the

measurement equation.

The error function associated with a constraint, and the total

error, are

eij ≡ z̄ij − h(ci, cj)

χ2(c,p) ≡
∑

ij

e⊤ijΛijeij
(2)

Note that the angle parameter in h(ci, cj) is not unique,

since adding or subtracting 2π yields the same result. Angle

differences are always normalized to the interval (−π, π] when

they occur.

B. Linear System

The optimal placement of c is found by minimizing the

total error in Equation 2. A standard method for solving this

problem is Levenberg-Marquardt (LM), iterating a linearized

solution around the current values of c. The linear system is

formed by stacking the variables c into a vector x, and the

error functions into a vector e. Then we define:

Λ ≡







Λab

. . .

Λmn







J ≡ ∂e

∂x

H ≡ J⊤ΛJ

(3)



The LM system is:

(H + λ diagH) ∆x = J⊤Λe (4)

Here λ is a small positive multiplier that transitions between

gradient descent and Newton-Euler methods. Gradient descent

is more robust and less likely to get stuck in local minima, but

converges slowly; Newton-Euler has the opposite behavior.

The matrix H is formed by adding four components for

each measurement h(ci, cj):

. . .

J⊤

i ΛijJi · · · J⊤

i ΛijJj

...
. . .

...

J⊤

j ΛijJi · · · J⊤

j ΛijJj

. . .

(5)

Here we have abused the notation for J slightly, with Ji

being the Jacobian of eij with respect to the variable ci.

The components are all 3x3 blocks. The right-hand side is

formed by adding 3x1 blocks Jci
Λijeij and Jcj

Λijeij for each

constraint.

Solving the linear equation yields an increment ∆x that can

be added back in to the current value of x as follows:

ti = ti + ∆ti

θi = θi + ∆θi

(6)

C. Error Jacobians

Jacobians of the measurement function h appear in the

normal equations (4), and we list them here.

∂eij

∂ti
≡

[

−R⊤

i

0 0

]

∂eij

∂θi

≡
[

−∂R⊤

i /∂θi (tj − ti)
−1

]

∂eij

∂tj
≡

[

R⊤

i

0 0

]

∂eij

∂θj

≡ [0 0 1]
⊤

(7)

D. Sparsity

We are interested in large systems, where the number of

poses ||c|| can be 10k or more (the largest real-world indoor

dataset we have been able to find is about 3k poses, but we

can generate synthetic datasets of any order). The number of

system variables is 3||c||, and the H matrix is ||c||2, or over

108 elements. Manipulating such large matrices is expensive.

Fortunately, for typical scenarios the number of constraints

grows only linearly with the number of poses, so that H is

very sparse. We can take advantage of the sparsity to solve

the linear problem more efficiently.

For solving (4) in sparse format, we use the CSparse

package [3]. This package has a highly-optimized Cholesky

decomposition solver for sparse linear systems. It employs

several strategies to decompose H efficiently, including a

logical ordering and an approximate minimal degree (AMD)

algorithm to reorder variables when H is large.

In general the complexity of decomposition will be O(n3)
in the number of variables. For sparse matrices, the complexity

will depend on the density of the Cholesky factor, which

in turn depends on the structure of H and the order of its

variables. Mahon et al. [19] have analyzed the behavior of the

Cholesky factorization as a function of the loop closures in

the SLAM system. If the number of loop closures is constant,

then the Cholesky factor density is O(n), and decomposition

is O(n). If the number of loop closures grows linearly with the

number of variables, then the Cholesky factor density grows

as O(n2) and decomposition is O(n3).

E. Compressed Column Storage

Each iteration of the LM algorithm has three steps: setting

up the linear system, decomposing H, and finding ∆x by

back-substitution. Setting up the system is linear in the number

of constraints (and hence in the number of variables for most

graph-based SLAM systems). In many situations it can be

the more costly part of the linear solver. Here we outline an

efficient method for setting up the sparse matrix form of H

from the constraints generated by Equation (5).

CSparse uses compressed column storage (CCS) format for

sparse matrices. The figure below shows the basic idea.









1 0 4 0
0 5 0 2
0 0 0 1
6 8 0 0









⇒
col ptr 0 2 4 5 7
row ind 0 3 1 3 0 1 2
val 1 6 5 8 4 2 1

(8)

Each nonzero entry in the array is placed in the val vector.

Entries are ordered by column first, and then by row within

the column. col ptr has one entry for each column, plus a

last entry which is the number of total nonzeros (nnz). The

col ptr entry for a column points to the start of the column in

the row ind and val variables. Finally, row ind gives the row

index of each entry within a column.

CCS format is storage-efficient, but is difficult to create

incrementally, since each new nonzero addition to a column

causes a shift in all subsequent entries. The most efficient

way would be to create the sparse matrix in column-wise

order, which would require cycling through the constraints

||c|| times. Instead, we go through the constraints just once,

and store each 3x3 block J⊤

i ΛijJi in a special block-oriented

data structure that parallels the CCS format. The algorithm is

given in Table I. In this algorithm, we make a pass through the

constraints to store the 3x3 block matrices into C++ std::map

data structures, one for each column. Maps are efficient at

ordered insertion based on their keys, which is the row index.

Once this data structure is created (step (2)), we use the

ordered nature of the maps to create the sparse CCS format of

H by looping over each map in the order of its keys, first

to create the column and row indices, and then to put in

the values. The reason for separating the column/row creation

from value insertion is because the former only has to be done

once for any set of iterations of LM.

Note that only the upper triangular elements of H are stored,

since the Cholesky solver in CSparse only looks at this part,

and assumes the matrix is symmetric.



TABLE I

ALGORITHM FOR SETTING UP THE SPARSE H MATRIX

H = CreateSparse(e, cf )

Input: set of constraints eij , and a list of free nodes (variables)
Output: sparse upper triangular H matrix in CCS format

1) Initialize a vector of size ||cf || of C++ std::map’s; each map
is associated with the corresponding column of H. The key of
the map is the row index, and the data is an empty 3x3 matrix.
Let map[i, j] stand for the j’th entry of the i’th map.

2) For each constraint eij , assuming i < j:

a) In the steps below, create the map entries if they do not
exist.

b) If ci is free, map[i, i] += J⊤

i ΛijJi.

c) If cj is free, map[j, j] += J⊤

j ΛijJj .

d) If ci, cj are free, map[j, i] += J⊤

i ΛijJj .

3) Set up the sparse upper triangular matrix H.

a) In the steps below, ignore elements of the 3x3 map[i, i]
entries that are below the diagonal.

b) Go through map[] in column then row order, and set
up col ptr and row ind by determining the number of
elements in each column, and their row positions.

c) Go through map[] again in column then row order, and
insert entries into val sequentially.

F. Continuable LM System

The LM system algorithm is detailed in Table II. It does

one step in the LM algorithm, for a set of nodes c with

associated measurements. Running a single iteration allows

for incremental operation of LM, so that more nodes can be

added between iterations. The algorithm is continuable in that

λ is saved between iterations, so that successive iterations

can change λ based on their results. The idea is that adding

a few nodes and measurements doesn’t change the system

that much, so the value of λ has information about the state

of gradient descent vs. Euler-Newton methods. When a loop

closure occurs, the system can have trouble finding a good

minima, and λ will tend to rise over the next few iterations to

start the system down a good path.

There are many different ways of adjusting λ; we choose a

simple one. The system starts with a small lambda, 10−4. If

the updated system has a lower error than the original, λ is

halved. If the error is the same or larger, λ is doubled. This

works quite well in the case of incremental optimization. As

long as the error decreases when adding nodes, λ decreases

and the system stays in the Newton-Euler region. When a

link is added that causes a large distortion that does not get

corrected, λ can rise and the system goes back to the more

robust gradient descent.

V. SCAN MATCHING

SPA requires precision (inverse covariance) estimates from

matching of laser scans (or other sensors). Several scan-match

algorithms can provide this, for example, Gutmann et al.

[11] use point matches to lines extracted in the reference

scan, and return a Gaussian estimate of error. More recently,

the correlation method of Konolige and Chou [17], extended

by Olson [22], provides an efficient method for finding the

globally best match within a given range, while returning

TABLE II

CONTINUABLE LM ALGORITHM

ContinuableLM(c, e, λ)

Input: nodes c and constraints e, and diagonal increment λ

Output: updated c

1) If λ = 0, set λ to the stored value from the previous run.
2) Set up the sparse H matrix using CreateSparse(e, c−c0), with

c0 as the fixed pose.
3) Solve (H + λ diagH)∆x = J⊤Λe, using sparse Cholesky

with AMD.
4) Update the variables c − c0 using Equation (6).
5) If the error e has decreased, divide λ by two and save, and

return the updated poses for c − c0.
6) If the error e has increased, multiply λ by two and save, and

return the original poses for c − c0.

an accurate covariance. The method allows either a single

scan or set of aligned scans to be matched against another

single scan or set of aligned scans. This method is used in

the SRI’s mapping system Karto1 for both local matching of

sequential scans, and loop-closure matching of sets of scans

as in [12]. To generate the real-world datasets for experiments,

we ran Karto on 63 stored robot logs of various sizes, using

its scan-matching and optimizer to build a map and generate

constraints, including loop closures. The graphs were saved

and used as input to all methods in the experiments.

VI. EXPERIMENTS

In this section, we present experiments where we compare

SPA with state-of-the art approaches on 63 real world datasets

and on a large simulated dataset. We considered a broad variety

of approaches, including the best state-of-the-art.

• Information filter: DSIF [7]

• Stochastic gradient descent: TORO [10]

• Decomposed nonlinear system: Treemap [8]

• Sparse pose adjustment: SPA, with (a) sparse direct

Cholesky solver, and (b) iterative PCG [15]

We updated the PCG implementation to use the same “con-

tinued LM” method as SPA; the only difference is in the

underlying linear solver. The preconditioner is an incomplete

Cholesky method, and the conjugate gradient is implemented

in sparse matrix format.

We also evaluated a dense Cholesky solver, but both the

computational and the memory requirements were several

orders of magnitude larger than the other approaches. As an

example, for a dataset with 1600 constraints and 800 nodes

one iteration using a dense Cholesky solver would take 2.1

seconds while the other approaches require an average of a

few milliseconds. All experiments are executed on an Intel

Core i7-920 running at 2.67 Ghz.

In the following, we report the cumulative analysis of

the behavior of the approaches under different operating

conditions; results for all datasets are available online at

www.ros.org/research/2010/spa. We tested each

method both in batch mode and on-line. In batch mode, we

1Information on Karto can be found at www.kartorobotics.com.



Fig. 3. Effect of the χ2 reduction. This figure shows two maps generated
from two graphs having a different χ2 error. The error of the graph associated
to the top map is 10 times bigger than the one on the bottom. Whereas the
overall structure appears consistent in both cases, the details in the map with
the lower χ2 appear significantly more consistent.

provided the algorithm with the full graph while in on-line

mode we carried out a certain number of iterations whenever

a new node was added to the graph. In the remainder of

this section we first discuss the off-line experiments, then we

present the on-line experiments. We conclude by analyzing all

methods on a large-scale simulated dataset.

A. Accuracy Measure

For these indoor datasets, there is no ground truth. Instead,

the measure of goodness for a pose-constraint system is the

covariance-weighted squared error of the constraints, or χ2

error. If the scan matcher is accurate, lower χ2 means that

scans align better. Figure 3 shows this effect on a real-world

dataset.

B. Real-World Experiments: Off-Line Optimization

To optimize a dataset off-line, we provide each optimizer

with a full description of the problem. We leave out from

the comparison DSIF and TreeMap, since they only operate

incrementally (DSIF is equivalent to one iteration of SPA in

batch mode). Since the success of the off-line optimization

strongly depends on the initial guess, we also investigated two

initialization strategies, described below.

• Odometry: the nodes in the graph are initialized with

incremental constraints. This is a standard approach taken

in almost all graph optimization algorithms.

• Spanning-Tree: A spanning tree is constructed on the

graph using a breadth-first visit. The root of the tree

is the first node in the graph. The positions of the

nodes are initialized according to a depth-first visit of the

spanning tree. The position of a child is set to the position

of the parent transformed according to the connecting

constraint. In our experiments, this approach gives the

best results.
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Fig. 4. Batch optimization on real-world datasets, using Odometry and
Spanning-Tree initialization. Left: the final χ2 error per constraint for all
the approaches. Right: the time required to converge. Every point in the plots
represents one dataset. The datasets are sorted according to the number of
constraints in the graph, which effectively measures the complexity of the
optimization. The curves show the interpolated behavior of each method, for
better visualization. Note that PCG and SPA converge to the same error.

For each dataset and each optimizer we computed the

initial guesses described above. Every optimizer was run for a

minimum number of iterations or until a termination criterion

was met. We measured the time required to converge and the

χ2 error for each approach. The results are summarized in

Figure 4 for the Odometry and Spanning-Tree initializations.

For these datasets, there was no substantial difference in

performance between the two types of initialization.

In the error graph, PCG and SPA converged to almost

exactly the same solution, since the only difference is the

linear solver. They both dominate TORO, which has more than

10 times the error for the larger graphs. We attribute this to

the inability of TORO to handle non-spherical covariances,

and its very slow convergence properties. SPA requires almost

an order of magnitude less computational effort than PCG or

TORO for almost all graphs.

TORO was designed to be robust to bad initializations, and

to test this we also ran all methods with all nodes initialized

to (0,0,0). In this case, SPA and PCG converged to non-global

minima for all datasets, while TORO was able to reconstruct

the correct topology.

C. Real-World Experiments: On-Line Optimization

For the on-line comparison, we incrementally augment the

graph by adding one node and by connecting the newly added

node to the previously existing graph. We invoke the optimizer

after inserting each node, and in this way simulate its behavior

when executed in conjunction with a SLAM front-end. The

optimization is carried out for a maximum number iterations,

or until the error does not decrease. The maximum number of

iterations for SPA/PCG is 1; for TreeMap, 3; and for TORO,

100. Since PCG iteratively solves the linear subproblem, we

limited it to 50 iterations there. These thresholds were selected

to obtain the best performances in terms of error reduction. In

Figure 5 we report the statistics on the execution time and on

the error per constraint every time a new constraint was added.

In terms of convergence, SPA/PCG dominate the other

methods. This is not surprising in the case of DSIF, which is

an information filter and therefore will be subject to lineariza-

tion errors when closing large loops. TORO has the closest

performance to SPA, but suffers from very slow convergence

per iteration, characteristic of gradient methods; it also does
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Fig. 5. On-line optimization on real-world datasets. Left: the average χ2 error
per constraint after adding a node during incremental operation. Right: the
average time required to optimize the graph after inserting a node. Each data
point represents one data set, the x-axis shows the total number of constraints
of that data set. Note that the error for PCG and SPA is the same in the left
graph.

not handle non-circular covariances, which limit its ability to

achieve a minimal χ2. Treemap is much harder to analyze,

since it has a complicated strategy setting up a tree structure

for optimization. For these datasets, it appears to have a large

tree (large dataset loops) with small leaves. The tree structure

is optimized by fixing linearizations and deleting connections,

which leads to fast computation but poor convergence, with

χ2 almost 3 orders of magnitude worse than SPA.

All the methods are approximately linear overall in the size

of the constraint graph, which implies that the number of large

loop closures grows slowly. Treemap has the best performance

over all datasets, followed by SPA and DSIF. Note that SPA

is extremely regular in its behavior: there is little deviation

from the linear progression on any dataset. Furthermore that

average and max times are the same: see the graph in Figure 8.

Finally, TORO and PCG use more time per iteration, with PCG

about four times that of SPA. Given SPA’s fast convergence,

we could achieve even lower computational effort by applying

it only every n node additions. We emphasize that these graphs

were the largest indoor datasets we could find, and they are

not challenging for SPA.

D. Synthetic Dataset

To estimate the asymptotic behavior of the algorithms we

generated a large simulated dataset. The robot moves on a grid;

each cell of the grid has a side of 5 meters, and we create a

node every meter. The perception range of the robot is 1.5

meters. Both the motion of the robot and the measurements

are corrupted by a zero mean Gaussian noise with standard

deviation σu = diag(0.01 m, 0.01 m, 0.5 deg). Whenever a

robot is in the proximity of a position it has visited, we

generate a new constraint. The simulated area has spans over

500 × 500 meters, and the overall trajectory is 100 km long.

This results in frequent re-observations. The full graph is

shown in Figure 6. This is an extremely challenging dataset,

and much worse than any real-world dataset. In the following

we report the result of batch and on-line execution of all the

approaches we compared.

a) Off-Line Optimization: Each batch approach was ex-

ecuted with the three initializations described in the previous

section: odometry, spanning-tree, and zero. Results are shown

in Figure 7 as a function of time. The only approach which

is able to optimize the graph from a zero or odometry

Fig. 6. Large simulated dataset containing 100k nodes and 400k constraints
used in our experiments. Left: initial guess computed from the odometry.
Right: optimized graph. Our approach requires about 10 seconds to perform
a full optimization of the graph when using the spanning-tree as initial guess.
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Fig. 7. Evolution of the χ2 error during batch optimization of a large
simulated dataset consisting of 100,000 nodes and 400,000 constraints, under
odometry and spanning-tree initialization. The left plot shows the overall
execution, while the right plot shows a magnified view of the χ2 error of
SPA and PCG close to the convergence point.

initialization is TORO; SPA/PCG essentially does not converge

to a global minimum under odometry or zero starts. SPA/PCG

converges globally from the spanning-tree initialization after

10 seconds or so, with SPA being significantly faster at the

convergence point (see magnified view in Figure 7). TORO

has good initial convergence, but has a long tail because of

gradient descent.

b) On-Line Optimization: We processed the dataset in-

crementally, as described in Section VI-C. In Figure 8 we

report the evolution of the χ2 error and time per added node.

Both SPA and TreeMap converge to a minimum χ2 (see

Figure 7 for the converged map). However, their computational

behavior is very different: TreeMap can use up to 100 seconds

per iteration, while SPA grows slowly with the size of the

graph. Because of re-visiting in the dataset, TreeMap has a

small tree with very large leaves, and perform LM optimization

at each leaf, leading to low error and high computation.

The other methods have computation equivalent to SPA,

but do not converge as well. Again DSIF performs poorly, and

does not converge. TORO converges but as usual has difficulty

with cleaning up small errors. PCG spikes because it does not

fully solve the linear subproblem, eventually leading to higher

overall error.

VII. CONCLUSIONS

In this paper, we presented and experimentally validated a

nonlinear optimization system called Sparse Pose Adjustment

(SPA) for 2D pose graphs. SPA relies on efficient linear matrix

construction and sparse non-iterative Cholesky decomposition
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Fig. 8. On-line optimization of the large simulated data set. In the top graph,
SPA and TreeMap have the same minimum χ2 error over all constraints. DSIF
does not converge to a global minimum, while TORO converges slowly and
PCG spikes and has trouble with larger graphs. In the bottom figure, SPA is
clearly superior to TreeMap in computation time.

to efficiently represent and solve large sparse pose graphs.

None of the real-world datasets we could find were challenging

– even in batch mode. The largest map takes sub-second time

to get fully optimized. On-line computation is in the range of

10 ms/node at worst; unlike EKF filters or other methods that

have poor computational performance, we do not have to split

the map into submaps [23] to get globally minimal error.

Compared to state-of-the-art methods, SPA is faster and

converges better. The only exception is in poorly-initialized

maps, where only the stochastic gradient technique of TORO

can converge; but by applying a spanning-tree initialization,

SPA can solve even the difficult synthetic example better than

TORO. When combined with a scan-matching front end, SPA

will enable on-line exploration and map construction. Because

it is a pose graph method, SPA allows incremental additions

and deletions to the map, facilitating lifelong mapping [16].

All the relevant code for running SPA and the other

methods we implemented is available online and as open-

source, along with the datasets and simulation generator

(www.ros.org/research/2010/spa). An accompany-

ing video shows SPA in both online and offline mode on a

large real-world dataset.
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