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Efficient Spectral-Galerkin Method II. Direct Solvers of Second

and Fourth Order Equations by Using Chebyshev Polynomials∗

Jie Shen†

Abstract. Efficient direct solvers based on the Chebyshev-Galerkin methods for second and

fourth order equations are presented. They are based on appropriate base functions for the Galerkin

formulation which lead to discrete systems with special structured matrices which can be efficiently

inverted. Numerical results indicate that the direct solvers presented in this paper are significantly

more accurate and efficient than that based on the Chebyshev-tau method.
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1. Introduction. This paper is the second in a series for developing efficient
spectral-Galerkin methods for elliptic equations. In part I of this work [12], we de-
scribed the direct solution techniques for the Helmholtz equation and the biharmonic
equation by using Legendre-Galerkin approximations. These direct solvers are very
efficient compared to the existing ones, especially for solving the biharmonic equation.
Although using Legendre polynomials offers many advantage over using Chebyshev
polynomials, such as symmetricity and sparseness of the matrices for the discrete sys-
tems, its obvious drawback is the lack of fast transform between the physical and
spectral spaces, such as Fast Fourier Transforms (FFT) for Chebyshev polynomials.
Since such transforms must be performed frequently when dealing with nonlinear
equations, it is preferable to use Chebyshev polynomials when the resulting discrete
systems can be solved with an accuracy and a number of operations comparable to the
case when Legendre polynomials are used. It is our purpose in this paper to develop
efficient Galerkin methods using Chebyshev polynomials.

As we mentioned in [12], although the theoretical analysis of Chebyshev-Galerkin
method is the easiest to perform and the results are usually optimal among the three
commonly used spectral methods, namely Galerkin, collocation and tau, its practical
implementation is virtually unavailable in the literature due to the lack of appropriate
bases. On the other hand, the tau method and the collocation method have been
extensively used. The latter of course is more flexible and more suitable for problems
with variable coefficients. However for problems with constant coefficients, and also for
some problems with variable coefficients (e.g. the example of a nonseparable equation
considered in [12]), the Chebyshev-tau method and Chebyshev-Galerkin method could
be more efficient. It is clear that for the Chebyshev-Galerkin approximations we can
construct similar special bases as in [12] for the Legendre-Galerkin approximations.
But due to the nonuniform weight associated with the Chebyshev polynomials, the
matrices of the resulting linear systems are usually not sparse as in the Legendre case.
However, these matrices usually possess special structures which can be explored to
derive efficient algorithms.
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For the general second order equations with constant coefficients, we are able to
apply the matrix decomposition method to solve the discrete system arising from the
Chebyshev-Galerkin approximation in about (d−1)N d+1 arithmetic operations (where
d = 2 or 3 is the dimension of the domain, N is the cutoff number of the Chebyshev
series in each direction) with an accuracy comparable to that of the Legendre-Galerkin
approximation and significantly better than that of the Chebyshev-tau approximation.
This algorithm is clearly superior to the popular Chebyshev-tau algorithm [8] in terms
of accuracy and efficiency as is demonstrated by the numerical examples in Section
5. It is also more efficient than the Legendre-Galerkin algorithm in [12] for solving
equations with multiple right hand sides, thanks to the FFT.

For the fourth order equations, we are only able to derive an efficient and stable
algorithm in the one dimensional case. Again thanks to the FFT, it is more efficient
than the the Legendre-Galerkin method presented in [12]. It can be used in particu-
lar to solve the 2-D Stokes equations with periodic-nonperiodic boundary conditions.
However, due to probably the non symmetricity associated to the nonuniform Cheby-
shev weight function, we are unable to extend the method of capacitance matrix used
in [2] and [12] to solve the 2-D biharmonic equations.

The remainder of the paper is organized as follows: In the next section, we
describe in detail our algorithms for solving the Helmholtz equations. In section 3,
we consider the fourth order equations. In section 4, we extend our technique to
more general problems. Finally in section 5, we present and compare some numerical
results.

2. Helmholtz equations. In this section, we are interested in using the Chebyshev-
Galerkin method to solve the Helmholtz equation

(2.1) αu−∆u = f in Ω = Id, u|∂Ω = 0,

where I = (−1, 1) and d = 1, 2 or 3. More general second order problems will be
treated in Section 4.

Let us first introduce some basic notations which will be used in the sequel. We
denote by Tn(x) the nth degree Chebyshev polynomial, and we set

SN = span{T0(x), T1(x), . . . , TN (x)}, VN = {v ∈ SN : v(±1) = 0}.

Then the standard Chebyshev-Galerkin approximation to (2.1) is:
Find u

N
∈ V d

N such that

(2.2) α(u
N
, v)ω − (∆uN

, v)ω = (f, v)ω, ∀ v ∈ V d
N ,

where ω(x) = Πdi=1(1 − x2i )
− 1

2 and (u, v)ω =
∫

Ω
uvωdx is the scalar product in the

weighted space L2ω(Ω). The norm in L
2
ω(Ω) will be denoted by ‖ · ‖ω. Let us denote

Hs
ω(Ω) to be the weighted Sobolev spaces with the norm ‖v‖s,ω. It is well known (cf.
[4]) that for α ≥ 0, s ≥ 1 and u ∈ Hs

ω(Ω), the following optimal error estimates holds:

(2.3) ‖u− u
N
‖ω +N‖u− uN

‖1,ω ≤ C(s)N−s‖u‖s,ω.

Although the approximation (2.2) achieves the optimal convergence rate, its prac-
tical value depends on the choice of a basis for V d

N . It is essential for the sake of
efficiency to choose an appropriate basis for V d

N such that the resulting linear system
is as simple as possible. However, to the best of the author’s knowledge, the only basis
available in the literatures (see for instance [7]) is:

VN = span{φ2(x), φ3(x), · · · , φN (x)}
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with

φk(x) =

{

Tk(x)− T0(x), k even

Tk(x)− T1(x), k odd
.

Unfortunately this basis leads to a linear system with full matrix and hence its usage
is virtually prohibited in practice. In the following, we shall construct appropriate
bases so that the matrices of the resulting linear systems can be efficiently inverted.

2.1. One dimensional case. The following simple lemma is the key to the
efficiency of our algorithms.

Lemma 2.1. Let φk(x) = Tk(x) − Tk+2(x), akj = −(φ
′′
j (x), φk(x))ω and bkj =

(φj(x), φk(x))ω. Then

(2.4) VN = span{φ0(x), φ1(x), · · · , φN−2(x)};

and

(2.5) bkj = bjk =











(ck+1)
2 π, j = k

−π
2 , j = k − 2 and j = k + 2

0, Otherwise

;

and

(2.6) akj =











2π(k + 1)(k + 2), j = k

4π(k + 1), j = k + 2, k + 4, k + 6, · · ·

0, j > k or j + k odd

.

Proof. It is clear that φk(x) ∈ VN and that {φk(x)} are linear independent. (2.4)
then follows from the fact that dimVN = N − 1.

The proof of (2.5)-(2.6) is based on the following well known properties of Cheby-
shev polynomials. We recall that the {Tn(x)}

n=∞
n=0 form an orthogonal basis for L

2
ω(I)

and

(2.7) (Ti(x), Tj(x))ω = ci
π

2
δij , ∀ i, j ≥ 0,

where c0 = 2 and ci = 1 for i ≥ 1. We recall also that the following recurrence relation
holds

(2.8) 2Tn(x) =
T ′n+1(x)

n+ 1
−
T ′n−1(x)

n− 1
.

Note that Tn(x) is a polynomial of degree n and therefore T
′′
n (x) ∈ SN−2. More

precisely

(2.9) T ′′n (x) =

n−2
∑

k=0
k+n even

1

ck
n(n2 − k2)Tk(x).

Now (2.5) can be easily derived by using (2.7). Thanks to (2.9), we have
(2.10)

T ′′k+2(x) =
1

ck
(k+2)((k+2)2−k2)Tk(x)+

1

ck−2
(k+2)((k+2)2−(k−2)2)Tk−2(x)+ · · ·

It follows immediately from (2.10) and (2.7) that

−(φ′′k(x), φj(x))ω = 0, for j > k or j + k odd,
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and

−(φ′′k(x), φk(x))ω = (T
′′
k+2(x), Tk(x))ω

= (k + 2)((k + 2)2 − k2)(Tk(x), Tk(x))ω = 2π(k + 1)(k + 2).

Setting φ′′j (x) =
∑j

n=0 dnTn(x), by a simple computation using (2.9), we derive

dn =

{

1
cj
4(j + 1)(j + 2), n = j

1
cn
{(j + 2)3 − j3 − 2n2}, n < j

.

Hence for j = k + 2, k + 4, · · · , we find

−(φ′′j (x), φk(x))ω = dk(Tk(x), Tk(x))ω − dk+2(Tk+2(x), Tk+2(x))ω = 4π(k + 1).

In the remainder of the paper, we shall use capital letters to denote matrices or
two dimensional arrays, bold face letters to denote column vectors.

It is now clear that (2.2) (with d = 1) is equivalent to

(2.11) α(u
N
, φk(x))ω − (u

′′
N
, φk(x))ω = (f, φk(x))ω, k = 0, 1, · · · , N − 2.

Let us denote

fk = (f, φk(x))ω, f = (f0, f1, · · · , fN−2)
T ;

u
N
=

N−2
∑

n=0

vnφn(x), v = (v0, v1, · · · , vN−2)
T ;

and

(2.12) B = (bkj)0≤k,j≤N−2 , A = (akj)0≤k,j≤N−2 .

Then (2.11) is equivalent to the following matrix equation:

(2.13) (αB +A)v = f .

First of all, we observe that akj = bkj = 0 for k + j odd. Hence the above system
of order N − 1 can be decoupled into two subsystems of order N/2 and N/2 − 1.
The same argument can also be applied to multidimensional systems. In fact, the
2-D system (2.14) and 3-D system (2.19) can be respectively decoupled into four and
eight subsystems. However it is as efficient and less tedious in coding, especially in
multidimensional cases, to treat the original systems directly.
(i) α = 0: (2.13) reduces to Av = f . From Lemma 2.1, we see that A is an special
upper triangular matrix whose nonzero off-diagonal elements in each row are
equal to a constant. Hence this linear system can be solved by special backward
substitution in about 4N arithmetic operations.

(ii) α 6= 0: We form explicitly the LU factorization αB+A = LU . Since the matrix B
has only 3 nonzero diagonals, the elements in each row of U , except the diagonal
and the nearest off diagonal elements, are equal to a constant. Consequently the
linear system (2.13) can be solved with essentially the same number of operations
as needed for solving a pentadiagonal system.

2.2. Two dimensional case. It is clear that

V 2N = span{φk(x)φj(y) : k, j = 0, 1, · · · , N − 2}.
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Let us denote

u
N
=

N−2
∑

k,j=0

ukjφk(x)φj(y), fkj = (f, φk(x)φj(y))ω,

U = (ukj)k,j=0,1,··· ,N−2, F = (fkj)k,j=0,1,··· ,N−2.

Taking v = φl(x)φm(y) in (2.2) with d = 2 for l,m = 0, 1 · · · , N − 2, we find that it
is equivalent to the following matrix equation:

(2.14) αBUB +AUB +BUAT = F,

where A and B are the matrices defined in (2.12). This equation can be solved in
particular by the matrix decomposition method as in [3], [8] and [12]. To this end,
we need to study the following eigenvalue problems:

(2.15) −(ψxx, v)ω = λ(ψ, v)ω, ∀ v ∈ VN , ψ(±1) = 0.

Denoting ψ(x) =
∑N−2

n=0 xnφn(x), and taking v = φj(x) for j = 0, 1, · · · , N − 2, we
find that (2.15) is equivalent to the following generalized eigenvalue problem:

(2.16) Ax = λBx.

It is shown by Gottlieb and Lustman [6] that the eigenvalues of the problem (2.15)
are all real positive.

Now let Λ be the diagonal matrix whose diagonal elements are the eigenvalues of
A−1B, and let E be the matrix formed by the eigenvectors of A−1B, i.e. A−1BE =
EΛ. From Lemma 2.2, the diagonal elements of Λ are all real positive and E is a real
matrix. Applying A−1 to (2.14), we obtain

αA−1BUB + UB +A−1BUAT = A−1F.

Setting U = EV , the above equation becomes

αEΛV B +EV B + EΛV AT = A−1F.

Now applying E−1 to the above equation, set G = E−1A−1F , we find

(2.17) αΛV B + V B + ΛV AT = G.

Let vp = (vp0, vp1, · · · , vpN−2)
T and gp = (gp0, gp1, · · · , gpN−2)

T for p = 0, 1, · · · , N −
2. Then the pth row of the equation (2.17) becomes:

(2.18) (αλp + 1)Bvp + λpAvp = gp, p = 0, 1, · · · , N − 2.

which is equivalent to N − 1 one dimensional equation of the form (2.13).
In summary, the solution of (2.14) consists of four steps:

(0) Compute the eigenpairs Λ, E for A−1B and compute E−1;
(1) Compute G = E−1A−1F ;
(2) obtain V by solving (2.18);
(3) Set U = EV .

We remark that A−1B can be decoupled into two submatrices of upper Hessen-
burg form onto which the QR method can be directly applied. Hence the CPU time
and more importantly the roundoff errors of the preprocessing stage are significantly
reduced compared to that of Chebyshev-tau method (see Section 5 below). The step
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2 and A−1F takes O(N2) operations. Note that the matrices E and E−1 have al-
ternating zero elements and hence the steps 1 and 3 can be performed in about N 3

arithmetic operations.

2.3. Three dimensional case. Let us denote

u
N
=

N−2
∑

n,m,l=0

unmlφn(x)φm(y)φl(z), fijk = (f, φi(x)φj(y)φk(z)).

since
V 3N = span{φi(x)φj(y)φk(z) : i, j, k = 0, 1, · · · , N − 2},

taking v = φi(x)φj(y)φk(z) in (2.2) with d = 3 for i, j, k = 0, 1 · · · , N − 2, we find
that it is equivalent to the following equation:

(2.19)
αbinunmlbjmbkl + ainunmlbjmbkl + binunmlajmbkl + binunmlbjmakl = fijk,

i, j, k = 0, 1, · · · , N − 2,

where we have used the conventional notation as a pair of repeated index implies a
summation of the index from 0 to N − 2. As in [12], we shall decompose (2.19) into
N − 1 2-D systems of the form (2.14).

Let us denote a−1ij and e−1ij (not to be confused with 1/aij and 1/eij) to be

respectively the ijth entry of the matrices A−1 and E−1, then by the definition of E
and Λ in Section 2.2, we have

(2.20) a−1ik bknenq = λqeiq, e
−1
qi eip = δqp, a

−1
qi aip = δqp.

Multiply a−1ri to the equation (2.19), and set unml = enqvqml, using the above relations,
we derive

αλqerqvqmlbjmbkl + erqvqmlbjmbkl + λqerqvqmlajmbkl + λqerqvnmlbjmakl = a−1ri fijk.

Multiply e−1pr to the above equation, we obtain

(αλp + 1)vpmlbjmbkl + λp(vpmlajmbkl + vpmlbjmakl) = e−1pr a
−1
ri fijk ≡ gpjk.

Now set V p = (vpml)0≤m,l≤N−2 and G
p = (gpml)0≤m,l≤N−2, we can rewrite the above

equation as

(2.21) (αλp + 1)BV
pB + λp(AV

pB +BV pAT ) = Gp, p = 0, 1, · · · , N − 2.

For each p, the above equation corresponding to a two dimensional equation of the
form (2.14).

In summary, the solution of (2.19) consists of the following steps:
(0) Pre-processing: compute the eigenpairs Λ and E of A−1B and compute E−1;
(1) Compute gpjk = e−1pr a

−1
ri fijk for p, j, k = 0, 1, · · · , N − 2;

(2) Obtain V p by solving (2.21) for p = 0, 1, · · · , N − 2;
(3) Set unml = enqvqml for n,m, l = 0, 1, · · · , N − 2.

Step 2 consists of solving N − 1 two-dimensional equations of the form (2.14).
Hence it takes about N4 operations. Steps 1 and 3 take about N 4 operations. Hence
each particular solution of (2.19) can be obtained in about 2N 4 operations.

3. Fourth order equations. In this section, we consider the fourth order
equation with the first boundary condition

(3.1) ∆2u− α∆u+ βu = f in Ω = Id, u =
∂u

∂n
= 0,
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where n is the normal vector to ∂Ω and d = 1 or 2.
Let us denote

WN = {v ∈ SN : v(±1) = vx(±1) = 0}.

Then the Chebyshev-Galerkin approximation of (3.1) consists of finding u
N
∈ W d

N

such that

(3.2) (∆u
N
,∆(vω)) + α(∇u

N
,∇(vω)) + β(u

N
, v)ω = (f, v)ω, ∀ v ∈W

d
N .

It can be shown that for α, β > 0 and u ∈ Hs
ω(Ω) ∩ H

2
0,ω(Ω) for s ≥ 2, then the

following optimal error estimate holds (see [11]):

(3.3) ‖u− u
N
‖ω +N‖u− uN

‖1,ω +N
2‖u− u

N
‖2,ω ≤ C(s)N−s‖u‖s,ω.

3.1. One dimensional case. It is obvious that dim(WN ) = N − 3 and it is an
easy matter to verify that a basis of WN is given by

(3.4) ψk(x) = Tk(x)−
2(k + 2)

k + 3
Tk+2(x) +

k + 1

k + 3
Tk+4(x), k = 0, 1, · · · , N − 4.

Setting
fk = (f, ψk(x))ω, f = (f0, f1, · · · , fN−4)

T ;

u
N
=

N−4
∑

n=0

vnψn(x), v = (v0, v1, · · · , vN−4)
T ;

and
akj = (ψ

′′
j (x), (ψk(x)ω)

′′), A = (akj)0≤k,j≤N−4 ,

ckj = (ψ
′
j(x), (ψk(x)ω)

′), C = (ckj)0≤k,j≤N−4 ,

bkj = (ψj(x), ψk(x))ω, B = (bkj)0≤k,j≤N−4 .

By setting v = ψk(x) for k = 0, 1, · · · , N − 4 in (3.2) with d = 1, we find that it is
equivalent to the following matrix form:

(3.5) (A+ αC + βB)v = f .

Lemma 3.1. The nonzero elements of A, B and C are:

bkk =

(

ck +
4(k + 2)2

(k + 3)2
+
(k + 1)2

(k + 3)2

)

π

2
, where c0 = 2, ck = 1 for k ≥ 1,

bkk+2 = bk+2k = −

(

k + 2

k + 3
+
k + 4

k + 5

k + 1

k + 3

)

π, bkk+4 = bk+4k =
k + 1

k + 3

π

2
,

ckk = −4
k + 1

k + 3
(k + 2)2π,

ckk−2 = 2(k − 1)(k + 2)π, ckk+2 = 2(k + 1)(k + 2)π,

akk = 8(k + 1)
2(k + 2)(k + 4)π,

akj =
8

j + 3
(k + 1)(k + 2)

(

k(k + 4) + 3(j + 2)2
)

π, j = k + 2, k + 4, · · · .

Proof. All the formulaes except the last one can be obtained by direct computations
using the properties of Chebyshev polynomials. The computation of the last formula is
extremely tedious by hand and we have resorted to the symbolic computation software
Mathematica.
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Although the matrix A in the system (3.5) is not sparse but its special structure
allows us to obtain the solution in O(N) operations. Let us explain the procedure
in the case α = β = 0 in detail. The solution of Av = f can be obtained by the
backward substitution:

(3.6) vk = (fk −

N−4
∑

j=k+1
k+j even

akjvj)/akk, k = 0, 1, · · · , N − 4.

Notice that akj can be factorized as

akj = p(k)q(j) + r(k)s(j), j = k + 2, k + 4, · · · ,

with

p(k) = 8k(k + 1)(k + 2)(k + 4)π, q(j) =
1

j + 3
,

r(k) = 24(k + 1)(k + 2)π, s(j) =
(j + 2)2

j + 3
.

Therefore
N−4
∑

j=k+1
k+j even

akjvj =

N−4
∑

j=k+1
k+j even

(p(k)q(j) + r(k)s(j))vj

= p(k)

N−4
∑

j=k+1
k+j even

q(j)vj + r(k)

N−4
∑

j=k+1
k+j even

s(j)vj .

It is then clear that the above relation for k = 0, 1, · · · , N − 4 can be evaluated in
O(N) operations. Hence {vk}

N−4
k=0 can be obtained in just O(N) operations.

In the case α, β 6= 0, we can form explicitly the LU factorization, i.e. A+ αC +
βB = LU . Notice that the entries of U , excluding the diagonal and two nearest
offdiagonals, are also factorizable as A. Consequently the system can still be solved
in O(N) operations.

Whenever spectral methods are used for solving the fourth order equations, one
should be concerned with roundoff errors caused by potentially large condition num-
bers. As is pointed out in [7], the direct application of tau method to the fourth order
equations leads to very ill conditioned system and is numerically unstable. Large
condition numbers of order N 8 were also reported [5] for the spectral-collocation ap-
proximation to the 1-D fourth order equations. However the Chebyshev-Galerkin
approximation presented above leads to systems with smaller condition numbers and
is numerically stable. In table I, we list the condition numbers of A and the diagonally
scaled matrix DA, where D is the inverse of diagonal matrix diag(A). It is clear that
cond(A) = (N4) and cond(DA) = O(N2). Hence the propagation of roundoff errors
should not be very significant. The numerical example presented in Section 5 confirms
that the above algorithm is numerically stable.

Table I. Condition numbers for the 1-D fourth order equation

N 16 32 64 128 256

cond(A) 4.896E+3 1.046E+5 1.907E+6 3.241E+7 5.535E+8

cond(DA) 6.636E+1 2.674E+2 1.057E+3 4.174E+3 1.653E+4
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Remark 3.1. The second boundary condition, i.e. u(±1) = uxx(±1) = 0, can

also be considered. In this case a basis for the space W̃N = {v ∈ SN : v(±1) =
vxx(±1) = 0} is given by :

ψk(x) = Tk(x)− (1 + ek)Tk+2(x) + ekTk+4(x), k = 0, 1, · · · , N − 4,

with ek =
(k + 1)(2k2 + 4k + 3)

(k + 3)(2k2 + 12k + 19)
.

Unfortunately the exact formula for akj = (ψ′′′′j (x), ψk(x))ω derived by using
Mathematica is extremely complicated and not factorizable as in the case of the first

boundary condition. Hence the solution of the corresponding discrete system requires

O(N2) operations. Furthermore the linear system is extremely ill conditioned such that
the numerical solution makes little sense even at a relatively small N = 32. Therefore
it is more efficient and reliable to treat the 1-D fourth order equation(when β = 0)
with the second boundary condition as a decoupled system of two 1-D second order

equations.

3.2. Two dimensional case. Using the same notations as in Section 2.2 (with
φk(x) replaced by ψk(x), and N − 2 replaced by N − 4), taking v = ψl(x)ψm(y) in
(3.2) with d = 2 for l,m = 0, 1, · · · , N−4, we find that it is equivalent to the following
matrix equation:

(3.7) αBUB + β(CUB +BUCT ) +AUB + 2CUCT +BUAT = F.

As we noted in [12], this system can be efficiently solved by the matrix decomposition
method if A−1B and A−1C are commutative. Unfortunately, we are not able to
make A−1B and A−1C commutative by modifying a few rows of A, B and C, as we
successfully did for Legendre-Galerkin approximation [12]. Hence we are not able to
apply the method of capacitance matrix to solve the system (3.7). However the system
can still be solved by using a special band elimination procedure in O(N 4) operations
(see a similar procedure in [10]). But this is certainly not competitive to the direct
solver with complexity 2N 3 by Legendre-Galerkin method presented in [12].

4. Some extensions. We have described in [12] how problems with nonhomo-
geneous boundary conditions can be efficiently transformed into problems with corre-
sponding homogeneous boundary conditions. We have also explained in [12] how to
treat certain non separable equations. Those techniques apply directly to the Cheby-
shev case as well. In this section, we shall present some other relevant extensions.

4.1. Other boundary conditions. For Neumann or Rabin type boundary
conditions, we should construct special base functions satisfying the corresponding
homogeneous boundary conditions. Let us consider for instance the 1-D equation
with the homogeneous Neumann boundary condition:

(4.1) −uxx = f in I, ux(±1) = 0.

Let WN =
{

u ∈ SN :
∫

I
udx = 0, ux(±1) = 0

}

, and φk(x) = Tk(x) −
k2

(k+2)2Tk+2(x).

It can be easily shown that

(4.2) WN = span{φ1(x), · · · , φN−2(x)}.

Then the standard Chebyshev-Galerkin method for (4.1) is:

Find u
N
=
∑N−2

n=1 vnφn(x) ∈WN such that

(4.3) −(u′′
N
, v)ω = (f, v)ω, ∀ v ∈WN .
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If we denote akj = −(φ
′′
j (x), φk(x))ω, by a direct computation as in Lemma 2.1, we

can derive

(4.4) akj =











2π(k + 1)k2/(k + 2), j = k

4πj2(k + 1)/(k + 2)2, j = k + 2, k + 4, k + 6, · · ·

0, j > k or j + k odd

.

Now let ãkj = akj/j
2, Ã = (ãkj)1≤k,j≤N−2 and gj = (f, φj(x))ω/j

2. Then the equa-

tion (4.3) is equivalent to Ãv = g. We note that Ã now has the same structure as the
matrix A defined in (2.6). Therefore the system can be solved in O(N) operations.

4.2. Equations with additional first order terms. Let us first consider the
1-D equation

(4.5) αu+ βux − uxx = f in I u(±1) = 0.

Let ckj = (φ
′
j(x), φk(x))ω and C = (ckj)0≤k,j≤N−2. A simple computation leads to

(4.6) ckj =











π(k + 1) j = k + 1

−π(k + 1) j = k − 1

0, Otherwise

.

Hence the discrete system corresponding to (4.5) is:

(αB + βC +A)v = f ,

where A and B are the matrices defined in Lemma 2.1. Hence the system can be
solved in O(N) operations.

Multidimensional problems can be efficiently handled as well. We consider for
instance the 2-D equation

(4.7) αu+ βuy −∆u = f in Ω = I × I , u|∂Ω = 0.

Using the same notations as in Section 2.2, we find that the discrete equation corre-
sponding to (4.7) is:

αBUB + βBUCT +AUB +BUAT = F,

which can still be solved by the matrix decomposition method exactly as in the case
β = 0 in Section 2.2.

4.3. 2-D Stokes equations with periodic-nonperiodic boundary condi-

tions. We consider the 2-D Stokes equations

(4.8)
−∆u+ px = f, −∆v + py = g, in Ω,

ux + vy = 0, in Ω,

where Ω = [−1, 1]× [−π, π]. We assume that the solutions (u, v, p) of the 2-D Stokes
equations are periodic in the y-direction and satisfy the homogeneous Dirichlet bound-
ary condition on the two vertical boundaries of Ω. We can then write

(

u
v

)

=

+∞
∑

k=−∞

(

uk(x)
vk(x)

)

eiky,

(

f
g

)

=

+∞
∑

k=−∞

(

fk(x)
gk(x)

)

eiky, p =

+∞
∑

k=−∞

pk(x)eiky.
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Hence the 2-D Stokes equations can be split into a series of one dimensional systems:

− ukxx + k
2uk + pkx = fk, −vkxx + k

2vk + ikpk = gk, x ∈ I,

ukx + ikv
k = 0, x ∈ I, uk(±1) = vk(±1) = 0, −∞ < k < +∞.

For each k, we can easily eliminate vk and pk from the above system and the result is
the fourth order equation:

(4.9) ukxxxx − 2k
2ukxx + k

4uk = ikgkx + k
2fk, x ∈ I, uk(±1) = ukx(±1) = 0.

Once uk is known, vk and pk can be determined by

vk =
i

k
ukx, pk =

i

k
(gk − k2vk + vkxx), k 6= 0.

For k = 0, we simply get u0 = 0, p0 = xf0 and v0 = − f0

2 (x
2 − 1).

The equation (4.9) is exactly a fourth order equation of the form (3.1) with
d = 1. Hence its Chebyshev-Galerkin approximation can be efficiently implemented.
For a different treatment of the equations (4.8) with periodic-nonperiodic boundary
conditions, we refer to [1].

5. Numerical results. As noted by many authors (see [8] and [9]), when solving
the discrete Helmholtz system by the matrix decomposition method, roundoff errors
could be significant for large N since the accuracy of the algorithm relies on the
accuracy of the matrix decomposition. Hence we shall first examine the roundoff
errors of solving the discrete system associated with the 1-D Poisson equation by
the matrix decomposition method. Numerical experiments indicate that the roundoff
errors in the multidimensional computations by matrix decomposition method behave
similarly as in the 1-D case.

Let u = (u0, u1, · · · , uN−2)
T be a uniformly distributed random vector and we

compute f = Au where A is the matrix given in (2.6). Let v be the approximate
solution to the system Au = f obtained by using the matrix decomposition method,
max0≤i≤N−2 |ui − vi|

max0≤i≤N−2 |ui|
can then be regarded as the roundoff error of the procedure.

In table II, we list the roundoff errors as described above by using the Chebyshev-
Galerkin (CG), Legendre-Galerkin (LG) and Chebyshev-tau (CT) methods.

All computations are performed in double precision on SunSparc 2 workstation.
LAPACK subroutines dgeev, dstev are used to compute the eigenvalue problems.
VFFTPACK subroutines are used for FFT. The integer N represents the cutoff num-
ber in the Chebyshev or Legendre series.

Table II. Roundoff errors of the matrix decomposition methods

N 8 16 32 64 128 256

CG 3.36E-15 3.10E-15 4.88E-13 4.27E-11 1.54E-9 2.92E-9

CT 4.38E-13 2.44E-12 2.61E-11 1.28E-9 2.36E-8 7.86E-8

LG 1.73E-15 8.44E-15 1.02E-13 4.81E-11 4.49E-11 8.99E-11

Two remarks are in order. Firstly the roundoff errors of CT method are much
more pronounced than that of CG and LG methods. Consequently the CG and LG
methods are significantly more accurate than the CT method (see also table III).
Secondly there were doubts [8] that the matrix decomposition method would not be
suitable for computations with large N because the rapid increase of roundoff errors
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documented in [9] when N goes from 8 to 64. However our computations reveal
that roundoff errors only increase slightly when N is further increased from 64 to
256. Hence all three methods, especially CG and LG methods, can be safely used
for computations with large cutoff N as long as the computations are performed in
double precision.

We now report on several numerical examples by CG, CT and LG methods. Let
us remark that the pure spectral-Galerkin method is rarely used in practice. In fact
the so called pseudospectral method is used to treat the right hand sides, i.e. we
replace f by its polynomial interpolation over the set of Gauss-Lobatto points.

For the sake of comparison, we shall use again the two examples used in [8].
Example 1. The 2-D Poisson equation

−∆u = 2k2 sin(kπx) sin(kπy), in Ω = I × I, u|∂Ω = 0,

with a smooth exact solution u(x, y) = sin(kπx) sin(kπy).
Example 2. The 2-D Poisson equation

−∆u = 1, in Ω = I × I, u|∂Ω = 0,

with an exact solution

u(x, y) = −
64

π4

∞
∑

n,m=1
n,m odd

(−1)
n+m

2
cos(nπx2 ) cos(

mπy
2 )

nm(n2 +m2)
,

which has singularities at the four corners.
In table III, we list the maximum pointwise error of u − u

N
by LG, CT, CG

methods.

Table III. Maximum pointwise error of u− u
N
for examples 1 and 2.

Example N CG CT LG

1 16 (k=4) 5.22E-3 3.33E-2 2.93E-3

1 32 (k=4) 2.17E-12 4.77E-11 3.44E-13

1 64 (k=4) 6.11E-15 8.67E-13 5.55E-15

1 128 (k=32) 2.85E-9 9.15E-8 1.82E-9

1 256 (k=32) 2.79E-14 1.59E-12 3.39E-14

2 16 3.36E-6 3.52E-5 1.42E-6

2 32 1.27E-7 2.23E-6 7.48E-8

Table IV. Execution time and pre-processing time.

N 32 64 128

CG 0.05 (0.08) 0.26 (0.48) 1.96 (4.05)

CT 0.09 (0.13) 0.44 (0.54) 3.36 (5.20)

LG 0.10 (0.03) 0.64 (0.12) 6.96 (1.01)

In Table IV, we list the execution time for the three methods. The approximate
preprocessing time is given in parentheses.

We note that in terms of accuracy and efficiency, the CG method is far more
superior than the popular CT method. On the other hand, The accuracy of the CG
method and the LG method is comparable. The LG method is probably the method
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of the choice if only one particular solution is needed. The CG method is more efficient
for equations with multiple right hand side, as is the case for solving time dependent
problems. However the LG method could be potentially accelerated by implementing
the fast transforms mentioned in [12].

Example 3. The 1-D fourth order equation

uxxxx − αuxx + βu = −8π
2(16π2 + α) cos(4πx) + β sin(2πx), x ∈ I,

u(±1) = ux(±1) = 0,

with a smooth exact solution u(x) = sin(2πx).
In table V, we list the maximum pointwise error of u − u

N
by the CG method

with two typical choices of α, β. The results indicate that the spectral accuracy is
achieved and that the effect of roundoff errors is very limited.

Table V. Maximum pointwise error of u− u
N
for Example 3 by CG method.

N 16 32 64 128

CG (α = β = 0) 1.97E-2 9.42E-12 9.42E-14 4.68E-13

CG (α = 2 ∗N2, β = N4) 5.99E-3 3.00E-12 5.38E-15 2.35E-14

Concluding remarks. We have presented in this paper some efficient direct solvers
for the general second order equations and for the 1-D fourth order equations by using
the Chebyshev-Galerkin approximation. Our algorithm for the second order equations
is more accurate and more efficient than the Chebyshev-tau method. Furthermore the
implementation of the algorithm is also relatively easier. Our algorithm for the 1-D
fourth order equations is very efficient and numerically stable. It can be used in par-
ticular to solve the 2-D Navier-Stokes equations with periodic-nonperiodic boundary
conditions. Unfortunately, we were not able to derive an competitive algorithm for
the 2-D fourth order equations.
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