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EFFICIENT SPECTRAL SPARSE GRID METHODS AND
APPLICATIONS TO HIGH-DIMENSIONAL ELLIPTIC EQUATIONS

II. UNBOUNDED DOMAINS∗
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Abstract. This is the second part in a series of papers on using spectral sparse grid methods for
solving higher-dimensional PDEs. We extend the basic idea in the first part [J. Shen and H. Yu, SIAM
J. Sci. Comp., 32 (2010), pp. 3228–3250] for solving PDEs in bounded higher-dimensional domains to
unbounded higher-dimensional domains and apply the new method to solve the electronic Schrödinger
equation. By using modified mapped Chebyshev functions as basis functions, we construct mapped
Chebyshev sparse grid methods which enjoy the following properties: (i) the mapped Chebyshev
approach enables us to build sparse grids with Smolyak’s algorithms based on nested, spectrally
accurate quadratures and allows us to build fast transforms between the values at the sparse grid
points and the corresponding expansion coefficients; (ii) the mapped Chebyshev basis functions lead
to identity mass matrices and very sparse stiffness matrices for problems with constant coefficients
and allow us to construct a matrix-vector product algorithm with quasi-optimal computational cost
even for problems with variable coefficients; and (iii) the resultant linear systems for elliptic equations
with constant or variable coefficients can be solved efficiently by using a suitable iterative scheme.
Ample numerical results are presented to demonstrate the efficiency and accuracy of the proposed
algorithms.
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1. Introduction. Many fundamental equations in mathematical physics involve
higher-dimensional unbounded domains. These include the electronic Schrödinger
equation in quantum mechanics, Boltzmann equations in kinetic theory, and the
Black–Scholes equation in mathematical finance. While there is a significant body
of work devoted to problems in high-dimensional bounded domains (cf. [4] and the
references therein), little attention has been paid to developing dedicated numerical
algorithms for high-dimensional unbounded domains. Often, a domain truncation
method is used to reduce the underlying problem to a bounded domain (cf. [10]).
While this approach can be effective in many situations where the solutions decay
rapidly at infinity, it is prone to the so-called finite-size effect (see, for instance, [7]),
which can be difficult to quantify. Therefore, it is important to develop dedicated nu-
merical algorithms to treat unbounded domains directly. Much progress, mostly for
one-dimensional problems, has been made in this direction by using the spectral meth-
ods (cf. [3, 17] and the references therein). Among the many approaches discussed
in [3, 17], a particularly effective one is to employ a suitable transform which maps
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A1142 JIE SHEN AND HAIJUN YU

a bounded domain to an unbounded domain and then use the mapped orthogonal
functions (see, for instance, [2, 13]) on the unbounded domain.

In a recent paper [18], we developed an efficient spectral sparse grid method for a
class of partial differential equations (PDEs) in higher-dimensional bounded domains.
The method is based on (i) a hyperbolic-cross type approximation by orthogonal
polynomials and (ii) a sparse grid via Smolyak’s construction [19] using the nested
Chebyshev–Gauss–Lobatto quadrature, which is the only known nested quadrature
with spectral accuracy. The main purposes of this paper are to extend the method
developed in [18] for higher-dimensional bounded domains to higher-dimensional un-
bounded domains and to apply it to solve the electronic Schrödinger equation.

The obvious choices of orthogonal systems in unbounded domains are Hermite and
Laguerre functions. However, the corresponding Gaussian-type quadrature points are
not nested. Since the number of nodes in the Smolyak’s sparse grid based on nonnested
quadrature points grows much faster than that based on nested quadrature points,
it appears natural to use a mapped Chebyshev approach, as in [2, 13], which will
enable us to take advantage of some of the basic ingredients in the spectral sparse
grid method developed in [18]. However, there are several significant challenges we
have to overcome. How to choose suitable mappings and construct sparse grids such
that they are tailored to different decay behaviors at infinity? How to efficiently build
the system matrices and solve the discrete linear systems for elliptic equations? How
to deal with more general elliptic equations with nonconstant coefficients and the
discrete eigenvalue problem for the electronic Schrödinger equations?

We shall construct efficient mapped Chebyshev sparse grid (MCSG) methods for
higher-dimensional unbounded domains in this paper and apply them to solve higher-
dimensional elliptic equations and the electronic Schrödinger equation. In particular,
our methods enjoy the following advantages: (i) using the mapped Chebyshev ap-
proach enables us to build sparse grids with Smolyak’s algorithms based on nested,
spectrally accurate quadratures and allows us to develop fast transforms between the
values at the sparse grid and the corresponding expansion coefficients; and (ii) the
mapped Chebyshev basis functions lead to, for problems with constant coefficients,
identity mass matrices and stiffness matrices which are much sparser, particularly in
the high-dimensional case, than the corresponding ones in bounded domains and allow
us to construct a matrix-vector product algorithm with quasi-optimal computational
cost for problems with variable coefficients.

As a comparison, we also propose a mapped Chebyshev–Hermite sparse grid
(MCHSG) method which uses Hermite functions as basis functions but with sparse
grids constructed by the mapped Chebyshev approach. Due to the lack of a fast
transform between the values at the mapped Chebyshev sparse grid and the Hermite
expansion coefficients, this method is more expensive than the MCSG method.

The rest of this paper is organized as follows. In section 2, we describe in detail
the main ingredients of the MCSG and MCHSG methods and present ample numerical
results and discussions. In section 3, we construct an MCSG method for solving the
electronic Schrödinger equation. We conclude with a few remarks in the final section.

2. MCSG and MCHSG methods for elliptic equations in RRR
d. We con-

struct in this section spectral sparse grid methods for solving the elliptic equation

κ(x)u(x)−∇ (α(x)∇u(x)) = f(x), x ∈ R
d,

lim
|x|→∞

u(x) = 0,(2.1)
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EFFICIENT SPECTRAL SPARSE GRID METHODS II A1143

where κ(x), α(x) > 0. The weak formulation for the above equation is as follows:
Find u ∈ H1(Rd) such that

(2.2) (κ(x)u, v) + (α(x)∇u,∇v) = (f, v) ∀v ∈ H1(Rd),

where (u, v) =
∫
Rd u vdx.

Given a sparse spectral approximation space V q
d ⊂ H1(Rd) (where q ≥ d is the

level index) and an associated interpolation operator Uq
d , the pseudospectral–Galerkin

sparse grid method for (2.2) is as follows: Find u ∈ V q
d such that

(2.3) (Uq
d [κ(x)u], v) +

(
Uq+1
d [α(x)∇u] ,∇v

)
= (Uq

df, v) ∀v ∈ V q
d .

We will explain in section 2.6 why Uq+1
d is used for the stiff term instead of Uq

d . In
the constant coefficient case, i.e., κ(x) ≡ κ and α(x) ≡ 1, the above scheme simplifies
to the following: Find u ∈ V q

d such that

(2.4) κ(u, v) + (∇u,∇v) = (Uq
df, v) ∀v ∈ V q

d .

Adapting the general framework established in [18], an efficient pseudospectral–
Galerkin sparse grid method for (2.2) consists of three essential ingredients:

• a sparse grid X q
d in R

d with the index set Iqd using Smolyak’s algorithm
from a one-dimensional (1-D) nested spectrally accurate quadrature, and the
associated sparse approximation space V q

d ;
• an interpolating operator Uq

d : C(Rd)→ V q
d based on X q

d ;
• a set of well-designed basis functions for V q

d so that the corresponding linear
system (2.3) can be efficiently solved.

To simplify the presentation, we shall first consider the constant coefficient case (2.4)
and then discuss the general case (2.3) in the last subsection.

2.1. MCSGs in RRR
d and associated interpolation operators. We recall that

Smolyak’s algorithm applied to nonnested quadrature points will lead to sparse grids
with many more grid points so they are not computationally efficient. Hence, we shall
concentrate on sparse grids generated from nested quadrature points. Since the only
spectrally accurate nested quadrature is the Chebyshev–Gauss–Lobatto quadrature,
we shall restrict our attention to the sparse grid in R

d constructed from the mapped
Chebyshev–Gauss–Lobatto quadrature.

It is shown in [18] that for every sparse grid constructed with nested quadrature
points, one can construct corresponding hierarchical bases and fast transforms be-
tween the values at sparse grid points and expansion coefficients in hierarchical bases.

The Chebyshev–Gauss–Lobatto quadrature points are given by

ξNj = cos

(
jπ

N − 1

)
, j = 0, . . . , N − 1.

For odd number N , the grid points are nested.
Given a one-to-one map x = x(ξ) : (−1, 1) → R and its inverse mapping ξ =

ξ(x) : R→ (−1, 1), we consider the mapped Chebyshev functions

(2.5) T̂k(x) =
1√
ck
Tk(ξ(x))μ(ξ(x)),

where c0 = π and ck = π/2 for k ≥ 1, and

(2.6) μ(ξ) =
√
ω(ξ)/x′(ξ) with ω(ξ) = 1/

√
1− ξ2.
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A1144 JIE SHEN AND HAIJUN YU

By construction, we have

(2.7) (T̂k, T̂j) =

∫
R

T̂k(x) T̂j(x)dx =
1

√
ck cj

∫ 1

−1

Tk(ξ)Tj(ξ)ω(ξ)dξ = δk,j .

Hence, {T̂k} forms an orthonormal system on L2(R).
Remark 2.1. The definition of T̂k is different from the usual definition of mapped

Chebyshev functions Rk(x) = Tk(ξ(x)) (cf. [2, 17]). The main advantage of using {T̂k}
is that they are orthonormal, which leads to, in the case of constant coefficients, the
identity mass matrix and the sparse symmetric stiffness matrix. As we shall see below,
the diagonal mass matrix is a very desirable property in high-dimensional problems.
The disadvantage is that {T̂k} are no longer “arbitrarily smooth” in the usual sense
due to the factor μ(ξ(x)). Therefore, fast convergences by the expansion in {T̂k} can
be obtained only for functions with fast decays at infinities.

Remark 2.2. The convergence behavior by the usual mapped Chebyshev func-
tions, i.e., without the factor μ(ξ(x)) in (2.5), has been studied by many authors; we
refer to [3] (resp., [17]) for a qualitative (resp., quantitative) analysis. However, due to
the factor μ(ξ(x)) in (2.5), the general framework developed in [17] does not directly
apply (see, however, [11, 12] for some related analysis). In this paper, we shall only
provide some heuristic arguments along with ample numerical results for the error
behaviors by these new mapped Chebyshev functions, and their rigorous numerical
analysis in one dimension and in high dimensions will be carried out in [14].

The mapped Chebyshev–Gauss–Lobatto quadrature points {xNj = x(ξNj ), j = 0,

1, . . . , N−1} have a natural hierarchical structure. Denote by X i = {xi0, xi1, . . . , xiNi−1}
the Chebyshev–Gauss–Lobatto grids with Ni = 2Ni−1 − 1 for i � 2, and N0 = 0,
N1 = 3. Denote by X̄ i the grid increment: X i\X i−1. The first level grid X 1 has
three points {x(−1), x(1), x(0)}; the second level grid X 2 is formed by adding two
additional points {x(−

√
2/2), x(

√
2/2)} to the first level grid.

Since the only difference between the usual Chebyshev transform in {Tk} and the
mapped Chebyshev transform in {T̂k} is a mapping and an additional factor μ(x), it
is clear that the interpolation of a function f(x) on grid X i

U if(x) =

Ni−1∑
k=0

bkT̂k(x), with

Ni−1∑
k=0

bkT̂k(x
i
j) = f(xij), j ∈ Ii = {0, . . . , Ni − 1} ,

can be determined by using the fast Chebyshev transform.
With the above 1-D hierarchical grid {X i} in R, we can construct the sparse grid

in R
d using Smolyak’s algorithm [19]:

(2.8) X q
d :=

⋃
|i|1=i1+···+id�q

X i1 ⊗X i2 ⊗ · · · ⊗ X id =
∑

|i|1�q

X̄ i1 ⊗ X̄ i2 ⊗ · · · ⊗ X̄ id .

The interpolation operator Uq
d is defined by

(2.9) Uq
df(x) =

∑
k∈Iq

d

bkT̂k(x) with
∑
k∈Iq

d

bkT̂k(xj) = f(xj) ∀xj ∈ X q
d ,

where k and j are multi-indices, xj = (xj1 , xj2 , . . . , xjd) is the multidimensional
coordinates, and Iqd is the sparse grid index set given by

(2.10) Iqd :=
⋃
|i|�q

(
Ii1\Ii1−1

)
⊗ · · · ⊗

(
Iid\Iid−1

)
.
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EFFICIENT SPECTRAL SPARSE GRID METHODS II A1145

Then, our MCSG approximation space is defined as

(2.11) V q
d := span{φk(x) : k ∈ Iqd} with φk(x) = Πd

i=1T̂ki(xi).

As in the 1-D case, the fast algorithm developed in [18] for the Chebyshev trans-
form on the sparse grid in [−1, 1]d can be used for the mapped Chebyshev transform
on the sparse grid in R

d. In fact, Algorithm 1 in [18] is applicable to calculating a
general transform on the sparse grid spectral representation

{qj , j ∈ Iqd} = T [{bk,k ∈ Iqd}] =

⎧⎨
⎩
∑
k∈Iq

d

bktk,j, j ∈ Iqd

⎫⎬
⎭

when (tk,j) is a tensor product type d-dimensional transform matrix

tk,j = t1k1,j1 · · · t
d
kd,jd

with all the 1-D transform matrices t1k,j , . . . , t
d
k,j being block triangular. The block

sizes are exactly the sizes of grid increments of consecutive levels. See Remark 2.1
and section 3.3 in [18].

When the 1-D transform matrices are not block triangular matrices, such as the
mass matrices of the Chebyshev–Galerkin method for bounded domains and the mass
matrices of the finite elements methods, the usual L+ U splitting method will add a
2d−1 factor to the computational cost (see section 3.3 in [18]); when d is large, this
is not favorable. In this paper, we propose an LU decomposition to get rid of this
factor. We provide the details in the next subsection, where we apply this technique
to compute the right-hand side of (2.26).

We note that Algorithm 1 in [18] is quite general. In a practical application, it
is not necessary to set N1 = 3. It can be 5, 7, or any odd number. In (2.8), we do
not have to use the grid indices satisfying |i|1 � q. In fact, the algorithms proposed
here and in [18] work for all grids Id with a hierarchical structure, i.e., if i ∈ Id, then
j ∈ Id for all j � i. Here j � i means jl � il, l = 1, . . . , d.

2.2. MCSG method. We describe now the scheme (2.4) with V q
d being the

MCSG approximation space defined in (2.11).

2.2.1. Choices of mapping and corresponding stiffness matrices. While
there is an infinite choice of mappings, in view of the Chebyshev weight involved in
T̂k, we shall restrict ourselves to a family of mapping functions {x(ξ)} such that

(2.12) x′(ξ) =
L

(1− ξ2)1+r/2
, r � 0,

where L > 0 is a scaling constant and r determines how fast the mapping x(ξ) goes
to infinity as ξ goes to ±1. We refer to [3] for a thorough discussion on the pros and
cons of different mappings.

With (2.12), we have

(2.13) μ(ξ) =
1√
L

(
1− ξ2

)(1+r)/4
and T̂k(x) =

1

ckL
Tk(ξ)

(
1− ξ2

)(1+r)/4
.

For r = 0, 1, it is easy to verify that

(2.14) x(ξ) =

⎧⎨
⎩

L
2 log 1+ξ

1−ξ , r = 0,

Lξ√
1−ξ2

, r = 1,
ξ(x) =

{
tanh( x

L), r = 0,
x/L√

x2/L2+1
, r = 1.
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Fig. 2.1. MCSGs. Left: X 5
2 with r = 0; Right: X 5

2 with r = 1. The points at infinity are not
plotted but are used in the transforms.

For other positive integers r, one can always use an algebraic computing software to
derive the explicit expression of the mapping x(ξ). We note that the mapping with
r = 0 is often referred as the logarithmic mapping, while the mappings with r > 0
are referred as algebraic mapping.

We now investigate the behavior of T̂k(x) as x→∞ through the relation T̂k(x) ∝
μ(ξ) ∝ (1 − ξ2)(1+r)/4.

• r = 0: In this case, ξ = tanh(x/L), we have μ(ξ(x)) ∝ e−|x|/2 which decays
exponentially fast. Hence, it is good to use the mapping with r = 0 if the
underlying function decays faster than e−|x|/2.
• r > 0: In this case, x(ξ) ∝ ((1− ξ2)−r/2), so we have μ(ξ(x)) ∝ |x|−(1+r)/2r.
Therefore, it is preferable to use the mapping with r > 0 if the underlying
function decays faster than |x|−(1+r)/2r.

The actual convergence rates for both r = 0 and r = 1 will depend on how fast the
underlying function decays and also on its smoothness. A rigorous error analysis will
be carried out in [14].

We plot in Figure 2.1 the sparse grids X 5
2 generated by the mappings with r = 0

and r = 1. Since we are not exploring effects of the scaling parameter L, we fix L = 1
here and in the rest of the computations.

2.2.2. Stiffness matrices in one dimension. We now examine the sparsity
of the 1-D stiffness matrices with the bases {Sk} and {Rk}. By direct calculation,

T̂ ′
k(x) =

1
√
ck

(T ′
k (ξ)μ(ξ) + Tk(ξ)μ

′(ξ))
dξ

dx

=
1

L
√
ck

(
(1 − ξ2)T ′

k(ξ)μ(ξ) −
1 + r

2
ξTk(ξ)μ(ξ)

)
(1 − ξ2)r/2.

(2.15)

When r is zero or a nonnegative integer, by using the properties of Chebyshev poly-
nomials

T0(x) = 1, T1(x) = x,

Tn+1(x) = 2xTn(x) − Tn−1(x), n � 1,
(2.16)
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and

(2.17) (1− x2)T ′
n(x) =

n

2
(Tn−1(x)− Tn+1(x)) , n � 1,

one can show that the stiffness matrix with components sk,j = (T̂ ′
k(x), T̂

′
j(x)) is sparse,

and smaller r leads to smaller bandwidth. We provide below the explicit formula of
the stiffness matrices for the two cases r = 0, 1.

• r = 0: We denote

(2.18) Sk(x) :=
1
√
ck
Tk(tanh (x/L))

1√
L cosh(x/L)

.

By direct calculation, we find

sk,j =
(
S′
k, S

′
j

)

=
π

32L2√ckcj

⎧⎪⎪⎨
⎪⎪⎩
−(2k − 1)(2k − 3)− 3δk,2, j = k − 2,
(2k − 1)2 + (2k + 1)2 + 2δk,0 + δk,1, j = k,
−(2k + 1)(2k + 3)− 3δk,0, j = k + 2,
0 otherwise.

(2.19)

• r = 1: We denote

(2.20) Rk(x) :=
1
√
ck
Tk

(
x/L√

1 + (x/L)2

)
1√
L

1√
1 + (x/L)2

.

By direct calculation, we find
(2.21)

rk,j = (R′
k, R

′
j) =

π

32L2√ckcj

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

k2 − 4k + 3 + 3δk,4, j = k − 4,
−4(k2 − 2k + 1)− 4δk,2, j = k − 2,
6k2 + 2 + 2δk,0 − δk,2, j = k,
−4(k2 + 2k + 1)− 4δk,0, j = k + 2,
k2 + 4k + 3 + 3δk,0, j = k + 4,
0 otherwise.

Note that the two sets of basis functions are orthonormal in L2(R) and thus lead to
identity mass matrices.

2.2.3. Stiffness matrices in the d-dimensional case. Since the formulation
of the stiffness matrices with the two sets of basis functions are exactly the same, we
shall give the formulation with a generic set of basis functions {Φk}.

Letting u =
∑

k∈Iq
d
bkΦk in (2.4), and replacing v with Φk′ ,k′ ∈ Iqd , we obtain

(2.22) κ
∑
k∈Iq

d

bk(Φk,Φk′) +
∑
k∈Iq

d

bk (∇Φk,∇Φk′) = (Uq
df,Φk′) ∀k′ ∈ Iqd .

Since the mass matrix (Φk,Φk′) for the two bases is the identity matrix, the linear
system for (2.4) can be rewritten as

κbk′+
∑
k∈Iq

d

bkrk1,k′
1
δk2,k′

2
· · · δkd,k′

d

+ · · ·+
∑
k∈Iq

d

bkδk1,k′
1
· · · δkd−1,k′

d−1
rkd,k′

d
= fk′ ∀k′ ∈ Iqd ,

(2.23)

where fk′ = (Uq
df,Φk′).

D
ow

nl
oa

de
d 

08
/2

4/
16

 to
 1

28
.2

10
.1

26
.1

99
. R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

A1148 JIE SHEN AND HAIJUN YU

0 100 200 300 400 500

0

100

200

300

400

500

nz = 3760

n = 577   nnz = 3761

0 100 200 300 400 500 600 700 800 900

0

100

200

300

400

500

600

700

800

900

nz = 6416

n = 945   nnz = 6417

Fig. 2.2. The sparsity patterns of system matrices of the MCSG method with r = 1. Left:
d = 2, q = 7. Right: d = 4, q = 6.

Thanks to the sparsity of the 1-D stiffness matrix and in particular to the fact
that the mass matrix is the identity, the system matrix of the d-dimensional linear
problem (2.23),

Ak,k′ = κ δk,k′ +
d∑

i=1

A
(i)
k,k′ with A

(i)
k,k′ = rki,k′

i

∏
j �=i

δkj ,k′
j
,

is also quite sparse. More precisely, the number of nonzeros per row for the mapping
with r = 1 (resp., the mapping with r = 0 and the Hermite case) is about but less
than 1+ 4d (resp., 1 + 2d). The sparsity of this system matrix is essentially the same
as that using a finite-difference-based sparse grid (cf. [4]).

Due to the form of the d-dimensional tensor product, these system matrices are
much sparser than those for the spectral sparse grid methods in bounded domain
presented in [18], where the 1-D stiffness matrix (in the Legendre case) is the identity
but the 1-D mass matrix has three nonzero diagonals. Moreover, the system matrix
Ak,k′ is very easy to build. The computational cost of building the system matrix
is essentially proportional to the number of nonzeros, more precisely, O(5dn) for the
r = 1 case and O(3dn) for the r = 0 case. In Figures 2.2 and 2.3, we plot the sparsity
patterns of the two cases, respectively.

2.3. MCHSG method. A natural set of orthonormal basis function in L2(R)
is the normalized Hermite functions defined by

(2.24) Ĥn(x) =
1

√
γn
√
L
Hn(x/L),

where Hn(x) is the Hermite polynomials of degree n and γn = n!2n
√
π.

Thanks to the properties

Ĥ ′
n(x) =

√
n

2
Ĥn−1(x) −

√
n+ 1

2
Ĥn+1(x)
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Fig. 2.3. The sparsity patterns of system matrices of the MCSG method with r = 0 and the
MCHSG method. Left: d = 2, q = 7. Right: d = 4, q = 6.

and

∫
R

Ĥn(x)Ĥm(x)dx = δn,m,

the stiffness matrix when using bases function Ĥk(x) is also a penta-diagonal banded
matrix with nonzeros given by

(2.25) hk,j = (Ĥ ′
k, Ĥ

′
j) =

1

2L2

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

√
k(k − 1), j = k − 2,

2k + 1, j = k,√
(k + 1)(k + 2), j = k + 2,

0 otherwise.

However, because Hermite–Gauss points are not nested, the sparse grid generated
by Smolyak’s algorithm with the Hermite–Gauss quadrature contains many more
points than the corresponding mapped Chebyshev sparse grid. In Figure 2.4, we
plot the sparse grid X 5

2 generated by Smolyak’s algorithm with the Hermite–Gauss
quadrature and the corresponding index set I52 in the frequency space.

Instead of using the Hermite sparse grids generated from the nonnested Hermite–
Gauss quadrature, we propose the MCHSG method, whose principle is similar to the
Chebyshev–Legendre–Galerkin method (cf. [6, 16]). More precisely, given a MCSG X q

d

and corresponding index set Iqd , we denote the sparse Hermite approximation space

by V̂ q
d = span{Ĥk : k ∈ Iqd}. Then the MCHSG method is as follows: Find u ∈ V̂ q

d

such that

(2.26) κ(u, v) + (∇u,∇v) = (Uq
df, v) ∀v ∈ V̂ q

d ,

where Uq
d is the interpolation operator onto the MCSG space V q

d defined in (2.11).
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Fig. 2.4. Left: Hermite sparse grid X 5
2 . Right: the corresponding index set I5

2 in the frequency
space. It is obvious that the number of points in physical space (left) is larger than the number of
spectral coefficients (right).

Let u =
∑

k∈Iq
d
bkĤk and replace v by Ĥk′ ,k′ ∈ Iqd in the above equation; we get

(2.27) κ
∑
k∈Iq

d

bk(Ĥk, Ĥk′) +
∑
k∈Iq

d

bk

(
∇Ĥk,∇Ĥk′

)
= (Uq

df, Ĥk′) ∀k′ ∈ Iqd

or

κbk′ +

d∑
i=1

∑
k∈Iq

d

bkδk1,k′
1
· · · δki−1,k′

i−1
hki,k′

i
δki+1,k′

i+1
· · · δkd,k′

d

= fktk1k′
1
· · · tkdk′

d
∀k′ ∈ Iqd ,

(2.28)

where

tk,j =
(
Rk(x), Ĥj(x)

)
is the transform matrix from mapped Chebyshev representation to Hermite represen-
tation.

We note that the 1-D stiffness matrices {sk,j} and {hk,j} have exactly the same
sparse pattern. Therefore, the only difference in implementation between the MCSG
method and the MCHSG method is the evaluation of the right-hand side. The latter
case is much more complicated, but it can still be evaluated by using the fast sparse
grid transform with LU decomposition given by Algorithm 1.

2.4. Efficient implementations.

2.4.1. A general sparse grid transform with an LU decomposition. We
need an LU decomposition because, the tensor-product subgrids in a sparse grid have
different sizes. Consider, for example, the transform on the two-dimensional sparse
grid X 3

2 :

(2.29) f̂k′
1,k

′
2
=

∑
(k1,k2)∈I3

2

fk1,k2tk1,k′
1
tk2,k′

2
∀(k′1, k′2) ∈ I32 .
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For the indices k1 ∈ I1, k2 ∈ I2, k′1 ∈ I2\I1, we know (k1, k2) ∈ I32 , but (k′1, k2) ∈ I32
for some k′1, k2. However, (k′1, k′2) ∈ I32 for all the k′2 ∈ I1. So if we first calculate
f1
k′
1,k2

=
∑

(k1,k2)∈I3
2
fk1,k2tk1,k′

1
, then the index set of the nonzeros of f1

k′
1,k2

will be

larger than I32 . But if the transform matrix tk,j is a block lower triangular matrix,
then the index set of the nonzeros of f1

k′
1,k2

will stay in I32 . When the transform matrix

is an upper block triangular matrix, to calculate f2
k′
1,k

′
2
=
∑

(k′
1,k2)∈I3

2
f1
k′
1,k2

tk2,k′
2
with

(k′1, k′2) ∈ I32 , we only need the values of f1
k′
1,k2

with (k′1, k2) ∈ I32 . This argument

shows that we should first calculate the 1-D transforms along the directions associated
with a block lower triangular matrix, followed by at most one 1-D transform with a
general matrix, and then calculate all the 1-D transforms which have a block upper
triangular structure.

It is easy to see that the LU decomposition tk,j =
∑

m�min{k,j} lk,mum,j for
different grid sizes will have a hierarchical structure. So if we use the same 1-D basis
functions in all d-dimensions, then only one LU decomposition for a single transform
matrix is needed. After the decomposition, the transform (2.29) is equivalent to

f̂k′
1,k

′
2
=

∑
(k1,k2)∈I3

2

∑
mi<min{ki,k′

i}
fk1,k2

(
lk1,m1um1,k′

1

) (
lk2,m2um2,k′

2

)

=
∑

(m1,m2)∈I3
2

⎛
⎝ ∑

(k1,k2)∈I3
2

fk1,k2 lk1,m1 lk2,m2

⎞
⎠um1,k′

2
um2,k′

2
∀(k′1, k′2) ∈ I32 ,

which involves two simple transforms:

f l
m1,m2

=
∑

(k1,k2)∈I3
2

fk1,k2 lk1,m1 lk2,m2 , f̂k′
1,k

′
2
=

∑
(m1,m2)∈I3

2

f l
m1,m2

um1,k′
2
um2,k′

2
.

The details are given as Algorithm 1.

Algorithm 1. Fast transform on sparse grid with LU decomposition.

Input: q, d, Iqd ,
{
tik,j , k, j = 1, . . . , Nq−d+1, i = 1, . . . , d

}
, and

{
fk, k ∈ Iqd

}
.

Output:
{
bj ,=

∑
k∈Iq

d
fkt

1
k1,j1
· · · tdkd,jd

, k ∈ Iqd
}
.

Let n = Nq−d+1;
for i = 1 to d do
Calculate (block) LU decomposition:
tik,j =

∑n
m=1 l

i
k,mu

i
m,j, k, j = 1, . . . , n.

end for
bk ← fk , for all k ∈ Iqd .
for i = 1 to d do
bk1,...,ki−1,k′

i,ki+1,...,kd
←
∑

k′
i≤ki

bkl
i
ki,k′

i
, for all k ∈ Iqd .

end for
for i = 1 to d do
bk ←

∑
k′
i≤ki

bk1,...,ki−1,k′
i,ki+1,...,kd

uik′
i,ki

, for all k ∈ Iqd .
end for

Note that the LU decomposition (or Cholesky decomposition for the symmetric
case) preserves the sparse property for banded transform matrices. The technique
we introduced here can be used to decompose the mass matrices in sparse solvers for
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bounded domains [18] and speed up the matrix-vector product algorithm with large
dimensions.

Note that to maintain the hierarchical structure, the LU decomposition cannot
pivot from all the rows and columns, only from the same grid increment.

Algorithm 1 is used to calculate the right-hand side of the discrete linear system
of the MCHSG method. First, fk in (2.28) is evaluated by applying the forward sparse
grid fast Chebyshev transform on

{
f(x(ξj))/μ(ξj), ξj ∈ X

q
d

}
;

then Algorithm 1 is used to apply the transforms tki,k′
i
, i = 1, . . . , d, to fk.

2.4.2. Iterative and direct solvers. We consider now three options for solving
the linear algebraic system for the MCSG and MCHSG methods.

• The first option is to use an iterative method, e.g., the preconditioned con-
jugate gradient (PCG) method, which only needs the matrix-vector product
without building the system matrix explicitly. This can be done with linear
computational cost by using Algorithm 1 proposed in [18]. However, the sim-
ple diagonal preconditioner does not perform well, and it is not clear how to
construct better preconditioners.
• The second option is to use black-box iterative solvers such as the algebraic
multigrid method (AMG) [15]. AMG works very well for the MCHSG method
and the MCSG method with r = 0. The iteration numbers are bounded,
which indicates that the computational costs are quasi-optimal.
• The third option is to use direct sparse solvers such as CHOLMOD [5] and
SuperMF [21]. Theoretically, CHOLMOD has a decomposition complexity
of order O(N3/2), with memory use of order O(N log(N)), where N is the
number of grid points. SuperMF has a theoretical decomposition complexity
of order O(r2N), with memory use of order O(rN), where r is a problem
dependent constant.

In practice, SuperMF is faster than CHOLMOD, but CHOLMOD is more robust.
In Table 1, we provide a performance comparison of PCG, AMG, and CHOLMOD
for the MCSG methods with r = 0 and r = 1. The MCHSG method is similar to
the MCSG method with mapping parameter r = 0. It is clear that for small to
medium-size problems, the CHOLMOD is the best. It is also suitable to problems
with multiple right-hand sides. However, when the system size becomes large, the
AMG method will eventually outperform the direct solvers.

2.5. Numerical results and discussion. We now examine the accuracy and
efficiency of the proposed algorithms by solving (2.4) with exact solutions:

u1(x) =
1
√
c1

d
e−

∑
i |xi|k

2 , c1 =
2Γ(1/k)

k
;(2.30)

u2(x) =
1
√
c2

d

1∏
i(1 + |xi|k)

, c2 =
2Beta(1/k, 2− 1/k)

k
;(2.31)

u3(x) =
1
√
c3

d

2d∏
i(e

xi + e−xi)k
, c3 =

22k Beta(k, k)

2
;

u4(x) =
1

(1 +
∑

i |xi|3)
d/3+k

;
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Table 1

The performance comparison among PCG, AMG and CHOLMOD. npcg and namg stand for
the iteration number of PCG method and AMG method, respectively; tpcg, tamg , tchf , and tchs
stand for the CPU time of PCG solver, AMG solver, the factorization step of CHOLMOD, and the
solution step of CHOLMOD, respectively. The maximum 1-D scheme size in the sparse grid is set
to 1025.

r = 0
d q DoF nnz npcg namg tpcg tamg tchf tchs
2 13 38913 186365 1826 32 5.44( 0) 2.54(−1) 5.00(−2) 0

14 67585 329725 1915 32 1.05( 1) 5.12(−1) 1.20(−1) 1.00(−2)
15 116737 575485 2047 32 2.02( 1) 9.06(−1) 2.80(−1) 1.00(−2)
16 198657 985085 2149 33 3.86( 1) 1.68( 0) 1.14( 0) 1.10(−1)

4 10 52993 333561 272 26 1.62( 0) 3.53(−1) 4.40(−1) 3.00(−2)
11 133889 865017 523 28 8.70( 0) 1.12( 0) 2.56( 0) 1.10(−1)
12 331777 2191353 997 30 4.31( 1) 3.25( 0) 1.88( 1) 3.80(−1)
13 808961 5445625 1901 31 2.02( 2) 9.08( 0) 9.44( 1) 1.24( 0)

r = 1
d q DoF nnz npcg namg tpcg tamg tchf tchs
2 13 28913 325617 1424 417 5.31( 0) 3.94( 0) 2.30(−1) 2.00(−2)

14 67585 583665 1416 413 9.25( 0) 7.68( 0) 6.80(−1) 4.00(−2)
15 116737 1026033 1423 407 1.70( 1) 1.36( 1) 2.01( 0) 1.10(−1)
16 198657 1763313 1446 546 3.01( 1) 3.17( 1) 6.26( 0) 2.50(−1)

4 10 52993 512737 680 106 4.61( 0) 1.52( 0) 2.71( 0) 7.00(−2)
11 133889 1354465 1389 163 2.64( 1) 6.59( 0) 1.79( 1) 2.70(−1)
12 331777 3483617 2491 268 1.26( 2) 3.27( 1) 1.04( 2) 8.90(−1)
13 808961 8767457 2679 390 3.29( 2) 1.26( 2) 6.63( 2) 3.11( 0)

where Γ is the Gamma function, and Beta is the Beta function. The corresponding
right-hand-side functions f = κu−Δu are given by

f1(x) = u1(x)

{
κ−
∑
i

(
k2

4
|xi|2k−2 − k(k − 1)

2
|xi|k−2

)}
, k � 2,

f2(x) = u2(x)

{
κ−
∑
i

(
2k2|xi|2k−2

(1 + |xi|k)2
− k(k − 1)|xi|k−2

1 + |xi|k

)}
, k � 2,

f3(x) = u3(x)

{
κ−
∑
i

(
k(k + 1)

(
e2xi − 1

e2xi + 1

)2

− k
)}

, k > 0,

f4(x) = u4(x)

{
κ−
∑
i

(d+ 3k)

(
(d+ 3k + 3)|xi|4
(1 +

∑
i |xi|3)2

− 2|xi|1
1 +
∑

i |x|3

)}
, k � 2.

We fix L = 1 in all the numerical tests. We note that the tuning of the parameter
L may result in significant convergence improvement (cf. [20, 1]) but we shall not
address this issue here.

2.5.1. Tensor product of 1-D functions with algebraic convergence.
Consider first functions F (x) which are constructed as a tensor product of 1-D func-
tion f(x) with algebraic convergence for a given set of bases functions {Φk}. Namely,

f(x) =
∑
k

f̃kΦk(x) with |f̃k| ∼ k−α
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Fig. 2.5. Comparison of MCFG and MCSG methods (with r = 1) for solving (2.1) with f = f2,
k = 3.

and

F (x) = Πd
i=1f(xi) =

d∑
i=1

∑
ki

f̃k1,k2,...,kd
Πd

i=1Φki(xi),

for example, u1 with odd number k for the MCSG methods with r = 0, 1; u2 with
any k � 2 for the MCSG method with r = 1; u3 with k � 1 for the MCSG method
with r = 0.

It is clear that |f̃k1,k2,...,kd
| ∼ (

∏d
i=1 ki)

−α. Therefore, for a fixed accuracy ex-
pressed as K−α, it is clear that all the terms with index (k1, k2, . . . , kd) such that∏d

i=1 ki ≤ K should be kept. This is the ideal case for the usual sparse grid/hyperbolic
cross approximation. So we should fix N1 (the number of quadrature points in the
coarsest grid) and increase q until the required accuracy is achieved.

A comparison of the solution error versus the number of grid points between the
mapped Chebyshev full grid (MCFG) method and the MCSG method with r = 1 for
the test function u2 with k = 3 is given in Figure 2.5. Clearly, the MCSG method
converges at a rate that is almost independent of d.

2.5.2. Tensor product of 1-D functions with geometric/subgeometric
convergence. Consider now functions F (x) which are constructed as a tensor prod-
uct of 1-D function f(x) with geometric/subgeometric convergence for a given set of
bases functions {Φk}. Namely,

f(x) =
∑
k

f̃kΦk(x) with |f̃k| ∼ exp(−αkβ),

where β = 1 (resp., 0 < β < 1) is referred to as geometric (resp., subgeometric)
convergence, and

F (x) = Πd
i=1f(xi) =

d∑
i=1

∑
ki

f̃k1,k2,...,kd
Πd

i=1Φki(xi),

D
ow

nl
oa

de
d 

08
/2

4/
16

 to
 1

28
.2

10
.1

26
.1

99
. R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

EFFICIENT SPECTRAL SPARSE GRID METHODS II A1155

10
0

10
1

10
2

10
3

10
4

10
5

10
6

10
−15

10
−10

10
−5

10
0

number of grid points

L 2 e
rr

or
 

 

d=1
d=2 full
d=3 full
d=2 sparse
d=3 sparse

Fig. 2.6. Left: the optimal frequency index set for tensor product of 1-D function with geometric
convergence. Right: Comparison of MCFG and MCSG methods (with r = 1) X d+1

d for solving (2.1)
with f = f1, k = 2.

for example, smooth functions with sufficiently fast exponential decays, such as u1(x)
with even k and u3(x), for both the MCHSG method and MCSG methods with
r = 0, 1.

It is clear that |f̃k1,k2,...,kd
| ∼ exp(−α

∑d
i=1 k

β
i ). Therefore, for a fixed accuracy

expressed as exp(−αK), it is clear that all the terms with index (k1, k2, . . . , kd) such

that
∑d

i=1 k
β
i ≤ K should be kept.

Consider first the geometric convergence case, i.e., β = 1; the marginal curve of
the required index set is a hyperplane

∑d
i=1 ki = K (cf. the left side of Figure 2.6).

In this case, the usual sparse grid with N1 = 3 (N1 is the number of grid points at
the first level) is not suitable. The best hierarchical grid that covers this curve is
a two-level sparse grid X d+1

d (cf. the left side of Figure 2.6). Therefore, to obtain
a better convergence rate, we should fix q = d + 1 and increase N1. The ratio of
the number of grid points in a two-level sparse grid to that in a full grid is 1+d

2d
.

We plot on the right side of Figure 2.6 the error versus number of grid points when
using full grid and two-level sparse grids X d+1

d with different N1. We observe that
even in the geometric convergence case which is usually unfavorable to sparse grid
approximations, the two-level MCSG method still outperforms the MCFG method.

Consider now a subgeometric convergence case with β = 1/2; the marginal curve∑d
i=1 k

1/2
i = K of the required index set is shown on the left side of Figure 2.7. In

this case, the best hierarchical grid that covers this curve is a four-level grid X d+3
d .

The ratio of the number of grid points in such a sparse grid to that in a full grid is
((d + 1)2d + 4d)/8d. The right side of Figure 2.7 shows the error versus number of
grid points when using the MCFG method and the four-level MCSG method with
different sizes of first-level grid. We observe that the four-level MCSG method also
outperforms the MCFG method, and the relative efficiency is better than in the
geometric convergence case.

2.5.3. An example of a nontensor product function. Most functions in
real applications are not of tensor product type. As long as they are not isotropi-
cally smooth, a spectral sparse grid method will usually outperform a spectral full
grid method. More importantly, only sparse grid methods are feasible for higher-
dimensional problems. In Figure 2.8, we compare the MCSG method with the MCFG
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Fig. 2.7. Left: the optimal frequency index set for tensor product of 1-D function with sub-
geometric convergence. Right: Comparison of MCFG and MCSG methods (with r = 1) X d+3

d for
solving (2.1) with f = f3, k = 1.
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Fig. 2.8. Comparison of MCSG and MCFG methods (with r = 1) for solving (2.1) with f = f4,
k = 3.

methods (with r = 1) on the test function u4 with k = 3. It is observed that the
MCSG method converges much faster than the MCFG method for d > 1.

2.5.4. Comparison between MCSG methods with r = 0, 1 and the
MCHSG method. In general, the MCSG method with r = 1 and the MCHSG
method can be applied to problems with both exponentially and algebraically decaying
functions, while the MCSG method with r = 0 is recommended only for exponentially
decaying functions.

In terms of computational cost per node, the MCSG method with r = 0 is the
most efficient as its system matrix is more compact than the MCSG method with
r = 1, and the Hermite method is not as efficient as the MCSG methods since it lacks
a fast transform between physical values and spectral coefficients. In Figure 2.9, we
show the numerical results of solving (2.4) with f = f1, k = 3 by using the MCSG
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Fig. 2.9. Comparison of two MCSG methods when solving (2.1) with f = f1, k = 3. Left:
MCSG method with r = 1. Right: MCSG method with r = 0.

methods with r = 0, 1. For this particular example, the two methods have a similar
asymptotic convergent rate, but the MCSG method with r = 0 performs better when
only a few grid points are used in the 1-D case, leading to better approximation results
in the preasymptotic range in the higher-dimensional case.

2.6. Elliptic equations with variable coefficients. For problems with vari-
able coefficients, the mass and stiffness matrices in the pseudospectral–Galerkin sparse
grid method (2.3) are no longer sparse, so the explicit evaluation of these matrices is
prohibitively expensive. Therefore, a suitable preconditioned Krylov-type method re-
quiring only matrix-vector products should be employed. An effective preconditioner
is the MCSG method for the constant coefficient problem (2.4). In fact, this precondi-
tioner is optimal if the variable coefficients κ and α are bounded above and below by
positive constants. Due to the presence of interpolation operators, the system (2.3) is
no longer symmetric but it is still positive definite, so we shall employ the BICGSTAB
iteration, which only requires matrix-vector products.

Hence, we only need to provide algorithms to calculate

(2.32) {uk} →M (u)j =

(
Uq
d

[
κ(x)

∑
k

ukT̂k(x)

]
, T̂j(x)

)
, j ∈ Iqd ,

and

{uk} → S(u)j =
(
Uq+1
d

[
α(x)∇

∑
k

ukT̂k(x)

]
,∇T̂j(x)

)

= −
(
∇Uq+1

d

[
α(x)∇

∑
k

ukT̂k(x)

]
, T̂j(x)

)
, j ∈ Iqd .

(2.33)

The first term (2.32) can be computed by using the usual procedure: (i) transform
u from spectral representation uk to physical representation u(x), (ii) multiply it by
κ(x), and (iii) transform the result from physical values to spectral representation;
the resulting spectral coefficients are the componentsM(u)j , j ∈ Iqd .

The second term is much more complicated. The main difficulty is that the MCSG
space V q

d is not closed under differentiation, i.e., u ∈ V q
d does not imply ∇u ∈ V q

d .

This is why we need to perform the multiplication on a finer sparse grid X q+1
d .
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First, we derive from (2.15) and the basic properties of Chebyshev polynomials
(2.16) and (2.17) that

(2.34)
√
ckT̂

′
k(x) =

(1− ξ2)r/2
L

k+1∑
j=k−1

βj

(√
cj T̂j(x)

)
,

where

βk−1 =
k

2
− 1 + r

4
, βk = 0, βk+1 = −k

2
− 1 + r

4
, for k � 1;

βk−1 = 0, βk = 0, βk+1 = −1 + r

2
, for k = 0.

We now proceed separately for r = 0 and r = 0.
• Case r = 0: In this case, the formula (2.34) simplifies to a summation of
mapped Chebyshev functions. We first extend u to the finer sparse grid space

V q+1
d , take the derivatives using (2.34), then transform to physical space and

multiply the result by α(x), and then transform the result back to spectral
representation, then take the outer differentiation. In the end, project the
resulting function from V q+1

d to V q
d .

• Case r = 0: We still use the formula (2.34); after taking the inner differ-

entiation, we transform L
(1−ξ2i )

r/2 ∂xiu(x) =
∑

k uk
∑k+1

j=k−1 βj(
√
cj T̂j(x)) to

physical space. Then we multiply the result by (1− ξ2i )rα(x) and transform

the new result to spectral representation
∑

k hkT̂k(x). In other words, we
have

∂xi (α(x)∂xiu(x)) =
1

L
∂xi

(
(1− ξ2i )−r/2

∑
k

hkT̂k(x)

)
.

Finally, the outer differentiation in the above can be calculated by using the
following 1-D formula:

d

dx

((
1− ξ2

)− r
2
√
ckT̂k(x)

)
=
(
1− ξ2

)− r
2

d

dx

(√
ckT̂k(x)

)
+
√
ckT̂k(x) · rξ

(
1− ξ2

)−1− r
2
dξ

dx

=

k+1∑
j=k−1

β̃j φ̃j(x),

where

β̃k−1 =
k

2
+
r − 1

4
, β̃k = 0, β̃k+1 = −k

2
+
r − 1

4
, k � 1;

β̃k−1 = 0, β̃k = 0, β̃k+1 =
r − 1

2
, k = 0.

In the end, we project the resulting function from V q+1
d to V q

d .
We now present some numerical results. We take two sets of nonconstant coeffi-

cients as test examples:

(2.35) κ(x) = κ (1 + 0.5 cos(2πx1)) , α(x) = 1 + 0.5 cos(2πx1),
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Table 2

Numbers of iterations and CPU time using BICGSTAB to solve equations with nonconstant
coefficients. κ = 1, α = 1. BICGSTAB tolerance 1× 10−12. k = 3 in u1 and u2.

(2.35), u1, r = 0 (2.35), u2, r = 1 (2.36), u1, r = 0 (2.36), u2, r = 1
d q iter# CPU iter# CPU iter# CPU iter# CPU
1 7 13 3.000(−3) 13 4.000(−3) 6 1.000(−3) 6 1.000(−3)

8 13 7.000(−3) 13 6.000(−3) 5 2.000(−3) 6 3.000(−3)
9 15 1.000(−2) 13 1.000(−2) 5 4.000(−3) 6 4.000(−3)

2 8 12 4.400(−2) 13 5.200(−2) 6 2.600(−2) 6 2.000(−2)
9 13 1.040(−1) 14 1.150(−1) 5 4.200(−2) 6 4.200(−2)

10 13 2.270(−1) 14 2.410(−1) 5 8.700(−2) 6 9.200(−2)
3 9 14 6.560(−1) 13 7.780(−1) 6 2.920(−1) 6 3.030(−1)

10 14 1.510(−0) 13 1.911(−0) 6 6.830(−1) 6 7.500(−1)
11 14 4.071(−0) 13 4.749(−0) 6 1.857(−0) 6 1.870(−0)

and

(2.36) κ(x) = κ
(
1 + 0.5e

− 1
1+|x|2

)
, α(x) = 1 + 0.5e

− 1
1+|x|2 ,

and let the exact solution be u1 and u2 given in (2.30) and (2.31). We use the MCSG
method with κ = 1, α = 1 as the preconditioner. For a tolerance of 1 × 10−12,
BICGSTAB converges in about 12 to 14 iterations for the first case (2.35) and in
about 6 iterations for the second case (2.36). No obvious dependence on r, d, q is
observed. Details are given in Table 2.

3. Application to the electronic Schrödinger equation. The electronic
Schrödinger equation plays a fundamental role in quantum chemistry. Its accurate
numerical solution is a great challenge mainly due to its high dimensionality. It
is rigorously shown in [22] and numerically verified in [23, 10, 9] that the sparse
grid approach is suitable for numerically solving the electronic Schrödinger equation.
However, previous works all employ the Fourier sparse grid approach, which replaces
the problem in the unbounded domain R

d by a finite domain (0, L)d with periodic
boundary conditions. While this approach greatly simplifies the implementation, it
introduces the finite-size effect (see, for instance, [7]), which is difficult to quantify.

In this section, we present a pseudospectral sparse grid approach to solve the
electronic Schrödinger equation in R

d directly.

3.1. Description of the problem and numerical methods. As a starting
point, we shall restrict our attention in this paper to the case of one spatial dimension
with N electrons. Therefore, we are dealing with an N -dimensional problem. In this
case, the problem (cf. [22]) is to look for eigenvalues and eigenfunctions (E,ψ) of the
electronic Schrödinger equation

(3.1) Hψ(x1, . . . , xN ) = Eψ(x1, . . . , xN ),

where H is the Hamilton operator

(3.2) H = T + U + V = −1

2

N∑
i=1

∂2xi
+

N∑
i=1

Z|xi| −
N∑
i=1

N∑
j>i

|xi − xj |.

In the above, xi ∈ R denotes the position of the ith electron (i = 1, 2, . . . , N), and Z
is the charge of the fixed nucleus at the origin.
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Since it is known that the eigenfunctions of (3.1) decay exponentially as xi →∞,
we shall use the mapped Chebyshev (with r = 0) sparse grid method. Let us de-
note (x1, . . . , xN ) = x. As usual, V q

N = {φk(x),k ∈ IqN} denotes the sparse ap-
proximation space with φk(x) = Sk(x) being the basis function defined in (2.18).
Then, the pure Galerkin version of the MCSG method for (3.1) is as follows: Find
ψq
N =

∑
k∈Iq

N
bkφk(x) such that

(3.3)
∑
k∈Iq

N

bk(Hφk, φl) =
∑
k∈Iq

N

E(φk, φl) ∀ l ∈ IqN .

Since {Sk(x)} are orthonormal in L2(Rd), the right-hand side is an identity matrix.
The left-hand side can be split into three terms:

(Tφk, φl) =
1

2

N∑
i=1

∑
k∈Iq

N

(
∂xi

φk(x), ∂xiφl(x)
)
=

1

2

N∑
i=1

∑
k∈Iq

N

δk,l
δki,li

ski,li ,

(Uφk, φl) = Z
N∑
i=1

∑
k∈Iq

N

(|xi|φk, φl) = Z
N∑
i=1

∑
k∈Iq

N

δk,j
δki,li

uki,li ,

(V φk, φl) = −
N∑
i=1

N∑
j>i

∑
k∈Iq

N

(|xi − xj |φk, φl) = −
N∑
i=1

N∑
j>i

∑
k∈Iq

N

δk,j
δki,liδkj ,lj

vki,li;kj ,lj ,

where sk,j is given by (2.19),

(3.4) uk,l =

∫
R

|x|φk(x)φl(x)dx,

and

(3.5) vk1,l1;k2,l2 =

∫ ∫
|x− y|φk1(x)φk2 (y)φl1 (x)φl2 (y)dxdy.

The main difficulty in solving (3.3) is that both (uk,l) and (vk1,l1;k2,l2) are dense
matrices. While they can be accurately precomputed by using some special tricks and
numerical quadratures, the cost of applying these dense transform matrices makes it
prohibitively expensive. Hence, instead of (3.3), we shall consider its pseudospectral
Galerkin version: Find ψq

N =
∑

k∈Iq
N
bkφk(x) such that

(3.6) (Tψq
N + Uq

N [(U + V )ψq
N ] , φl) = E(ψq

N , φl) ∀ l ∈ IqN ,

where Uq
N is the interpolation operator based on the sparse grid X q

N defined in (2.9).
Namely, the terms involving {uk,l, vk1,l1;k2,l2} are replaced by

b̃l = (Uq
N [(U + V )ψq

N ] , φl) .

The above can be efficiently computed by using the approach presented in the last
section for problems with variable coefficients, similar to the computation for (2.32).

The above pseudospectral approach leads to a nonsymmetric eigenvalue problem,
so we shall employ the Arnoldi method, which only requires us to compute the matrix-
vector products. However, direct application of the Arnoldi method to the linear
eigenvalue problem (3.6) converges very slowly. To speed up the convergence, we
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adopt a shift-invert procedure [8] to compute the smallest eigenvalues. In the shift-
invert procedure, we need to solve (invert) the shifted problem

(3.7) (H − δI)ψ(x1, x2, . . . , xN ) = f(x1, x2, . . . , xN )

with the shifting constant δ being as close to the desired eigenvalue as possible. In
practice, we adaptively choose δ starting with a coarse-grid (with small q) approxi-
mation of the eigenvalue.

The above equation is solved by using a BICGSTAB method with the following
preconditioner:

(3.8)

{
−1

2

N∑
i=1

∂2xi
+ βZ

N∑
i=1

ξ2(xi)

}
.

In the above, the scalar number β is a stretching parameter that depends on the
dimension of the problem and the discrete grid size. ξ(x) = tanh(x) is the invert
mapping function that maps x ∈ R to ξ ∈ [−1, 1]. When discretized using the
Galerkin method with mapped Chebyshev bases, this preconditioning operator leads
to a very sparse algebraic system, which can be solved efficiently by using a direct
solver.

3.2. Numerical results. In Tables 3–6, we present numerical results for the
electronic Schrödinger equation with one, two, six, and eight electrons in one spatial
dimension by using the mapping (2.14) with r = 0 and a scaling parameter L. All
results, except the last case with six and eight electrons, are carried out on a Thinkpad
T410s with 4 GB RAM and one Intel i5 Core at 2.4 GHz. For example, the case
N = 6, q = 12 with 1.4 million degree of freedoms took less than 3 hours.

It is known that the eigenfunctions of the electronic Schrödinger equation decay
exponentially as |x| goes to infinity. Hence, we choose to use the mapping (2.14)
with r = 0, which is more suitable for such solutions. It is also well known that a
properly chosen scaling parameter L can significantly improve the accuracy with a
given number of unknowns. However, there is no obvious way to find the optimal
scaling parameter without prior knowledge on the decay rate of the solution. We list
in Tables 3–6 numerical results with four different scaling parameters.

We observe from Tables 3–6 that as q increases, the first eigenvalue always in-
creases with L = 1 and decreases with L = 0.5. So the value with L = 1 (resp.,
L = 0.5) provides a lower (resp., upper) bound for the first eigenvalue. For L = 0.6

Table 3

Smallest eigenvalue of the electronic Schrödinger equation with one electron in one spatial
dimension.

q DoF L = 0.5 L = 0.6 L = 0.75 L = 1
1 3 2.338246 1.766016 1.190107 0.68917
2 5 1.404767 1.154315 0.932692 0.77458
3 9 1.060249 0.934986 0.842216 0.79641
4 17 0.908796 0.848740 0.814735 0.80484
5 33 0.844709 0.819171 0.809213 0.807628
6 65 0.820123 0.810868 0.8085893 0.808368
7 129 0.811832 0.809005 0.8085895 0.808554
8 257 0.809405 0.8086709 0.8086082 0.808601
9 513 0.808787 0.8086225 0.8086144 0.8086126
10 1025 0.808649 0.8086169 0.8086160 0.8086155
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Table 4

Smallest eigenvalue of the electronic Schrödinger equation with two electrons in one spatial
dimension.

q DoF L = 0.5 L = 0.6 L = 0.75 L = 1
2 9 4.6887345 3.5337141 2.3803513 1.3783412
3 21 3.0801090 2.5024530 1.9562296 1.5447713
4 49 2.4610299 2.1407780 1.8823848 1.7267759
5 113 2.1449360 1.9621990 1.8462236 1.7944285
6 257 2.0139266 1.9089328 1.8596860 1.8463230
7 577 1.9411353 1.8801002 1.8579695 1.8511776
8 1281 1.9053250 1.8713405 1.8624749 1.8607346
9 2817 1.8838480 1.8657901 1.8622006 1.8610317
10 6145 1.8734093 1.8646394 1.8634796 1.8632008
11 13313 1.8678381 1.8638844 1.8634728 1.8632195
12 28673 1.8655343 1.8639148 1.8638087 1.8637460
13 61441 1.8644735 1.8638533 1.8638094 1.8637472
14 106497 1.8640681 1.8639032 1.8638934 1.8638778
15 188417 1.8639412 1.8639003 1.8638934 1.8638778
16 335873 1.8639259 1.8639160 1.8639144 1.8639104

Table 5

Smallest eigenvalue of the electronic Schrödinger equation with six electrons in one spatial
dimension.

q DoF Memory L = 0.5 L = 0.6 L = 0.75 L = 1
6 729 14.19322 10.62023 7.14268 4.13509
7 3645 1M 11.53182 8.98147 6.56414 4.57501
8 14337 7M 9.84225 8.20117 6.84163 6.28908
9 49761 30M 9.13927 8.08522 7.40965 7.55470
10 159489 158M 8.81094 8.15501 7.88803 8.19936
11 483201 879M 8.65394 8.26734 8.21052 8.36132
12 1403137 5163M 8.57456 8.35870 8.37154 8.44094
13 3940609 16689M 8.52448 8.42065 8.44336 8.46657

Table 6

Smallest eigenvalue of the electronic Schrödinger equation with eight electrons in one spatial
dimension.

q DoF Memory L = 0.5 L = 0.6 L = 0.75 L = 1
8 6561 2M 19.011 14.176 9.525 5.514
9 41553 30M 16.487 12.652 9.076 6.059
10 193185 312M 14.387 11.764 9.591 8.622
11 768609 1621M 13.428 11.723 10.682 10.210
12 2772225 16587M 13.054 11.995 11.601 11.339

and 0.75, we observe that in most cases it also changes monotonically when q is large
enough such that the solution enters the “asymptotic range.” Therefore, by carefully
examining these tables, we can deduce that the exact value of the first eigenvalue for
the one-electron, two-electron, six-electron, and eight-electron system should lie be-
tween [0.8080160, 0.8080169], [1.8639144, 1.8639259], [8.46657, 8.52448], and [11.339,
13.054], respectively. Hence, by taking the midpoints of these intervals as the best
approximations, we find that their relative errors are 5.6×10−7, 3.1×10−6, 3.4×10−3,
and 7.0× 10−2, respectively, for the one, two, six, and eight electrons.

In Table 7, we list the numbers of outer (ARPack) and inner (BICGSTAB) it-
erations used for computing the first eigenvalue with one, two, four, and six elec-
trons. Observe that the shift-invert procedure is very effective as the numbers of
outer (ARPack) iteration remain low for all cases, particularly for larger q. On the
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Table 7

Iteration numbers of the MCSG method with r = 0, L = 1 for the electronic Schrödinger
equation with one, two, four, and six electrons in one spatial dimension: n1 and n2 are the numbers
of iterations used in ARPack and BICGSTAB, respectively. The tolerance is set to 10−12 for
N = 1, 2, while it is set to 10−7 for N = 4, 6. The stretching parameter β in the preconditioner is
set to (q −N + 1) log 2− log(π/2).

N = 1 N = 2 N = 4 N = 6
q n1 n2 q n1 n2 q n1 n2 q n1 n2

2 9 6 3 11 22 5 7 27 7 9 37
3 7 10 4 13 28 6 11 34 8 21 49
4 7 10 5 9 31 7 9 41 9 23 80
5 7 12 6 9 31 8 9 44 10 13 110
6 7 13 7 7 33 9 7 51 11 9 128
7 7 14 8 7 36 10 7 56 12 7 141
8 7 15 9 7 36 11 5 69 13 7 148
9 7 16 10 9 37 12 5 74

10 7 17 11 9 37 13 5 87
11 7 18 12 9 38 14 7 112

other hand, the number of inner (BICGSTAB) iterations increases as q increases but
remains reasonable for all reported cases.

We now make some comments on our results in relation to that of Griebel and
Hamaekers [10]. First, we did not take into account the Pauli exclusion principle,
while they did. Hence, the energy for the ground state we obtained is smaller than
that reported in [10]. Second, their method is based on a pure Galerkin approach
(similar to (3.3)) which leads to a much large number of nonzeroes in the system
matrix, while ours is based on a pseudospectral Galerkin approach which is much
faster, in terms of number of operations per unknown. Third, for the cases of six
and eight electrons, it appears that our method leads to relatively better convergence
results. Note that the computational cost of our method can be further reduced if we
take into account the Pauli exclusion principle. Thus, our method has potential to be
an efficient and feasible approach for solving the electronic Schrödinger equation.

4. Concluding remarks. We developed in this paper the MCSG and MCHSG
methods for elliptic equations in R

d. The MCSG method is based on nested, spectrally
accurate quadratures and enjoys fast transforms between the values at the sparse grid
and the corresponding expansion coefficients. Moreover, the MCSG and MCHSG
methods lead to the identity mass matrix and very sparse stiffness matrix for problems
with constant coefficients and allow us to construct a matrix-vector product algorithm
with quasi-optimal computational cost even for problems with variable coefficients.
Furthermore, we proposed several efficient alternatives to solve the resultant linear
systems for elliptic equations with constant or variable coefficients, and we presented
ample numerical results to demonstrate the efficiency and accuracy of the proposed
algorithms.

As an example of applications, we considered the electronic Schrödinger equation
which plays a fundamental role in quantum chemistry. The preliminary numerical
results indicate that our MCSG method with r = 0 is very competitive in solving the
electronic Schrödinger equation with a moderate number of electrons in one spatial
dimension and has great potential to be a viable approach for solving the electronic
Schrödinger equation with a moderate number of electrons in three spatial dimensions.

The algorithms developed in this paper set a solid foundation for solving higher-
dimensional problems in unbounded domains. In forthcoming papers, we shall apply
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the basic algorithms developed in this paper to more complicated and challenging
problems such as the electronic Schrödinger equations with a few electrons in three
spatial dimensions and the Boltzmann equation.
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