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Abstract

We present a new test generation procedure for se-
quential circuits using spectral techniques. Iterative pro-
cesses of filtering via compaction and spectral analysis of
the filtered test set are performed for each primary input,
extracting inherent spectral information embedded within
the test sequence. This information, when viewed in the
frequency domain, reveals the characteristics of the input
spectrum. The filtered and analyzed set of vectors is then
used to predict and generate future vectors. We also de-
veloped a fault-dropping technique to speed up the process.
We show that very high fault coverages and small vector
sets are consistently obtained in short execution times for
sequential benchmark circuits.

1. Introduction

Simulation-based test generation began with random
test generation, which used a pseudo-random pattern gen-
erator [1]. However, random testing generally results in
large test sets [2] and they are useful for circuits with-
out random-pattern-resistant faults [3]. Weighted random
patterns have been found to yield better fault coverages in
circuits that contain such random-pattern-resistant faults
[4, 5]. In these approaches, the probability of obtaining
a 0 or 1 at a particular input is biased towards detect-
ing random resistant faults. However, the difficulty arises
when no one set of weights may be suitable for all faults.
In sequential circuits, faults may need a biased internal
state in addition to biased input values, making it more
difficult to obtain a good set of weights.

Recently, static compaction [6,7] has been used to aid
test generation. A specific feature of vector-restoration
based compaction [6, 7] is that the resulting compacted
test set guarantees to retain the original fault coverage.
Various test generation methods based on compaction
have been proposed [8–12] in which repeated calls to static
compaction on modified test sets are performed. During
each iteration, the test set is first modified by appending
new vectors, then static compaction is called to remove
any unwanted vectors. This process is repeated until a
satisfactory coverage or a maximum number of iterations
has been reached. In [8, 9], new vectors are appended to

the test set by randomly choosing vectors from the com-
pacted test set obtained in the previous iteration, while
in [10–12], spatial and temporal correlations among test
vectors are used to append new vectors to the test set.

In this work, we view the sequential circuit as a black-
box system that is identifiable and predictable from its
input-output signals, instead of viewing it as a netlist of
primitives. In studying a signal, what we care most is the
predictability of the signal. If the signal is predictable, we
can use a portion of it (the past and the current) to rep-
resent and reconstruct its entirety. Testing of sequential
systems, then, becomes the problem of constructing a set
of waveforms, which when applied at the primary inputs
of the circuit, can excite and propagate targeted faults
in the circuit. These input waveforms (spectrums) have
specific spectral characteristics, as exhibited in all signals.
In order to capture the spectral characteristics of a given
signal, a clean representation for that signal is desired
(wider spectrums lead to more unpredictable/random sig-
nals). Thus, any embedded noise should be filtered. Static
test set compaction reduces the size of the test set by re-
moving any unnecessary vectors while retaining the useful
ones. In other words, static compaction filters unwanted
noise from the derived test sequence, leaving a cleaner
signal (narrower spectrum) to analyze. Taking this idea
to test generation, the spectral information obtained not
only helps to identify embedded spectral information, it
also offers a new way for testing sequential circuits by pre-
dicting intelligent vectors based on the vectors we have so
far. Vectors generated from the narrow spectrum have
better fault detection characteristics.

We also developed a technique to speed up the test
generation process. Instead of using fault sampling dur-
ing compaction to reduce the execution time, previously
detected faults are periodically removed from the target
fault list with the corresponding compacted vector se-
quence saved. In other words, compaction is performed
using only the remaining faults. This significantly reduces
the work during each iteration of compaction.

2. Overview and Motivation

Because what we care about most is the information
embedded in the input signals (test set we already have),



we want to employ signal processing techniques to ex-
tract this information. Frequency decomposition is the
most commonly used technique in signal processing. A
signal can be projected to a set of independent waveforms
that have different frequencies. This set of waveforms,
each represented as a vector, forms a basis matrix. The
projection operation (a post-multiply to the basis matrix)
reveals the quantity each basis vector contributes to the
original signal. This quantity is called decomposition co-
efficient. Subsequently, enhancing the important frequen-
cies and suppressing the unimportant ones (“noise”), we
expect that we can have a new and higher-quality signal
that will help test generation.

In choosing the projection matrix, Hadamard trans-
form is a well-known non-sinusoidal orthogonal transform
in signal processing. It consists of only 1’s and -1’s, which
makes it a good choice for the signals in VLSI testing (1
= logic 1, -1 = logic 0). Each basis in the Hadamard ma-
trix is a distinct sequence that characterizes the switching
frequency between 1s and -1s. For these reasons, we will
use Hadamard transform for our analysis.
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Figure 1. Test generation framework.

Figure 1 presents the overall framework of the spectral
test generation procedure. Initially (iteration 0), the test
set simply consists of random vectors. A call to static
compaction will filter any unnecessary vectors. Using the
Hadamard transform on the test set obtained, we analyze
and identify the predominant pattern at each primary in-
put. We generate test patterns based on this identified
spectrum and filter out any unwanted random bits. At
the same time, we can generate vectors spanning the likely
vector space using only the basis vectors. This can poten-
tially help drive the circuit into hard-to-reach states that
require specific vectors at the primary inputs, making it
easier to detect hard-to-detect faults faster. This process
is repeated until either (1) desired fault coverage is ob-
tained, or (2) maximum number of iterations is reached.

Hadamard matrices are square matrices containing
only 1s and -1s, and can be generated using the following
recurrence relation:

Hh(k) =
[

Hh(k − 1) Hh(k − 1)
Hh(k − 1) −Hh(k − 1)

]
, k = 1, 2, ..., n,

where Hh(0) = 1 and n = log2N . For example, with k=1

and k=2, above equation yields

Hh(1) =
[

1 1
1 −1

]
, Hh(2) =




1 1 1 1
1 −1 1 −1
1 1 −1 −1
1 −1 −1 1




From this definition of the Hadamard matrix, we can ob-
serve that H(n) × H(n)T = nIn, where In is the n × n
Identity Matrix. Given only 1’s and -1’s in the matri-
ces, multiplication can essentially be computed using ad-
ditions and subtractions. Moreover, the inverse transform
of a Hadamard matrix is the same as the forward trans-
form, making reconstruction straight-forward.

Each row/column in a Hadamard matrix is a basis
vector, carrying a distinct frequency component. Taking
Hh(2) for illustration, the four basis vectors are [1 1 1
1], [1 0 1 0], [1 1 0 0], and [1 0 0 1]. Any bit sequence
of length 4 can be represented as a linear combination
of these basis vectors. For instance, the vector [1 0 0 0]
can be written as −1× [1, 1, 1, 1]+ 1× [1,−1, 1,−1]+ 1×
[1, 1,−1,−1] + 1 × [1,−1,−1, 1]. Therefore, what we can
do is project the test sequence to the Hadamard bases,
filter out certain frequencies and do an inverse transform
to get the de-noised sequence.

3. Test Generation Approach

The goal of the spectral technique is to gener-
ate/construct intelligent vectors from one iteration to the
next. Based on the predominant spectra identified using
the Hadamard transform, we construct new test patterns.
Algorithm 1 illustrates the construction of such vectors.

Algorithm 1:
Let ai be the input bit sequence for primary input i.

for (each primary input i in test set)
coefficient vector ci = H × ai

for (each value in the coefficient matrix [c0, ..., cn])
if (absolute value of coefficient < cutoff)

Set the coefficient to 0.
else

Set the coefficient to 1 or -1, based on its abs value.
for (each primary input i)

extension vector ei = modified ci × H
if (weight > 0)

Extend the vector set with value 1 to PI i.
else if (weight < 0)

Extend the vector set with value -1 to PI i.
else if (weight == 0)

Randomly extend the vector set with either 1 or -1

We will illustrate this algorithm with an example.
Consider a subsequence of eight 4-input vectors. We first
replace each ’0’ with with a -1:



PI0 PI1 PI2 PI3 PI0 PI1 PI2 PI3

1 1 1 0 1 1 1 -1
1 0 0 1 replace 0 1 -1 -1 1
1 1 0 0 with -1 1 1 -1 -1
1 1 0 1 7−→ 1 1 -1 1
1 1 1 1 1 1 1 1
1 0 0 0 1 -1 -1 -1
1 1 0 0 1 1 -1 -1
1 0 0 1 1 -1 -1 1

Next, we perform spectral analysis. Consider the bit
stream for primary input PI1. Multiplying Hh(3) with
the bit stream for PI1, we obtain its coefficient vector:


1 1 1 1 1 1 1 1
1 −1 1 −1 1 −1 1 −1
1 1 −1 −1 1 1 −1 −1
1 −1 −1 1 1 −1 −1 1
1 1 1 1 −1 −1 −1 −1
1 −1 1 −1 −1 1 −1 1
1 1 −1 −1 −1 −1 1 1
1 −1 −1 1 −1 1 1 −1







1
−1

1
1
1

−1
1

−1




=




2
6

−2
2
2

−2
−2

2




If the cutoff for coefficients is set to 4, then the coef-
ficient vector ci is modified by replacing every coefficient
whose absolute value is less than 4 with 0. Thus, the new
c1 becomes [0 1 0 0 0 0 0 0]T Now, multiplying the new
coefficient [c1]T with Hh(3) yields:

[0 1 0 0 0 0 0 0] × Hh(3) = [1 − 1 1 − 1 1 − 1 1 − 1]

We will extend the test set for PI1 with (1, -1, 1, -1, 1,
-1, 1, -1). Here, we have filtered out the random pattern
that appeared in the input bit stream, since bit #4 has
been changed from 1 to -1.

Now let us consider a different primary input PI3.
Multiplying H with PI3 yields coefficients shown below:


1 1 1 1 1 1 1 1
1 −1 1 −1 1 −1 1 −1
1 1 −1 −1 1 1 −1 −1
1 −1 −1 1 1 −1 −1 1
1 1 1 1 −1 −1 −1 −1
1 −1 1 −1 −1 1 −1 1
1 1 −1 −1 −1 −1 1 1
1 −1 −1 1 −1 1 1 −1







−1
1

−1
1
1

−1
−1

1




=




0
−4

0
4
0

−4
0

−4




If the cutoff for coefficients is again 4, then the coeffi-
cient vector is changed to [0 −1 0 1 0 −1 0 −1]. Multiply
the new coefficient with H8 yields the following extension
vector:

[0 − 1 0 1 0 − 1 0 − 1] × Hh(3) = [−2 2 − 2 2 2 − 2 − 2 2]

Extending the compacted vector set for PI3, we obtain
scaled vector (-1, 1, -1, 1, 1, -1, -1 1). This is the same
as the input sequence, which means that there was no
random noise that needed to be filtered out.

Similarly, we obtain extended vector sets for PI0 and
PI2 as (1, 1, 1, 1, 1, 1, 1, 1) and (1, -1, -1, -1, 1, -1, -1, -1).

Thus, we append the following newly generated vectors to
the test set:

1 1 1 -1
1 -1 -1 1
1 1 -1 -1
1 -1 -1 1
1 1 1 1
1 -1 -1 -1
1 1 -1 -1
1 -1 -1 1

Extending the compacted vector set in the above manner
would lead to the extended vector set having only twice
as many vectors as the compacted vector set. In order
to append more vectors, we modify Algorithm 1 as fol-
lows: (Hh(4) is used in Algorithm 2 and the values of the
coefficients range between +16 and -16)

Algorithm 2:

For each cutoff value of 6, 8, and 10 do
Perform Algorithm 1.
Randomly pick p vectors from the extended test set,

and hold each vector an arbitrary number of cycles.

Increasing the cutoff value is equivalent to fine-tuning
the filter, leading to bit patterns very similar to the orig-
inal input stream. This technique leads to the generation
of a sizeable number of ”useful” vectors, which helps de-
tect hard-to-detect faults rapidly.

4. Speeding up Test Generation with Fault
Dropping

One of the ways to reduce the computation costs of
simulation-based test generation is by reducing the num-
ber of faults during simulation. Fault sampling is used
during the compaction process in [8,9], in which a sample
of 128 or 256 randomly chosen faults were used as targets
during fault simulation and compaction. As more faults
become detected, the target fault list is replenished, until
all the faults are included in the target fault list.

Instead of using fault sampling to reduce the test gen-
eration time, we developed a fault dropping technique to
speed up test generation. In fault dropping, detected
faults are periodically removed from the target fault list,
reducing the time taken for compaction. Figure 2 illus-
trates the difference in the two concepts. In the fault sam-
pling approach, test generation starts with a smaller num-
ber of target faults, and gradually add new faults to the
target list. This is illustrated by the rising curve. On the
contrary, the fault-dropping technique starts with the en-
tire fault list, and remove the detected faults periodically
to reduce the target fault list. This is illustrated by the
falling curve. When faults are removed, the test sequence
that detected those faults must be saved. Finally, these
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Figure 2. Fault sampling vs. fault dropping.

saved sequences are combined and a final compaction is
called to produce the final test set. In smaller circuits
that required only a few iterations to obtain the desired
fault coverages, faults are removed every 1 or 2 iterations.
For larger circuits, we remove faults less frequently - 4 or
5 iterations between removal of faults.

5. Experimental Results

All experiments were conducted on an Ultra SPARC
10 with 256 MB of RAM for ISCAS89 [16] and ITC99
[17] benchmark circuits. The 16 × 16 Hadamard ma-
trix Hh(4) is used for all circuits. Results for four test
generators are compared: HITEC [14], STRATEGATE
[15], PROPTEST [9], and the proposed spectral method.
HITEC is a deterministic test generator, STRATEGATE
is a genetic based test generator and PROPTEST is a
compaction-based test generator.

Table 1 reports the results: the circuit name is first
given, then, the number of faults detected, test set size,
and execution time (in minutes) are reported for each
ATPG method. Note that the different platforms were
used for different test generators:. HP 9000 J200 for
HITEC, Sun UltraSPARC 1 for STRATEGATE, Pentium
II for PROPTEST, and Sun UltraSPARC 10 for the spec-
tral technique. PROPTEST [9] used fault samples of 256
initially, and gradually increase the sample size until all
the undetected faults are targeted in later iterations. On
the other hand, the spectral technique used the proposed
fault-dropping technique. We fixed an upper bound of
125 iterations as the terminating condition.

From Table 1, we observe that in all cases, the spectral
technique was able to obtain very high fault coverages
very quickly, and the test sets were also very compact. For
instance, in circuit b12, our spectral technique detected
1645 faults, 175 more faults than best reported coverages.
For the rest of the circuits, the spectral technique was
able to reach the maximum coverages as well. In terms
of test set sizes, the spectral technique results in smaller
test sets for many of the circuits. The execution times
were less than HITEC and STRATEGATE for most cases,
and they were slightly longer than PROPTEST due to
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Figure 3. Faults detected per iteration for b12.

different platform, programming style, and the extra effort
needed to obtain highly compact test sets and to perform
spectral analysis.

To see whether the spectral technique is truly effective
in generating intelligent vectors, we compare the number
of faults detected at each iteration of the test generation
process. We implemented a compaction-based test gen-
erator similar to [8], and used that test generator as a
comparison. Figure 3 shows the number of faults detected
in circuit b12 over the first 100 iterations by our spectral
technique and by our implementation of [8]. As shown
in the figure, the spectral technique detects 1600 faults
by the fourth iteration, while [8] reached 1400 faults (200
fewer) after 60 iterations. Figure 4 shows comparisons of
the number of iterations needed to reach maximum fault
coverages by our spectral technique and by our imple-
mentation of [8]. As illustrated in this figure, the spectral
technique consistently reached the final fault coverage in
much fewer iterations than [8]. For example, in s1488,
only 3 iterations were needed by the spectral technique,
while the compaction-based technique [8] required 79 iter-
ations. This demonstrates the effectiveness and potential
of the spectral technique.
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Figure 4. Number of iterations needed.

6. Conclusions

We have presented a novel spectral technique for test
generation. Static compaction is first used to filter un-
wanted vectors. Then, Hadamard transform is used to
analyze input spectrums. This technique identifies inher-
ent periodicity of the input bits. Vector sequences, then,



Table 1. Test Generation Results
HITEC [14] STRATEGATE [15] PROPTEST [9] Spectral-Based

Circuit Det Vec Time Det Vec Time Det Vec Time Det Vec Time
s382 301 1463 90.0 364 1486 8.1 364 572 0.5 364 567 1.0
s400 341 1845 72.0 384 2424 15.5 382 677 0.7 382 588 1.5
s713 476 173 0.1 476 176 1.3 476 104 0.1 476 89 0.4
s1196 1239 435 0.1 1239 574 1.5 1239 224 0.4 1239 244 1.2
s1238 1283 475 0.1 1282 624 1.5 1283 235 0.4 1283 255 1.1
s1423 723 150 834.0 1414 3943 76.2 1416 1049 8.8 1416 927 16.3
s1488 1444 1170 16.5 1444 593 7.5 1444 426 1.9 1444 384 3.2
s1494 1453 1245 9.6 1453 540 7.6 1453 454 2.2 1453 388 2.9
s5378 3231 912 1104.0 3639 11571 2268.0 3643 672 35.6 3643 734 43.5
b01 - - - 133 86 0.1 - - - 133 50 0.1
b04 - - - 1168 2680 10.3 - - - 1168 158 0.8
b08 - - - 463 1567 0.7 - - - 463 387 1.5
b11 - - - 1003 4883 50.0 1004 419 1.6 1004 962 2.5
b12 - - - 1488 33113 9659.0 1470 3697 27.5 1645 4464 24.2

Time reported in minutes Different platforms were used for different test generators

can be represented as a linear combination of the basis
vectors (columns of the Hadamard matrix). Experiments
conducted using this spectral technique showed that very
high fault coverage with small test sets can be rapidly ob-
tained in a few iterations. Together with the use of the
proposed fault dropping method, a considerable computa-
tion cost reduction was achieved. In circuits such as b12,
we achieved a noteworthy increase in the fault coverage
when compared to any previously reported technique.
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