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A critical challenge in neuromorphic computing is to present computationally efficient

algorithms of learning. When implementing gradient-based learning, error information

must be routed through the network, such that each neuron knows its contribution

to output, and thus how to adjust its weight. This is known as the credit assignment

problem. Exactly implementing a solution like backpropagation involves weight sharing,

which requires additional bandwidth and computations in a neuromorphic system.

Instead, models of learning from neuroscience can provide inspiration for how to

communicate error information efficiently, without weight sharing. Here we present a

novel dendritic event-based processing (DEP) algorithm, using a two-compartment

leaky integrate-and-fire neuron with partially segregated dendrites that effectively solves

the credit assignment problem. In order to optimize the proposed algorithm, a dynamic

fixed-point representation method and piecewise linear approximation approach are

presented, while the synaptic events are binarized during learning. The presented

optimization makes the proposed DEP algorithm very suitable for implementation in

digital or mixed-signal neuromorphic hardware. The experimental results show that

spiking representations can rapidly learn, achieving high performance by using the

proposed DEP algorithm. We find the learning capability is affected by the degree

of dendritic segregation, and the form of synaptic feedback connections. This study

provides a bridge between the biological learning and neuromorphic learning, and is

meaningful for the real-time applications in the field of artificial intelligence.

Keywords: spiking neural network, credit assignment, dendritic learning, neuromorphic, spike-driven learning

INTRODUCTION

Learning requires assigning credit to each neuron for its contribution to the final output (Bengio
et al., 2015; Lillicrap et al., 2016). How a neuron determines its contribution is known as the credit
assignment problem. In particular, the training of deep neural networks is based on error back-
propagation, which uses a feedback pathway to transmit information to calculate error signals in
the hidden layers. However, neurophysiological studies demonstrate that the conventional error
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back-propagation algorithm is not biologically plausible. One
problem is known as weight transport: backpropagation utilizes
a feedback structure with the exact same weights as the feed-
forward pathway to communicate gradients (Liao et al., 2016).
This symmetric feedback structure has not been proven to exist in
biological neural circuit. Several studies have presented solutions
to modify or approximate the backpropagation algorithm in a
more biologically plausible manner (Lee et al., 2015; Scellier and
Bengio, 2017; Lansdell and Kording, 2019; Lansdell et al., 2019).
In fact, active channels in dendrites can drive different forms
of spiking activities (Schmolesky et al., 2002; Larkum, 2013).
A potential solution is thus to segregate signals into dendritic
compartments, so that the credit signals can be kept separate
from other ongoing computation (Richards and Lillicrap, 2019).
Recent work shows how spiking neural networks can implement
feedback structures that allow efficient solving of the credit
assignment problem by dendritic computation (Urbanczik and
Senn, 2014; Wilmes et al., 2016; Bono and Clopath, 2017;
Guerguiev et al., 2017). Further, other work has shown that even
feedback systems that crudely approximate the true feedback
weights can solve some learning tasks (Zenke and Ganguli,
2018; Lee et al., 2020). Together these works show that the
credit assignment problem can be largely solved by biologically
plausible neural systems.

An ongoing challenge in neuromorphic computing is to
present general and computationally efficient algorithms of
deep learning. Previous works have shown how neuromorphic
approaches for deep learning can be more efficient compared
to Von Neumann architecture (Esser et al., 2015; Indiveri
et al., 2015; Neftci et al., 2017). However, these systems have
yet to be fully realized. By design, learning in neuromorphic
hardware operates under similar constraints to learning in
biological neural networks. The credit assignment problem, and
the problem of weight transport also manifest in this setting:
neuromorphic learning systems that do not require weight
transport enjoy less data transfer between components. In this
way, biologically plausible approaches to deep learning can
also be used to make neuromorphic computing more efficient.
Previous neuromorphic systems have been presented for high-
performance brain-inspired computation, providing tests of
biological learning models and real-time applications (Qiao et al.,
2015; Yang et al., 2015, 2018, 2020, 2021).

Recent proposals for solutions to the credit assignment
problem have not been considered in neuromorphic computing.
Here we present a novel dendritic event-based processing (DEP)
algorithm to facilitate the efficient implementation of the credit-
assignment task on neuromorphic hardware. The presented
DEP algorithm is inspired by the primary sensory areas of
the neocortex, providing the segregation of feed-forward and
feedback information required to compute local error signals and
to solve the credit assignment problem. In the DEP algorithm,
a binarization method and a dynamic fixed-point solution are
presented for the efficient implementation of deep learning. The
paper is organized as follows: section “Introduction” describes the
preliminaries of this study, including neuromorphic computing
and the spiking neural network (SNN) model. Learning with
stochastic gradient descent (SGD) in spiking neural networks is

introduced and explained in section “Materials and Methods.”
Section “Results” presents the experimental results. And finally,
the discussions and conclusions are proposed in sections
“Discussion” and “Conclusion,” respectively.

MATERIALS AND METHODS

Learning With Dendrites in Event-Driven
Manner
Learning needs neurons to receive signals to assign the credit for
behavior. Since the behavioral impact in early network layers is
based on downstream synaptic connections, credit assignment
in multi-layer networks is challenging. Previous solutions in
artificial intelligence use the backpropagation of error algorithm,
but this is unrealistic in the neural systems. Rather than requiring
weight transport, current biologically plausible solutions to the
credit assignment problem use segregated feed-forward and
feedback signals (Lee et al., 2015; Lillicrap et al., 2016). In
fact, the cortico-cortical feedback signals to pyramidal neurons
can transmit the necessary error information. These works
show how the circuitry needed to integrate error information
may exist within each neuron. The idea is that both feed-
forward sensory information in the neocortex and the higher-
order cortico-cortical feedback are received by different dendritic
compartments, including basal and apical dendrites (Spratling,
2002). In a pyramidal cell, distal apical dendrites are distant
from the soma, and communicate with the soma based on
active propagation using the apical dendritic shaft, driven
predominantly by voltage-gated calcium channels (Katharina
et al., 2016). Further, there exist dynamics of plateau potentials
that generate prolonged upswings in the membrane potential.
These are based on the nonlinear dynamics of voltage-gated
calcium current, and drive bursting at the soma (Larkum et al.,
1999). The plateau potentials of the apical dendritic activities can
induce learning in pyramidal neurons in vivo (Bittner, 2015).

Inspired by these phenomena, a previous study has proposed
a learning algorithm with segregated dendrites (Guerguiev et al.,
2017). Based on this work, an efficient learning algorithm for
neuromorphic learning is presented in this study. The idea
is that the basal dendritic compartment is coupled to the
soma for processing bottom-up sensory information, and the
apical dendritic compartment is used to process top-down
feedback information to calculate credit assignment and induce
learning using plateau potentials. The basic computing unit
we use on the large-scale conductance-based spiking neural
network (LaCSNN) system is based on the integrate-and-fire (IF)
principle. As shown in Figure 1, the simple spiking behaviors
of the IF neurons can be triggered by excitatory input spikes.
The new state of the neural membrane potential with an input
arriving is determined by the last updating time and the previous
state. Thus, the event-driven neuron only updates when an input
spike is received. Then the membrane potential decay after the
last update is retroactively calculated and applied. The synaptic
weight is then used to contribute to the resulting membrane
potential. A spike event is emitted when the membrane potential
exceeds a spike threshold, and then the neural activity is reset and
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FIGURE 1 | Event-driven neural computing, showing the process of synaptic weights and time affecting the neural membrane potential and the refractory period.

mutual inhibition with coupled neurons is realized. Finally the
membrane potential and spiking event are written to memory to
store the network state of the next update of neural activity.

Network Architecture With SGD
Algorithm
The network diagram utilizes the SNN model in the previous
study by Guerguiev et al. (2017) as shown in Figure 2, which
consists of an input layer with m = 784 neurons, a hidden
layer with n = 500 neurons, and an output layer with p = 10
neurons. Since our primary interests are in the realization of
neuromorphic networks, the proposed model is restricted to
discrete systems based on the Euler method, where N is the
time step for discretization. This way of representation is popular
in the hardware implementation of spiking neural networks
because of its feasibility of implementation and routing. Poisson
spiking neurons are used in the input layer, whose firing rate
is determined by the intensity of image pixels ranging from
0 to 8max. In the hidden layer, neurons are modeled using
three functional compartments, which are basal dendrites, apical
dendrites and soma. The membrane potential of the ith neuron
in the hidden layer is updated as follows:

τ
V0
i (N+1)−V0

i (N)

1T = −V0
i (N) +

gb
gl

(

V0b
i (N) − V0

i (N)
)

+
ga
gl

(

V0a
i (N) − V0

i (N)
)

(1)

where gl, gb, and ga stand for the leak conductance, the basal
dendrites conductance, and the apical dendrite conductance, and
1T is the integration step. The superscript “0,” “a,” and “b”
represent hidden layer, basal dendrite and apical dendrite. The
parameter τ = Cm/gl, is a time constant, where Cm represents the
membrane capacitance. The variablesV0,V0a, andV0b represent
the membrane potentials of soma, apical dendrite and basal
dendrite, respectively. The dendritic compartments are defined

as weighted sums for the ith hidden layer neuron as follows:


























V0b
i (N) =

m
∑

j=1

W0
ijs

input
j (N) + b0i

V0a
i (N) =

p
∑

j=1

Yijs
1
j (N)

(2)

where Wij
0 and Yij are synaptic weights in the input layer and

feedback synapses, respectively. The constant bi
0 is defined as a

bias term, and sinput and s1 are the filtered spiking activities in
the input layer and output layer, respectively. The variable sinput

is calculated based on the following equations as

s
input
j (t) =

∑

k

κ

(

t − t
input

jk

)

(3)

where tjk
input represents the kth spiking time of the input neuron

j, and the response kernel is calculated as

κ (t) =

(

e−t/τL − e−t/τs
)

2 (t)
/

(τL − τs) (4)

where τL and τs are long and short time constants, and 2

is the Heaviside step function. The filtered spike trains at
apical synapses s1 is modeled based on the same method. The
spiking activities of somatic compartments are based on Poisson
processes, whose firing rates are based on a non-linear sigmoid
function σ(.) for the ith hidden layer neuron as follows:

80
i (N) = φmaxσ

(

V0
i (N)

)

= φmax
1

1 + e−V0
i (N)

(5)

where 8max represents the maximum firing rates of neurons.

Plateau Potentials and Weight Updates
Based on the learning algorithm of Guerguiev et al., two phases
are alternated to train the network: the forward and target phases
as shown in Figure 3. In the forward phase Ii(t) = 0, while it
induces any given neuron i to spike at maximum firing rate or be
silent according to the category of the current input image when
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FIGURE 2 | The network architecture in this study. Matrices Y and W represent the feedback and feed-forward synaptic weight matrix, respectively.

the network undergoes target phase. At the end of the forward
phase and the target phase, the set of plateau potentials αt and αf
are calculated, respectively.

At the end of each phase, plateau potentials are calculated for
apical dendrites of hidden layer neurons, which are defined as
follows























τ
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i (N)
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(6)

where t1 and t2 represent the end times of the forward and target
phases, respectively. 1ts = 30 ms represents the settling time for
the membrane potentials, and 1t1 and 1t2 are formulated as
follows

{

1t1 = t1 − (t0 + 1ts)

1t2 = t2 − (t1 + 1ts)
. (7)

The temporal intervals between plateaus are sampled based on
an inverse Gaussian distribution randomly. Although the system
computes in phases, the specific length of the phases is not vital,
provided there has been a long enough time to integrate the input
currents.

Learning With Feedback Driven Plateau
Potentials
During the forward phase, an image is presented to the input layer
without teaching current at the output layer between time t0 to t1.
At t1 a plateau potential is computed in the hidden layer neurons
and the target phase begins. During the target phase the image
is also presented into the input layer that also receives teaching
current, forcing the correct neuron in the output layer to its
maximumfiring rate while others are silent. At time t2 another set
of plateau potentials in the hidden layers are computed. Plateau
potentials for the end of both the forward and the target phases
are calculated as follows







α
f
i = σ

(

1
1t1

∫ t1
t1−1t1

V0a
i (N) dt

)

αti = σ

(

1
1t2

∫ t2
t2−1t2

V0a
i (N) dt

) (8)

where 1ts represents a time delay of the network dynamics
before integrating the plateau, and 1ti = ti − (ti−1 + 1ts).
The superscript “t” and “f ” represent target and forward
phases, respectively.

The basal dendrites in the hidden layer update the synaptic
weights W0 based on the minimization of the loss function as
follows

L0 =
∣

∣

∣

∣φ0∗

− φmaxσ
(

v̄0f
)
∣

∣

∣

∣

2

2
. (9)
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FIGURE 3 | Network computing phases for learning proposed by Guerguiev et al. The green arrows represent the signal transmission from apical dendrite to soma,

and red crosses stand for the disconnection between apical dendrite and somatic compartment. The black arrows represent the transmission of spike signals

between layers.

And the target firing rate is defined as

φ0∗
i = 8̄0f

i + αti − α
f
i (10)

where the variable and are plateau potentials in the forward and
target phases. It should be noted that as long as neural units
calculate averages after the network has reached a steady state,
and the firing rates of the neurons are in the linear region of the
sigmoid function, then we have the following equation for the
hidden layer as:

φmaxσ

(

V̄0f
)

≈ φmaxσ
(

V0
)f

= φ0
f

(11)

Then the formulation can be obtained as

L0 ≈
∣

∣

∣

∣αt
− αf

∣

∣

∣

∣

2

2
. (12)

And the formulation can be described as follows






∂L0

∂W0 ≈ −kb

(

αt − αf
)

φmaxσ
′
(

V̄0f
)◦

s̄inputf

∂L0

∂b0
≈ −kb

(

αt − αf
)

φmaxσ
′
(

V̄0f
) (13)

where the constant kb is given as

kb = gb/(gl + gb + ga). (14)

In this study, 80∗ is treated as a fixed state for the hidden layer
neurons to learn. The synaptic weights of basal dendrites are

updated to descend the approximation of the gradient as follows

{

W0 → W0 − η0P0 ∂L0

∂W0

b0 → b0 − η0P0 ∂L0

∂b0

. (15)

In the target phase the activity is also fixed and no derivatives are
used for the membrane potentials and firing rates. The feedback
weights are held fixed.

Piecewise Linear Approximation (PWL)
for Digital Neuromorphic Computing
Here we simplify the above model for efficient use in
neuromorphic architectures. In order to avoid the complicated
computation induced by nonlinear functions, the PWL approach
is used in this study. Both the functionsσ(x) and σ’(x) are
modified based on the PWL method, which can be formulated
as follows

fPWL =















a1x + b1, when x ≤ s1
a2x + b2, when s1 < x ≤ s2
...

aix + bi, when x > si−1

(16)

where ai and bi are the slope and intercept of the modified
PWL function fowl, respectively (i = 1, 2,..., n). Since the range
of the segment points are constrained, an exhaustive search
algorithm is used in the determination of the PWL functions.
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TABLE 1 | Parameter values of the PWL methods.

σ(x) A b Condition

i = 1 0.0078125 0.05 x≦−3.4

i = 2 0.0625 0.24 −3.4 < x≦−1.3

i = 3 0.25 0.5 −1.3 < x≦1.3

i = 4 0.0625 0.76 1.3 < x≦3.4

i = 5 0.0078125 0.95 3.4 < x

i = 6 0 0.9999 σ(x)≦0

i = 7 0 0.0001 σ(x)≧1

σ’(x) A b Condition

i = 1 0.0078125 0.05 x≦−3.2

i = 2 0.03125 0.15 −3.2 < x≦−2

i = 3 0.0625 0.25 −2 < x≦0

i = 4 −0.0625 0.25 0 < x≦2

i = 5 −0.03125 0.15 2 < x≦3.2

i = 6 −0.0078125 0.05 x > 3.2

i = 7 0 0.0001 σ’(x)≦0

The determination of the coefficient values are based on an error
evaluation criterion as follows

CFRE =
1

n

√

√

√

√

n
∑

i=1

(

fori (i) − fPWL (i)
)2

fori (i)
2

(17)

where n represents the total sampling points, and fori represents
the original function. If the modified function cannot meet
the accuracy requirement represented by CFRE, its segment
number will be added by 1 until it can be guaranteed. Since the
multiplication operation is replaced by "adder" and "shifter" in
the proposed study, the coefficient value ai in the PWL functions
should be a power of 2 (for example: 1, 2, 4 or 0.5, 0.25, etc.). The
parameter values of the PWL methods are listed in Table 1. The
PWL functions are depicted in Figure 4.

Binarization for Filtered Spike Trains
The digital neuromorphic algorithm requires less multiplication
operations. Therefore, in this study we use the Otsu’s

thresholding method to binarize the filtered spike trains,
which can iterate all possible threshold values and compute the
expansion measure of each pixel level of the threshold (Otsu,
1978). Therefore, each pixel will fall in either foreground or
background. Firstly, separate all the pixels into two clusters based
on the threshold as follows























q1 (t) =

t
∑

i=1

p (i)

q2 (t) =

L
∑

i=t+1

p (i)

(18)

where p represents the image histogram. Secondly, the mean of
each cluster is calculated by the formulation as follows



























µ1 (t) =

t
∑

j=1

i · p (i)

q1 (t)

µ2 (t) =

L
∑

j=t+1

i · p (i)

q2 (t)

(19)

Thirdly, calculate the individual class variance as follows























λ2
1 (t) =

t
∑

i=1

[i − µ1 (t)]2
p (i)

q1 (t)

λ2
2 (t) =

L
∑

i=t+1

[i − µ2 (t)]2
p (i)

q2 (t)

(20)

Fourthly, square the difference between the means formulated as
follows

λ2
b (t) _ = λ2 − λ2

w (t)

_ = q1 (t)
[

1 − q1 (t)
]

[µ1 (t) − µ2 (t)]2
(21)

where λb, λ, and λw represent between-class variance, total
class variance and within-class variance, respectively. Finally,
the formulation can be maximized and the solution is t that is
maximizing λb

2(t).

FIGURE 4 | PWL functions in the proposed algorithms.
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Considerations for Training With Low
Bitwidth Weights
Neuromorphic hardware is largely made out of arithmetic
elements and memories. Multipliers are the most space and
power hungry arithmetic elements of the digital neuromorphic
implementation. The realization of a deep neural network is
mainly dependent on matrix multiplications. The key arithmetic
operation is the multiply-accumulate operation. The reduction of
the precision of the multipliers, especially for the weight matrix,
is vital for the efficient realization of deep neural networks.
Recent researches have focused on the reduction of model size
and computational complexity by using low bitwidth weights of
neural networks (Courbariaux et al., 2014). Other neuromorphic
hardware systems implement bistable synapses based on a 1-bit
weight resolution, which is shown to be sufficient for memory
formation (Bill, 2010). However, the models do not only use
spike timings, but also use additional hardware resources to read
the postsynaptic membrane potential (Sjöström et al., 2001).
Therefore, this study trains the proposed DEP algorithm using
dynamic fixed point representation. In dynamic fixed point, each
number is represented as follows

(−1)s · 2−FL
B−2
∑

i=0

2i · xi (22)

where B represents the bit-width, s the sign bit, FL is the fractional
length, and x the mantissa bits.

The proposed algorithm is presented in Figure 5. In the
pseudo code, the synaptic weight matrix W is the input of the
algorithm. Total_bit represents the total bit width of the fixed-
point number, and IF_bit is the integer bitwidth. The fractional
bitwidth is represented by LF_bit. The integer and fractional
parts are represented by W_IF and W_LF. The binary integer
and fractional parts are represented by W_IF_bit and W_LF_bit,
respectively. The symbol bit is represented by W_s, and R_max
defines the fault-tolerant ratio. The error rate refers to the
difference between the binary number and the original decimal
number divided by the original decimal number. If the error rate
exceeds the defined fault-tolerant rate, a specialized process will
be used for the binary number. Since the large error occurs in the
situation when the considered number is close to 0, this number
will be set to 0 if the error rate exceeds R_max. The term W is
an a∗b synaptic weight matrix to be trained. The first loop is in
the line 2. This loop is in the line 2, which is the row loop of the
matrix. The second loop is in the line 3, which is the column
loop of the matrix. There are two judgments in the proposed
algorithm. The first judgment is to determine the symbol bit. If it
is negative, then the symbol is 1. If it is positive, then the symbol is
0. The second judgment is to determine the positive and negative
when the binary number is converted to decimal number. If the
sign bit is 1, it is negative. And it is positive when the sign bit is
0. The third judgment is to consider the error rate between the
newly converted number and the original number. If the error
rate exceeds the fault-tolerant ratio, the newly converted number
will be replaced by 0 for efficient calculation on neuromorphic
systems. Finally the updated synaptic weight matrix W_new is

FIGURE 5 | Pseudocode of the algorithm for training with dynamic fixed point

representation.

output by the processing of the proposed algorithm. By using
the proposed algorithm, the memory usage on hardware can be
optimized and the energy efficiency of neuromorphic systems can
be further improved.

RESULTS

To demonstrate the effectiveness of the proposed learning
algorithm, the standard Modified National Institute of Standards
and Technology database (MNIST) benchmark is employed.
The MNIST dataset contains 70,000 28 × 28 images of
handwritten digits. The image number in the training and
testing sets are 60,000 and 10,000, respectively. The dataset
is divided into 10 categories for 10 integers 0–9, and each
image has an associated label. We trained the networks with
no hidden layer, with one hidden layer and two hidden layers
on the 60,000 MNIST training images for 10 epochs, and
tested the classification accuracy using the 10,000 image test
set. As shown in Figure 6A, the network with no hidden
layer has poor classification performance of 62.1%. In contrast,
the three-layer network with hidden layer has an accuracy of
95.1% by the 10th epoch. The proposed network can take
advantage of the multi-layer architecture to enhance the learning
performance, which is the critical characteristics of deep learning
(Bengio and LeCun, 2007). Another critical characteristic of
deep learning is the capability to generate representations,
which obtains task-related information and ignores irrelevant
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FIGURE 6 | Learning performance of the DEP algorithm. (A) The learning

accuracy across 10 epochs of training. (B) Results of t-SNE dimensionality

reduction applied to the activity patterns of the hidden layer after 10 epochs of

training.

sensory details (LeCun et al., 2015; Mnih et al., 2015). The
t-distributed stochastic neighbor embedding algorithm (t-SNE)
is used to investigate the information abstraction of the proposed
algorithm. The t-SNE algorithm can reduce the dimensionality
of data with the preservation of local structure and nonlinear
manifolds in high-dimensional space. It is a powerful approach
to visualize the structure of high-dimensional data (Maaten and
Hinton, 2008). The t-SNE algorithm is applied to the hidden
layer, which shows that the categories are better segregated with
only a small amount of splitting or merging of category clusters
as shown in Figure 6B. Therefore, the proposed algorithm has
the capability of learning the developing representations in the
hidden layer, in which the categories are quite distinct. It reveals
that the proposed algorithm can be applied in a deep learning
framework. In addition, the proposed algorithm relies on the
phenomenon of feedback alignment, in which the feed-forward
system comes to align with the feedback weights so that a useful
error signal is provided.

The proposed DEP learning algorithm in a network with
one hidden layer trained on permutation invariant MNIST is
explored, although it can be generalized to other datasets in
theory. Rather than seeking for the optimized classification
performance, the equivalent non-spiking neural networks trained
by standard BP and random BP are compared with the proposed
algorithm, with the parameters tuned to obtain the highest
classification accuracy in the current classification task. Weight
updates are conducted during each digit input into the spiking
network, which is different from the batch gradient descent
that performs weight updates once per the entire dataset. As

shown in Figure 7, the DEP algorithm requires fewer iterations
of the dataset to obtain the peak classification performance
in comparison with the two alternative methods. The reason
is that the spiking neural network with DEP algorithm can
be updated multiple times during each input, which results in
faster convergence of learning. In addition, for the equivalent
computational resources, online learning with gradient descent
strategy has the capability to deal with more data samples and
requires less on-chip memory for implementation (Bottou and
Cun, 2004). Therefore, for the same number of calculation
operations per unit time, online gradient-descent-based learning
converges faster than batch learning. Since potential applications
of neuromorphic hardware is with real-time streaming data, it is
essential for the online learning with DEP algorithm.

In order to further demonstrate the learning performance
of the proposed DEP algorithm, a comparison between the
proposed DEP algorithm with two layers and the SNN with
point LIF neuron model is presented. As shown in Figure 8A,
the learning accuracy of the SNN model with dendrites, i.e.,
the proposed DEP algorithm, is higher than the conventional
SNN with point neuron model. Besides, we further apply the
DEP algorithm in the feature detection tasks to see whether
the proposed algorithm could also learn feature detection
maps from continuous sensory streams. Previous study has
shown that SNN models can defect features from background
activities (Masquelier et al., 2008). In order to provide a good
benchmark for the proposed DEP algorithm on the feature
detection task, the ability of the DEP algorithm is examined for
feature detection tasks. In this task, there are eight categories,
and each category represents on direction, including 0◦, 22.5◦,
45◦, 67.5◦, 90◦, 112.5◦, 135◦, and 157.5◦. Each image consists
of 729 (27 × 27) pixels. Besides, 10% pixels are randomly

FIGURE 7 | MNIST classification error based on spiking neural network with

DEP learning rule and fully connected artificial neural networks with

backpropagation (BP) and random backpropagation(RBP) learning rules.
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FIGURE 8 | Learning performance by comparison and based on feature detection task. (A) Comparison between the proposed DEP algorithm with two layers and

SNN with point LIF neuron model. (B) Performance evaluation of feature detection by DEP algorithm with and without input noise, respectively.

selected to add Gaussian noise to make the data set with input
noise. Figure 8B shows the learning performance of the DEP
algorithm. It reveals that the DEP algorithm can successfully
detect feature patterns contaminated by background noise using
spike-based framework.

As shown in Figure 9, learning on neuromorphic system
can be energy efficient by using the proposed DEP algorithm,
because only active connections in the network induce synaptic
operations (SynOps) operation. In order to show the learning
efficiency, the number of multiply-accumulate (MAC) operations
using the BP algorithm is compared with SynOps number
with the proposed algorithm. This advantage is critical and
promising for neuromorphic computing because SynOps in a

FIGURE 9 | The comparisons of accuracy and SynOps between the

proposed DEP algorithm and BP algorithm on graphical processing unit

(GPU).

dedicated neuromorphic system use much less power than MAC
operations on a GPU platform. The learning accuracy of the
proposed algorithm increases quickly but the final accuracy is
lower than an ANN.

As shown in Figure 10, the response of the proposed DEP
algorithm after stimulus onset is one synaptic time constant.
It leads to 11% error and improves as the spikes number of
the neurons in the output layer increases. Classification using
the first spike induced less than 20 k SynOps events, most of
which exist between the input and hidden layer. In the state-
of-the-art neuromorphic system, the energy consumption of
a synaptic operation is around 20 pJ (Merolla et al., 2014;
Qiao et al., 2015). On such neuromorphic system, single spike
classification based on the proposed network can potentially
induce 400 pJ, which is superior to the state-of-the-art work
in digital neuromorphic hardware (≈2 µJ) at this accuracy
(Esser et al., 2016) and potentially 50,000 more efficient than
current GPU technology. In addition, an estimation of the power
consumption during training by using BP and the proposed DEP
algorithm is also presented according to Figure 9. It reveals that
about 1011 SynOps is cost by the end of 60 epochs, therefore
about 33 mJ is cost in an epoch during training. Previous
study has demonstrated that 1,000–5,000 mJ will be cost by
BP algorithm on conventional GPU platform (Rodrigues et al.,
2018). Therefore, there is a 96.7–99.3% reduction for the power
consumption by the proposed DEP algorithm during training.
The reasons for the low energy cost can be divided into three
aspects. Firstly, the segregated dendrite can generate a plateau
potential within 50–60 ms, which determines the training time of
the proposed network. The training time can be thereby reduced
in this way, which can cut down the number of spikes with the
decreasing of the training time for each image. Secondly, the
conventional BP algorithm induces a trend to make neurons
spike with maximum firing rate, and induces synchronization
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FIGURE 10 | Classification error in the proposed DEP network as a function

of the number of spikes in the output layer, and total number of synaptic

operations incurred up to each output spike.

within layers. This means a larger number of spikes. Thirdly, the
communication between layers in the proposed algorithm uses
a Poisson filter, and 8max is set to be 0.2. These results suggest
that the proposed DEP learning algorithm can take full use of
the spiking dynamics, with the learning accuracy comparable to
the spiking network that is trained specifically for single spike
recognition in previous study (Mostafa, 2017).

Figure 11 shows the distribution of spike times in the output
layer, which is the times at which the proposed SNN makes a
decision for all the 10,000 test set images. The proposed SNN
with DEP algorithm makes a decision after most of the hidden
layer neurons have spiked. The network is thus able to make
more accurate and robust decisions about the input images,
based on the plateau potentials generated by the dendrites in the
proposed DEP algorithm.

As shown in Figure 12, 30 neurons in the hidden layer are
selected randomly to explore the selectivity for 10 categories of
MNIST data set. The negative log probability for each of the 30
neurons to spike for each of the 10 categories is explored, which
means the negative log probability for a neuron to participate in
the classification of a specified category. Probability is calculated
from the response of the SNN to the 10,000 test digits. It reveals
that some neurons are highly selective, while most of the neurons
are more broadly tuned. Some of the neurons are mostly silent,
but all the neurons in the SNN model contribute to at least one
category of classification with the 10,000 test digits. In other
word, neurons are typically broadly tuned and contribute to the
classification of more than one categories.

We further investigate the necessary bit widths of the fixed-
point and dynamic fixed-point, respectively. The bit width
of the integer part using the fixed-point calculation is set
to 8 to avoid the overflow problem during computation. In
contrast, the dynamic fixed-point is not required to determine
the bit width of either integer or fractional part. As shown
in Figure 13, the fixed-point representation of the fractional
part requires 14 bits to obtain a satisfied learning performance

FIGURE 11 | Histograms of spike times in the output layer spike across the

10,000 test set images.

that exceeds 90%. Therefore, the satisfied total bit width for
fixed-point representation is 22 bit (8 bit for integer part
and 14 bit for fractional part). The dynamic fixed-point
representation just needs 16 bits to realize high-performance
learning. Therefore, the dynamic fixed-point representation
in the proposed algorithm provides an efficient approach to
reduce the computational hardware resource cost and power
consumption for neuromorphic computing.

Figure 14 shows the digital neuromorphic architecture
at the top level, which contains an input layer, a hidden
layer with five physical neural processors, and an output
layer with 10 physical neural processors. The input layer and
hidden layer are all implemented to use time-multiplexing. The
global counter processors the time-multiplexed input neurons
and hidden layer neurons sequentially. The FSM module
represents the finite-state machine which controls the timing
procedure of the whole neuromorphic system. Three parts
are contained in the neuron processor in the hidden layer,
which are apical dendrite unit, soma unit and basal dendrite
unit. The neuron processor in the output layer consists of
two parts that are apical dendrite unit and soma unit. The
input of the teaching current I(t) is also mastered by the
FSM. The green arrows represent the synaptic connections with
learning mechanisms, and black arrows describe the invariant
synaptic coupling.

The detailed description of the FSM is shown in Figure 15A.
There are eight states in the FSM diagram, including idle,
first time delay, forward phase, first plateau potential (PP)
computation, second time delay, target phase, second PP
computation and weight updating. By using the FSM controller,
the digital neuromorphic system can operate in high performance
with definite timing sequence. Figure 15B depicts the internal
architecture of the time-multiplexed system. It consists of a
physical input neuron, two physical hidden neurons, a global
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FIGURE 12 | Selectivity and tuning properties of 30 randomly selected hidden neurons in the proposed SNN network with DEP algorithm. It is plotted by heat map

with color called YlOrRd, whose color gradually changes across yellow, orange, and red.

FIGURE 13 | The learning accuracy based on fixed-point and dynamic fixed-point representations. (A) The learning accuracy based on fixed-point representation of

fractional part with different bitwidth. (B) The learning accuracy based on dynamic fixed-point representation with different bitwidth.

counter, and two weight buffers for each physical hidden neuron.
The global counter processes the time-multiplexed physical input
and hidden neurons sequentially. The weight buffers store the
synaptic weights of the physical neurons. The input digit signals
remains available until all the time-multiplexed physical neurons
finish their computation. We can also employ the pipeline
architecture, by which the maximum operating frequency of the
neuromorphic system can be further enhanced.

DISCUSSION

This study presents a multi-layer feed-forward network
architecture using segregated dendrites and the corresponding
two-phase learning scheme. Specifically, a piecewise linear
approximation and a dynamic fixed-point representation are
first introduced in the dendritic learning framework for cost
and energy efficient neuromorphic computing. It relies on the
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FIGURE 14 | Top-level entity for the neuromorphic architecture of the proposed learning algorithm.

FIGURE 15 | Descriptions of the digital neuromorphic architecture. (A) The FSM diagram. (B) The internal architecture of the time-multiplexed system.

feedback alignment phenomenon, in which the feed-forward
weights are aligned with the feedback weights to provide useful
error signals for learning. The model is optimized for the efficient
neuromorphic realization by using the PWL approximation,

as well as the binarization for synaptic events. A dynamic
fixed-point representation technique is further presented to
optimize the proposed DEP algorithm. It reveals that the
proposed algorithm with hidden layers can induce higher
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learning performance, which means that it contains the deep
learning capability. In addition, the energy efficient property is
proven by comparison with the conventional artificial neural
network with BP algorithm. The reasons for this result are
likely due to two reasons. First, the gradient descent algorithm
suffers from the local optimization problem. When the local
optimization is realized, the global optimization cannot be
obtained. Spikes emanating from error-coding neurons will be
so sparse toward the end of the training that it will prevent the
successful adjustments of the weight. The low learning rate will
aggravate this problem. A scheduled adjustment of the error
neuron sensitivity may solve this problem. Second, the proposed
algorithm has not fully utilized the nonlinear dynamics of the
neural dendrite. The dynamics of the dendritic compartment
have the capability of predicting the dynamics, which may help
to improve the performance when considering the dendritic
prediction feature. These two methods of modifications, as well
as more complicated learning rules, such as momentum or
learning rate decay, are left for future work. The output layer
neurons spike after the spiking activities of the most neurons
in the hidden layer, thus induce a more accurate and robust
classification results. The broadly tuned property of the neurons
in the hidden layer of the proposed SNN shows that the proposed
DEP algorithm can engage each neuron to participate in the
classification task. In addition, it shows the superior performance
by using the proposed dynamic fixed-point representation by
comparing it with the traditional fixed-point computation,
which shows that the proposed method can reduce the hardware
resource cost considerably. Therefore, our study demonstrates
a biologically plausible learning algorithm in a neuromorphic
architecture, and realizes the efficient learning by using the
DEP approach. In summarize, the proposed DEP algorithm
has four aspects of advantages. Firstly, the proposed DEP
algorithm cost less SynOps number in comparison with the
conventional BP algorithm as shown in Figure 8. It means less
power consumption can be realized on neuromorphic hardware.
Secondly, faster learning speed can be achieved by the DEP
algorithm shown in Figure 7, which is meaningful for on-chip
online learning. Thirdly, the solution of credit assignment by
dendrites is a vital mechanism for learning in human brain.
Therefore, the proposed DEP algorithm is more biologically
plausible, which is also a significant ambition of neuromorphic
computing. Fourthly, the proposed DEP algorithm is more useful
for the online learning with network architecture using more
than one layer. As shown in Figure, single point neuron model is
not suitable for learning with gradient descent when the network
layer number increasing to two.

In the field of neuromorphic computing, neuromorphic
systems with on-line learning ability provide a platform to
develop brain-inspired learning algorithms, which strive
to emulate in digital or analog technologies human brain
properties. Online learning requires to be realized based on the
input of asynchronous and event-based sequential data flow.
Since neuromorphic computing supports continual and lifelong
learning naturally, this study presents a SNN model that can deal
with the asynchronous event-based spatio-temporal information,
which is applicable for neuromorphic systems directly. It provides
a novel view for neuromorphic online learning and continual

learning, which is meaningful to bridge the gap between
neuroscience and machine intelligence. Previous studies have
presented a number of neuromorphic systems equipped with
synaptic plasticity for general-purpose sensorimotor processors
and reinforcement learning (Neftci, 2013; Qiao, 2015; Davies
et al., 2018). However, current neuromorphic computing ignores
the learning capability to further improve the deep learning
performance. Inspired by other neuromorphic studies, more
low-power and high-speed techniques can be considered in the
future work to obtain a better learning effect.

Previous studies have proposed new algorithms, including
attention-gated reinforcement learning (AGREL) and attention-
gated memory tagging (AuGMEnT) learning rules, explaining
the mechanism of the reinforcement learning optimization in
a biologically realistic manner using synapses in deep networks
(Roelfsema and Ooyen, 2005; Rombouts et al., 2015). The
feedback coupling strength is proportional to the feed-forward
strength in these models, which means the learning principles
are computationally equivalent to the error back-propagation.
It indicates the human brain can solve the credit-assignment
problem in a manner that is equivalent to deep learning.
However, AGREL algorithm uses the top-down probabilistic
model to compute rather than the description and representation
of learning from the neural dynamics point of view. There is also
no bottom-to-top modeling using spiking neurons in AuGMEnT
algorithm. Thus, these two algorithms cannot be employed in
neuromorphic computing. Interestingly, we can combine these
two algorithms with the presented DEP algorithm to improve the
learning performance further.

Efficient learning to solve the credit assignment problem is
helpful for the performance improvement of deep learning. This
study presents the DEP algorithm for neuromorphic learning,
which is meaningful for the communities of both neuromorphic
engineering and deep learning. Recently, neuromorphic
computing has wide applications. Neuromorphic vision sensors
capture the features of biological retina, which has changed the
landscape of computer vision in both industry and academia
(Chen et al., 2019; Zhou et al., 2019). Although neuromorphic
systems with deep learning capability are still in research phases,
the development of neuromorphic computing is calling for more
biologically realistic processing strategies. Looking forward,
with such systems with learning ability, the bridges between
machine and biological learning can translate into adaptive and
powerful embedded computing systems for a wide category of
applications, such as object recognition, neuro-robotic control,
and machine learning.

CONCLUSION

This paper presented a biologically meaningful DEP algorithm
with dynamic fixed-point representation, as well as its
digital neuromorphic architecture on LaCSNN. The PWL
approximation method and the binarization approach for
synaptic events are used in the proposed algorithm for the
optimization of efficient implementation. Experimental results
show that the learning performance of the proposed DEP
algorithm can be improved by adding a hidden layer, which
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shows the deep learning capability of DEP. Different levels
of dendrite segregation will influence the learning accuracy
of the network, and the manners of the synaptic feedback
connections also play vital roles in the learning performance. By
using the fixed-point representation in this work, the hardware
resource cost can be cut down by reducing the bit width of the
computational elements. This study provides a bridge between
the biological learning and neuromorphic learning, which can
be used in the applications including object recognition, neuro-
robotic control, and machine learning.
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