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Figure 1: Architecture of the proposed system for evaluation of spike encoding methods. The feature extraction module (left)
comprises either a spectrogram or bio-inspired cochleagram. Each frequency channel is then encoded into spikes with the
encoding method under study in the Spike Encoding module (center). The encoded spikes are then converted for compatibility
with a conventional reference CNN that performs the final classification (right).

ABSTRACT

Spiking Neural Networks are known to be very effective for neuro-
morphic processor implementations, achieving orders of magnitude
improvements in energy efficiency and computational latency over
traditional deep learning approaches. Comparable algorithmic per-
formance was recently made possible as well with the adaptation
of supervised training algorithms to the context of spiking neural
networks. However, information including audio, video, and other
sensor-derived data are typically encoded as real-valued signals
that are not well-suited to spiking neural networks, preventing
the network from leveraging spike timing information. Efficient
encoding from real-valued signals to spikes is therefore critical
and significantly impacts the performance of the overall system.
To efficiently encode signals into spikes, both the preservation of
information relevant to the task at hand as well as the density of
the encoded spikes must be considered. In this paper, we study four
spike encoding methods in the context of a speaker independent
digit classification system: Send on Delta, Time to First Spike, Leaky
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Integrate and Fire Neuron and Bens Spiker Algorithm. We first show
that all encoding methods yield higher classification accuracy using
significantly fewer spikes when encoding a bio-inspired cochlea-
gram as opposed to a traditional short-time Fourier transform. We
then show that two Send On Delta variants result in classification
results comparable with a state of the art deep convolutional neural
network baseline, while simultaneously reducing the encoded bit
rate. Finally, we show that several encoding methods result in im-
proved performance over the conventional deep learning baseline
in certain cases, further demonstrating the power of spike encoding
algorithms in the encoding of real-valued signals and that neuro-
morphic implementation has the potential to outperform state of
the art techniques.
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1 INTRODUCTION

Spiking Neural Networks (SNN) encode information in an event-
driven fashion using spikes that are dynamically transmitted be-
tween neurons in the network. Recent work in neuromorphic com-
puting has demonstrated that SNNs can result in significantly lower
power requirements compared to traditional state of the art deep
learning-based approaches [5]. However, signals typically processed
using neural networks including audio and video are encoded and
stored as real-valued signals that are incompatible with SNNs. It is
therefore necessary to encode these signals as spike trains to en-
able subsequent processing with an SNN. This conversion process,
referred to as spike encoding, is therefore crucial and has an impact
on the overall performance of the system.

A variety of spike encoding methods have been proposed in
the literature covering a range of applications in image and signal
processing [9, 15, 21]. For example, Guo et al. [7] compare the Time
to First Spike (TTFS), Phase, and Burst spike encoding methods in
the context of MNIST handwritten digits classification. In the image
classification setting, Kheradpisheh et al. [11] propose a backpropa-
gation algorithm to train an SNN on the Caltech face/motorbike and
MNIST datasets using a TTFS encoding. In the context of biosignal
processing, Garg et al. [6] study the impact of using Send on Delta
(SOD) encoding for classification of Electromyography (EMG) sig-
nals. In Petro et al. [20], synthetic signals are encoded into spikes
and then decoded, with the reconstruction quality evaluated for
Bens Spiker Algorithm (BSA) and compared with 3 other temporal
contrast encodings. To our knowledge, few authors have compared
spike encoding methods for speech. The work by Pan et al. [18, 19]
studies spike encodings for speech recognition using the TIDIGITS
dataset [12]. They compare Phase, Latency, and Threshold encoding
methods and report that Threshold encoding provides the highest
classification accuracy.

The choice of optimal spike encoding method is dependent on
the problem setting, as reported previously in [20]. The complexity
of the encoding algorithm and any required parameter optimization
need to be taken into account in selecting an encoding method as
well. Furthermore, spike encoding methods have been shown to
provide significant data compression, for example as demonstrated
in [22] in the context of functional magnetic resonance imaging
(fMRI) cognitive state discrimination task. Decreasing the density
of encoded spikes results in reduced activity in the subsequent SNN
processing, lowering its energy consumption and further magni-
fying the gains in energy efficiency provided by SNNs. Therefore,
the resulting encoded spike density is an important consideration
in selecting an optimal encoding method as well.

In this work, we aim to gain insights into the impact of the
choice of spike encoding method and their resulting spike densities
in the context of a speaker independent digit classification task.
We study four popular spike encoding methods in terms of i) the
generated spike densities, and ii) the resulting classification accu-
racy. By varying the parameters of the encoding methods, we are
able to determine optimal points of operation that simultaneously
maximize classification accuracy while minimizing the number of
generated spikes. To our knowledge, this kind of work has not yet
been reported in the literature. We demonstrate that it is possible to
reach state of the art classification accuracies in combination with a

Yarga, Rouat and Wood

reduced spike density for speech classification using this approach.
Finally, we provide an analysis of the impact of the parameters of
each encoding method that affect the resulting spike density.

2 SYSTEM ARCHITECTURE

A block diagram of the overall system architecture is shown in Fig. 1.
The system comprises 3 modules: a feature extraction module (2.1),
a spike encoding module (2.2), and classification module (2.3). We
proceed to describe each of these modules in detail below.

2.1 Feature Extraction

The first step of the system is to extract relevant features from the
speech signals. We consider two time-frequency transforms here,
including a Fourier transform-based spectrogram and a bio-inspired
cochleagram allowing us to explore the impact of auditory system-
inspired time-frequency processing and its affect on the various
spike encoding methods.

2.1.1  Spectrogram. The spectrogram feature extraction method
consists of a short-time Fourier transform (STFT) with a sliding 5 ms
Tukey window and a 0.5 ms frame advance. The 5 ms window size
was chosen to capture speech characteristics relevant in the context
of a speech recognition task. We retain the first 24 frequency points
of the STFT transform, such that the resulting spectrogram covers
the frequency range from 0 Hz to 4600 Hz.

2.1.2  Cochleagram. The cochleagram feature extraction method
is based on an efficient bio-inspired model of the time-frequency
processing performed by the auditory system [2], with source code
provided online!. Due to the speech recognition task we study
here, the time averaging step this model applies is not used in our
experiments as it leads to loss of relevant information.

The cochleagram comprises a bank of 24 cochlear filters with cen-
ter frequencies ranging from 100 Hz to 4500 Hz. For each frequency
channel, the envelope is then computed followed by a downsam-
pling operation by a factor of 10. Compression is then applied by
taking the square root of the downsampled envelopes. Finally, the
last processing step involves performing lateral inhibition between
frequency channels, followed by half-wave rectification.

After the time-frequency transforms are computed, both the
spectrogram and cochleagram are downsampled by a factor of 2
yielding an equivalent sampling frequency of 1000 Hz. In the final
time-frequency representation, features extracted for each input
signal are encoded using 24 frequency points with the number of
windows equal to the number of samples of the input signal divided
by 20.

2.2 Spike Encoding

Prior to being converted into spikes, the time-frequency features
are normalized between 0 and 1. For a given utterance, an amplitude
of 1 is attributed to the sample that has the maximum amplitude in
the overall representation across all frequency channels and time
windows. Each frequency channel is then encoded using the spike
encoding method under study, where the various encoding methods
are presented in detail in Section 3. After the spike conversion pro-
cess, spike trains are encoded via the Address Event Representation

!https://github.com/NECOTIS/Adeli-Timbre-Hierarchical-Model
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(AER) protocol [10], where each spike is represented using a pair of
values consisting of the corresponding channel number and the
time instant of its occurrence.

2.3 Classification

In the context of spoken digit classification, Convolutional Neural
Networks (CNN) have been shown to yield very high classifica-
tion accuracy when compared to other classification methods [3].
Therefore, we chose this classifier as our reference system. We
reproduced the architecture presented in [16], consisting of 4 con-
volution layers each comprising 32 convolution filters of size 3x3
followed by a Rectified Linear Unit (ReLU) activation function and
Average Pooling. The architecture also contains dense and dropout
layers.

To perform classification with a conventional CNN, encoded
spike trains need to be converted into real-valued signals. This is
done for each frequency channel using a finite impulse response
(FIR) averaging filter with a 5 ms impulse response. As the reference
CNN was initially designed for the Dynamic Audio Sensor (DAS) [4]
which uses 64 channels, we zero-pad the decoded spectrograms and
cochleagrams in time and frequency/channels to reach the same
duration and number of channels compatible with the reference
CNN.

3 ENCODING METHODS

In this section, we present the spike encoding methods that encode
the time-frequency representations presented above into spikes,
namely Send on Delta (SOD), Time to First Spike (TTFS), Leaky
Integrate and Fire Neuron (LIF) and Bens Spiker Algorithm (BSA).

3.1 Send on Delta

The Send on Delta (SOD) spike encoding method encodes signifi-
cant amplitude variations in either positive or negative directions
as spikes [15]. We present the SOD algorithm in Alg. 1 and illus-
trate it schematically in Fig. 2. The encoding process consists of
iterating over the input signal sample by sample and generating
a spike when a significant amplitude variation is observed. The
variation is computed by taking the difference between the current
signal value and the amplitude at which the previous spike was
generated. A variation is considered significant when its absolute
value is greater than or equal to a predetermined threshold Agop.
The spikes generated for positive variations (increase) are stored
separately from those generated for negative variations (decrease),
resulting in 48 spike trains given a time-frequency representation
of 24 frequency points. We study two additional SOD variants in
our experiments for which we retain only the signal increases with
SODoN, or the signal decreases with SODQFE.

3.2 Time to First Spike

The Time to First Spike (TTFS) spike encoding method is a time-
based method typically used to encode images [8, 9]. In the context
of image processing, TTFS encodes each pixel as a spike that occurs
sooner or later depending on the pixel’s value. High intensity pixels
are encoded with spikes that arrive earlier while low intensity pixels
are represented by spikes that arrive later. In this work, we derive
a modified TTFS encoding that does not encode small amplitude
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Algorithm 1 SOD

I« 0
tref < 0
while t < N do
if y[t] — y[tref] = Asop then
SODoN <t
bref < 1
else if y[t.f] — y[t] > Asop then
SODQFp <t
Lref <= 1
end if
te—t+1
end while

a) Input Signal /
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¢) Offset Spike Train \ | |||

»

Figure 2: SOD encoding method. The instants when the vari-
ation of the signal’s amplitude is greater than or equal to
a predefined threshold Agop are marked. An upward vari-
ation corresponds to an onset, while a downward variation
corresponds to an offset, resulting in the SODgyN and SODggF
spike trains respectively.

samples and comprises a logarithmic scale. Samples y[n] for which
y[n] < Artrs are ignored (see Fig. 3). For a given sample index n,
we define the function g(n) in Eq. (1) that is equal to the shifted
time instant associated with the sample y[n],

log(y[n]) )T
log(Artrs) ) °

where T; = 1/f; is the sampling period where the sampling fre-
quency f; after extraction of the time-frequency representations is
1000 Hz in our experiments. We note that g(n) encodes the exact
instant when the associated spike occurs. Therefore, unlike the
other spike encoding methods presented here, the instant at which
the spike occurs is continuous.

gm) = (n . 1)

3.3 Leaky Integrated and Fire

The Leaky Integrated and Fire (LIF) neuron method is a commonly-
used approach to encode real-valued signals into spike trains. This
method is biologically plausible. For a given frequency channel
index i, the signal y;[n] is provided as input current to an LIF neu-
ron with the same index. Spikes are generated when the neuron’s
potential reaches a pre-determined threshold Apr. This process is
illustrated in Fig. 4. We note that each LIF neuron i has its own
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Figure 3: TTFS encoding method. A spike is generated for all
samples with values greater than A ... Larger amplitude
values result in spikes generated sooner, while smaller am-
plitudes result in spikes generated later. For example, the
corresponding spike for y[0] occurs at time g(0), while no

spike is generated for y[2] because it is less than A pc.

time constant 7;, while the spike threshold Ay is the same for all

neurons.
The differential equation of neuron i is defined as,
T

where V; represents the neuron’s membrane potential and I; rep-
resents its current, i.e. I; = y;[n]. We note that this is a simplified
version of the standard LIF neuron where the resting potential is
set to 0 V and the membrane resistance is set to 1 Q.

Input Signal: Current Spike Train

Figure 4: LIF encoding method. The input signal is intro-
duced into the neuron as current, which leads to generation

of spikes according to its differential equation defined in Eq.

).

3.4 Bens Spiker Algorithm

Bens Spiker Algorithm (BSA) is widely used in time series encoding
[17, 21, 23] and belongs to the family of so-called stimulus estima-
tion methods. These methods are based on the principle that the
stimulus of a biological neuron can be estimated from a sequence
of spikes by filtering it linearly. BSA involves convolving a finite
impulse response (FIR) filter with the input signal and generating
a spike when the difference between the filtered signal and the
input signal is less than a defined threshold. An important chal-
lenge in using this method therefore lies in the choice of both the
filter parameters and the threshold value. The typical approach is
to perform a grid search by using the Signal to Noise Ratio (SNR)
as error metric [20].
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4 EXPERIMENTS

4.1 Dataset

We use the TIDIGITS dataset [12] to compare the spike encoding
methods presented above. TIDIGITS is a collection of spoken ut-
terances consisting of 11 classes, 0-9 and “oh”, sampled at 20 kHz.
While the dataset includes utterances from children and adults,
we focus on single digit utterances pronounced by adult speakers,
representing 2464 training examples and 2486 test examples. For
comparison purposes, we also use the neuromorphic N-TIDIGITS
dataset [13] that was created by pre-encoding the same subsets of
TIDIGITS as above using the Dynamic Audio Sensor (DAS) [14].

4.2 Metrics

The metrics we use for evaluation of the spike encoding methods
consist of the classification accuracy and the encoded spike density.
Classification accuracy represents the percentage of examples in
the test set that were correctly classified. The spike density is de-
fined for a given speech signal as the ratio between the number of
generated spikes and the number of samples y[n] of the channels
of the spectro-temporal representations, i.e. the spectrogram or
cochleagram, just before spike encoding. The spike density is then
averaged over all examples in test set. In the experiments below, we
compare the classification accuracy of each method over a range of
different spike densities, where the aim is to maximize classification
performance while simultaneously maximizing energy efficiency
by minimizing spike density. So we assume that low spike density
leads to low energy consumption.

4.3 Experimental Process

Each spike encoding method has parameters that control the result-
ing encoded spike density. We aim to determine the relationship
between spike density and resulting classification accuracy for each
of the encoding methods. Preliminary exploration suggested that
spike densities less than 30% were sufficient to capture a wide range
of classification accuracies for all encoding methods, with the maxi-
mum for each method falling well within this range. Each method’s
parameters are chosen as follows to uniformly cover the desired
range of encoded spike densities of 0 to 30%.:

o SOD: The threshold parameter Agop values are chosen such
that they cover the interval [1071, 1074].

o TTEFS: The threshold parameter ArTpg values are chosen to
cover the interval [3.1071, 1074].

o LIF: Time constants 7; are inversely proportional to the cen-
ter frequency of channel i. They were empirically chosen in
the range [20, 40] ms with the tradeoff of achieving good
classification accuracy with the fewest number of spikes.
The threshold parameter Arr is the same for all channels
and covers the interval [1071, 107°].

e BSA: We calculated the optimal filters for BSA using 10% of
the training set, based on minimizing the SNR.

In addition to these experiments, a No Encoding classification
accuracy was calculated by performing the experiment directly on
the time-frequency representations (spectrogram or cochleagram),
thus bypassing the spike encoding stage shown in Fig. 1. The net-
work is therefore trained and evaluated on the output of the raw
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b) Cochleagram

100
2o y Ny Y
lr —0"\'3.:\ T
954 ¢+ F oS Se<
‘l i / b 4 ~e
1
"/
90 o 4 1 ;
1
[ ]
i
[ | i
85 i —— No Encodin
K &
+| 4 -e- LIF
1
) ; SOD
8041 ~e- SOD
1 l’ OFF
H ! -e- SODgyn
75 1 i -e- TTFS
" I # BSA
f DAS
70 L . . . . .
0 5 10 15 20 25 30
Spike Density (%)

Figure 5: Variation of classification accuracy according to spike density. The No Encoding label defines the classification accu-
racy which is obtained without encoding. The DAS approach includes its own feature extractor and encoding method and is

cited here for comparison purposes.

spectrogram or cochleagram outputs. This allows us to evaluate the
potential loss of information required for classification due to the
spike encoding methods. For all experiments, the CNN was trained
over 50 epochs using the Adam optimizer with a weight decay of
0.0, a learning rate of 0.001, and a batch size of 8.

5 RESULTS

In Fig. 5, we present the experimental results demonstrating the
effect on classification accuracy for the different spike encoding
methods as the spike density is varied as described above. The re-
sults are shown for the two feature extraction methods presented in
2.1, namely the spectrogram and the bio-inspired cochleagram. We
note that for all encoding methods and for both feature extraction
methods, the classification accuracies follow the same general trend
as the spike density is varied from low to high. As the encoded spike
density increases, we observe three major stages: a rapid growth, a
stagnation, and a decay.

Comparing the results for the spectrogram (Fig. 5a) and the
cochleagram (Fig. 5b), we see that the encoding algorithms tend
to generate notably more spikes for the spectrogram than for the
cochleagram. This trend is evidenced by the curves being shifted to
the right for the spectrogram when compared to the cochleagram.
This is likely due to the cochleagram’s lateral inhibition module that
allows competition between neighboring channels [2], resulting in
the suppression of channels with low energy.

For each method, the experiments for which the parameters gave
the best classification accuracies in Fig. 5 were repeated 6 times by
varying the random seed used to train the CNN in order to estimate
the mean and standard deviation. The results are reported with
corresponding spike densities in Table 1. The classification accuracy
comparison between these methods are presented in Fig. 6. The

No Encoding classification accuracy of the cochleagram (97.3%) is
approximately equal to that of the spectrogram (97.4%). However,
with the cochleagram there are more methods that achieve the No
Encoding classification accuracy. Moreover, with the cochleagram
the variants of SOD reach the first quarter of a circle (Fig. 5b),
corresponding to less than 5% of classification errors using less
than 5% of spike density. Finally, with the exception of BSA, all the
methods yield a higher maximum classification accuracy with the
cochleagram than with the spectrogram (Fig. 6).

The BSA method performs better with the spectrogram than
the cochleagram by almost 10% (95.86% vs. 85.95%). This can likely
be explained by the fact that in the cochleagram, the frequency
scale is nonlinear [2]. In fact, in the bank of cochlear filters used,
the high frequency filters have larger bandwidths. As a result, the
filters used by BSA to estimate the high frequency stimuli are less
precise. All methods achieve maximum classification accuracy with
less than 30% spike density. Also the studied methods result in
better maximum classification accuracy than that of the DAS N-
TIDIGITS approach. The SODoN and SODgFr variants offer a good
compromise, yielding similar classification accuracies to SOD with
almost 2 times fewer spikes. In addition, SOD and LIF achieve higher
classification performance using cochleagram feature extractor
than the previously reported state of the art (97.4%) which uses a
Biologically plausible Auditory Encoding (BAE) as encoding scheme
and an SNN classifier with Membrane Potential Driven Aggregate-
Label Learning (MPD-AL) as learning rule [18].

Finally, Table 2 reports a comparison of classification results
with previous TIDIGITS speech recognition approaches from the
literature. We note that while results achieved in this work are
generally comparable to those in the literature, the LIF method we
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Table 1: Best classification accuracy and corresponding
spike density obtained for each spike encoding method

Spectrogram Cochleagram

Accuracy Spike Density  Accuracy Spike Density

(%) (%) (%) (%)
No Encoding 97.44 - 97.30 -
SOD 93.71 29.81 97.45 14.09
SODoN 95.74 07.65 97.40 06.96
SODQFr 93.44 09.80 96.90 04.08
TTES 93.95 08.94 97.14 12.02
LIF 97.42 08.46 98.12 09.03
BSA 95.86 03.20 85.95 02.02
Il Spectrogram Cochleagram
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Figure 6: Best classification accuracy for each encoding
method

present yields the highest classification accuracy reported thus far
of 98.1%.

6 DISCUSSION

6.1 Cochleagram, SODoN & SODoFr, LIF, Curves
trend

Cochleagrams shift upward most classification accuracies in com-
parison with the Fourier-based spectrogram. Only the reference
system (No Encoding) has the same accuracies for either the spectro-
gram or cochleagram. Cochleagrams allow a spike density reduction
for all methods. Moreover, it allows the encoding methods (except
BSA) to reach the No Encoding classification accuracy (97%), sug-
gesting that all relevant information required for classification with
the CNN is preserved after spike encoding of the cochleagram.

With the cochleagram, SODoN and SODgpf are the most effi-
cient encodings, providing conservation of relevant information
for classification with the CNN and with a reduced spike density.
While achieving the No Encoding classification accuracy (97%), they
only use 7% and 4% spike densities respectively.
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LIF was found to be the most robust method, as it succeeds
in achieving the No Encoding classification accuracy for both the
spectrogram and cochleagram representations. It also achieves the
best classification accuracy over all experiments (98.12%).

In Fig. 5, it is remarkable that all the curves follow the same
trend as mentioned in the previous section. The general trend can
be divided into three major stages and our hypotheses are as follows,

e Rapid growth: the spike encoding methods succeed in en-
coding increasing amounts of relevant information and the
classifcation rate increases rapidly.

e Stagnation: the information necessary for classification has
already been encoded, and since no useful information is
added, the classification accuracy no longer increases.

e Decay: the encoding methods encode information not rele-
vant to the classification which therefore acts like noise thus
leading to a decrease in classification accuracy.

Table 2: TIDIGITS Classification Accuracy Comparison Be-
tween Proposed Method and Existing Methods in the Liter-
ature

Method Accuracy (%)
Cochleagram - LIF - CNN (this work) 98.1
Cochleagram - SOD - CNN (this work) 97.4
Cochleagram - TTFS - CNN (this work) 97.1
BAE - MPDAL (Pan, Zihan, et al. [18]) 97.4
AER silicon cochlea - SVM (Abdollahi & Liu [1]) 95.6
AMSI1c - GRU RNN (Anumula, Jithendar, et al. [3]) 91.1

6.2 Bit Compression is Feasible

In general, spike encoding makes it possible to reduce the volume
of information while preserving information relevant for classifi-
cation. This allows the encoding methods to provide a significant
reduction in terms of bit rate. It would be possible to estimate the
bit compression ratio (BCR) as defined in [22] for each encoding
method depending on the processor and hardware to be used. For
the TIDIGITS database, for example, the sampling frequency f; is 20
kHz and samples are encoded with a bit depth of 32 bits, resulting
in an initial bit rate of 640 kbps. With the configuration that we
have in this setup (channel outputs at 1 kHz, with 24 channels and
a 16 bit AER representation of spikes), BCR is on the order of 0.06
for an average spike density of 10%. Note that 10% spike density
is reasonable, as the best performance was obtained with smaller
spike density. In the context of speech recognition, however, it
is common to use features based on MFCC coefficients and their
delta representations. For example, given an 32-dimensional MFCC
vector transmitted every 5 ms, with real values encoded with a bit
depth of 32 bits, our resulting BCR would instead be on the order
of 0.19.
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6.3 Specific Encoding Method Characteristics
and Constraints

Each spike encoding method has characteristics and constraints
that are important to consider when interpreting the results and
selecting a desired method.

e SOD has a single parameter which makes it simple to op-
timize. Its algorithm is also simple and straightforward to
implement. However, it could be improved by using a dif-
ferent threshold per channel. The encoded information is
dependent on the variation of the gross envelope of the sig-
nal. It would not be possible to easily and exactly reconstruct
the signal, but it is sufficient to retain features for classifica-
tion with a CNN.

o LIF has two parameters which makes its optimization more
difficult. However, it is biologically plausible and easy to im-
plement. The encoded information is related to a short-term
integration of the signal. It would not be possible to easily
and exactly reconstruct the signal, but it is also sufficient to
retain features for classification with a CNN.

o TTES has one parameter and is therefore easy to optimize. Its
implementation is also simple. The encoded information is a
quasi-direct estimation of the log signal (a part from the fact
that we use a small threshold). It would therefore be possible
to easily and quasi exactly reconstruct the signal. But the
classifier which is used here (Spike decoding + CNN) is not
able to exploit the timing of the spikes very well. With the
use of the cochleagram, TTFS is able to beat the reference
system (but with the cost of a higher spike density). This is
not the case with the spectrogram which removes too much
of the time encoded features of speech. We suspect that the
classifier we used (Spike decoding + CNN) may be biasing
the results here.

e BSA is more complex than the other methods and more
difficult to implement. It has three parameters, making it
difficult to optimize as well. However, by using a subset of the
dataset, we can find the optimal parameters before carrying
out classification. As was the case with TTFS, the classifier
(Spike decoding + CNN) potentially biases the results for BSA
as well. BSA was designed for signal encoding and decoding
with minimal reconstruction error.

Given that our experimental setup was designed to compare spike
encoding methods for speech recognition, we note that SOD and LIF
are destructive in the sense that they provide very high compression
at the expense of not being able to reconstruct the input signal®.
Despite reducing the amount of information, they preserve and
even enhance features meaningful for speech recognition. As such,
they represent features that are potentially useful not only for SNNs,
but for more conventional deep neural networks including CNNs
as well.

21t would be possible to reconstruct the original signal, however this would require a
population of neurons/filters instead of a single one.
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6.4 Dependence on datasets, on the classifier
and future work

We provided a comparison of spike encoding algorithms using the
standard TIDIGTS speech classification dataset consisting of clean,
isolated speech signals. We therefore cannot guarantee that the
results are generalizable to more complex datasets. Future work
will involve a detailed analysis of the impact of additive and convo-
lutive noise on the resulting classification accuracy of the various
spike encoding methods. We will also analyze the energy consump-
tion of the classification phase in order to thoroughly assess the
impact of the encoding step in the overall classification system. Fi-
nally, we will replace the classification with an SNN, resulting in an
end-to-end spiking solution suitable for integration on a neuromor-
phic hardware platform. This will remove some of the biases that
are commonly observed when comparing spike encoding methods
based on a specific application and with the use of a non spiking
classifier. For example, TTFS should provide better results as the
conversion method here loses fine-grained timing.

7 CONCLUSION

In this work, we have studied the variation of classification accuracy
as a function of spike density for a variety of spike encoding meth-
ods in an isolated digit classification system. We showed that the
use of a bio-inspired cochleagram favors spike encoding methods
when compared to a more traditional Fourier-based spectrogram.
We also showed that SOD encoding method variants are efficient
achieving high classification accuracy (97%) with less than 7% spike
density. The LIF method was found to be robust as it achieves the
No Encoding classification accuracy with both feature extractors.
Finally, we demonstrated that all encoding methods can be opti-
mized to achieve interesting classification accuracies with less than
30% spike density, corresponding to a bit compression ratio (BCR)
of approximately 0.18. By optimizing the LIF method, we then ob-
tained 98.12 % classification accuracy which compares favorably to
the previously reported state of the art (97.4%) [18].

Thanks to their resulting bit compression ratios, the spike en-
coding methods studied here might be of interest not only to the
SNN community but also to the deep learning community. In fact,
our results indicate that these encoding methods could be used as
promising features for speech recognition in combination with a
cochleagram and a more conventional classifier like a CNN. It is
important to notice that even if we had to convert back spikes into
real values we obtained state of the art classification. Therefore,
a complete spiking implementation should have the potential to
outperform state of the art techniques.
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