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Abstract: Existing nuclei segmentation methods face challenges with hematoxylin and eosin (H&E)
whole slide imaging (WSI) due to the variations in staining methods and nuclei shapes and sizes.
Most existing approaches require a stain normalization step that may cause losing source information
and fail to handle the inter-scanner feature instability problem. To mitigate these issues, this article
proposes an efficient staining-invariant nuclei segmentation method based on self-supervised con-
trastive learning and an effective weighted hybrid dilated convolution (WHDC) block. In particular,
we propose a staining-invariant encoder (SIE) that includes convolution and transformers blocks. We
also propose the WHDC block allowing the network to learn multi-scale nuclei-relevant features to
handle the variation in the sizes and shapes of nuclei. The SIE network is trained on five unlabeled
WSIs datasets using self-supervised contrastive learning and then used as a backbone for the down-
stream nuclei segmentation network. Our method outperforms existing approaches in challenging
multiple WSI datasets without stain color normalization.

Keywords: whole slide imaging; hematoxylin and eosin (H&E); stain color normalization; nuclei
segmentation; deep learning

1. Introduction

The digital pathology revolution began using a whole slide imaging (WSI) scanner to
digitize glass slides. Digital pathology has been used in various applications, including
case diagnosis and management, education for all clinical and patient cases, and forensic
pathology. However, pathologists devote significant efforts to manual WSI image analysis
(i.e., visual assessment of WSIs), particularly for tasks such as nucleus cell segmentation
and counting [1].

In the literature, many computer analysis methods have been developed to ana-
lyze histopathology images [2–5]. Kleczek et al. [6] combined statistical analysis, color
thresholding, and binary morphology to segment histopathological images of skin tissues.
Kleczek et al. [7] proposed an automated method for epidermis segmentation in histopatho-
logical images of human skin. They incorporated the domain-specific details of morphome-
tric and biochemical characteristics of skin tissue regions in histopathology images.

In recent years, deep learning approaches have been used to analyze histopathology
images for various diagnosis tasks [8,9], such as nuclei cell counting, cancer metastasis
detection, and forensic pathology applications such as determining the cause of death
after trauma and poisoning. The automatic segmentation of nuclei in WSI images has
been studied extensively. In [10], a five-step segmentation approach for nuclei cells or
nanoparticles was proposed. The five steps were (1) automatic gradient image formation,
(2) automatic threshold selection, (3) manual calibration of the threshold selection method
for each cell or nanoparticle image, (4) manual determination of the segmentation cases for
each specific cell or nanoparticle image type, and (5) automatic quantification by iterative
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morphological erosion. In [11], a selective-edge-enhancement-based nuclei segmentation
method (SEENS) was proposed. In SEENS, a selective search algorithm was integrated
with mathematical operators to segment cervical WSI images into small regions of interest
while automatically evading duplicated segmentation and removing non-nuclei regions.
An edge enhancement method based on the canny operator and mathematical morphology
was used to extract edge information to enhance the nucleus edge.

In WSI image analysis, deep learning-based techniques, notably nucleus segmentation,
are gaining popularity. In [12], various deep learning-based techniques were reviewed and
assessed for breast tumor cell nuclei segmentation, including U-Net, Mask R-CNN, and GB
U-Net. GB U-Net performed better in segmenting cell nuclei with an aggregated Jaccard
index (AJI) score of 53%. Cui et al. [13] introduced an end-to-end deep learning network
for nuclei segmentation that uses a nuclei boundary model to predict the inner nuclear
instance, nuclear contour, and background in WSI images simultaneously. To improve and
stabilize the inner nuclei and contour prediction, the authors used a weighted loss function
based on the relative position of pixels inside the WSI image. They achieved an F1-score of
85.40% using the MoNuSeg dataset. Xie et al. [14] proposed the DIMAN method, a deep
interval-marker-aware network, for nuclei segmentation. They integrated the convolutional
neural networks with the marker-controlled watershed to delineate the foreground, marker,
and interval of nuclei. DIMAN achieved an AJI score of 56.64% with the MoNuSeg dataset.
Zhou et al. [15] introduced the U-Net++ model that combined UNets of various depths and
restructured skip connections. They also used an architecture pruning approach to speed
up inference while maintaining performance. On the MoNuSeg dataset, UNet++ had an
F1-score of 88.17%.

Ilyas et al. [16] proposed a tissue-specific feature distillation network (TSFD-Net)
trained with a combinational loss function to extract tissue-specific features from WSI
images to produce better nuclei segmentation and classification. TSFD-Net was based on
the fact that morphological features such as appearance, shape, and texture of nuclei in
a tissue vary greatly depending upon the tissue type. With the PanNuke dataset, TSFD-
Net obtained mean and binary panoptic quality of 50.4% and 63.77%, respectively. In an
attempt to segment overlapped and clustered nuclei, Ref. [17] proposed the DenseRes-
Unet model by integrating dense blocks in the last layers of the encoder block of U-Net,
as well as distance map and binary threshold techniques to intensify the nuclei interior
and contour information in WSI images. Rączkowski et al. [18] recommended an active
(ARA) image classification method using Bayesian CNN that classifies colorectal cancer
tissue. The authors designed a network that measures the uncertainty of the given test
samples. This approach helped to identify the misclassified training samples and could
improve the model performance. Hassan et al. [19] suggested a clustering-based stain
selection technique. They trained a set of independent deep-learning models on several
stain templates. The authors combined the segmentation masks of the individual models
using an aggregation function based on the Choquet integral. Recently, self-supervised
learning attained great success in analyzing histopathology images, where the trained
models can extract rich features from the unlabeled data and later could be used to improve
the downstream nuclei segmentation or classification performance [20–22].

Existing nuclei cell segmentation approaches require a stain color normalization
step to reduce color variations in WSIs due to various stains used in laboratories and
stain manufacturing processes across vendors. Selecting a proper staining normalization
method is crucial for the nuclei segmentation methods. However, staining normalization
methods have some limitations, such as (1) they cannot handle the problem of inter-
scanner feature instability; (2) they modify the color of WSIs, which may yield a loss in the
source domain information—they do not preserve the source intensity variation (notably,
source color variation can help with WSI analysis, as it can reveal crucial differences in
the tissue’s underlying biochemical composition); and (3) they may produce inconsistent
color normalization results when the number of stains increases (resulting WSIs deviate
from the target staining template). In addition, most nuclei cell segmentation methods
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still face challenges due to the variations in nuclei shapes and sizes and overlapping and
clumped cell nuclei. Figure 1 shows WSI images obtained from different organs and
multiple laboratories. As one can see, there is a big variation in the stain color, nuclei
shapes and sizes, and the presence of overlapping and clumped nuclei. Such differences
could greatly reduce the accuracy of automated nucleus cell segmentation systems.

Figure 1. Examples of WSIs having various stains. The present nuclei have different shapes and sizes.

Unlike most existing nuclei segmentation approaches that require a staining normal-
ization algorithm, we propose an efficient staining-invariant nuclei segmentation method
based on self-supervised contrastive learning and an effective weighted hybrid dilated
convolution (WHDC) block. Specifically, we propose a staining-invariant encoder (SIE) that
includes convolution (Conv) and transformers blocks [23], where Conv blocks help extract
low-level nuclei features, and transformer blocks model their long-range relationships. We
also propose a WHDC block to enable the network to learn multi-scale features to handle
the variation in the size and shapes of nuclei. SIE is trained using the SimCLR contrastive
learning framework [24] in a self-supervised manner that learns latent staining-invariant
representations of WSIs without any labeled data. The staining invariant encoder is used
as a backbone, followed by a supervised fine-tuning strategy for the nuclei segmentation
task. The key contributions of this article are as follows:

• Proposing an efficient nuclei segmentation method for hematoxylin and eosin (H&E)
WSI images using a deep staining-invariant self-supervised contrastive network. This
method eliminates the need for a stain normalization step;

• Proposing an effective weighted hybrid dilated convolutional (WHDC) block that
helps extract multi-scale nuclei-relevant representations;

• Achieving accurate nuclei segmentation on unseen single-organ and multi-organ
datasets collected from different laboratories without employing stain color normaliza-
tion or fine-tuning that demonstrate the proposed method’s generalization capabilities.

It should be noted that the proposed method is not limited and could be employed for
other applications such as nanoparticle segmentation.

2. Proposed Method

Figure 2 depicts the pipeline of the proposed method. A staining-invariant encoder
is trained using self-supervised contrastive learning (Section 2.1). The encoder network
includes the proposed WHDC block to handle the variation in the size and shapes of nuclei
(Section 2.2). This encoder is a backbone for the downstream nuclei segmentation network
trained using a supervised fine-tuning strategy (Section 2.3). Details are given below.
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Figure 2. Illustration of the proposed method pipeline.

2.1. Staining-Invariant Encoder

Figure 3 presents the overview of the proposed staining-invariant encoder (SIE) net-
work. The main components of SIE are convolution blocks, transformer blocks, and the
proposed WHDC block. In particular, SIE is based on a convolutional-transformer neural
network so-called CoAtNet [23]. SIE is trained using a self-supervised contrastive learning
approach [24] that does not demand any labeled dataset prepared by pathologists. In other
words, the training of SIE is completely based on the self-supervised learning technique,
in which the model learns patterns by itself by extracting stain-invariant nuclei-relevant
features.

As shown in Figure 3 (left), SIE extracts feature representations from pairs of aug-
mented WSI images. We apply data augmentation techniques to construct pairs of WSI
images, Ii, and Ij, to learn visual feature similarities between them. Specifically, we apply
the following data augmentation techniques: flipping, rotation with 90 degrees, blurring,
random brightness contrast with a probability of 0.2, and color jitter. SIE learns visual
features through a contrastive loss function by increasing the agreement among different
augmented views of the same WSI image patch example.
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Figure 3. The architecture of proposed staining-invariant encoder (SIE) based on self-supervised
contrastive learning.

The top branch shown in Figure 3 represents the backbone feature extractor (i.e.,
f ), which is based on CoAtNet [23] that includes convolution (Conv) and transformer
blocks [23]. SIE has five stages (S0, S1, S2, S3, and S4). The first three stages rely on
convolution blocks, whereas the last two adopt transformer blocks. Stage S0 applies a
down-sampling operation with a factor of 2 to reduce the patch image spatial size. The
first stage has two standard convolution layers with a kernel size of 3× 3, allowing for
extraction of nuclei-relevant features (e.g., shape, texture, and intensity) from WSI patches.
As there is a wide variety of nuclei sizes, we use the WHDC block to encourage the model
to learn multi-scale nuclei-relevant features. WHDC employs dilation rates of 3, 6, 9, and 18,
where the small receptive fields capture the fine details of nuclei, and the larger receptive
field provides contextual information (Figure 4). WHDC has a self-weighing mechanism
that encourages the network to promote nuclei-relevant features.
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Figure 4. Illustration of the WHDC block.

The second stage, S1, contains an MBConv block (i.e., inverted residual block) [23].
The MBConv substitutes the conventional convolution with the depth-wise separable
convolutions. WHDC is also added at the end of S1 with the same parameter setting used
in S0. The architecture of S2 is identical to S1 but without WHDC. Stages S3 and S4 contain
a transformer block that encourages the SIE network to establish long-range dependencies
while avoiding overfitting using a 2D relation attention and feed-forward network (i.e.,
FFN) and a self-attention module. Stages S3 and S4 apply a max-pooling operation with a
stride of 2 on the self-attention module’s constituents. The final size of the bottleneck of S4
is 8× 8 (at the arrow connecting the top and bottom branches in Figure 3). The output of
the top branch of the SIE network, f , can be formulated as follows:

Outi = f
(

Ĩi
)

(1)

Outj = f
(

Ĩ j
)

(2)

where Outi, and Outj ∈ Rd stand for the output representations for the augmented image
pairs Ii and Ij, respectively.

The projection head PH(.) projects the generated representations Outi and Outj into
a 128-dimensional feature space using only a single-layer MLP (multi-layer perceptron).
MLP computes the representation Ri for Outi and a representation Rj for Outj as follows:

Ri = PH(Outi) = W(2)σ
(

W(1)PH i

)
(3)

Rj = PH
(
Out j

)
= W(2)σ

(
W(1)PH j

)
(4)

where W stands for the weights of MLP, and σ is a non-linear rectified linear unit (ReLU)
function.

SIE is built using a self-supervised contrastive learning approach [24], which does not
require any labeled dataset. The contrastive loss can be formulated as

LFINAL =
1

2N

N

∑
k=1

[`(2k− 1, 2k) + `(2k, 2k− 1)] (5)

where N stands for the mini-batch WSI patch images and contrastive prediction result to
2N data points computed through pairs of data-augmented patch samples. The ` can be
computed as

`i,j = − log
exp

(
CM

(
Ri, Rj

)
/τ

)
∑2N

k=1 1[k 6=i] exp(CM(Ri, Rk)/τ)
(6)

where τ stands for a temperature parameter set to 0.07 in our experiments; 1[k 6=i] ∈ {0, 1}
corresponds to an indicator function to measure if k 6= i; CM is the cosine similarity function
that can be defined as

CM(Ri, Rj) = RT
i Rj/‖Ri‖‖Rj‖ (7)
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Contrastive loss decreases when projections from the same image are similar; other-
wise, the error rate will increase.

2.2. Weighted Hybrid Dilated Convolution (WHDC) Block

Figure 4 presents the proposed WHDC block to widen the receptive fields of SIE with
different dilation rates and encourage it to promote multi-scale nuclei features. WHDC
consists of four cascaded convolutions layers, self-weighting, and channel attention mecha-
nisms. It incorporates various spatial scales that provide fine pixel-level details and global
contextual information without losing resolution size. In this study, we use dilation rates of
3, 6, 9, and 18. As shown in Figure 4, WHDC has four convolutional layers with a kernel
size of 3× 3 followed by batch normalization and a non-linear GELU activation function
connected in a cascaded manner. The WHDC block allows for utilizing the extracted
features from the previous layer with specific dilation rates and feeds them into the next
convolutional layer. In WHDC, a convolutional layer of depth d and dilation rate with r
can be expressed as follows:

Dilated-Convr
d : Id−1 −→ Ir

d (8)

where the input of each dilated convolution has a size of h, w, and c (i.e., height, width, and
number of channels, respectively), and Id−1 ∈ Rh′×w′×c′ . WHDC produces feature maps of
size Id−1 ∈ Rh×w×c.

As shown in Figure 4, the proposed WHDC block has a self-attention mechanism to
promote the nuclei-relevant features while ignoring other irrelevant features. It should be
noted that the four weights of the self-attention mechanism, w1, w2, w3, and w4, are derived
dynamically based on a Sigmoid activation function. The weighted features (w1 ∗ Ir=3,
w2 ∗ Ir=6, w3 ∗ Ir=9, and w4 ∗ Ir=18) and original input Id−1 are concatenated and fed into
a channel attention mechanism (CAM) [25] to advance channel interdependencies. CAM
converts the concatenated nuclei feature maps output to a single vector through a global
pooling layer named squeeze operation. Subsequently, CAM uses two fully connected (FC)
layers with a channel reduction ratio of 16. For further details about the architecture of
CAM and its FCs, the readers are recommended to see [25]. The weights of each channel
are multiplied with the original input vector to boost nuclei-relevant features (i.e., excitation
operation) automatically.

2.3. Nuclei Segmentation Network

Figure 5 presents the proposed nuclei segmentation network for WSI images. It in-
cludes an encoder and decoder network. SIE trained with contrastive learning (Section 2.1)
is used as an encoder. The encoder’s bottleneck features (8× 8 feature maps) are fed into
the decoder network (i.e., the network at the bottom of Figure 5). The decoder consists
of five layers. Each decoder layer utilizes a Conv-transpose layer with a kernel size of
4× 4 and stride of 2. In this study, we adopt the attention mechanism [26] to initial four
decoder layers that ignore irrelevant artifacts generated during feature reconstruction and
concentrate only on nuclei-relevant features that lead to reducing the false positives. Except
for the last layer, each decoder layer has batch normalization and ReLU activation functions.
Skip connections between encoder and decoder networks are employed to narrow the
semantics gaps in feature reconstruction. We use a threshold value of 0.5 to generate the
final binary segmentation masks.
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Figure 5. The framework of the proposed nuclei segmentation network.

We fuse two loss functions to train the segmentation network—binary cross-entropy
(BCE) and Dice losses. This combined loss function could minimize the error and address
the pixel imbalance issue between the nuclei and background areas. The BCE loss is
defined as

LBCE(y, t) =−(y·log(t) + (1− y)·log(1− t)) (9)

where y and t stand for the ground truth mask and mask generated by the proposed
segmentation network. The Dice loss can be expressed as

LDice(y, t) = 1− Dice(y, t) = 1− 2|y|.|t|
|y|2 + |t|2 , (10)

The overall segmentation loss (OSL) is the weighted sum of LBCE and LDice:

LOSL(y, t) = γLBCE(y, t) + (1− γ)LDice(y, t) (11)

where γ is a weighting factor experimentally set to 0.4.

3. Results and Discussion
3.1. Datasets

In this study, we leveraged a total of eight publicly available datasets, including
Lizard [27], MHIST [28], BreCaHD [29], SPIE-BreastPathQ [30], Colorectal NCT-CRC-
HE [31], MoNuSeg [32], CryoNuSeg [33], and BNS [34].

To build the staining-invariant encoder (i.e., SIE) based on contrastive learning, we
used Lizard, MHIST, BreCaHD, SPIE-BreastPathQ, and Colorectal NCT-CRC. The Lizard
dataset has a half-million labeled nuclei in H&E stained colon tissue with 20× objective
magnification. The entire set involves 291 images with an average resolution of 1016× 917.
The MHIST has 3152 H&E-stained colorectal polyp images with 224× 224 pixels. BreCa-
HAD contains 162 breast cancer WSIs with a resolution of 1360× 1024. SPIE-BreastPathQ
has 96 H&E WSI scans acquired from 55 patients with residual invasive breast cancer. This
dataset has a patch size of 512× 512 and comprises training, validation, and test sets of
2394, 185, and 1119 images, respectively. Colorectal NCT-CRC-HE includes 100 thousand
non-overlapping patches derived from 86 H&E stained human cancer 54 tissue slides of
colorectal cancer and normal tissue. The size of the patches is 224× 224.

To construct and evaluate the nuclei segmentation model, we used the MoNuSeg,
CryoNuSeg, and BNS datasets. MoNuSeg is a multi-center multi-organ dataset containing
30 WSIs with a resolution of 1000× 1000. It has a total of 21 thousand manually annotated
nuclei. MoNuSeg involves WSI of seven organs—breast, kidney, colon, stomach, prostate,
liver, and bladder. A total of 23 WSIs are used for training and 7 WSIs (i.e., one WSI per
organ) for a fair assessment.

To train the segmentation model, we resized the original WSIs to the size of 1024× 1024.
Then, we applied non-overlapping cropping with patch size 512× 512. To increase the
number of training samples, for each non-overlapping patch, we applied random crops,
generating 200 samples of patch size 256× 256. In total, we generated 18,400 (23× 4×
200) training samples. BNS has 33 WSIs with a resolution of 512× 512 for breast cancer
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(2754 labeled nuclei). CryoNuSeg has WSIs of 10 human organs—adrenal gland, larynx,
lymph node, mediastinum, pancreas, pleura, skin, testis, thymus, and thyroid gland. It
has 30 WSIs with a resolution of 512× 512. It is worth noting that BNS and CryoNuSeg
datasets are independently used for evaluating the proposed model, meaning they are not
used for training or fine-tuning the segmentation model.

3.2. Implementation Details

The training process is two-fold—training the staining-invariant encoder network
(i.e., SIE) based on contrastive learning (Section 2.1) and training the nuclei segmentation
network (Section 2.3). We applied data augmentation techniques, including flipping,
90-degree rotation, blurring, random brightness contrast with a probability of 0.2, and
color jitter. The input image size was 224× 224. The SIE network is trained using an
SGD optimizer with an initial learning rate of 0.001. The number of epochs is 50, with a
mini-batch size of 2. For training the nuclei segmentation network, the number of epochs is
set to 100 with a mini-batch size of 4. ADAM optimizer is used with β1 = 0.5 and β2 = 0.999
and a learning rate of 0.0002. In our experiments, all hyperparameters are manually tuned.
We used the same hyperparameter settings for the proposed model and state-of-the-art
models presented in this study. The proposed method is implemented on PyTorch 1.7.0,
CUDA 11.2 on Intel Core-i9 with 32 GB RAM, and GeForce RTX 3090 GPU with 24 GB
memory.

3.3. Evaluation Metrics

To assess the performance of segmentation methods, we used the dice coefficient
(Dice), aggregated Jaccard index (AJI) [32], precision, and recall. These metrics can be
expressed as follows:

Dice =
2 · TP

2 · TP + FP + FN
, (12)

Precision =
TP

(TP + FP)
, (13)

Recall =
TP

(TP + FN)
, (14)

AJI =
∑L

i=1

∣∣∣GTi ∩ Nψ∗j (i)
∣∣∣

∑K
i=1

∣∣∣GTi ∪ Nψ∗j (i)
∣∣∣+ ∑K∈LIP Nψk

(15)

In these expressions, TP, FP, FN, and TN rates stand for true positive, false positive,
false negative, and true negative, respectively; GTt, Nψk, and Nϑ∗j (i) stand for the ith
ground-truth mask of nuclei pixels, the predicted nuclei segmentation mask, and the con-
nected component from the predicted mask that maximizes the Jaccard index, respectively;
LIP stands for the list of indices of pixels that do not belong to any element in GT.

3.4. Ablation Study

Here, we conducted a thorough ablation study to demonstrate the efficacy of the
proposed model’s specific components, where we investigated the effect of various con-
figurations of the proposed segmentation model and the nuclei segmentation results of
different loss functions.

3.4.1. Analysis of Various Configurations

Table 1 presents the ablation study of different configurations of the proposed nuclei
segmentation network—baseline (i.e., BL), baseline+WHDC, SIE without WHDC, SIE
without contrastive learning (CL) approach (i.e., proposed w/o CL), and the proposed SIE
network (i.e., network with all components). In this table, we present the mean and the
standard deviation (SD) of all evaluation metrics across all the test samples.
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Table 1. Ablation study on MoNuSeg. The best results are highlighted in bold.

Model Dice (%) ↑ AJI (%) ↑ Precision (%) ↑ Recall (%) ↑
BL 83.32± 11.80 66.69± 13.17 82.11± 15.12 84.58± 18.03

BL + WHDC 84.46± 10.52 68.56± 12.73 83.97± 13.93 84.95± 16.87

Proposed w/o CL 85.82± 9.98 69.11± 11.41 85.19± 11.84 86.46± 12.76

Proposed 88.64± 6.20 73.14± 8.19 88.2± 7.38 89.1± 8.09

We assessed the performance of the BL network that entirely relies on the encoder
and decoder network without adopting the WHDC block or CL. BL obtained Dice and AJI
scores of 83.32% and 66.69%, respectively. We added the WHDC block with the BL network,
which boosted the Dice and AJI scores by 1.1% to 2%. This configuration allows for the
extraction of spatial nuclei-relevant features comprising shape, texture, and intensity while
avoiding irrelevant ones. In turn, feature reconstruction is an important step in creating
segmentation maps. We leverage the spatial attention mechanism in the decoder to prevent
losing the semantic correlations. BL+WHDC with spatial attention mechanism in the
encoder (proposed w/o CL) improved the segmentation performance by 2% to 3% in Dice,
AJI, precision, and recall scores when compared to BL. The proposed model incorporated
the pre-trained SIE model trained with contrastive learning and WHDC. Pre-trained SIE
provided staining-invariant nuclei-relevant features, while the proposed WHDC block
helped generate multi-scale nuclei features. This led to a significant gain of 5% to 6% in all
evaluation metrics. We also observed the proposed model generated fewer false positive
pixels leading to a lower SD of 5% in Dice and IoU scores against the BL model.

Figure 6 presents heatmaps from the encoding and decoding layers of the proposed
segmentation model. As one can see, stage S0 extracts the spatial nuclei features such as
shape, texture, and intensity. Stages S1 and S2 emphasize nuclei features with finer details,
due to the proposed WHDC block, which encourages the network to learn multi-scale
nuclei-relevant feature representation. Due to low spatial resolution (16× 16 and 8× 8),
we do not show the feature maps of stages S3, S4, and the early decoder layer output.
In addition, the decoder layers 4 and 5 also show that the segmentation model correctly
identified the nuclei region with sharp boundaries (highlighted in red) while ignoring the
background.

Input Stage S0 Stage S1 Stage 2 Decoder Layer 4 Decoder Layer 5

Figure 6. Heatmaps from encoding and decoding layers of the proposed segmentation model.

3.4.2. Analysis of the Loss Function

Table 2 presents the effect of different loss functions (i.e., LBCE, LDice, and LBCE +
LDice) on the efficiency of the proposed segmentation network evaluated with the MoNuSeg
dataset. We used two loss functions consisting of LBCE and LDice losses. We initialized
our training by only using the LBCE loss that provides a Dice score of 84.76% and an AJI
score of 69.2%. The LDice loss was employed to focus more on dense pixel prediction
by generating fewer false positives; LDice achieves the 83.71% and 68.97% Dice and AJI
scores, respectively. Both LBCE and LDice performed well, and thus we combined them
to achieve better results with lower false-positive rates. We set the weighting factor γ to
0.4 (Equation (11)). The combined loss functions reduce SD in the range of 3− 6% for all
the evaluated metrics against LBCE. The ablation study confirmed that each loss function
reasonably contributed to the final nuclei segmentation (4% improvement in Dice and AJI
scores).
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Table 2. Ablation study of the loss functions on MoNuSeg. The best results are highlighted in bold.

Loss Function Dice (%) ↑ AJI (%) ↑ Precision (%) ↑ Recall (%) ↑

LBCE 84.76± 11.46 69.2± 13.67 83.47± 12.94 86.03± 11.88

LDice 83.71± 11.81 68.97± 14.93 82.01± 13.02 85.48± 12.20

LBCE + LDice 88.64± 6.20 73.14± 8.19 88.2± 7.38 89.1± 8.09

3.5. Comparison with Existing Methods

Table 3 compares the proposed method with 12 state-of-the-art networks on the
MoNuSeg dataset. We trained 5 networks of these 12 networks from scratch, meaning the
5 networks were completely trained without utilizing any pre-trained ImageNet weights.
The five networks trained from scratch using the same hyperparameters used for training
the proposed model are U-Net, fully convolutional network (FCN), DeepLabv3+, Attention
U-Net [26], and U-Net++ [35] with the same hyperparameter settings. The findings of
the other seven methods are taken from recently published nuclei segmentation studies.
As tabulated in Table 3, the proposed model outperformed state-of-the-art methods by a
significant margin and achieved a SD ranging from 6 to 9% in all evaluation metrics, which
is much lower than the other compared methods. It achieves Dice, AJI, precision, and recall
scores of 88.64%, 73.14%, 88.2%, and 89.1%, respectively. The U-Net, DeepLabv3+, and FCN
obtained Dice scores of 77.94%, 76.59%, and 76.36% respectively, which are 10% lower than
the proposed method. Both Attention U-Net [26] and U-Net++ [35] obtain an average Dice
of 79.5%. The proposed model attains 2% and 1% improvements in the Dice and AJI scores,
respectively, which are higher than the second-best method cGAN [36]. The cGAN-based
approach generated synthetic nuclei images and combined them with original training data
to segment the nuclei areas. The RIC-UNet [37], DIST [38], MedT [39], Chanchal et al. [40],
and BiO-Net [41] achieve Dice scores lower than 83%. Although MSAL-Net [42] used a
multi-scale attention learning network with dense dilated convolution, it provides a Dice
score of 83.9%, which is 4.5% lower than our method.

Table 3. Comparing the proposed method with 12 existing methods on the MoNuSeg dataset. The
− symbol represents the missing value that was not reported in the study. The best results are
highlighted in bold.

Model Dice (%) ↑ AJI (%) ↑ Precision (%) ↑ Recall (%) ↑
U-Net 77.94± 17.71 64.01± 17.23 76.69± 20.65 79.24± 23.96

Attention U-Net 79.52± 19.44 65.22± 18.82 78.36± 19.89 80.73± 24.80

DeepLabv3+ 76.59± 25.75 60.86± 22.43 74.28± 24.81 79.05± 29.47

FCN 76.36± 9.60 65.01± 10.19 73.86± 12.34 79.05± 14.59

U-Net++ 79.57± 18.80 63.92± 18.01 78.02± 19.81 81.19± 24.85

RIC-UNet [37] 82.78 56.35 − −

DIST [38] 78.63 55.98 − −

Chanchal et al. [40] 80.65 67.95 − −

cGANs [36] 86.60 72.10

MedT [39] 79.55 66.17 − −

MSAL-Net [42] 83.9 70.6 82.1 85.3

BiO-Net [41] 82.5 70.4 − −

Proposed 88.64± 6.20 73.14± 8.19 88.2 ± 7.38 89.1± 8.09
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Figure 7 presents statistics of AJI score of the proposed method, U-Net, Attention
U-Net [26], DeepLabv3+, FCN, and U-Net++ [35]. Our model achieves the highest mean
and median scores and lowest standard deviation among other compared methods. It
only has three outliers, whereas other methods have many outliers with large standard
deviations.

U-Net Attention U-Net DeepLabv3+ FCN U-Net++ Proposed
Models

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9
AJ

I (
%

)

Figure 7. Boxplot of AJI scores of the proposed nuclei segmentation method on MoNuSeg dataset.

Figure 8 presents the nuclei segmentation results of the proposed method with WSI
images collected from different laboratories for kidney, bladder, stomach, and prostate
organs. We provided the color maps to easily interpret the segmentation results compared
to the ground truth. With the MoNuSeg dataset, the proposed method could precisely
capture the different nuclei sizes and segment the nuclei boundaries (orange color) with
very few false positives (green color).

Kidney AJI = 69.10 Kidney AJI = 71.84 Bladder AJI = 81.01Bladder AJI = 77.76

Stomach AJI = 77.24Stomach AJI = 79.04 Prostate AJI = 70.17 Prostate AJI = 74.73

Figure 8. Nuclei segmentation by the proposed method in WSIs of four organs. The color maps are
displayed as follows: true positives (TP: orange), false positives (FP: green), false negatives (FN: red),
and true negatives (TN: background).
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Figure 9 shows qualitative segmentation results of the proposed method compared
to U-Net, Attention U-Net [26], DeepLabv3+, FCN, and U-Net++ [35]. The AJI scores
demonstrated the quantitative improvement produced by the proposed segmentation
method (71.84%) compared to other approaches. The proposed model produces excellent
segmentation results with fewer false positives of small nuclei, whereas other methods
do not completely segment many nuclei. In addition, the Wilcoxon signed-rank test
demonstrated that the results of the proposed model and second-best U-Net++ on the
MoNuSeg dataset were statistically significant (p-value < 0.001).

Proposed AJI = 71.84 U-Net AJI = 68.49 Attention U-Net AJI = 64.20

DeepLabv3+ AJI = 66.37 FCN AJI = 67.43 U-Net++ AJI = 65.71

Figure 9. Comparison of the proposed model with five existing methods on the MoNuSeg dataset.
The color maps are displayed as follows: true positives (TP: orange), false positives (FP: green), false
negatives (FN: red), and true negatives (TN: background).

3.6. Evaluating the Proposed Method on Other Datasets

Herein, we evaluate the effectiveness of the proposed model trained on the MoNuSeg
dataset using the CryoNuSeg and BNS datasets without retraining or fine-tuning (the
complete dataset is used as the test set). We independently trained the U-Net, Attention
U-Net [26], DeepLabv3+, FCN, and U-Net++ [35] on the CryoNuSeg and BNS datasets from
scratch. As tabulated in Table 4, the proposed method outperformed other segmentation
approaches with Dice, AJI, precision, and recall scores of 86.53%, 64.7%, 85.48%, and 87.62%,
respectively. In the case of the proposed method, the estimation errors (i.e., SD) of the Dice
and AJI scores are 1% lower than for U-Net. Hassan et al. [19] achieved the second-best
results, which was 1% less than our method. As tabulated in Table 5, the proposed method
outperformed the other methods. DeepLabv3+ obtained poor segmentation results with
limited samples. The U-Net++ achieved the second-best results with an 83.39% Dice score
and a 62.72% AJI. As one can see, the estimation errors of the proposed method in terms
of the Dice and AJI scores are 1% lower than for U-Net++. Although CryoNuSeg and
BNS datasets were entirely unseen by the proposed segmentation model, they achieved
the best results, thanks to the robust multi-scale nuclei-relevant staining-invariant feature
representations learned by the model.
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Table 4. Comparing the proposed method with existing approaches on the CryoNuSeg dataset. The
best results are highlighted in bold.

Model Dice (%) ↑ AJI (%) ↑ Precision (%) ↑ Recall (%) ↑
U-Net 81.01± 9.15 59.62± 11.13 78.33± 8.42 83.89± 6.97

Attention U-Net 81.87± 8.70 60.58± 10.48 79.81± 7.77 84.06± 7.63

DeepLabv3+ 84.20± 10.87 62.07± 12.74 81.96± 7.63 86.57± 5.74

FCN 84.94± 10.20 62.34± 12.19 82.77± 7.19 87.23± 5.57

U-Net++ 83.41± 11.05 61.51± 12.66 80.59± 6.55 86.44± 5.98

Hassan et al. [19] 85.55 64.51 85.02 86.16

Proposed 86.53± 8.67 64.7± 10.22 85.48± 5.13 87.62± 6.72

Table 5. Comparing the proposed method with existing approaches on the BNS dataset. The best
results are highlighted in bold.

Model Dice (%) ↑ AJI (%) ↑ Precision (%) ↑ Recall (%) ↑
U-Net 82.40± 10.52 60.86± 11.15 81.78± 8.65 83.02± 7.85

Attention U-Net 83.39± 9.87 61.20± 10.69 82.94± 8.03 83.71± 7.50

DeepLabv3+ 78.44± 14.58 55.29± 17.82 77.53± 11.48 79.38± 10.83

FCN 81.38± 11.53 59.63± 12.94 80.50± 9.11 82.28± 8.46

U-Net++ 83.89± 7.47 62.72± 9.07 85.24± 8.33 87.92± 7.39

Proposed 88.82± 6.69 65.2± 7.81 87.64± 7.36 90.04± 5.72

Figure 10 shows the segmentation results of the proposed method on the MoNuSeg,
CryoNuSeg, and BNS datasets. These WSI were collected from different organs in labora-
tories employing various stain colors. However, the proposed method could accurately
segment nuclei. These findings proved the generalization abilities of the proposed method,
and it could segment nuclei in WSI images without employing stain color normalization or
fine-tuning the model.

(B) Stomach AJI = 81.01(A) Stomach AJI = 79.04 (C) Mediastinum AJI = 72.44

(D) Thymus AJI = 77.21 (E) AJI = 69.50  (F) AJI = 72.36

Figure 10. The segmentation results of the proposed method on (A,B) MoNuSeg, (C,D) CryoNuSeg,
and (E,F) BNS. The color maps are displayed as follows: true positives (TP: orange), false positives
(FP: green), false negatives (FN: red), and true negatives (TN: background).
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3.7. Discussion and Limitations

Although the existing methods achieved acceptable results, they required a stain
color normalization, which can differ from one dataset to another and may yield a loss
in the source domain information (other limitations stated in Section 1). In addition,
existing methods could not distinctly delineate the nuclei boundary, leading to several false
positives. Adopting a self-supervising contrastive learning approach and the proposed
WHDC block to build a stain-invariant encoder encouraged the segmentation model to
concentrate on segmenting and separating the nuclei boundaries. It is evident that the
proposed model showed great potential and provided an efficient solution to segment
nuclei in WSIs of different stains and multiple organs and surpasses the existing deep
learning approaches by a significant margin.

One of the limitations of the proposed method is that it produces poor segmentation
results in the case of overlapped and clumped nuclei.

4. Conclusions and Future Work

This paper proposed an effective staining-invariant nuclei segmentation method based
on a self-supervised contrastive learning approach. In particular, we introduced a staining-
invariant method that does not use color normalization before processing H&E WSI. The
proposed staining invariant encoder (SIE) leveraged the convolution, WHDC, and trans-
former blocks in a self-supervised training setting that facilitates learning better nuclei
feature representation. A trained SIE model was used as the backbone for the downstream
nuclei segmentation task. We used eight WSI datasets, including five datasets for train-
ing the self-supervised SIE network, and the remaining three were applied to assess the
effectiveness of the proposed nuclei segmentation model. The proposed method achieved
state-of-the-art AJI scores of 73.14%, 64.7%, and 65.20% with MoNuSeg, CryoNuSeg, and
BNS datasets, respectively. Our analysis showed that the proposed method achieved
accurate nuclei segmentation on a completely unseen independent dataset, due to the
robust multi-scale nuclei-relevant staining-invariant feature representations learned by the
SIE model. It also demonstrated the generalization capabilities of the proposed method
on multiple datasets, and it could segment nuclei in WSI images without employing
stain color normalization or fine-tuning the model. It is worth noting that the proposed
staining-invariant method is not limited and can be applied to other applications, such as
nanoparticle segmentation, which will be the focus of future work.

Author Contributions: Conceptualization, M.A.-N. and V.K.S.; methodology, M.A.-N. and V.K.S.;
software, M.A.-N. and V.K.S.; validation, M.A.-N. and V.K.S.; formal analysis, M.A.-N. and V.K.S.;
investigation, M.A.-N. and V.K.S.; resources, M.A.-N. and V.K.S.; data curation, M.A.-N. and V.K.S.;
writing—original draft preparation, M.A.-N. and V.K.S., writing—review and editing, M.A.-N., V.K.S.,
and E.M.M.; visualization, M.A.-N. and V.K.S.; supervision, M.A.-N., V.K.S., and E.M.M.; project
administration, M.A.-N. and E.M.M.; funding acquisition, M.A.-N. and E.M.M. All authors have read
and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: The authors confirm that all datasets used in this study are publicly
available and cited in the article.

Conflicts of Interest: The authors declare no conflict to interest.



Diagnostics 2022, 12, 3024 15 of 16

References
1. Hanna, M.G.; Parwani, A.; Sirintrapun, S.J. Whole slide imaging: technology and applications. Adv. Anat. Pathol. 2020,

27, 251–259. [CrossRef] [PubMed]
2. Roullier, V.; Lézoray, O.; Ta, V.T.; Elmoataz, A. Multi-resolution graph-based analysis of histopathological whole slide images:

Application to mitotic cell extraction and visualization. Comput. Med. Imaging Graph. 2011, 35, 603–615. [CrossRef] [PubMed]
3. Doyle, S.; Madabhushi, A.; Feldman, M.; Tomaszeweski, J. A boosting cascade for automated detection of prostate cancer from

digitized histology. In Proceedings of the International Conference on Medical Image Computing and Computer-Assisted
Intervention, Copenhagen, Denmark, 1–6 October 2006; Springer: Berlin/Heidelberg, Germany, 2006; pp. 504–511.

4. Janowski, P.; Strzelecki, M.; Brzezinska-Blaszczyk, E.; Zalewska, A. Computer analysis of normal and basal cell carcinoma mast
cells. Med. Sci. Monit. 2001, 7, 260–265. [PubMed]

5. Lu, C.; Ma, Z.; Mandal, M. Automated segmentation of the epidermis area in skin whole slide histopathological images. IET
Image Process. 2015, 9, 735–742. [CrossRef]

6. Kleczek, P.; Jaworek-Korjakowska, J.; Gorgon, M. A novel method for tissue segmentation in high-resolution H&E-stained
histopathological whole-slide images. Comput. Med. Imaging Graph. 2020, 79, 101686.

7. Kłeczek, P.; Dyduch, G.; Jaworek-Korjakowska, J.; Tadeusiewicz, R. Automated epidermis segmentation in histopathological
images of human skin stained with hematoxylin and eosin. In Proceedings of the Medical Imaging 2017: Digital Pathology,
Orlando, FL, USA, 11–16 February 2017; Volume 10140, pp. 140–158.

8. Wu, Y.; Cheng, M.; Huang, S.; Pei, Z.; Zuo, Y.; Liu, J.; Yang, K.; Zhu, Q.; Zhang, J.; Hong, H.; et al. Recent Advances of Deep
Learning for Computational Histopathology: Principles and Applications. Cancers 2022, 14, 1199. [CrossRef]

9. Bándi, P.; van de Loo, R.; Intezar, M.; Geijs, D.; Ciompi, F.; van Ginneken, B.; van der Laak, J.; Litjens, G. Comparison of different
methods for tissue segmentation in histopathological whole-slide images. In Proceedings of the 2017 IEEE 14th International
Symposium on Biomedical Imaging (ISBI 2017), Melbourne, Australia, 18–21 April 2017; pp. 591–595.

10. Wang, Z. A new approach for segmentation and quantification of cells or nanoparticles. IEEE Trans. Ind. Inform. 2016, 12, 962–971.
[CrossRef]

11. Zhao, M.; Wang, H.; Han, Y.; Wang, X.; Dai, H.N.; Sun, X.; Zhang, J.; Pedersen, M. Seens: Nuclei segmentation in pap smear
images with selective edge enhancement. Future Gener. Comput. Syst. 2021, 114, 185–194. [CrossRef]

12. Lagree, A.; Mohebpour, M.; Meti, N.; Saednia, K.; Lu, F.I.; Slodkowska, E.; Gandhi, S.; Rakovitch, E.; Shenfield, A.; Sadeghi-Naini,
A.; et al. A review and comparison of breast tumor cell nuclei segmentation performances using deep convolutional neural
networks. Sci. Rep. 2021, 11, 8025. [CrossRef]

13. Cui, Y.; Zhang, G.; Liu, Z.; Xiong, Z.; Hu, J. A deep learning algorithm for one-step contour aware nuclei segmentation of
histopathology images. Med. Biol. Eng. Comput. 2019, 57, 2027–2043. [CrossRef]

14. Xie, L.; Qi, J.; Pan, L.; Wali, S. Integrating deep convolutional neural networks with marker-controlled watershed for overlapping
nuclei segmentation in histopathology images. Neurocomputing 2020, 376, 166–179. [CrossRef]

15. Zhou, Z.; Siddiquee, M.M.R.; Tajbakhsh, N.; Liang, J. UNet++: Redesigning Skip Connections to Exploit Multiscale Features in
Image Segmentation. IEEE Trans. Med. Imaging 2020, 39, 1856–1867. [CrossRef] [PubMed]

16. Ilyas, T.; Mannan, Z.I.; Khan, A.; Azam, S.; Kim, H.; De Boer, F. TSFD-Net: Tissue specific feature distillation network for nuclei
segmentation and classification. Neural Netw. 2022, 115, 1–15. [CrossRef] [PubMed]

17. Kiran, I.; Raza, B.; Ijaz, A.; Khan, M.A. DenseRes-Unet: Segmentation of overlapped/clustered nuclei from multi organ
histopathology images. Comput. Biol. Med. 2022, 143, 105267. [CrossRef] [PubMed]
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