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Efficient Stateful Dynamic Partial Order Reduction⋆

Yu Yang Xiaofang Chen Ganesh Gopalakrishnan Robert M. Kirby

School of Computing, University of Utah
Salt Lake City, UT 84112, U.S.A.

Abstract. In applying stateless model checking methods to realistic
multithreaded programs, we find that stateless search methods are inef-
fective in practice, even with dynamic partial order reduction (DPOR)
enabled. To solve the inefficiency of stateless runtime model checking,
this paper makes two related contributions. The first contribution is a
novel and conservative light-weight method for storing abstract states at
runtime to help avoid redundant searches. The second contribution is a
stateful dynamic partial order reduction algorithm (SDPOR) that avoids
a potential unsoundness when DPOR is naively applied in the context of
stateful search. Our stateful runtime model checking approach combines
light-weight state recording with SDPOR, and strikes a good balance
between state recording overheads, on one hand, and the elimination of
redundant searches, on the other hand. Our experiments confirm the ef-
fectiveness of our approach on several multithreaded benchmarks in C,
including some practical programs.

1 Introduction

Despite all the advances in developing new concurrency abstractions, explicit
thread programming using thread libraries remains one of the most practical
ways of realizing concurrent programs that take advantage of multiple cores.
Many high level concurrency abstractions (e.g., software transaction memories)
also require the use of threads for their implementation. Unfortunately, it is not
easy to write bug-free thread programs [1]. In this paper, we focus on the efficient
checking of a given multithreaded program for safety violations over all possible

interleavings on specific inputs.
Runtime model checking [2,3] is a promising method for bug detection. As

model building, extraction, and model maintenance are expensive to carry out
for thread programs written in practice, we believe in the importance of de-
veloping efficient runtime checking methods, as pioneered in [2]. However, even
when running under specific inputs, the number of interleavings of a concurrent
program can grow astronomically due to their internal concurrency.

Much of the interleaving explosion that occurs in practice during stateless
runtime model checking can be attributed to redundant searches from already
visited states. The example in Figure 1 illustrates this problem. This program has

⋆ Supported in part by NSF award CNS00509379, Microsoft HPC Institute Program,
and SRC Contract 2005-TJ-1318.



const int N = 64;

int d = 0;

thread1: thread2:

local int i = 0; local int j = 0;

L0: while (i < N){ M0: while (j < N){

L1: atomic{ M1: atomic{

d = d + i; M2: d = d - j;

assert(d % 5 != 4) assert(d % 5 != 4);

} }

L2: i = i + 5; M4: j = j + 2;

L3: } M5: }

Fig. 1. A simple example for illustrating the idea

two threads that, in their own atomic blocks that are nested within loops, write
to a shared variable d. Stateless search methods cannot handle this example even
with the help of dynamic partial order reduction (DPOR) [4]. This is because: (i)
the number of interleavings grows exponentially with respect to the number of
loop iterations; (ii) working under stateless DPOR, at any reached state where
both threads are enabled, there exists no non-trivial persistent set.

Consequently, with stateless search, many states of this program are re-visited
multiple times via different interleavings. For example, given thread1 at L1 and
thread2 at M1, whether thread1 executing L1,L2 followed by thread2 executing
M1,M2, or vice versa, the program reaches the same state. Figure 2 illustrates
this, where T1 represents thread1 and T2 represents thread2 (Note: The dotted
states are the intermediate states attained after executing the visible operation of
a transition;this detail illustrates a convention introduced in Section 2.) Failing
to detect visited states makes the stateless search methods repeatedly explore
visited state spaces, which results in very low efficiency.

S2

3S

S4S0

S7S5

S6

S1

                     

T1: d=d+i T2: j=j+2

T2: d=d-jT1: i=i+5

T1: d=d+i

T1: i=i+5T2: d=d-j

T2: j=j+2

Fig. 2. Two different executions of the program in Figure 1 lead to the same
state

While one straightforward solution that avoids redundant searches involves
the use of visited states maintained in a hash table, this method, however, is com-
plicated owing to the difficulty of capturing the states of realistic multithreaded
program at runtime. This is especially true for programs written in program
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languages such as C/C++. Although there have been model checkers such as
CMC [5] and Java PathFinder [6] that have attempted such program state cap-
ture, these approaches are quite heavy-weight. For example, if we take CMC’s
approach, we need to capture the state of the kernel space plus the user space.
Alternately, if we follow Java PathFinder’s approach, we will have to build a vir-
tual machine for C/C++ programs. Is there a light-weight approach to recording
the states of concurrent programs at runtime? If we have such an approach, how
do we combine it with partial order reduction techniques soundly? In this paper,
we solve these problems in the context of terminating multithreaded programs.
We make the following contributions:

• We propose a novel light-weight scheme for capturing the local states of
threads. We observe that while capturing the entire state of a realistic pro-
gram at runtime is difficult and expensive, capturing the changes between
two successive local states of a thread can be easy and inexpensive. Based on
this observation, we abstract local states of threads with IDs, and try to dis-
cover the same local state of a thread among different executions by tracking
the changes (i.e., “deltas”) between successive local states of threads. While
an actual total system state of a thread program with N threads would be
a tuple (g, (l1, . . . , lN ), (p1, . . . , pN)) where g is the global state, lk are the
actual thread local states and pk are the actual thread PCs, an abstract state
would be (g, (i1, . . . , iN), (p1, . . . , pN )) where ik are IDs we assign for thread
local states. These IDs are computed in a conservative way based on the
sequence of deltas that each thread undergoes, as explained in Section 3.

• We present a stateful dynamic partial order reduction (SDPOR) algorithm,
which combines our light-weight runtime state capturing approach with dy-
namic partial order reduction. By introducing states in dynamic partial order
reduction, an obvious soundness problem is not updating the backtrack set
along a new path that revisits a state. To solve this problem efficiently, we
dynamically construct a visible operation dependency graph while performing
the search. When a visited state is encountered, we compute the summary
of the visited sub-state-space using the visible operation dependency graph.
With the summary, we conservatively update the backtrack sets of states
and guarantee the soundness of our approach.

• We have implemented SDPOR within our runtime model checker Inspect [7],
and evaluated our approach on a set of multithreaded C benchmarks. The
experiments show that SDPOR is much more effective than the stateless
DPOR.

The rest of the paper is organized as follows. We introduce the background
definitions in Section 2. In Section 3, we describe how local states can be captured
in a light-weight and conservative manner. Section 4 presents how the DPOR
algorithm can be adapted, with the stateful search. Sections 5 and 6 then present
the implementation details and the experimental results. An the end, we discuss
related work and conclude the paper.
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2 Background Definitions

In this section, we define the notations we employ in the rest of the paper,
following the style of [4]. We consider a terminating multithreaded program
with a fixed number of sequential threads as a state transition system. We use
T id = {1, . . . , n} to denote the set of thread identities. Threads communicate
with each other via global objects which are visible to all threads. The operations
on global objects are called visible operations, while thread local variable updates
and PC updates are invisible operations. The total system state (S), the program
counters of the threads (PCs), and the local states of threads (Locals) are now
defined:

S ⊆ Global × Locals× PCs
PCs = T id → PC

Locals = T id → Local

Here, Global is the state of global objects, Local the local state of any thread,
and PC the program counter of any thread. For s ∈ S, we use g(s) ∈ Global to
denote the state of global objects in s, l(s) ∈ Locals to denote the local state
component, and lτ (s) ∈ Locals(τ) to denote the local state of thread τ in s. For
ls ∈ Locals, we write ls[h := l] to denote the map that is identical to ls except
that it maps the thread h to the local state l.

A transition t : S → S advances the program from one state to a subsequent
state. More specifically, it starts with one visible operation, followed by a finite
sequence of zero or more invisible operations of the same thread, and ends just
before the next visible operation of the same thread. For instance, in Figure 2,
T1: d=d+i is a visible operation, and T1: i=i+5 is an invisible operation. We do
not consider the read of i that occurs within d=d+i to be an invisible operation,
as it does not change the state of i.

We can view a transition t as a composition of the global transition tg and the
local transition tl. That is, t = tl ◦ tg where tl, tg ∈ S → S. Here, tg corresponds
to the visible operation that the transition t starts with. It updates the state
of global objects and the program counter of the thread. tl corresponds to the
finite sequence of invisible operations that follows tg. It can only affect the local
state and the program counter of the thread.

Let T denote the set of all transitions of a multithreaded program. A tran-
sition t ∈ T is enabled in a state s if t(s) is defined. If t is enabled in s and

t(s) = s′, we use s
t
→ s′ to mean that s′ is the successor of s by executing

transition t. We use tid(t) to denote the identity of the thread that executes t.
Obviously we have tid(t) ∈ T id.

The behavior of a multithreaded program P is given by a transition system
M = (S, s0, Γ ), where s0 is the initial state, and Γ ⊆ S × S is the transition

relation. (s, s′) ∈ Γ iff ∃t ∈ T : s
t
→ s′.
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3 Capturing Local States of Threads

Although the local states of threads are not easy to capture precisely at runtime,
we observe that in many cases, the changes δ between successive local states are
easy to capture. For example, due to the correlations among global objects [8],
it is commonly the case that there exist sequences of transitions in which each
transition has only the visible operation component, with the invisible operation
component being absent. In this case, the local states of threads do not change.
It is also common that the changes of local states only involve several local
objects and are easy to capture. As an example, in the program of Figure 1, the
local state change of thread1 between two successive executions of the atomic
statement labeled L1 only involves the local object i. Likewise, the local state
change of thread2 between two successive executions of the atomic block at M1
only involves the local object j. This motivates us to capture the local states of
threads by tracking the changes among local states.

We now detail our algorithm for capturing local states of threads at runtime,
in the context of a depth first search of the state space of the threads. The key
idea of the algorithm is to represent each local state of a thread with an abstract
ID, and to link these IDs by tracking changes between successive local states
of threads. This scheme helps conservatively determine whether local states of
threads are repeating across different executions.

Let LocalId denote the set of local state IDs (natural numbers). We define
the abstract state of a multithreaded program formally as follows:

Sa ⊆ Global × Localsa × PCs
Localsa = T id → LocalId
LocalId ⊂ N

With the local state IDs, a multithreaded program can be represented as
a transition system Ma = (Ss, s0a

, Γa), where s0a
is the initial state of the

program, and Γa ⊆ Sa × Sa is the transition relation. Note that because of our
conservative state maintenance scheme which we present later in this section,
there could be more than one abstract state associated with a real state.

Let sa be an abstract state in Sa. When the context is clear, we still use
g(sa) ∈ Global to denote the global state of sa, and use ls(sa) ∈ Localsa to
denote the local states identities. We use lidτ(sa) ∈ LocalId to denote the as-
signed local state identity of thread τ . For lsa ∈ Localsa, we write lsa[τ := x]
to denote that the map that is identical to lsa except that it maps the thread τ
to the local state identity x.

As the state of global objects are in general easy to capture, we do not
abstract the states of global objects. Let sa ∈ Sa be an abstract state and s
be its corresponding state in S. We have g(sa) = g(s). Similarly, we also have
sa.PCs = s.PCs.

Let s, s′ ∈ S be two states, and t be a transition such that s
t
→ s′. Let

τ = tid(t). We define the changes of the local state of thread τ between s and s′

as δτ = lτ (s′)\ lτ (s). We use δε to represent that the local state does not change
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for a thread. That is, for the thread τ in the above, lτ (s′) = lτ (s). Also, we write
δ⊥ to denote that the local state changes are unknown. δ⊥ is used when it is
hard to capture the local state changes, e.g. when the transition tl involves calls
to library routines, etc. We use ∆ to denote the set of all possible local state
changes (δs) for all threads in the program.

In order to detect that the same local state of thread is appearing in different
executions of the multithreaded program, we maintain a local state hash table

for each thread of the program. The local state hash table records the IDs of the
local states that have been visited, as well as the changes between two successive
local states. In more detail, for each thread τ , we have a local state hash table Lτ

to store the IDs of the visited local states of τ . Lτ : LocalId×∆ → LocalId is a
mapping from a local state IDs plus the change to a local state, to a potentially
new local state ID. However, if Lτ already contains the domain point, then the
local state ID already in the hash table is returned. We use L to denote the set
of local state hash tables for all threads.

Our basic search algorithm with abstract state recording is presented in Fig-
ures 3 and 4. The final SDPOR algorithm in Section 4 will build on this algo-
rithm. Figure 3 shows Dfs, a recursive procedure for depth-first search of the
state space. Dfs calls NextLocal of Figure 4 to compute the local state IDs
of a thread. The main data structures used are:

– A hash table H to store all program states s ∈ Sa that have already been
visited during the search.

– For each thread τ , we have a local state hash table Lτ to store the identities
of the visited local states of τ .

Dfs of Figure 3 has four parameters: the abstract state hash table H , the
local state hash tables L, the current state s, and finally sa, which is the abstract
state of s. Starting from the initial state, Dfs recursively explores the successor
states of all states encountered during the search, provided that the correspon-
dent abstract state is not in the hash table. For each visited state, Dfs stores
the correspondent abstract state in the hash table H . Each time we reach a state
s′ by executing a transition t which is enabled in a state s, we will compute the
abstract state of s′ (line 7-9 of Figure 3), and recursively call Dfs to explore the
next level of the state space.

Figure 4 shows the algorithm for computing the local state identity of a
thread. In the procedure NextLocal, we consider four possible cases:

– If the local state change is difficult to capture precisely, we simply return a
new local state ID x.

– If the local state does not change (i.e., δτ = δε), the same ID is returned.
– If the hash table Lτ already has an entry for (i, δτ ) → y, then we return y

as the ID.
– Otherwise, we return a new local state ID x, and at the same time add an

entry 〈(i, δτ ) → x〉 to Lτ .

Now with Dfs and NextLocal, we have the following theorem:
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1: Initially: H is empty; ∀Lτ ∈ L : Lτ is empty; Dfs(H , L, s0, s0a);

2: Dfs(H , L, s, sa) {
3: if (sa ∈ H) return;
4: enter sa in H ;
5: for each transition t that is enabled in s {

6: let s′ ∈ S such that s
t
→ s′;

7: let τ = tid(t), δτ = lτ (s′) \ lτ (s);
8: let x = NextLocal(Lτ , lidτ (sa), δτ );
9: let s′a ∈ Sa s.t. g(s′a) = g(s′) ∧ ls(s′a) = ls(sa)[τ := x] ∧ s′a.PCs = s′.PCs;

10: Dfs(H , L, s′, s′a);
11: }
12: }

Fig. 3. Depth-first search with a light-weight state capturing scheme

1: NextLocal(Lτ , i, δτ ) {
2: let x ∈ LocalId be a unique new local state identity;
3: if (δt = δ⊥) return x;
4: if (δτ = δε) return i;
5: if (∃y : 〈(i, δτ )→ y〉 ∈ Lτ ) return y;
6: add 〈(i, δτ )→ x〉 to Lτ ;
7: return x;
8: }

Fig. 4. Computing the local state identity of a thread

Theorem 1. Let M = (S, s0, Γ ) be a multithreaded program. In a depth first

search on S following the algorithm of Figure 3, let s, s′ ∈ S be states that can

be reached from s0, and let sa, s′a ∈ Sa be the abstract states corresponding to s
and s′. Then ∀τ ∈ T id : lidτ (sa) = lidτ (s′a) =⇒ lτ (s) = lτ (s′). �

The detailed proof is in the appendix. Theorem 1 states that to detect the
visited states at runtime, instead of capturing the local states of threads in
detail, we can conservatively infer the equality of local states using the local
state changes δ. In practice, capturing δ is usually much easier than capturing
the whole local state. Therefore, the task of explicitly capturing states at runtime
can be greatly simplified. In the next section, we show how to combine our
approach of state capturing with dynamic partial order reduction.

4 Stateful Dynamic Partial Order Reduction

4.1 Background

Dynamic partial order reduction [4] has been shown as an effective reduction
technique in stateless search. In DPOR, given a state s, the persistent set [9]
of s is not computed immediately after reaching s. Instead, DPOR explores the
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states that can be reached from s using depth-first search, and adds backtrack
information into the backtrack set of s while exploring the sub-space that is
reachable from s.

In more detail, let ti be a transition that is enabled at state s. Suppose the
model checker first selects ti to execute at s. Let tj be a transition which can be
enabled with a depth first search (in one or more steps) from s by executing ti.
Then before tj is executed, DPOR will check whether tj and ti are dependent
and can be enabled concurrently, i.e. co-enabled. If so, tid(tj) or the id of the
thread which tj is dependent on will be added to the the backtrack set of s if a
transition of tid(tj) is enabled at s. Later, in the process of backtracking, if the
state s is found with non-empty backtrack set, DPOR will select one transition
t which is enabled at s and tid(t) is in the backtrack set of s, and explore a new
branch of the state space by executing t from s; at the same time, tid(t) will be
removed from the backtrack set of s.

For convenience, we use the following notations to represent the notions used
in DPOR:

– s.enabled denotes the set of transitions that are enabled at s. We say a thread
τ is enabled at s if ∃t ∈ s.enabled : tid(t) = τ .

– s.backtrack refers to the backtrack set of state s, i.e. the set of threads whose
transitions are enabled at s but have not been executed, s.backtrack ⊆ T id.

– s.done denotes the set of threads whose transitions are enabled at s and have
been executed from s, s.done ⊆ T id.

As DPOR is a stateless depth first search, it also suffers from the redundant
exploration of the state space as described in Section 1. In the rest of this section,
we show how to adapt dynamic partial order reduction in the context of stateful
search, and how to combine the state capturing scheme of Section 3 with the
stateful dynamic partial order reduction.

4.2 Stateful DPOR

The problem: In a depth first search with DPOR, it seems that if visited states
can be recognized, DPOR can simply stop the search at the visited states and
start backtracking. However, it is not that simple because the transitions to be
executed after the visited states may update the backtrack sets of the states in
the search stack. Simple backtracking may result in unsoundness. For example,
suppose we have two different executions

S1 = s0

t0−→ s1

t1−→ . . .
tu−1

−→ su . . .

S2 = s0

t′0−→ s′
1

t′1−→ . . .
t′v−1

−→ s′v . . .

of a program starting from the same state s0, and s′v is a visited state, s′v = su,
u, v ≥ 0 (a fact also noted in [10]). Also, suppose that S2 is explored after S1 in
the depth first search with DPOR. Now, for every transition t which is executed
after s′v, the backtrack sets of states s0, s

′

1
, . . . , s′v of S2 may have to be updated.

As a result, if we simply stop exploring the state space after s′v, we may miss
exploring a subset of the state space, i.e., this näıve approach is not sound.
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Initial solution: A straightforward way to fix this problem is that when a
visited state is encountered, for each state s in the search stack, we update the
backtrack set as follows – for all t ∈ s.enabled where tid(t) /∈ s.done, add tid(t)
into s.backtrack. This solves the problem of missing potential backtrack sets.
However, it may also have the side effect of introducing too many unnecessary
backtrack points which would not be introduced in the stateless DPOR. 1 This
side effect may put significant overhead on the stateful approach and make the
stateful DPOR run slower than the stateless one. Our initial experiments con-
firmed this conjeture.

Visible operation dependency graph: To avoid unsoundness we employ an
efficient mechanism called visible operation dependency graph. Let sv be a visited
state encountered in the stateful DPOR. As only the visible operations of tran-
sitions determine whether two transitions are dependent or not, our approach is
to compute a summary for the state space the element of which can be reach-
able from sv. This summary captures all the visible operations that might be
executed from sv in one or more steps. We can use this summary to update the
backtrack sets of the states that are in the search stack.

Obviously, computing such a summary for every state is very heavy-weight.
However, we observe that with multithreading, the programs are usually designed
in such a way that each thread is assigned some specific tasks to get the most
benefit out of parallelism. The number of resources that require mutual exclusive
accesses, and the number of conditions that threads need to be synchronized are
limited, and usually small in number. This implies that while the number of

states of a multithreaded program can be large, the number of visible operations

that each thread may execute is limited.

For instance, for the program of Figure 1, although the number of states can
be large, the only visible operation that thread1 and thread2 may execute is
updating the global object d.

Based on this observation, instead of trying to maintain a summary for each
state and keep the summaries updated, we compute the summary dynamically

only when a visited state is encountered by looking up the visible operation de-

pendency graph which is constructed dynamically during the search.

In more detail, let M = (S, s0, Γ ) be a multithreaded program. Let T be the
transition set of M . A visible operation dependency graph G = 〈V, E〉 for M is
a directed graph which captures the happen-before relation of visible operations
for the traversed state space. Every node v ∈ V of G is a visible operation. That

is, ∀v ∈ V : ∃t ∈ T : tg = v. For each transition sequence s1

t
→ s2

t′

→ s3 we
encounter during the search, we add a directed edge (tg, t

′

g) into the graph.

In a depth-first search, when a visited state s is encountered, all the states
that are reachable from s must have been visited because of the depth first search.
Hence, all the visible operations that may be executed in states reachable from

1 The solution in [10] was this, but the method was experimented only in the context
of a custom-built model checker on very small MPI program examples.
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s must have been executed. Therefore, we can traverse the visible operation
dependency graph to find out all the visible operations that may be executed
from some transition in s.enabled, and use this as a summary to update the
backtrack sets of the states which are in the search stack. As the size of the
graph is proportional to the number of visible operations that a multithreaded
program may execute, this is a light-weight method for computing summaries of
the visited states.

SDPOR: Figure 5 presents our stateful dynamic partial order reduction al-
gorithm (SDPOR). The procedure Sdpor takes three parameters: the search
stack S, the state hash table H , and the visible operation dependency graph
G. Similar to DPOR, given a multithreaded program P , SDPOR first explores
an arbitrary interleaving of the program, and thereafter, continues explore al-
ternative interleavings until all relevant interleavings are explored, i.e., when no
backtrack points are in the search stack. The differences between SDPOR and
DPOR are:

– SDPOR uses a hash table H to record the visited states (line 9 of Figure 5).
When a visited state is encountered, SDPOR conservatively updates the
backtrack sets for states in the search stack S, and start backtracking (line
5-7 of Figure 5).

– SDPOR uses a visible operation dependency graph G to dynamically learn
the happen-before relation of visible operations during the depth-first search
(line 19 of Figure 5). G is used to compute the state summary U when a
visited state is encountered (line 5 of Figure 5).

SDPOR uses UpdateBacktrackSets of Figure 6 to update the backtrack
sets for states in the search stack. UpdateBacktrackSets is the same as that
in the stateless DPOR. We present it here for completeness.

Theorem 2. Let M = (S, s0, Γ ) be a multithreaded program. For every execu-

tion of a transition s
t
→ s′ of M , if it is explored by the stateless DPOR, it must

be explored by Sdpor. �

The soundness of Sdpor is guaranteed by Theorem 2. The detailed proof is
given in the appendix. This theorem shows that given a multithreaded program,
the set of states visited by Sdpor is a superset of the states visited by DPOR.
This means that Sdpor is a conservative approach.

Note that DPOR may re-explore the same state space many times, while
SDPOR will, whenever abstract states are found in the hash-table, avoid all those
re-visits. Therefore, the bag of DPOR visited states usually has size far higher
than the bag of states that SDPOR visits. This is the reason that Sdpor can be
more efficient than DPOR in checking multithreaded programs. The experiments
to be shown in Section 6 confirm that comparing with DPOR, Sdpor is more
efficient in checking realistic multithreaded programs.

10



1: Initially: S.push(s0); H is empty; G is empty;

2: Sdpor(S, H , G) {
3: s← S.top;
4: if (s ∈ H) {
5: let U = {v | ∃t ∈ s.enabled, v is reachable in G from the node tg};
6: for each t ∈ U , UpdateBacktrackSets(S, t);
7: return;
8: }
9: add s into H ;

10: for each t ∈ s.enabled, UpdateBacktrackSets(S, t);
11: if (∃ thread τ , ∃t ∈ s.enabled, tid(t) = τ ){
12: s.backtrack ← {τ};
13: s.done← ∅;
14: while (∃h ∈ s.backtrack \ s.done) {
15: s.backtrack ← s.backtrack \ {h};
16: s.done← s.done ∪ {h};
17: let t ∈ s.enabled, tid(t) = h, and let s′ = next(s, t);
18: S.push(s′);

19: if ∃sx ∈ S s.t. sx
tx→ s

t
→ s′, add a directed edge (txg , tg) to G

20: Sdpor(S, H, G);
21: S.pop();
22: }
23: }
24: }

Fig. 5. Stateful dynamic partial order reduction (SDPOR)

1: UpdateBacktrackSets(S, t) {
2: let T be the sequence of transitions that are executed from the initial state of

the program, following the sequence of states in S;
3: let td be the latest transition in T that is dependent and may be co-enabled

with t;
4: if (td 6= null){
5: let sd be the state in S from which td is executed;
6: let E be {q ∈ sd.enabled | tid(q) = tid(t), or q in T , q happened after td

and is dependent with some transition in T which was executed by tid(t) and
happened after q }

7: if (E 6= ∅)
8: choose any q in E, add tid(q) to sd.backtrack;
9: else

10: sd.backtrack ← sd.backtrack ∪ {tid(q) | q ∈ sd.enabled};
11: }
12: }

Fig. 6. Updating the backtrack sets for states in the search stack
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4.3 Efficient SDPOR

The algorithm of Figure 5 assumes that the model checker is capable of capturing
the program states precisely. Here we present the practical algorithm which
combines Sdpor of Figure 5 with the light-weight state capturing scheme that
is presented in Section 3. Figure 7 shows the algorithm. Here the procedure
Sdpor takes four parameters – although the parameter S is still the search
stack, the element of the stack is a pair (s, sa) such that s ∈ S, sa ∈ Sa, and sa

is the abstract state of s. The parameter L is the set of local state hash tables.
The parameter H , G are the same as in Figure 5.

1: Initially: S.push(s0); H is empty; ∀Lτ ∈ L : Lτ is empty; G is empty;

2: Sdpor(S, H , L, G) {
3: 〈s, sa〉 ← S.top;
4: if (sa ∈ H) {
5: let U = {v | ∃t ∈ s.enabled, v is reachable in G from the node tg};
6: for each t ∈ U , UpdateBacktrackSets(S, t);
7: return;
8: }
9: add sa into H ;

10: for each t ∈ s.enabled, UpdateBacktrackSets(S, t);
11: if (∃ thread τ , ∃t ∈ s.enabled, tid(t) = τ ){
12: s.backtrack ← {τ};
13: s.done← ∅;
14: while (∃h ∈ s.backtrack \ s.done) {
15: s.backtrack ← s.backtrack \ {h};
16: s.done← s.done ∪ {h};
17: let t ∈ s.enabled, tid(t) = h, and let s′ = next(s, t);
18: let δh = lh(s′) \ lh(s), and x = NextLocal(Lh, lidh(sa), δh);
19: let s′a ∈ Sa s.t. g(s′a) = g(s′) ∧ ls(s′a) = ls(sa)[τ := x] ∧ s′a.PCs = s′.PCs;
20: S.push(〈s′, s′a〉);

21: if ∃sx ∈ S s.t. sx
tx→ s

t
→ s′, add a directed edge (txg , tg) to G

22: Sdpor(S, H, L, G);
23: S.pop();
24: }
25: }
26: }

Fig. 7. The combination of SDPOR shown in Figure 5 with the light-weight
state capturing scheme which is presented in Section 3.

Comparing with Sdpor in Figure 5, in this combined algorithm, line 18-19
are the new statements for computing the abstract states, line 3 and line 20 are
modified to adapt the changes of the search stack, and line 22 is changed to
adapt the local state hash tables. The rest of the algorithm is the same as in
Figure 5.
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5 Implementation

We implemented the algorithm of Figure 7 in the infrastructure of the run-
time model checker Inspect [7,11] . Inspect can instrument a multithreaded
C program with code to intercept the visible operations, compile the the in-
strumented program along with a stub library into an executable, and uses a
centralized monitor to systematically explore interleavings of the program by
concretely executing the program.

Inspect uses escape analysis [12] to reveal potential visible operations in
a multithreaded program. Building upon this approach, we implemented an
intra-procedural forward data-flow analysis to determine the local state changes
between successive visible operations. For any transition t, we treat δt as δ⊥
when: (i) tg of t is the first visible operation in the procedure, or (ii) there are
function calls or updates of pointers between the previous visible operation and
tg. Otherwise, we compute δt by capturing the changes of the local variables.

In [11], we described how automated instrumentation is done for stateless
runtime checking. To capture the local state changes of threads, we instrument
extra code into the program under test to inform the scheduler the local state
changes.

6 Experimental Results

We performed experiments on a set of multithreaded benchmarks: example1 is
the program shown in Figure 1, sharedArray is a benchmark from [13]. It has two
threads that iteratively write to different elements of a shared array. bbuf is an
implementation of a bounded buffer with concurrent producers and consumers.
bzip2smp [14] and pfscan [15] are two real multithreaded applications. bzip2smp
is a multithreaded compression program that uses multiple threads to speed up
the compression of a file. pfscan is a multithreaded file scanner that uses multiple
threads to search in parallel through directories. bzip2smp contains 6.4k lines of
C code, and pfscan has 1k lines of C code.

Table 1 shows the experimental results using stateless DPOR and our stateful
approach. All the experiments were performed on a PC with an Intel quad-core
CPU of 2.4GHz and 2GB of memory. We use “-” to denote that the program
cannot be completely checked within 24 hours (86400 seconds).

We compared SDPOR with DPOR on the number of executions (or runs)
they require to check a program, the number of transitions explored, and the
checking time. Note that for SDPOR, the number of transitions being explored
minus the number of “re-visited” states is the number of states encountered in
the search. From the experimental results, it is clear that our stateful DPOR
approach is more effective than the stateless DPOR, in reducing both the number
of transitions to be explored and the checking time.

7 Related Work

There has been substantial work on stateful model checking. Model checkers
such as SPIN [16] and Bogor [17] have been very successful in revealing bugs
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Table 1. Experimental results on the comparison between DPOR and SDPOR

Benchmarks Threads DPOR SDPOR
runs transitions time(s) runs transitions re-visited time(s)

example1 2 - - - 35 2,084 12 1.41
sharedArray 2 - - - 98 18,557 33 5.70

bbuf 4 47,096 1,058,962 938.27 16,246 349,717 669 344.88
bzip2smp 4 - - - 4,598 26,442 4460 1311.15
bzip2smp 5 - - - 18,709 92,276 18,278 9456.34
bzip2smp 6 - - - 51,400 236,863 50,401 25659.38
pfscan 3 84 1,157 0.527 71 967 2 0.485
pfscan 4 13,617 189,218 240.74 3,168 40,395 334 57.43
pfscan 5 - - - 272,873 3,402,486 39,008 5328.84

and proving the correctness of systems. However, it is difficult for classic model
checkers to check realistic multithreaded programs, which often heavily use li-
brary routines and have sophisticated memory manipulation operations. The
advantage of our approach is able to directly examine the programs and avoid
the modeling overhead (and potential consistency issues).

Musuvathi et al. [5] developed CMC, which is a runtime model checker that
can precisely capture the states of a concurrent program by snapshoting the ker-
nel space plus the user space of the program. In our work, we do not capture the
whole state of a multithreaded program. Instead, we abstract the local states of
threads as identities, and try to recognize the same states in different executions
by tracking the local state changes. Compared with CMC, our approach is more
light-weight in capturing states at runtime.

Gueta et al. [13] proposed Cartesian partial order reduction, which reduces
the search space by delaying unnecessary context switches using Cartesian vec-
tors. Cartesian partial order reduction performs stateful search, and can deal
with cyclic state space. However, their approach assumed that the model checker
is capable of capturing the states precisely, and did not address the problem of
practical state capturing at runtime. We present a light-weight method for cap-
turing the states of concurrent programs at runtime, and show how to adapt the
stateful search into dynamic partial order reduction.

Yi et al. [18] proposed another stateful dynamic partial order reduction
method based on the summary of interleavings. [18] also assumed that the model
checker is able to precisely capture the states, and did not address the problem
of state capturing at runtime. Their definition of summary for interleavings is a
set of happen-before transition mappings. In their method, each state is associ-
ated with a summary of interleaving information, which could be very expensive
to store and to keep updated. When a visited state is encountered, our SDPOR
computes a summary for the states that can be reached from the visited state
in one or more steps. Different from their work, we use a visible operation de-
pendency graph to dynamically compute the summary when a visited state is
encountered. As a result, in our approach, the state summary computation is
more light-weight.
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8 Conclusion

We present an efficient stateful runtime model checking approach to testing
multithreaded C programs. To overcome the problem of capturing local states
of multithreaded C programs at runtime, we propose a novel light-weight state
abstraction scheme to conservatively capture local states. We also propose a
stateful dynamic partial order reduction algorithm, and show how to combine
it with our light-weight state capturing scheme. Compared with the traditional
stateless DPOR approach, our approach is able to detect commutativity of tran-
sitions in different executions of multithreaded programs at runtime, and avoid
exploring redundant interleavings. The experiments show that our approach is
more efficient than stateless DPOR in checking realistic programs.
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Appendix

Theorem 1. Let M = (S, s0, Γ ) be a multithreaded program. In a depth first search on

S following the algorithm of Figure 3, let s, s′ ∈ S be states that can be reached from

s0, and let sa, s′a ∈ Sa be the abstract states of s and s′. Then ∀τ ∈ T id : lidτ (sa) =
lidτ (s′a) =⇒ lτ (s) = lτ (s′).

Proof. In a depth first search on S following the algorithm of Figure 3, let n be the
number of times that NextLocal returns to Dfs from line 4 or line 5 of Figure 4.
That is, n is the number of times that NextLocal is invoked with either δτ = δε or
∃y.〈(i, δτ )→ y〉 ∈ Lτ . We now prove the theorem by induction on n.

– (Base case) n = 0: Following NextLocal, if n = 0, all calls to NextLocal must
return from either line 3 or line 7. That is, NextLocal has never been invoked
with δτ = δε or ∃y.〈(i, δτ )→ y〉 ∈ Lτ . Hence, following the algorithm of Figure 4,
every local state that has been visited must be assigned a unique id. Therefore,
in this situation, lidτ (sa) = lidτ (s′a) holds if and only if sa = s′a. Obviously,
lidτ (sa) = lidτ (s′a) =⇒ lτ (s) = lτ (s′) holds in this situation.

– (Induction hypothesis) Let k ≥ 0. For all n, n ≤ k, Theorem 1 holds.
– (Induction step) Let n = k + 1. Let s′ ∈ S be the state and τ ∈ T id be the thread

such that by invoking NextLocal(Lτ , lidτ (s′), δτ ) at line 8, n changes from k to
k + 1. Consider the situation that Dfs has finished executing line 8 of Figure 3,
but has not started executing line 9. Let s ∈ S be a state and t be a transition

such that s
t
→ s′ and τ = tid(t). There are two cases with respect to s′:

• If δτ = δε, according to line 7 of Dfs, we have lτ (s) = lτ (s′), and lidτ (sa) =
lidτ (s′a). Obviously lidτ (sa) = lidτ (s′a) =⇒ lτ (s) = lτ (s′) holds. Hence the
theorem holds.

• If ∃y.〈(lidτ (sa), δτ )→ y〉 ∈ Lτ : Let s1, s2 ∈ S be the two states that have been
visited and t1 be the transition such that 〈(lidτ (sa), δτ ) → y〉 was added to

Lτ when Dfs explored s1

t1→ s2. Let s1a and s2a respectively be the abstract
state of s1 and s2 Obviously we have lidτ (s1a) = lidτ (sa), lidτ (s2a) = y, and
lτ (s2) \ lτ (s1) = lτ (s′) \ lτ (s). According to the induction hypothesis, lτ (s1) =
lτ (s) must hold. As lτ (s2) \ lτ (s1) = lτ (s′) \ lτ (s), we have lτ (s2) = lτ (s′).
Hence, the theorem holds. Otherwise, it contradicts the induction hypothesis.

⊓⊔

Let M = (S, s0, Γ ) be a multithreaded program. Let s be a state in S. We use Rs to
denote the set of states that are reachable from s by executing one or more transitions.
Obviously we have Rs ⊆ S.

Let Sdpork be the algorithm of Figure 8. Comparing with Sdpor, the only differ-
ence between Sdpork and Sdpor is that Sdpork takes one more parameter k, which
bounds Sdpork to return only at the first k visited states. In more detail, Sdpork uses
a global counter c to record the number of visited states that it has encountered during
the depth-first search (line 5 of Figure 8). When a visited state sv is encountered, if
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1: Initially: c = 0; S.push(s0); H is empty;

2: Sdpork(S, H) {
3: s← S.top;
4: if (s ∈ H) {
5: c← c + 1;
6: if (c ≤ k) {
7: let Tp = {tg | t can be executed from states which are reachable from s };
8: for each t ∈ Tp, UpdateBacktrackSets(S, t);
9: return;

10: }
11: }
12: add s into H ;
13: for each t ∈ s.enabled, UpdateBacktrackSets(S, t);
14: if (∃ thread τ , ∃t ∈ s.enabled, tid(t) = τ ){
15: s.backtrack ← {τ};
16: s.done← ∅;
17: while (∃h ∈ s.backtrack \ s.done) {
18: s.backtrack ← s.backtrack \ {h}, s.done← s.done ∪ {h};
19: let t ∈ s.enabled, tid(t) = h, and let s′ = next(s, t);
20: S.push(s′);
21: Sdpork(S, H);
22: S.pop();
23: }
24: }
25: }

Fig. 8. Sdpork only stops depth-first search and backtrack immediately at the
first k revisited states.

c ≤ k, then Sdpork updates the backtrack sets of states in the search stack (line 7-8
of Figure 8) and returns immediately; otherwise, Sdpork continues exploring Rsv .

We have a class of algorithms {Sdpor0, Sdpor1, .... } by assigning k specific values.
Let A denote an algorithm that explores the state space of M . Let SA ⊆ S refer to the
set of states that is explored using A by starting from s0. Obviously, we have SDPOR

= SSdpor0
and SSdpor = SSdpor∞ .

To prove the correctness of Theorem 2, we first prove Lemma 1, which characterize
the relationship between Sdpork and Sdpork+1.

Lemma 1. Let M = (S, s0, Γ ) be a multithreaded program. Let s, s′ ∈ S and t be a

transition of M such that s
t
→ s′. Let k ≥ 0. If s

t
→ s′ is explored by Sdpork, it must

be explored by Sdpork+1.

Proof. Let r be the value of the global variable c when we finish checking the state
space of M using Sdpork. There are two cases with respect to r:

– If r ≤ k, obviously that the state spaces traversed by Sdpork and Sdpork+1 are
identical. The lemma holds.

– If r > k, let vi be the i-th visited state Sdpork and Sdpork+1 encounter while
exploring the state space of M . Let Γ x

i ⊆ Γ be the transition relation that has
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been explored by Sdporx before reaching the i-th visited states. It is obvious that
∀i, i ≤ k + 1 : Γ k

i = Γ k+1

i holds.
Now we consider the exploration of the search space by Sdpork and Sdpork+1

after they encounter vk+1. Following the algorithm of Figure 8, while encountering
vk+1, Sdpork is equivalent to a stateless search that does not record the search
history, and explores Rvk+1

. However, Sdpork+1 does not explore Rvk+1
. Before

encountering vk+1, the state spaces explored by Sdpork and Sdpork+1 are iden-
tical. Hence, the search stacks of Sdpork and Sdpork+1 are identical at the point
of encountering vk+1. Let sk and sk+1 denote the correspondent states that are
respectively in the search stacks of Sdpork and Sdpork+1. To prove the lemma, all
that we need to prove is that, when Sdpork and Sdpork+1 backtrack from svk+1

,

for all pairs of states 〈sk, sk+1〉, we have ssdpork
.backtrack ⊆ ssdpork+1

.backtrack.
This can be proved by contradiction. Suppose while backtracking from vk+1, there
exists 〈sk, sk+1〉 such that sk.backtrack ⊃ sk+1.backtrack. This implies that ∃h ∈
T id : h ∈ sk.backtrack ∧ h /∈ sk+1.backtrack. As the only difference between
Sdpork and Sdpork+1 is that Sdpork explores Rvk+1

while Sdpork+1 does not,

this can happen if and only if ∃s1, s2 ∈ Rvk+1
,∃t ∈ sk+1 : s1

t1→ s2 and t1 is depen-
dent with t. However, following the algorithm of Figure 8, if the execution of t1
happens before backtracking vk+1 in Sdpork, t1 ∈ Tp. Hence, if h ∈ sk.backtrack,
h must be in sk+1.backtrack. This contradicts h /∈ sk+1.backtrack.

⊓⊔

Let M = (S, s0, Γ ) be a multithreaded program. Let G be the transition dependency
graph of M . G is dynamically constructed following the algorithm of Figure 5. Let U
be the set of visible operations that is computed at line 5 of Figure 5. Let Tp be the
set of visible operations that is computed as line 7 of Figure 8. We have the following
lemma:

Lemma 2. Tp ⊆ U.

Proof: Following the algorithm of Figure 5, it is clear that while backtracking from a
state s, all transition dependency edges that can appear in Rs must have been added
to G. Therefor, we have ∀t ∈ Tp : t ∈ U . ⊓⊔

Theorem 2. Let M = (S, s0, Γ ) be a multithreaded program. For every execution of a

transition s
t
→ s′ of M , if it is explored by the stateless DPOR, it must be explored by

Sdpor.

Proof. With Lemma 1, Lemma 2, SDPOR = SSdpor0 and SSdpor = SSdpor∞, it is clear that
the theorem holds. ⊓⊔
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