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Summary. A new class of statistical models is proposed for the analysis of longitudinal 
data, especially those from growth studies. The models are all derived from a simple uni- 
variate two-level polynomial model. It is shown that they make efficient use of available 
data, and can handle a very wide range of problems. They have several important advantages 
over existing procedures. 

1. Introduction 
Many human growth studies typically have been based on a small set of  measure- 

ments at specified ages or occasions, and much of  the methodology for modelling 
growth data has assumed that all individuals will be measured at such a set of  target 
ages. There is no necessary reason however for requiring this, and the present paper 
presents a new class of  models for growth data, and for repeated measures designs in 
general, which does not require a common set of  occasions or ages. This allows con- 
siderable flexibility in incorporating explanatory variables other than age into the 
model, and extends to the class of  mixed longitudinal models considered by Patterson 
(1950), Jones (1980) and Woolson, Leeper and Clarke (1978), for example, and to 
general multivariate models with missing data. 

2. Fitting models to growth data 
It is possible to make several distinctions between the various procedures which 

have been used for fitting human-growth-curve height and weight data. Historically, 
the earliest and most developed are those which use non-linear, typically logistic, curves 
for the adolescent growth period, and more recently mixtures of  such curves to cover 
almost the entire age range (Bock and Thissen 1980). A variation is the family of  curves 
recently introduced by Preece and Baines (1978), also non-linear and designed to model 
the greater part of  the age range. Such models can be called parametric, in that they 
model the age range of  interest using a small number of  parameters. For example, 30 
height measurements taken between 4 and 20years might typically be modelled by 
between 5 and 8 parameters. The principal aim of such models is to summarize a 
complex growth pattern so that the parameters, or functions of  them can be used to 
describe individuals, to relate to other measurements, to make group comparisons and 
so forth. 

While such models undoubtedly have their uses, they suffer f rom three general 
drawbacks. First, they tend to impose a too rigid 'shape '  upon the growth pattern 
which does not allow for sufficient individual variation. For example, a logistic curve 
fitted to the adolescent growth period requires that the height at the time of maximum 
velocity (PHV) is half-way between the lower and upper asymptotes of  the curve, which 
is not characteristic of  individual data (Goldstein 1979). Secondly, because essentially 
the same curve is fitted to a wide age range, interesting local variations may be missed. 
Thus in the Preece-Baines curve (model 3) the 'mid-growth spurt '  is missed entirely 
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130 H. Goldstein 

(Gasser, Muller, Kohler, Prader, Largo and Molinari 1984). Thirdly, these models are 
unable to account for growth variation attributable to other characteristics measured at 
each occasion. Thus, for example, the variation about an overall fitted curve may be 
related to biochemical, environmental or social factors, which vary from occasion to 
occasion. Seasonal variations are another example of  occasion-related data. We shall 
return to this issue later. 

A more recent set of  developments which overcomes some of the above problems 
also involves the fitting of  smooth curves to individual growth patterns, but is non- 
parametric and allows the shape of the curve to be determined locally, that is over a 
small range of ages, and where the same form of curve is not assumed for each subject. 
Spline functions and the related kernel estimation techniques have been used (Stutzle, 
Gasser, Molinari, Prader and Huber 1980, Gasser, Kohler, Muller, Kneip, Largo, 
Molinari and Prader 1984). These techniques can be regarded as moving averages with 
varying weighting functions, whereby at any age only nearby measurements contribute 
to the shape of the curve. These techniques, needless to say, have their own problems: 
notably the choice of  the size of  the 'smoothing parameter, so that on the one hand the 
curve does not merely follow what are best regarded as random variations, and on the 
other that the smoothing is not too large to pick up interesting local patterns. However, 
it is worth remarking in this context that a solution to this problem may well lie in 
collecting more frequent measurements. These models also share the third dis- 
advantage of the parametric models mentioned previously: an inability to describe rela- 
tionships with other occasion-measured variables. Another issue which has received 
relatively little attention (but see Silverman 1985) is that of  heteroscedastic errors, most 
importantly an increasing residual variation with age. 

Another problem with non-parametric models is that each subject requires a 
minimum number of  data points, and preferably all subjects should have the same 
number of points. Thus, information of  potential use in the estimation of  population 
distributions may be unusable. In spite of  such problems, these procedures seem to 
have several important advantages over the non-linear parametric models, especially 
for identifying local events of interest such as the mid-growth spurt. 

All the above models are based upon fitting separate curves to each subject and then 
studying the distribution of  various derived estimates. The major alternative approach 
has been to model directly the variations in growth parameters for a sample of indi- 
viduals using polynomial regression models. A brief history of  this approach is given in 
Goldstein (1979), and a detailed mathematical exposition can be found in Grizzle and 
Allen (1969) with extensions to handle missing data given by Kleinbaum (1973) and 
Goldstein (1979). This approach requires that each individual be measured at the same 
fixed set of r occasions and the measurement at each occasion is then regarded as One 
of  the response variables in an r-variate linear model, with powers of  age as explanatory 
variables. Apart from ease of  computation, these models can easily incorporate further 
explanatory variables which are occasion-defined. As parametric models they may also 
perform better than the non-linear parametric models for some purposes, and unlike 
these they can be fitted over small age ranges to estimate local events. Nevertheless, they 
suffer a major disadvantage compared to single-subject models in that they require a 
fixed set of occasions and thus are rather inflexible. They also require a choice of the 
order of  polynomial, although the amount of  data is generally the important constraint 
here. To some extent, variability of occasion times can be accommodated by 'adjust- 
ment' procedures, but this is not always possible or even desirable (Goldstein 1981). 

It is sometimes claimed that biological interpretations can be made from the values 



D
ow

nl
oa

de
d 

B
y:

 [U
ni

ve
rs

ity
 o

f B
ris

to
l L

ib
ra

ry
] A

t: 
16

:1
1 

17
 A

ug
us

t 2
00

7 
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of  parameters derived from single-subject models. Nevertheless, apart  f rom explicit 
and not very successful attempts to incorporate biological theory into the determin- 
ation of  curve structure (Goldstein 1979), almost all the development has gone into pro- 
viding growth summaries which ' fol low'  observed growth as 'closely as possible'.  To do 
this, the criterion of minimizing residual variation is used- -a  mathematical rather than 
a biological criterion. In fact, the real importance of  any biology lies in an ability to 
relate the elements of  the models to other biological (or environmental or social, etc.) 
data, rather than in a determination of  the precise form of  the curve itself. In the next 
section we introduce a new class of  models which provides wide scope for introducing 
such variables directly and which overcomes some of  the limitations of  the models 
described so far. 

3. Growth as a two-level model 
Many biological and other data have an hierarchical or multi-level structure. For 

example, animals have offspring grouped into litters, where the parents comprise the 
first and higher level and the animals within litters comprise the second and lowest level 
of  the hierarchy. Within any one litter a measurement such as weight will vary among 
animals, and at the same time the average weight of  a litter will vary between litters. In 
general, the variation of such a measurement can be separated into two parts, one at 
each level, and appropriate statistical models for studying such 'variance components '  
are commonly used, for example, in animal genetic studies. We may also view longi- 
tudinal data as a two-level hierarchy, in which the first level is the individual subject and 
the second level is the occasion with subject, as follows: 

The basic two-level model is written in two parts: 

1. The within-subject model: 

Yit = ]~j fJij X~ -~- ~'k Otk Zitk -1- (-it, t = 1 . . . . . .  ni (1) 

with 

cov (ei,, (,it') = O, 
var ((,it) = 0 0  2 

where ni is the number of  measurement occasions for subject i, xt is the age at occasion t 
and j(0 . . . . . .  p) indexes the polynomial coefficient. The first summation represents the 
polynomial (or other curve linear in the 13ij) fitted to the set of  response measurements. 
The second summation takes place over a set of  further explanatory variables, indexed 
by k, which in general are measured at each occasion, but may also be constant over 
occasions, such as gender. In general c~x will be constant over individuals, but variable 
ak can be handled in the general model. The/3gj on the other hand are assumed to be 
random variables, and this leads to the specification of the second part  of  the model: 

2. The between-subject model: 

with 

5,'j" = 5j  + v0  (2) 

E(V,~) = 0 

The "YO are not necessarily independent, and we write: 

U =  [o~d/1 
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132 H. Goldstein 

where 

tYu,jj ' = COV('Yij, "Y ij ' ) 

Thus Urepresents the covariance matrix of  the individual polynomial growth curve 
coefficients (including the constant term). 

This formulation is essentially that of  Grizzle and Allen (1969), except that no 
restriction is now placed on the number or location of time-points t. 

Combining (1) and (2), the full model can be written as: 

Yit = ~'j [Jij Xt j + F'k Otk Zitk + ~it (3) 

where 

Bio = Bo + 7i0 
~ij -~- ~j  d- "~ij (4) 

It is also possible to define further within-subject random variables. For example, 
the polynomial coefficients may vary f rom occasion to occasion and we could write: 

with 

var (/i~t) = al 2 

cov (~it, ,Sit)= 0 

then the contribution to the within-subject variance ofyit, that is the variance about the 
individual growth curve, is given by: 

Or02 + Orl2X? 

which allows for increasing variance with age, an important possibility which is not 
incorporated in the models of  the previous section. In fact we can incorporate explan- 
atory variables which are random, with means constrained to be zero, so that they enter 
only into the error part of  the model. Thus, suppose we include the explanatory 
variable Xt 1/2 and constrain its correlation with eit to be zero. We then obtain a within- 
individual contribution to the variance of  

002-{-012X? 

so that the variance now has a simple linear regression on age. Clearly, a very wide 
range of  variance functions can be specified both within and between subjects. At each 
level, the error terms in general may be correlated, but we assume zero correlations 
across levels. There are, however, certain restrictions on the number of  independent 
variance and covariance terms which seem not to have been noted before. For example, 
i f p  = 2 and there are between-subject random terms for each coefficient there are two 
possible contributions to the variance term involving xt 2, namely: 

2cov ('Yi0, "Yi2) Xt 2 

and 

var x? 

so that only one can be estimated and the variance term is constrained to be twice the 
covariance term. 

Equation (3) is a special case of  the general mixed-effects multi-level linear model 
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Modelling of  longitudinal data 133 

which can have any number of  levels and any number of  random coefficients at each 
level. That is the variables z, which can be defined at any level, may be defined as 
random at any number of  levels. Thus, for example, we can measure the number of  
younger siblings to a child which varies over occasions, or we could measure a child's 
birth order which is constant for that child and hence defined at the between-subject 
level. Other variables at this level are birthweight, birth date and height of  parents. 

Strenio, Weisberg and Bryk (1983) also discuss the two-level growth-curve model. 
The model they present is a special case of  the one given here and assumes only a simple 
within-child error term, although they make reference to a more general specification. 
Their model also does not allow for occasion-related variables. 

Roughly speaking, the estimation for the general model proceeds as follows. Initial 
estimates of  the polynomial and other coefficients are obtained using ordinary least 
squares, which ignores the complex structure of  the random error terms. The squared 
residuals based on this fitted model are then regressed on a set of  variables defining the 
structure of  the random error terms and thus provide estimates for these. These 
estimates are then used in a generalized least-squares analysis to obtain a second set of  
estimates for the coefficients, and so on iteratively until convergence is achieved. When 
the errors are normally distributed then the procedure is equivalent to maximum likeli- 
hood. A detailed specification and estimation procedures for the general model are 
given in Goldstein (1986). A special case of  equation (3) is of  some interest. We write: 

Yij = ~: ~,jwj + ~k o~kZok (5) 

where there are now p occasions (j = 1 . . . . . .  p) and wj = 1 if the measurement is at 
occasion j ,  0 if not. 

The ~ij are all random variables at the between-subject level, and there is now no 
within-subject variation because a term is fitted for each occasion. 

The model (5), without the second summation, is essentially the model given by 
Jones (1980) for efficient estimation of means in mixed longitudinal studies with a fixed 
set of  occasions, except that he assumes that the covariance matrix is known whereas in 
the present model it is estimated f rom the data. In fact (5) also is more general, since the 
second summation term allows further explanatory variables to be incorporated. 
Hence our formulation of the general two-level growth-curve model unifies a number 
of  previously separate models. Since the model can readily extend to three or more 
levels we can also incorporate a hierarchical population structure, and in particular we 
are able to model a multi-stage sampling of subjects (Goldstein 1986). Furthermore,  it is 
clear f rom (5) that the Yij need not be the same measurement. Thus j can refer to thef lh  
variable of  a multivariate linear model and (5) then allows us to obtain efficient 
estimates for this model. It also allows for missing response variable values in the same 
way as for longitudinal data, and in particular can be used to provide efficient estimates 
of  means and covariances for univariate linear models, which in the normal case are 
equivalent to maximum likelihood (Beale and Little 1975). 

Examples 
The data are serial growth measurements, targeted a year apart on 72 boys and 66 

girls from the London Growth Study (Tanner, Goldstein and Whitehouse 1970). The 
age range is from 6 to 11 years. 

In the first set of analyses, height is related to a basic quartic polynomial in age, and 
the subject-level variable, gender. We require the polynomial in this age range to 
provide estimates for both the mid-growth spurt and the pre-pubertal minimum 
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134 H. Goldstein 

velocity, defined as the ages of zero acceleration. Thus at least a quartic is necessary. 
The between-individual error terms are fitted for the coefficients up to age squared, 
higher-order random coefficient terms having zero estimates due to the relatively small 
sample size. This gives the following contribution to the variance at age t: 

Ou,O 2 + 2Ou,t0 xt + Ou,12Xt 2 -[- 2Ouj2 Xt 3 + ffu,22x? (6) 

The within-subject error model fits the overall constant term and the square root of  
age, giving a contribution to the variance at age t (the covariance is zero): 

002 + gl2xt (7) 

Table 1. Analysis of height related to age, sex and target age. 

A B C D 
Explanatory 
variable Estimate SE Estimate SE Estimate SE Estimate SE 

Constant 133.0 133.0 133-0 133-0 
Age 5-26 0.09 5.22 0-09 5.22 0.09 5.22 0-09 
Age 2 - 0 . 1 8  0.04 -0 -21  0-03 - 0 . 2 1  0.03 -0"21  0-03 
Age 3 0-023 0.015 0.033 0.012 0.033 0.012 0.033 0.012 
Age 4 0.0059 0.0064 0-011 0.005 0.011 0.005 0.011 0-005 
Sex - 1 - 9 8  1.05 - 2 . 0 2  1-05 - 2 . 0 1  1.05 - 2 . 0 2  1.05 
SexxAge  0.06 0.13 0.13 0.12 0.13 0.12 0.13 0.12 
Sex×Age 2 0.12 0-06 0.17 0"03 0"17 0-03 0-17 0.03 
SexxAge  3 0.052 0.002 0.029 0.011 0.029 0.011 0.029 0-011 
Sex x Age 4 0.011 0.009 . . . . . .  

Age-Target 
age . . . . . .  0-12 0-34 

002 0.23 0.017 0.16 0.011 0.23 0.017 0.23 0.017 
ol 2 - -  - -  0.008 0.013 . . . .  

O2u,0 38.1 4-6 38.2 4.6 38.2 4-6 38-2 4-6 
a2uA 0"42 0"05 0.42 0"05 0.42 0"05 0"42 0"05 
au,01 2.59 0.37 2.60 0.37 2.59 0.37 2.59 0-37 
02,2 0"012 0"003 0"012 0"003 0"012 0"003 0"012 0"003 
OuA 2 0"040 0"008 0.040 0-008 0.040 0.008 0.040 0-008 
Qu,01 0"65 0"65 0-65 0-65 
OuJ2 0.56 0.56 0.56 0-56 

Number of  
iterations 6 9 6 6 

Relative accuracy for convergence = 0.0001. 
Age is measured from 9" 0 years except for the t e r m  O"12. 
Sex is coded: boy = 0, girl = 1. 
Number of children = 138. 
Number of  measurements = 778. 

Table 1 displays the results of  four analyses. The first three are with and without the 
term ol2xt in (7), and with and without the (age) 4 by gender interaction, which is non- 
significant in analysis A. There is a difference between analyses B and C in the estimate 
of  the within-subject variance. In the former case this increases from 0.21 at age 6 to 
0.25 at age 11. The value of  crl 2, however, is less than its standard error and for 
simplicity it is assumed zero in other analyses, although with a larger sample and 
perhaps wider age range a detailed modelling of the within-subject variation would be 
useful. 
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Modelling of longitudinal data 

Table 2. Height related to age for each sex. 

135 

Boys ( N =  72) Girls ( N =  66) 
Explanatory 
variable Estimate SE Est imate SE 

Constant  133"0 131.0 
Age 5-26 0-08 5- 31 0-11 
Age 2 - 0 .18 0- 03 - 0" 068 0.047 
Age 3 0.023 0.013 0-074 0-019 
Age 4 0.0056 0-0055 0.017 0.008 

o~ 0.17 0.017 0"30 0.032 
02,0 38" 6 6-44 37" 7 6" 58 
a2u,1 0"27 0.047 0-59 0-095 
Ou,oi 2"52 0 .49  2 .60  0"54 
02u,2 0-0053 0-0019 0"021 0-006 
ou, 12 0" 0021 0" 0045 0- 085 0" 020 
Ou,Ol 0" 78 0" 55 
~Ou,12 0"06 0-76 

Number  of  iterations 8 5 
Number  of  measurements  41l 367 

The average within-subject variance of  0.23 is consistent with other studies. 
Between individuals, the constant and linear coefficients are quite highly correlated 
(0.65), as are the linear and quadratic coefficients (0.56). 

Table 2 shows separate polynomial coefficients for each gender, and also allows 
different error term parameters, especially noticeable in the covariances for the boys. 
The fixed coefficients are similar to those in analysis A of table 1, but there are differ- 
ences in some of  the random parameters. Figure 1 shows the estimated between- 

A 1 
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o 

t -  

O 

e -  

G i r l s  
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I J ] J I [ 
6 7 8 9 ] 0  11 

Age (years) 

Figure 1. Between-subject s tandard deviation estimated f rom models in table 2. 
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Figure 2. Mean height estimated from model C in table 1. 

individual variances by age for each gender. For most  ages, these are reasonably close 
to those given by Tanner, Whitehouse and Takaishi (1966), but that for the girls at 6 
years is high, presumably because of  the relatively small sample size. 

Figure 2 shows the predicted mean heights for boys and girls based on analysis C in 
table 1. The girls agree more closely with the British norms than the boys who are 
somewhat taller, but again not significantly so. 

We can also use the estimated parameters to calculate various derived statistics. Two 
such are the mid-growth spurt and the minimum velocity before pubertal 'take-off" 
growth. The age of occurrence of the former is given as that where a maximum of the 
velocity occurs around ages of  6 or 7, and the latter as a minimum of  the velocity at 
around ages 9 or 10. Both estimates are found by estimating the ages of  zero acceler- 
ation. I f  we write the fixed part of  the model as: 

y i=a+ b&+cxi2 +dxia +ex 4 

then the zero acceleration ages are given by the solution of  the quadratic 

c +  3dx+ 6ex2 = 0 

that is 

x =  l -  3d_+ (gd 2 - 24ce)1/21 I12el - 1 (8) 

From analysis C in table 1 we obtain the following estimates. For the mid-growth 
spurt, the mean ages are 6-0 years for girls and 6-3 years for boys. For the minimum 
pre-pubertal velocity they are 9-2 for girls and 10-2 for boys. These estimates compare 
with 6.1 and 6" 4 for the mid-growth spurt and 9.7 and 10.9 for the pre-pubertal ages 
derived f rom the information provided in Gasser et al. (1984). Other authors seem to 
find larger gender differences for the mid-growth-spurt ages (Tanner and Cameron 
1980). For the pre-pubertal estimates the present results agree closely with those from 



D
ow

nl
oa

de
d 

B
y:

 [U
ni

ve
rs

ity
 o

f B
ris

to
l L

ib
ra

ry
] A

t: 
16

:1
1 

17
 A

ug
us

t 2
00

7 

Modelling o f  longitudinal data 137 

the data of  Tanner and Cameron (1980), namely 9-1 for girls and 10.3 for boys, based 
on a large sample of  London children. 

It would seem that the pre-pubertal minimum velocity is experienced by virtually all 
children but that not all children can be identified as having a mid-growth spurt (Tanner 
and Cameron 1980). Typically, the existence of  a mid-growth spurt appears to be based 
on a subjective judgement of  observed or smoothed individual growth curves. A precise 
definition of  the spurt requires a zero acceleration associated with a maximum of  the 
velocity in a specified age range. For the present data, since we are unable to fit the 
fourth-degree coefficient as a random term, each child is effectively constrained to have 
a mid-growth zero acceleration, except in the small number of  cases where the 
quadratic equation has no real solution. This occurs in about 6% of  girls and 2% of  
boys and also implies no real estimate for the pre-pubertal point either. Better estimates 
of  these proportions require the fitting of  higher-order random terms, which needs 
larger sample sizes. It should be noted that Gasser et al. (1985) do not provide estimates 
of  the mid-growth zero acceleration ages. They define the mid-growth spurt in terms of  
the age midway between the maximum acceleration and maximum deceleration within 
the mid-growth age range, and somewhat misleadingly equate this to the age of  peak 
velocity. It would seem to be more desirable to retain the definition of  a mid-growth 
spurt as occurring only when a velocity maximum occurs. This then maintains con- 
sistency of  definition with the pubertal spurt. 

It should also be noted that the estimate of  the magnitude or the age of  specific 
growth events, based on yearly velocities calculated f rom only two measurements, as in 
the case of  Tanner and Cameron (1980), will not necessarily coincide with that based on 
fitting curves to more than two measurements for each individual. This is analogous to 
the comparison of  estimates of  peak height velocity based on cross-sectional as opposed 
to longitudinal data (Tanner 1962). In the present case the difference between estimates 
of  the age at minimum growth velocity, based on multi-occasion curve fitting and two- 
occasion velocities, is approximately proportional to the average ratio of  the growth 
velocity one year following the actual age of  minimum velocity to the growth velocity 
one year preceding it. This difference is unlikely to be large, however, and even when 
the ratio is as much as two, it would be only about two months. 

The rate of  change of acceleration is 0. 198 + 0- 264x for boys and 0.372 ÷ 0.264x 
for girls, which is less than zero (giving a maximum of the velocity) when x is less than 
8.25 for boys and less than 7-60 for girls. Hence, the mid-growth spurt as predicted by 
the model, and subject to sampling error, can only occur at ages below these, and the 
pre-pubertal minimum velocity at ages above these. 

For the pre-pubertal minimum velocity, figure 3 gives the estimated cumulative 
probability function for each gender. This is derived f rom equation (8), by simulating 
normal distributions for the random variables based upon their parameter  estimates 
given in table 1. The 5th and 95th percentiles are 7.6 and 9.9 for girls and 9.0 and 10.6 
for boys. In the present model the distribution of this age is non-normal,  and it is there- 
fore difficult to compare with the results of  Gasser et al. (1984) who quote only the mean 
together with an SD of about 1-0 for both boys and girls. 

We can also introduce a variable which is occasion-defined to see if it can explain 
more of the between- or within-subject variation. In the present study, the aim was to 
measure each child on their birthday. Some children, however, were early or late. One 
hypothesis is that children measured early may have arrived early because of  concern 
about  relatively slow growth. Thus, if we define a variable which is the difference 
between the actual age of  measurement and the target age, this hypothesis suggests it 
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! 

I I  

should have a positive coefficient in the model. Model D in table 1 incorporates such a 
term and although the coefficient is indeed positive, it has a relatively large standard 
error. 

The final example illustrates the case described above, of  a mixed longitudinal study 
with fixed occasions and more than one variable measured on each subject. We use the 
data for the two occasions of  eight and nine years of  age together with height, weight 
and gender. Since subjects were not all measured at the target ages, an exact analysis is 
carried out by fitting a first-order polynomial model, that is a straight line, to the exact 
ages of  measurement. 

The model is now essentially a three-level model. The highest level is the subject, the 
next level is the occasion within subject and the lowest level is the variable (height or 
weight) within occasion. The model can also be viewed as a two-level model with four 
variables defined by the combination of  variables and polynomial terms. The random 
variation is at the subject level. 

Table 3 gives the fitted means for height and weight for boys and the girl-boy differ- 
ences, together with the 4 × 4 covariance and correlation matrices. It will be seen that 
the height estimates are close to those of  the previous analysis. 

The improvement in efficiency when several variables are analysed together in a 
multivariate longitudinal model is important for those variables where there are many 
missing observations. Hence, in a growth study where this is the case by accident or by 
design, these models use all the data in an efficient manner. Furthermore, the estimates 
from such analyses can then be used in further univariate or multivariate analyses 
which require input in the form of a covariance matrix and a set of  means. Even where 
all individuals attend at exactly the target ages, the advantage of  fitting polynomials is 
that the model may be able to be specified with a relatively small number of random 
parameters, rather than one parameter for each variable and occasion combination. 
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Table 3. Height and weight related to sex and age on two occasions. 
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Explanatory variable Estimate SE 

Height 
Constant 132- 9 0.7 
Age 5.5 0.1 
Sex - 1-7 1.0 
Sexx age -0-02 0'2 

Weight 
Constant 29.0 0- 6 
Age 3.2 0.2 
Sex - 1 - 1 0- 9 
Sex x age - 0.3 0- 3 

Covariance matrix of random coefficients for constant and age (correlations in brackets) 

Height Weight 

Constant Age Constant Age 

Height 

Weight 

constant 36.3 
age 2.1 (0- 42) 0- 7 

constant 24.8 (0" 75) 1.9 (0.40) 30.0 
age 4.8 (0.43) 0.7 (0.46) 7.8 (0.76) 3"5 

Predicted correlation matrix for target ages 8.0 and 9.0 years 

Height Weight 

8.0 9.0 8.0 9.0 

Height 8" 0 1-0 
9.0 0.99 1 "0 

Weight 8.0 0.76 0.78 1.0 
9-0 0-73 0-75 0.96 1-0 

Number of iterations = 8 (starting values for the variance terms, were estimated from the tables in 
Tanner et al. (1966)) 

Number of children = 148 
Number of measurements: height, 257; weight, 257. 

3. Discussion 
The model  and worked examples demonst ra te  several points.  

1. The two-level model  provides a means  o f  studying general hypotheses about  

factors influencing the pat tern o f  growth.  Single-curve fitting procedures  on the other  

hand are not  well suited to such tasks. 

2. All  the available data  can be used for est imation even if  only one or two measure-  

ments are present for some individuals.  This  is a feature not  shared in general by other  

parametr ic  or non-parametr ic  models ,  a l though the parametr ic  models  are somewhat  

more  efficient in this respect than the non-paramet r ic  ones. 

3. We may  of ten require a set o f  simple growth summaries  rather than  a detai led 

specification o f  growth.  These summaries,  for  example,  might  be in terms o f  average 

velocities and acclerations together with their between-subject  variabilities and a 

description o f  how these interact with other  factors.  

4. Polynomia ls  are not  the only curves which can be model led  as i l lustrated in this 
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paper. Any curve linear in its parameters, such as the infant growth curve (Count 1943), 
can be modelled in this way: 

y = a = bxt  + clog (xt) 

A special problem occurs with the end of growth. Non-linear curves with an upper 
asymptote are usually used in this case, with the asymptote estimating adult size. A 
simple polynomial curve may not be adequate here, and linear growth curves con- 
taining, for example, negative exponential terms, could be considered. 

5. It is clear from the analyses that the estimates, especially of  the random terms, 
depend on an adequate number of  individuals in the sample. In general, parametric 
models should be used with care when attempting to estimate the occurrence of specific 
growth events which are functions of the estimated parameters. In the example we 
appear to get rather good estimates of the mid-growth spurt and pre-puberty minimum 
velocity ages, but less satisfactory estimates of  the variability of  these ages through 
being unable to fit higher-order random terms. Thus it may be the case, at least for 
small samples, that smoothing procedures, including eye smoothing, will be better for 
this purpose. In practice a reasonable sequence of  analyses might begin with fitting indi- 
vidual curves in an exploratory spirit, and following this by a more formal parametric 
modelling along the lines of  this paper. 

6. There is the problem shared by all curve-fitting procedures of the spacing of 
observations. The more widely these are spaced, the more likely it is that particular 
events such as growth spurts will be missed in some children. If, on the other hand, 
occasions are grouped too closely together we may find ourselves describing relatively 
unimportant short-term fluctuations, although if these can be related to other factors, 
for example, seasonal ones, this may indeed be useful, and in this respect the two-level 
model is able to handle such factors efficiently. 

The procedures in this paper allow us directly to model the within-subject variation 
and, for example, to study how this may change with age. Likewise, any other explan- 
atory variable which is occasion-defined may have a coeffcient which is a random 
variable, and contribute to the within-subject variation. One such variable might be the 
choice of  measurer or measuring instrument. Some measurers or instruments may be 
more variable than others, and making allowance for this should improve the other 
parameter estimates. 

The analyses in this paper have been confined to a small part of  the total age range. 
This could easily be extended in either or both directions, for example, to ages 14 and 16 
respectively in girls and boys in order to include the adolescent peak velocity, and 
requiring at least a polynomial of  degree 5. Whether it is better to fit a single polynomial 
to a wide age range or several lower-order polynomials to overlapping narrower age 
ranges is a matter for empirical study, which it is hoped will be pursued. A further topic 
of  interest is the fitting of  polynomials to the end of  the growth period, where we might 
expect them to perform relatively poorly. 

Finally, by considering a three-level model where the lowest level is the variable 
measured within measurement occasions, or for example, replications of  a single 
variable, we obtain a flexible procedure for the analysis of  multivariate longitudinal 
data, which automatically handles missing data, and which provides more efficient 
estimates for growth variables where there are many missing measurements. 
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Zusammenfassung. Eine neue Klasse statistischer Modelle wird for die Analyse yon Liingsschnittdaten 
vorgeschlagen, besonders ftir jene aus Wachstumsuntersuchungen. Alle Modelle werden aus einem 
einfachen, univariaten, zweistufigen, polynomen Modell abgeleitet. Es wird gezeigt, dab sie die 
verfiagbaren Daten wirkungsvoll ausnutzen, und dab sie eine sehr weite Spanne yon Problemen behandeln 
k6nnen. Sie haben mehrere wichtige Vorteile gegentiber vorhandenen Prozeduren. 

R6sum6. Une nouvelle classe de modules statistiques est propos6e pour analyser des donn6es longitudi- 
nales, particuli6rement celles d'6tudes de croissance. Les modules sont tous d6riv6s d 'un mod61e simple 
univari6 polynomial ~t deux niveaux. I1 est montr6 qu'ils font un usage efIicace des donn~es disponibles, et 
peuvent traiter une gamme tr6s large de probl~mes. Ils ont plusieurs avantages tr6s importants par rapport 
aux proc6dures existantes. 


