
Efficient Stepping Algorithms and Implementations for
Parallel Shortest Paths

Xiaojun Dong
UC Riverside

xdong038@cs.ucr.edu

Yan Gu
UC Riverside

ygu@cs.ucr.edu

Yihan Sun
UC Riverside

yihans@cs.ucr.edu

Yunming Zhang
MIT

yunming@mit.edu

ABSTRACT

The single-source shortest-path (SSSP) problem is a notoriously

hard problem in the parallel context. In practice, the Δ-stepping

algorithm of Meyer and Sanders has been widely adopted. However,

Δ-stepping has no known worst-case bounds for general graphs,

and the performance highly relies on the parameter Δ, which re-

quires exhaustive tuning. The parallel SSSP algorithms with prov-

able bounds, such as Radius-stepping, either have no implementa-

tions available or are much slower than Δ-stepping in practice.

We propose the stepping algorithm framework that generalizes

existing algorithms such as Δ-stepping and Radius-stepping. The

framework allows for similar analysis and implementations for all

stepping algorithms. We also propose a new abstract data type, lazy-

batched priority queue (LaB-PQ) that abstracts the semantics of the

priority queue needed by the stepping algorithms. We provide two

data structures for LaB-PQ, focusing on theoretical and practical

efficiency, respectively. Based on the new framework and LaB-

PQ, we show two new stepping algorithms, 𝜌-stepping and Δ
∗-

stepping, that are simple, with non-trivial worst-case bounds, and

fast in practice. We also show improved bounds for a list of existing

algorithms such as Radius-Stepping.

Based on our framework, we implement three algorithms: Bellman-

Ford, Δ∗-stepping, and 𝜌-stepping. We compare the performance

with four state-of-the-art implementations. On five social and web

graphs, 𝜌-stepping is 1.3ś2.6x faster than all the existing implemen-

tations. On two road graphs, our Δ∗-stepping is at least 14% faster

than existing ones, while 𝜌-stepping is also competitive. The almost

identical implementations for stepping algorithms also allow for

in-depth analyses among the stepping algorithms in practice.

CCS CONCEPTS

· Theory of computation → Shortest paths; Shared memory

algorithms; ·Mathematics of computing→Graph algorithms.

KEYWORDS

Single-source Shortest Paths; Parallel Algorithms; Shared-memory

Algorithms; Stepping Algorithms; Parallel Priority Queue; Batch-

dynamic Data Structures; 𝜌-stepping; Δ∗-stepping

This work is licensed under a Creative Commons Attribution International 4.0 License.

SPAA 2021, July 6ś8, 2021, Virtual Event, USA
© 2021 Association for Computing Machinery.
ACM ISBN 978-1-4503-8070-6/21/07.
 https://doi.org/10.1145/3350755.3400227

ACM Reference Format:

Xiaojun Dong, Yan Gu, Yihan Sun, and Yunming Zhang. 2021. Efficient

Stepping Algorithms and Implementations for Parallel Shortest Paths. In

Proceedings of the 33nd ACM Symposium on Parallelism in Algorithms and

Architectures (SPAA ’21), July 6ś8, 2021, Virtual Event, USA. ACM, New York,

NY, USA, 14 pages. https://doi.org/10.1145/3350755.3400227

1 INTRODUCTION

Given a weighted graph𝐺 = (𝑉 , 𝐸,𝑤) with𝑛 = |𝑉 | vertices,𝑚 = |𝐸 |
edges, edge weight function 𝑤 : 𝐸 → R+, and a source 𝑠 ∈ 𝑉 , the
single-source shortest-path (SSSP) problem is to find the shortest

paths from 𝑠 to all other vertices in the graph. In this paper, we con-

sider general positive edge weights. Sequentially, the best known

bound for SSSP is 𝑂 (𝑚 + 𝑛 log𝑛) using Dijkstra’s algorithm [46]

with Fibonacci heap [51]. However, SSSP is notoriously hard in par-

allel. Despite dozens of papers and implementations over the past

decades, all existing solutions have some unsatisfactory aspects.

Practically, most existing parallel SSSP implementations [10, 43,

70, 90] are based on Δ-Stepping [68], which is a hybrid of Dijk-

stra’s algorithm [46] and the Bellman-Ford algorithm [11, 50]. It

determines the correct shortest distances in increments of Δ, in

step 𝑖 settling down all the vertices with distances in [𝑖Δ, (𝑖 + 1)Δ].
Within each step, the algorithm runs Bellman-Ford as substeps.

Although Δ-Stepping is the state-of-the-art practical parallel

SSSP algorithm, two challenges still remain. Theoretically,Δ-Stepping

has been analyzed on random graphs [38, 66], but no bounds has

been shown for the general case. Practically, the parameter Δ can

largely affect the algorithm’s performance. The best choice of Δ

depends on the graph structure, weight distribution, and the im-

plementation itself. Fig. 1 shows the running time of three state-

of-the-art Δ-Stepping implementations [43, 70, 91] and our own

Δ
∗-Stepping (a variant of Δ-Stepping, see Sec. 3) with different Δ

values, on real-world graphs (more details in Sec. 7). A badly-chosen

Δ can greatly affect the performance, and the best choices of Δ are

very inconsistent for different graphs (even with the same weight

distribution) and implementations. Hence, in practice, one needs

exhausting searches for Δ in the parameter space as preprocessing.

Theoretically, there has been a rich literature of parallel SSSP al-

gorithms [24, 34, 35, 57, 77, 80, 86] with 𝑜 (𝑛𝑚) work and 𝑜 (𝑛) span
(critical path length). Most of these algorithms rely on adding short-

cuts to achieve the bounds. While these algorithms are inspiring,

none of them have implementations or show practical advantages

over Δ-Stepping on real-world graphs. We believe that one poten-

tial reason is the use of shortcuts and hopsets. To achieve 𝑂 (𝑛1−𝜖)
span, these algorithms need to add Ω(𝑛1+𝜖) shortcuts. More short-

cut edges contribute to more work, memory usage and footprint,

hiding the advantages in the span improvement.

There has also been priorwork on parallelizing the priority queue

in Dijkstra’s algorithm [4, 15, 28, 29, 42, 55, 61, 62, 73ś76, 84, 92].

Paper Presentation SPAA ’21, July 6–8, 2021, Virtual Event, USA

184

https://doi.org/10.1145/3350755.3400227
https://doi.org/10.1145/3350755.3400227
https://creativecommons.org/licenses/by/4.0/

However, they do not provide interesting worst-case work and span

bounds, or better performance than Δ-Stepping in practice.

We summarize existing work on parallel SSSP in Sec. 8.

Our approach. The three previous research directions on parallel

SSSP (practical implementations, theoretical bounds, parallel pri-

ority queues) are mostly studied independently. We aim to design

parallel SSSP algorithms combining the advantagesÐas simple as

those using parallel priority queues, achieving worst-case guaran-

tees that match the existing bounds, and as fast as (or faster than)

Δ-Stepping in practice. Our key algorithmic insights include three

components: a stepping algorithm framework, which abstracts

general ideas in some existing parallel SSSP algorithms, an abstract

data type (ADT) Lazy-Batched Priority Queue (LaB-PQ) with

efficient implementations, which extracts the semantics of the pri-

ority queue needed by stepping algorithms, and two new stepping

algorithms 𝜌-Stepping and Δ
∗-Stepping, which are efficient both

in theory and practice.

Our stepping algorithm framework (Algorithm 1) abstracts the

common idea in some existing łsteppingž algorithms (e.g., Radius-

Stepping [24] and Δ-Stepping [68]): in each step, the algorithm

relaxes all vertices with tentative distances within a certain thresh-

old, as a batch and in parallel. The two extreme cases are the two

textbook algorithms: Dijkstra’s algorithm with batch size 1, and

Bellman-Ford algorithm with batch size 𝑛. We formalize several

algorithms in this framework (Tab. 2). Interestingly, some variants

of parallel Dijkstra [4, 15, 92] also use a similar high-level idea.

The proposed ADT LaB-PQ abstracts the priority queue needed

by the stepping algorithms. It supportsUpdate to commit an update

to the data structure, which can be lazily batched and executed in

parallel. It also supports Extract to return all records with keys

within a certain threshold in parallel. The LaB-PQ is inspired by the

recent work on batch-dynamic data structures [2, 5, 17, 79, 83, 85],

where multiple updates or queries are applied to the data structure

in batches in parallel. One advantage of LaB-PQ is that we do

not explicitly generate the batches, but do it lazily. On top of the

ADT, all stepping algorithms can easily use LaB-PQ’s interface as

a black box. Underneath it, we provide efficient data structures to

support LaB-PQ. We show a theoretically efficient implementation

of LaB-PQ based on the tournament tree (Sec. 4.2). It improves the

cost bounds for existing parallel SSSP algorithms such as Radius-

Stepping [24] and Shi-Spencer [77]. In practice, we show simple

implementations based on flat arrays, which makes our stepping

algorithms outperform state-of-the-art software [10, 43, 70, 90].

Based on the stepping algorithm framework and LaB-PQ, we also

propose a new parallel SSSP algorithm, referred to as 𝜌-Stepping,

which is simple and efficient both in theory and in practice. The

high-level idea of 𝜌-Stepping is to relax a fixed number of unsettled

vertices with small tentative distances in each step. While a similar

(but not the same) idea have been used in some parallel Dijkstra’s

algorithms [4, 15, 92], none of them have interesting bounds or

practical performance comparable to Δ-Stepping. In this paper, we

formally analyze 𝜌-Stepping and show work and span bounds. 𝜌-

Stepping achieves a better span bound than Radius-Stepping with a

slightly higher work bound (Thm. 3.1). The work bound also applies

to directed graphs (the bounds for Radius-Stepping only holds for

undirected graphs). Practically, our 𝜌-Stepping is 1.3-2.6× faster

than previous implementations on social and web graphs, and is

competitive on road graphs (Fig. 3).

In addition to theoretical guarantees and practical performance,

another advantage of 𝜌-Stepping is that, it needs no preprocess-

ing (e.g., adding shortcuts in Radius-Stepping) or time-consuming

parameter searching (e.g., finding best Δ in Δ-Stepping). Our ex-

periments (Fig. 2) show that, the best choice of 𝜌 is consistent and

insensitive across the real-world graphs we tested.

Inspired by the stepping algorithms and LaB-PQ, we also show

Δ
∗-Stepping, a variant of Δ-Stepping, which is simple, has non-

trivial worst-case bounds (Tab. 3), and fast in practice (Fig. 3).

Our Contributions. Combining our LaB-PQ with existing algo-

rithms and our new algorithms, we achieve new bounds and effi-

cient implementations for parallel SSSP. These results are due to the

abstraction of stepping algorithm framework and LaB-PQ, which

greatly simplifies algorithm design, analysis, and implementation.

In theory, we show new bounds for Radius-Stepping [24], Shi-

Spencer [77], Δ∗-Stepping, and 𝜌-Stepping. We note that, with no

shortcuts or hopsets, it seems unlikely to show 𝑜 (𝑛) worst-case
span (consider a chain). However, tighter bounds can depend on

certain graph parameters, which may exhibit a good property on

real-world graphs. For example, although parallel Bellman-Ford has

worst-case span of �̃� (𝑛), a more precise bound is �̃� (𝑑), where 𝑑 is

the shortest-path tree depth. Indeed, on social networks with small

𝑑 , parallel Bellman-Ford is reasonably fast (Table 4). To capture

this, Blelloch et al. [24] proposed a graph invariant (𝑘, 𝜌)-graph
that indicates how łparallelž a graph is. Intuitively, a graph is a

(𝑘, 𝜌)-graph if every vertex reaches 𝜌 nearest vertices in 𝑘 hops.

We extend this concept to analyze multiple stepping algorithms.

Our experiments show that the real-world social or web graphs

we tested are (log𝑛,𝑂 (
√
𝑛))-graphs, and road graphs we tested

are (
√
𝑛,𝑂 (𝑛))-graphs (Fig. 6). Under our framework, the stepping

algorithms share common subroutines in analyses, such as the

extraction lemma (Lem. 5.1) and the distribution lemma (Lem. 5.2).

In practice, our framework and array-based LaB-PQ give unified

implementations for Bellman-Ford, Δ∗-Stepping and 𝜌-Stepping.

Our implementations achieve the best performance on all graphs

(see Fig. 3). On the social and web graphs, 𝜌-Stepping is 1.3-2.6×
faster than existing implementations. On road graphs, our Δ

∗-
Stepping is consistently the fastest and 𝜌-Stepping is competitive

to previous ones. This indicates the effectiveness of our framework

since all optimizations are easily applicable to all algorithms. We

also provide an in-depth experimental study based on our frame-

work, especially to understand the tradeoff between work and

parallelism. We show how different stepping algorithms explore

the frontier in steps (Figs. 5 and 7), the parameter space (Figs. 1

and 2), and eventually draw interesting conclusions in Sec. 7.

Due to page limit, we postpone some analysis and full experi-

mental results to the full version of the paper [48]. We summarize

our contributions of this paper as follows.

• A stepping algorithm framework, which unifies multiple parallel

SSSP algorithms.

• A new ADT LaB-PQ and two implementations, which are used

in our analysis and implementations, respectively.

• Anewparallel SSSP algorithm 𝜌-Stepping, which is preprocessing-

free, simple and efficient both in theory and in practice.

Paper Presentation SPAA ’21, July 6–8, 2021, Virtual Event, USA

185

GAPBS Galois Julienne Ours 1.5x best 1.2x best Best

1

2

4

8

6 8 10 12 14 16 18 20 22

A
x
is

 T
it
le

Axis Title

R
e

la
ti
v
e

 r
u

n
n

in
g

 t
im

e
𝑇 Δ/𝑇 𝑏𝑒

𝑠𝑡

log2 Δlog2 Δ
1

2

4

8

6 8 10 12 14 16 18 20 22

A
x
is

 T
it
le

Axis Title

R
e

la
ti
v
e

 r
u

n
n

in
g

 t
im

e
𝑇 Δ/𝑇 𝑏𝑒

𝑠𝑡
log2 Δ

1

2

4

8

6 8 10 12 14 16 18 20 22

A
x
is

 T
it
le

Axis Title

R
e

la
ti
v
e

 r
u

n
n

in
g

 t
im

e
𝑇 Δ/𝑇 𝑏𝑒

𝑠𝑡

log2 Δlog2 Δ
1

2

4

8

6 8 10 12 14 16 18 20 22

A
x
is

 T
it
le

Axis Title

R
e

la
ti
v
e

 r
u

n
n

in
g

 t
im

e
𝑇 Δ/𝑇 𝑏𝑒

𝑠𝑡

log2 Δ
(a). Twitter (TW) (b). Friendster (FT) (c). WebGraph (WB) (d). Road USA (USA)

Figure 1: Δ-stepping relative running time with varying Δ, including social networks (Twitter and Friendster), web graph (WebGraph), and road

network (Road USA). A complete version with seven graphs is presented in the full version of this paper [48]. We use 96 cores (192 hyperthreads). We vary Δ

and report the running time divided by the best running time across all Δ values. The best choice of Δ for each implementation is marked as a red star.

1

1.5

2

17 18 19 20 21 22 23 24

OK
LJ
TW
FT
WB
USA
GE
1.2x best
1.5x best

R
e

la
ti
v
e

 r
u

n
n

in
g

ti
m

e
𝑇 𝜌/𝑇 𝑏𝑒𝑠

𝑡

log2 𝜌
Figure 2: Relative running time of 𝜌-Stepping with varied 𝜌 .We use

96 cores (192 hyperthreads). We vary 𝜌 and tested the average running time

on 100 random sources, and divided by the time with the best 𝜌 .

Social and Web Graphs Road Graphs

OK LJ TW FT WB Ave. GE USA Ave.

-s
te

p
.

GAPBS 1.96 1.29 2.61 1.46 1.81 1.83 1.22 1.30 1.26

Julienne 2.18 1.75 1.96 1.36 1.92 1.83 36.74 39.61 38.18

Galois 1.58 1.42 1.33 1.37 1.36 1.41 1.22 1.14 1.18

*PQ-𝚫 1.00 1.03 1.15 1.26 1.19 1.13 1.00 1.00 1.00

B
F Ligra 2.02 1.45 1.67 2.53 2.01 1.93 - - -

*PQ-BF 1.09 1.19 1.28 1.34 1.60 1.30 1.69 1.60 1.64

-s
te

p
.

*PQ-𝝆-fix 1.08 1.09 1.00 1.00 1.01 1.03 1.14 1.18 1.16

*PQ-𝝆-best 1.02 1.00 1.00 1.00 1.00 1.00 1.14 1.18 1.16

Figure 3: The heat map of the parallel running time relative to the

fastest on each graph. We use 96 cores (192 hyperthreads). Each column

is a graph instance. łAve.ž gives the average numbers over five social/web

graphs and two road graphs, respectively. ł*ž denotes our implementations.

PQ-𝜌-fix means to use a fixed parameter 𝜌 across all graphs in 𝜌-Stepping,

and PQ-𝜌-best denotes the best running time using all values of 𝜌 .

• A new variant of Δ-Stepping (Δ∗-Stepping), which is simple, with

theoretical guarantee, and fast in practice.

• New analyses for stepping algorithms based on (𝑘, 𝜌)-graph,
which include parameterizedwork and span bounds for 𝜌-Stepping

(Thm. 3.1) andΔ∗-Stepping (Thm. 5.6), and improvedwork bounds

for Radius-Stepping (Col. 5.4) and Shi-Spencer (Col. 5.5).

• Efficient parallel implementations of Bellman-Ford, Δ∗-Stepping
and 𝜌-Stepping, which outperform existing ones (Tab. 4).

• In-depth experimental study of parallel SSSP algorithms.

2 PRELIMINARIES

ComputationalModel. We use the work-spanmodel for fork-join

parallelism with binary forking to analyze parallel algorithms [19,

37], which is recently used in many papers on parallel algorithms [3,

12, 13, 16, 18, 20ś23, 25ś27, 32, 33, 36, 44, 45, 47, 53].We assume a set

of threads that share a common memory. Each thread supports stan-

dard RAM instructions, and a fork instruction that forks two new

child threads. When a thread performs a fork, the two child threads

all start by running the next instruction, and the original thread is

suspended until all children terminate. A computation starts with a

single root thread and finishes when that root thread finishes. An

algorithm’s work is the total number of instructions and the span

(depth) is the length of the longest sequence of dependent instruc-

tions in the computation. We can execute the computation using a

randomized work-stealing scheduler in practice. We assume unit-

cost atomic operation WriteMin(𝑝, v)1, which reads the memory

location pointed to by 𝑝 , and write value 𝑣 to it if 𝑣 is smaller than

the current value. We also use atomic operation TestAndSet(𝑝),
which reads and attempts to set the boolean value pointed to by 𝑝

to true. It returns true if successful and false otherwise.

Graph Notations. We consider a weighted graph 𝐺 = (𝑉 , 𝐸,𝑤).
WLOG, we assume 𝐺 is a connected, simple graph, with minimum

edge weight min𝑒∈𝐸 𝑤 (𝑒) = 1, and no parallel edges) We use 𝐿 =

max𝑒∈𝐸 𝑤 (𝑒). For 𝑣 ∈ 𝑉 , define 𝑁 (𝑣) = {𝑢 | (𝑣,𝑢) ∈ 𝐸} as the
neighbor set of 𝑣 . We use 𝑑 (𝑢, 𝑣) as the shortest-path distance in

𝐺 between two vertices 𝑢 and 𝑣 . A shortest-path tree rooted at

vertex 𝑢 is a spanning tree 𝑇 of 𝐺 such that the path distance in 𝑇

from 𝑢 to any other 𝑣 ∈ 𝑉 is 𝑑 (𝑢, 𝑣).
(𝑘, 𝜌)-graph. We use the concept of (𝑘, 𝜌)-graph in [24] to analyze

stepping algorithms. (𝑘, 𝜌)-graph is a graph invariant highly related
to the analysis of parallel SSSP algorithms. Intuitively, a graph is

a (𝑘, 𝜌)-graph if any vertex can reach its 𝜌 nearest neighbors in

𝑘 hops. More formally, we define the hop distance 𝑑 (𝑢, 𝑣) from a

vertex 𝑣 to𝑢 as the number of edges on the shortest (weighted) path

from 𝑣 to 𝑢 using the fewest edges. Let 𝑟𝜌 (𝑣) be the 𝜌-th closest

distance from 𝑣 , and 𝑟𝑘 (𝑣) the shortest distance from 𝑣 to another

vertex more than 𝑘-hops away.

Definition 1 ((𝑘, 𝜌)-graph [24]). We say a graph𝐺 = (𝑉 , 𝐸,𝑤)
is a (𝑘, 𝜌)-graph if for all 𝑣 ∈ 𝑉 , 𝑟𝜌 (𝑣) ≤ 𝑟𝑘 (𝑣).

For a given graph 𝐺 = (𝑉 , 𝐸), we denote 𝑘𝐺𝜌 to be the smallest

value for 𝑘 to make 𝐺 a (𝑘, 𝜌)-graph. With clear context, we omit

the superscription. 𝑘𝑛 is the shortest-path tree depth.

Others. We use log𝑛 as a short form of 1 + log2 (𝑛 + 1). We say

𝑂 (𝑓 (𝑛)) with high probability (whp) to indicate 𝑂 (𝑐 𝑓 (𝑛)) with
probability at least 1 − 𝑛−𝑐 for 𝑐 ≥ 1, where 𝑛 is the input size.

1a more practical assumption is to charge 𝑂 (𝑡) work and 𝑂 (log 𝑡) span when 𝑡
operations priority update to a memory location. It does not change the overall bound
since forking 𝑡 parallel tasks requires Ω (log 𝑡) span, which is already captured.

Paper Presentation SPAA ’21, July 6–8, 2021, Virtual Event, USA

186

3 FRAMEWORKS

3.1 The LaB-PQ Abstraction

An abstract data type Lazy-Batched Priority Queue, or LaB-PQ,

denoted as PQ, maintains a universe of records (id, 𝑘), where id ∈ 𝐼
is the unique identifier for this record and 𝑘 ∈ 𝐾 is the key. In

some applications, each record also has a value 𝑣 ∈ 𝑉 . In this paper,

if not specified, we assume an empty value type for simplicity. In all

SSSP algorithms in this paper, the identifiers are vertex labels from

1 to 𝑛. The total ordering of all keys is determined by a comparison

function <𝐾 : 𝐾 × 𝐾 ↦→ Bool. A LaB-PQ 𝑄 ∈ PQ is associated with

a mapping function 𝛿𝑄 : 𝐼 ↦→ 𝐾 , which maps an identifier to

its corresponding key (or key-value) that can change dynamically

over time. With clear context, we omit the subscription 𝑄 , and use

𝛿 [id] to denote the mapping from id to key. In the SSSP algorithms

of this paper, this mapping function maps each vertex label to its

(tentative) distance. In our implementation, this mapping function

is passed to LaB-PQ by a pointer to the tentative distance array.

More formally, a LaB-PQ PQ is parameterized on the following:

𝑰 Unique identifier type

𝑲 Key type

𝑽 (Optional) Value type

<𝑲 : 𝐾 ×𝐾 ↦→ Bool Comparison function on 𝐾

𝜹𝑸 : 𝐼 ↦→ 𝐾 ×𝑉 A mapping from an id to its key (or key-value)

A LaB-PQ maintains a subset of identifiers in the universe. It

can extract records with (relatively) small keys in parallel based on

𝛿 [·]. The interface of the LaB-PQ includes two functions: Update

and Extract (see Table 1).We note that these two functions are

sufficient for SSSP application. We discuss more functionalities of

LaB-PQ in the full version of this paper [48].

Update(id) function commits an update to 𝑄 regarding the

record with identifier id. It łnotifiesž 𝑄 that the new key for this

record is now in 𝛿 [id]. If id is not in 𝑄 yet, Update inserts it to 𝑄 .

Multiple Update can be executed concurrently. We note that the

change of the record is embodied in the change of 𝛿 [id], and thus

the data structure only needs to know the record’s id to address the

modification. An important observation is that, we do not have to

modify 𝑄 immediately, but can execute them lazily. These changes

make no difference to any other operations on 𝑄 before the next

Extract. Compared to the classic łbatch-dynamicž setting, our

interface avoids explicitly generating the batch, which simplifies

the algorithm and improves performance.

Extract(𝜃) returns all identifiers in 𝑄 with key ≤ 𝜃 , and then

deletes them from 𝑄 . Note that the result of Extract reflects all

previous modifications to 𝑄 , including Update functions and dele-

tions from the previous Extract. It then extracts the corresponding

records based on the latest view of𝑄 . An Extract function cannot

be executed concurrently with other functions (Update or another

Extract). This is required for LaB-PQ’s correctness.

Augmenting LaB-PQ. In some applications, we need a łsumž (the

augmented value of type 𝐴) of all records (keys and possible values)

in the LaB-PQ . We refer to this as 𝑄.Reduce(). This function
first map each record in 𝑄 to a value of type 𝐴, and use a binary

commutative and associative operator ⊕ ((𝐴, ⊕) is a commutative

monoid) to compute abstract sum of all records in 𝑄 using ⊕.

𝑄.Update(id) :
PQ × 𝐼 ↦→ □

Modify the record with identifier id in𝑄 to 𝛿 [id].
If id ∉ 𝑄 , first add it to𝑄 .

𝑠 = 𝑄.Extract(𝜃) :
PQ ×𝐾 ↦→ seq

Return identifiers in𝑄 with keys no more than

𝜃 and delete them from𝑄 .

Table 1: Interface of LaB-PQ.

3.2 The Stepping-Algorithm Framework

Algorithm 1: The Stepping Algorithm Framework.

Input: A graph 𝐺 = (𝑉 , 𝐸,𝑤) and a source node 𝑠 .
Output: The graph distances 𝑑 (·) from 𝑠 .

1 𝛿 [·] ← +∞, associate 𝛿 to a LaB-PQ 𝑄

2 𝛿 [𝑠] ← 0, 𝑄.Update(𝑠)
3 while |𝑄 | > 0 do
4 ParallelForEach 𝑢 ∈ 𝑄.Extract(ExtDist) do
5 ParallelForEach 𝑣 ∈ 𝑁 (𝑢) do
6 if WriteMin(𝛿 [𝑣], 𝛿 [𝑢] +𝑤 (𝑢, 𝑣)) then
7 𝑄.Update(𝑣)
8 Execute FinishCheck

9 return 𝛿 [·]

On top of the LaB-PQ interface, we also propose a simple step-

ping algorithm framework, in order to reveal the internal con-

nection of the existing SSSP algorithms. Recall the two sequential

textbook algorithms, Dijkstra’s algorithm [46] and Bellman-Ford

algorithm [11, 50]. Dijkstra only visits one vertex at a time and thus

is work-efficient, but it is inherently sequential. Bellman-Ford visits

all vertices in a step so it requires redundant work, but can be easily

parallelized. Many parallel SSSP algorithms integrate the idea in

both algorithms, and visit a subset of unsettled vertices close to the

source node. Hence, they require less work than Bellman-Ford, and

have better parallelism than Dijkstra. These algorithms are referred

to as stepping algorithms (e.g., Δ-Stepping and Radius-Stepping)

since they process a batch of vertices in a step. This is captured by

LaB-PQ in the stepping algorithm framework.

We present this stepping algorithm framework in Algorithm 1.

This framework requires two user-defined functions, ExtDist and

FinishCheck. Many SSSP algorithms can be instantiated by plug-

ging in different ExtDist and FinishCheck functions (see Tab. 2).

Algorithm 1 starts with associate the distance array 𝛿 to a LaB-PQ𝑄 .

It then runs in steps. In each step, we process vertices with distances

within a threshold 𝜃 , which is computed by ExtDist and used as

the parameter of Extract. The extracted vertices will relax their

neighbors using WriteMin (Line 6). If successful, we call Update

on the corresponding neighbor. Some algorithms (e.g., Δ-Stepping)

contain substeps in each step. This is captured by FinishCheckÐif

the condition is not true, the threshold 𝜃 will not be recomputed.

We say a vertex 𝑣 is settled the last time it is extracted from the

LaB-PQ and relaxes all its neighbors (and thus its distance does

not change thereafter). We define the frontier as all vertices in 𝑄 ,

which are those waiting to be explored to relax their neighbors.

The stepping algorithm framework applies to various algorithms

as shown in Tab. 2. We now briefly introduce them.

Dijkstra and Bellman-Ford. Dijkstra’s algorithm visits and set-

tles the vertex with the closest distance in the frontier. By setting

𝜃 as min𝑣∈𝑄 (𝛿 [𝑣]), Algorithm 1 works the same as Dijkstra’s al-

gorithm, with the exception that multiple vertices with the same

Paper Presentation SPAA ’21, July 6–8, 2021, Virtual Event, USA

187

Algorithm ExtDist FinishCheck Work Span

Dijkstra [46] 𝜃 ← min
𝑣∈𝑄
(𝛿 [𝑣]) - �̃� (𝑚) �̃� (𝑛)

Bellman-Ford [11, 50] 𝜃 ← +∞ - �̃� (𝑘𝑛𝑚) �̃� (𝑘𝑛)
Δ-Stepping [68] 𝜃 ← 𝑖Δ if no new 𝛿 [𝑣] < 𝑖Δ, 𝑖 ← 𝑖 + 1 - -

Δ
∗-Stepping (new) 𝜃 ← 𝑖Δ - �̃� (𝑘𝑛𝑚) �̃�

(

𝑘𝑛 (Δ+𝐿)
Δ

)

Radius-Stepping [24] 𝜃 ← min
𝑣∈𝑄
(𝛿 [𝑣] + 𝑟𝜌 (𝑣)) if there exists 𝛿 [𝑣] < 𝜃 , do not

recompute ExtDist

�̃� (𝑘𝜌𝑚) �̃�
(

𝑘𝜌𝑛

𝜌 · log𝐿
)

𝜌-Stepping (new) 𝜃 ← 𝜌-th smallest 𝛿 [𝑣] in𝑄 - �̃� (𝑘𝑛𝑚) �̃�
(

𝑘𝜌𝑛

𝜌

)

(undirected)

Table 2: SSSP Algorithms in the stepping algorithm framework, their ExtDist and FinishCheck, and the work and span bounds based on the LaB-PQ

implementation in Sec. 4. Here 𝐿 is the longest edge in the graph (assuming the shortest has length 1). 𝜌 , 𝑘𝜌 and 𝑘𝑛 are related to (𝑘, 𝜌)-graph defined in

Sec. 2. �̃� () omits log𝑛 and lower-order terms for simplicity, and the full bounds are shown in Tab. 3.

distances will be processed together, which does not affect correct-

ness and efficiency. Finding the closest vertex can be supported

using Reduce() and taking min on keys. Bellman-Ford visits all

vertices in the frontier in each step, so we set 𝜃 as infinity, and in

each step Algorithm 1 relaxes the neighbors of all vertices in 𝑄 .

Δ-Stepping. As a hybrid of Dijkstra and Bellman-Ford, Δ-Stepping

visits and settles all the vertices with shortest-path distances be-

tween 𝑖Δ and (𝑖 + 1)Δ in step 𝑖 . Within each step, the algorithm

runs Bellman-Ford as substeps. Hence we can set 𝜃 to 𝑖Δ, and use

FinishCheck to check if any newly relaxed vertex still has distance

within 𝑖Δ. If not, we increment 𝑖 and proceed to the next step.

Δ
∗-Stepping. We note that FinishCheck is not necessary for Δ-

Stepping, just like other stepping algorithms. In fact, all existing

implementations [10, 43, 70, 90] relaxed FinishCheck in different

ways. In this paper, we show that removing FinishCheck in Δ-

Stepping (referred to as Δ∗-Stepping) can lead to better bounds

(Thm. 5.6) and good practical performance (Sec. 7).

Radius-Stepping. In Radius-Stepping, we precompute 𝑟𝜌 (𝑣), the
distance from each vertex 𝑣 to the 𝜌-th closest vertex, for all ver-

tices. Then in each step, Radius-Stepping sets the threshold 𝜃 as

min𝑣∈𝑄 (𝛿 [𝑣] + 𝑟𝜌 (𝑣)), and then uses Bellman-Ford as substeps to

compute the distances for vertices no more than the threshold.

FinishCheck is needed by the theoretical analysis, which bounds

the number of total substeps to be 𝑂 ((𝑘𝜌𝑛/𝜌) · log 𝜌𝐿).
To implement Radius-Stepping in our framework, we need an

augmented LaB-PQ. We set 𝑟𝜌 (𝑢) of a vertex 𝑢 as the value of

each record. We map each record to 𝑘 + 𝑣 for a record with key 𝑘

(distance) and value 𝑣 (vertex radius), and set the operator ⊕ as min.

The threshold in Extract is 𝜃 = min𝑣∈𝑄 (𝛿 [𝑣] + 𝑟𝜌 (𝑣)), computed

by𝑄.Reduce(). In Sec. 4, we show that maintaining the augmented

values does not affect the asymptotical cost bounds.

𝜌-Stepping. In this paper, we propose a new algorithm 𝜌-Stepping

in the stepping algorithm framework. 𝜌-Stepping extracts the 𝜌

nearest vertices in the frontier, and relaxes their neighbors. The

threshold 𝜃 is the 𝜌-th smallest element in 𝑄 . We overload the

notation of 𝜌 from Radius-Stepping because they share high-level

similarities in the theoretical analysis. The only step for 𝜌-Stepping

in addition to the stepping algorithm framework is finding the 𝜌-th

closest distance among all vertices in the frontier (the ExtDist).

In our implementation, we simply use a sampling scheme that

randomly pick 𝑠 = 𝑂 (𝑛/𝜌 + log𝑛) elements, sort them and pick the

(𝜌𝑠/𝑛)-th one. More details on how to find the 𝜌-th element is in

the full paper, and an efficient implementation is in Sec. 6.

Picking the a subset of vertices with closest distances and relax-

ing their neighbors is not a groundbreaking idea, and has been used

in the literature (e.g., [4, 15, 92]). However, the extracting process

in previous work is either sequential or concurrent, so none of the

existing algorithms support non-trivial work and span bounds, or

practical efficiency as compared to Δ-Stepping. In this paper, we

argue that this simple solution can achieve both theoretical and

practical efficiency. Theoretically, we show that:

Theorem 3.1 (Cost for 𝜌-Stepping). On a (𝑘𝜌 , 𝜌)-graph 𝐺 , the
𝜌-Stepping algorithm has in 𝑂

(

𝑘𝑛𝑚 log 𝑛2

𝑚𝜌

)

work and 𝑂
(

𝑘𝑛𝑛 log𝑛
𝜌

)

span. If 𝐺 is undirected, the span is 𝑂
(

𝑘𝜌𝑛 log𝑛
𝜌

)

.

We will first show implementations of LaB-PQ and the cost, and

then formally prove this result in Sec. 5.4. 𝜌-Stepping also has good

practical performance, which is shown in Sec. 7.

4 LAB-PQ IMPLEMENTATION

We now discuss how to efficiently support LaB-PQ in Algorithm 1.

We present two data structures for LaB-PQ with the goal of theo-

retical and practical efficiency, respectively. The obliviousness for

data structures from the algorithm’s perspective is an advantage of

the LaB-PQ ADT.

In our analysis, we define a batch ofmodifications as allUpdate

operations between two invocations of Extract functions. The

modification work on a batch 𝐵 is all work paid to Update all

records in 𝐵, as well as any later work (done by a later Extract) to

actually apply the updates. We define a batch of extraction as all

records returned by an Extract function. The extraction work

on a batch 𝐵 is all work paid to output the batch from the Extract

function, as well as any later work (done by the next Extract) to

actually remove them from 𝑄 .

4.1 Related Work

Early PRAM and BSP algorithms had explored parallel priority

queues in a variety of approaches [9, 28, 31, 39, 40, 71, 72], and

heavily rely on synchronization-based techniques such as pipelin-

ing. These algorithms do not have better bounds than recent batch-

dynamic search trees [17, 19, 81ś83] when mapping to the fork-join

model. Other previous papers considered the concurrent, external-

memory, and other settings [4, 15, 29, 55, 61, 62, 73ś76, 84, 92].

These data structures also do not have better bounds than batch-

dynamic search trees since they do not focus on optimizing work

or span. However, existing batch-dynamic search trees or other

Paper Presentation SPAA ’21, July 6–8, 2021, Virtual Event, USA

188

3 8 4 6

3 1 54

13

1

3 8 4 6

3 1 54

13

1

(a) (b)

Figure 4: A tournament tree. Square leaf nodes store the records and

round interior nodes keep the smallest key in their subtrees. (a) is a tourna-

ment tree containing 6 records 3, 8, 4, 6, 1 and 5. (b) shows an update on a

batch of 3, 8 and 6. The shaded nodes are marked as renewed.

data structures (e.g., skiplists) maintaining the total ordering of the

records, incur an Ω(log(𝑛)) work lower bound per record update

(more details are in the full paper). Our key observation is that main-

taining total ordering, which incurs overhead both theoretically

and practically, is not necessary for a parallel priority queue.

To the best of our knowledge, the only parallel data structure

that has similar bounds to our new data structure is the batch-

dynamic binary heap [88]. However, it has a few disadvantages: it

does not support efficient batch-extract, is very complicated (no

implementation available), and the span is suboptimal (𝑂 (log2 𝑛)
in the binary fork-join model). Our new tournament-tree based

LaB-PQ supports full features in the LaB-PQ, has 𝑂 (log𝑛) span,
and is arguably much simpler.

4.2 Tournament-Tree-Based Implementation

We start with introducing the tournament tree (aka. winner tree).

It is a complete binary tree with 𝑛 external nodes (leaves) and 𝑛 − 1
interior nodes. A tournament tree stores the records in the leaves.

In our use case, we only need to store the record id in the leaves

using the LaB-PQ interface. Each interior node stores 𝑘 ∈ 𝐾 (𝐾 is

in key type for the records) that takes the smaller key (defined by

<𝐾) from its children. Fig. 4(a) illustrates a tournament tree when

keys are integers and <𝐾 is <Z.

We now discuss how to use a tournament tree to implement

LaB-PQ. We will use 𝑡 .left, 𝑡 .right and 𝑡 .parent to denote the left

child, right child and parent of a node 𝑡 . For simplicity, we assume

the universe of the records has a fixed size 𝑛 (for SSSP 𝑛 = |𝑉 |), and
the tournament tree has 𝑛 leaf nodes each with a boolean flag inQ

indicating if this record is in (has been inserted to) the LaB-PQ 𝑄 .

We note that this is sufficient for the SSSP algorithms. The dynamic

version (where the size of the tournament tree changes with the

size of LaB-PQ) will be described in the full paper.

A tournament tree 𝑇 on 𝑛 records contains 2𝑛 − 1 nodes in total.

The first 𝑛 − 1 nodes are interior nodes. For an interior node 𝑡 , we

use 𝑡 .𝑘 to denote the key stored in node 𝑡 . To support the LaB-PQ

interface, each interior node contains a bit flag renew indicating if

any key in its subtree has been modified after the last update of 𝑡 .𝑘 .

This flag is initially set to 0 (false).

Constructing such a tree with given initial values simply takes

linear work and𝑂 (log𝑛) span using divide-and-conquer: construct

both subtrees recursively in parallel, and update the root’s key

based on the two children’s keys.

We next present the implementation of LaB-PQ’s interface us-

ing tournament tree. Due to page limit, we only show the pseu-

docode (Algorithm 2) and a high-level overview here. The analysis

Algorithm 2: The Tournament-tree based LaB-PQ.

1 Maintains A tournament tree 𝑇 with 𝑛 leaf nodes each
corresponding to a record.

2 Function Mark(record id id, boolean flag newflag)
3 Let 𝑡 be the tree leaf corresponding to id

4 𝑡 .inQ ← newflag

5 while 𝑡 ≠ 𝑇 .𝑟𝑜𝑜𝑡 and TestAndSet(𝑡 .parent .renew) do
6 𝑡 ← 𝑡 .parent

7 Function Sync(node 𝑡) → 𝑘 ∈ 𝐾
8 if 𝑡 is leaf then
9 if 𝑡 .inQ then return 𝛿 [𝑡 .𝑖𝑑]

10 else return +∞
11 if 𝑡 .renew = 0 then return 𝑡 .𝑘

12 𝑡 .renew ← 0

13 In Parallel:
14 leftKey ← Sync(𝑡 .left)
15 rightKey ← Sync(𝑡 .right)
16 return 𝑡 .𝑘 ← min(leftKey, rightKey)
17 Function ExtractFrom(threshold 𝜃 , node 𝑡) → seq
18 if 𝑡 is a leaf then
19 if (𝛿 [𝑡 .id] ≤ 𝜃) then
20 Mark(𝑡 .id, 0) // Marked as not in Q

21 return {𝑡 .id}
22 else return {}
23 if 𝜃 < 𝑡 .𝑘 then return {} // empty seq

24 In Parallel:
25 leftseq← ExtractFrom(𝜃, 𝑡 .left)
26 rightseq← ExtractFrom(𝜃, 𝑡 .right)
27 return leftseq + rightseq
28 Function Extract(threshold 𝜃)
29 Sync(𝑇 .root)
30 return ExtractFrom(𝜃,𝑇 .root)
31 Function Update(id)
32 Mark(id, 1)

are given in the full paper. We first introduce a helper function

Mark(id, newflag).
Mark(id, newflag) first sets the record id’s inQ flag to be newflagÐ

0means the record should be deleted, and 1means inserted.Whichever

value newflag is, this means the record of id has been updated. Then,

the algorithm marks the renew flags of the nodes on the tree path

from the updated leaf to the root. This process is executed using

TestAndSet. If theTestAndSet fails, we know that anotherMark

has marked the rest of the path, so the current Mark terminates

immediately. An example is shown in Fig. 4(b). Updating the nodes’

keys is postponed to the next Extract function.

Update. The Update algorithm simply calls Mark(id, 1).
Extract. Extract first uses a function Sync to update the

keys for all nodes with renew flag as 1. It then calls ExtractFrom

to output all records with keys no more than 𝜃 . Those output keys

are also marked as deleted from 𝑇 (Line 20).

The Sync(𝑡) function recursively restores the keys in the interior
nodes using a divide-and-conquer approach (Line 7ś16), and returns

the key at the current node 𝑡 . The return value of a leaf node is

either the record’s key or infinity, depending on the inQ flag. For an

Paper Presentation SPAA ’21, July 6–8, 2021, Virtual Event, USA

189

interior node, Sync will update the key to be the smaller one of its

two children and return this key. After all interior tree nodes have

been updated, we use ExtractFrom to acquire all records with

keys no more than 𝜃 . This step can be parallelized similarly using

divide-and-conquer (Line 17ś27): we can traverse the left and right

subtrees respectively and concatenate the two results. A subtree

is skipped when the key at the subtree root (minimum key in the

subtree) is larger than 𝜃 . Note that if we want the output sequence

in a consecutive array, we can traverse for two roundsÐthe first

round computes the number of extracted records, and the second

round writes them to the corresponding slots.

We can implement Reduce similarly. We keep a collective status

𝑡 .𝑎 ∈ 𝐴 (𝐴 is the augmented value type) for each interior node 𝑡 ,

and it is updated in the Update function in Line 7ś16 similar to the

update for 𝑘 . We do not need to update 𝑡 .𝑎 for node 𝑡 if the subtree

rooted at 𝑡 remains unchanged, which is captured by 𝑡 .renew.

Theorem 4.1. Consider a tournament tree on a universe of 𝑛

records, implemented with algorithms in Algorithm 2. The modi-

fication work on a size-𝑏 batch is𝑂 (𝑏 log(𝑛/𝑏)). The extraction work

on a size-𝑏 batch is𝑂 (𝑏 log(𝑛/𝑏)). The span of Extract andUpdate
is 𝑂 (log𝑛).

The formal analysis of Thm. 4.1 is given in the full paper. We

will see how to use Thm. 4.1 in Sec. 5.

4.3 Array-Based Implementation

Algorithm 2 uses a tree-based structure to provide tight work

bounds for applying a batch of modifications or extractions. This is

asymptotically better than batch-dynamic search trees [17, 19, 83].

However, in practice, maintaining a tree-based data structure can

be expensive because of larger memory footprint and random ac-

cess. Even though we can implement a tournament tree in a flat

array (no pointers), it still requires extra storage for interior nodes

and incurs frequent random accesses (following tree path). When

the batch size 𝑏 approaches 𝑛 and 𝑂 (log(𝑛/𝑏)) becomes small, the

theoretical advantage of tournament trees becomes insignificant,

and is asymptotically the same as just loop over all records.

This is observed by the practitioners. Most (if not all) practical

SSSP implementations just keep an array for all records without

maintaining sophisticated structures. This is because parallel SSSP

algorithms usually use a very large value of 𝑏 to get sufficient par-

allelism. To implement Update on an array, we can just set a flag

to indicate a record is added to 𝑄 . For Extract, we loop over the

entire array and pack all records with keys within 𝜃 in parallel,

which takes linear work and𝑂 (log𝑛) span. While efficiently imple-

menting the array requires many subtle details (shown in Sec. 6),

asymptotically, the following bound is easy to see.

Theorem 4.2. The array-based LaB-PQ requires 𝑂 (𝑏) modifica-

tion work on a size-𝑏 batch. The extraction work on a size-𝑏 batch is

𝑂 (𝑛). The span of Extract and Update is 𝑂 (log𝑛).

5 ANALYSIS FOR STEPPING ALGORITHMS

With the stepping algorithm framework (Algorithm 1) and LaB-

PQ’s implementation, we can now formally analyze the cost bounds

for the stepping algorithms, which are summarized in Tab. 3. Our

new bounds are parameterized by the definition of (𝑘, 𝜌)-graph

shown in [24]. We first show some useful results for all stepping

algorithms in Sec. 5.1, and use them to prove the results in Sec. 5.2.

We later show the span for 𝜌-Stepping on undirected graphs in

Sec. 5.3, and compare with existing algorithms in Sec. 5.4.

5.1 Useful Results for All Stepping Algorithms

We first show two useful lemmas for all stepping algorithms.

Lemma 5.1 (Number of extractions). In a stepping algorithm,

a vertex 𝑣 ∈ 𝑉 will not be extracted from the priority queue (Line 4 in

Algorithm 1) more than 𝑘𝑛 times.

Proof. Consider the shortest path 𝑃 = {𝑣0 = 𝑠, 𝑣1, 𝑣2, . . . , 𝑣𝑙 = 𝑣}
from the source 𝑠 to 𝑣 with fewest hops. Since we assume the edge

weights are positive, we know that 𝑑 (𝑠, 𝑣𝑖) < 𝑑 (𝑠, 𝑣 𝑗) for 𝑖 < 𝑗 .

Hence, whenever 𝑣 is extracted from the priority queue, the earliest

unsettled vertex 𝑣𝑖 in 𝑃 must also be extracted and settled. This

is because 𝑣𝑖−1 is already settled and have relaxed 𝑣𝑖 in previous

rounds, and 𝑑 (𝑠, 𝑣𝑖) ≤ 𝑑 (𝑠, 𝑣). Based on the definition of the (𝑘, 𝜌)-
graph, we have 𝑙 ≤ 𝑘𝑛 , which proves the lemma. □

Lemma 5.2 (Distribution). If a stepping algorithm has 𝑆 steps,

and incurs𝑈 updates (relaxations), the total work is𝑂 (𝑈 log(𝑛𝑆/𝑈))
using tournament-tree-based LaB-PQ.

Proof. The work of a stepping algorithm consists of modification

work for relaxations (updates) and extraction work applied to the

LaB-PQ. Each extracted vertex corresponds to a previous successful

relaxation, and an update and an extraction have the same cost per

vertex. Hence, we only need to analyze modification costs since

extraction costs are asymptotically bounded.

The𝑈 updates are distributed in 𝑆 steps. Let 𝑢𝑖 be the number of

relaxations applied in step 𝑖 (
∑

𝑖 𝑢𝑖 = 𝑈). The overall work across

all steps is𝑊 = 𝑂 (∑𝑖 𝑢𝑖 log(𝑛/𝑢𝑖)). Since 𝑢𝑖 log(𝑛/𝑢𝑖) is concave,
∑

𝑖 𝑢𝑖 log(𝑛/𝑢𝑖) ≤ 𝑆 · ((
∑

𝑖 𝑢𝑖/𝑆) log(𝑛/(
∑

𝑖 𝑢𝑖/𝑆))) = 𝑈 log(𝑛𝑆/𝑈),
which proves the lemma. □

5.2 Cost Bounds for Stepping Algorithms

With Lem. 5.1 and 5.2 for the stepping algorithms and Thm. 4.1

and 4.2 for LaB-PQ’s cost, we can now show the cost bounds shown

in Tab. 3 except for one given in Sec. 5.3.

Dijkstra’s algorithmhas𝑂 (𝑛) steps and𝑂 (𝑚) relaxations, Lem. 5.2

gives𝑂 (𝑚 log(𝑛2/𝑚)) work which is essentially better than Brodal

et al.’s algorithm [28] (their span is also 𝑂 (𝑛 log𝑛) on the fork-join

model). Bellman-Ford has 𝑂 (𝑘𝑛) steps and 𝑂 (𝑘𝑛𝑚) relaxations, so
the work is 𝑂 (𝑘𝑛𝑚) and the span is 𝑂 (𝑘𝑛 log𝑛). The following

theorem shows the number of steps for 𝜌-Stepping.

Theorem 5.3 (Number of steps for 𝜌-Stepping). On a (𝑘𝜌 , 𝜌)-
graph, the 𝜌-Stepping algorithm finishes in 𝑂 (𝑘𝑛𝑛/𝜌) steps.
Proof. In 𝜌-Stepping, each step can either be a full-extract, where

|𝑄 | ≥ 𝜌 so we extract 𝜌 vertices with closest tentative distances, or

a partial-extract, where |𝑄 | < 𝜌 so we extract all but fewer than 𝜌

vertices. There can be at most𝑂 (𝑘𝑛𝑛/𝜌) full-extracts, since Lem. 5.1

shows that each vertex can only be extracted for 𝑘𝑛 times. Given

that we have 𝑛 vertices in total, there can be at most 𝑂 (𝑘𝑛𝑛/𝜌)
full-extracts. We now show that at most 𝑘𝑛 partial-extracts can

occur. Similar to the analysis for Lem. 5.1, once a partial-extract

occurs, at least one vertex on the shortest path 𝑃 from source 𝑠 to

Paper Presentation SPAA ’21, July 6–8, 2021, Virtual Event, USA

190

Algorithm
Work

Span
Previous Best

Tournament-tree-based Array-based Work Span

Dijkstra [28, 46] 𝑂
(

𝑚 log 𝑛2

𝑚

)

𝑂 (𝑚 + 𝑛2) 𝑂 (𝑛 log𝑛) 𝑂 (𝑚 log𝑛) same

Bellman-Ford [11, 50] 𝑂 (𝑘𝑛𝑚) 𝑂 (𝑘𝑛𝑚) 𝑂 (𝑘𝑛 log𝑛) same same

Δ
∗-Stepping 𝑂

(

𝑘𝑛𝑚 log 𝑛𝐿
𝑚Δ

)

𝑂
(

𝑘𝑛𝑚 + 𝑘𝑛𝑛 (Δ+𝐿)
Δ

)

𝑂
((

𝑘𝑛 (Δ+𝐿)
Δ

)

log𝑛
)

- -

Radius-Stepping† [24] 𝑂
(

𝑘𝜌𝑚 log
𝑛2 log𝜌𝐿

𝑚𝜌

)

(U) 𝑂

(

𝑘𝜌𝑚 +
𝑘𝜌𝑛

2

𝜌 · log 𝜌𝐿
)

(U) 𝑂
(

𝑘𝜌𝑛

𝜌 · log 𝜌𝐿 log𝑛
)

(U) 𝑂
(

𝑘𝜌𝑚 log𝑛
)

(U) same

Shi-Spencer† [77] 𝑂
(

(𝑚 + 𝑛𝜌) log 𝑛2

𝑚+𝑛𝜌

)

(U) 𝑂
(

𝑚 + 𝑛𝜌 + 𝑛2

𝜌

)

(U) 𝑂
(

𝑛 log𝑛
𝜌

)

(U) 𝑂 ((𝑚 + 𝑛𝜌) log𝑛) (U) same

𝜌-Stepping 𝑂
(

𝑘𝑛𝑚 log 𝑛2

𝑚𝜌

) 𝑂

(

𝑘𝑛𝑚 +
𝑛2𝑘𝜌
𝜌

)

(U) 𝑂
(

𝑘𝜌𝑛 log𝑛

𝜌

)

(U)
- -

𝑂
(

𝑘𝑛𝑚 + 𝑛2𝑘𝑛
𝜌

)

𝑂
(

𝑘𝑛𝑛 log𝑛
𝜌

)

Table 3: New work and span bounds for the stepping algorithms and comparison to previous results. (U) indicates the bound only works for

undirected graphs. (-) indicates no non-trivial bound is known to the best of our knowledge. (same) indicates the previous bound matches the tournament-tree-

based work or the span. All new work bounds for Δ∗-Stepping, Radius-Stepping, Shi-Spencer, and 𝜌-Stepping are based on the distribution lemma (Lem. 5.2)

and the LaB-PQ bounds. Radius-Stepping and Shi-Spencer (noted with †) require preprocessing.

any vertex 𝑣 is settled. Based on the definition of the (𝑘, 𝜌)-graph,
we have |𝑃 | ≤ 𝑘𝑛 , so in total, at most 𝑘𝑛 partial-extracts can occur.

Putting both parts together proves the theorem. □

Combining the result with Lem. 5.2 gives the work bound of

𝜌-Stepping in Tab. 3.

We now show that we can get better work bounds for Radius-

Stepping using LaB-PQ. Radius-Stepping extracts all vertices with

distance within min𝑣∈𝑄 (𝛿 [𝑣] + 𝑟𝜌 (𝑣)) in each step. The original

papers uses a search tree to support this operation. We note that our

LaB-PQ fully captures the need in Radius-Stepping. By replacing the

search tree with our tournament tree and plugging in the numbers

of relaxations and steps, we get the following results.

Corollary 5.4. Radius-Stepping [24] uses 𝑂
(

𝑘𝜌𝑚 log
𝑛2 log 𝜌𝐿
𝑚𝜌

)

work and 𝑂
(

𝑘𝜌𝑛

𝜌 · log 𝜌𝐿 log𝑛
)

span, with 𝑂 (𝑚 log𝑛 + 𝑛𝜌2) work
and 𝑂 (𝜌 log 𝜌 + log𝑛) span for preprocessing.

We can also improve another parallel SSSP algorithm Shi-Spencer [77]

by replacing their original search-tree-based priority queue with

our tournament tree (more details in the full paper).

Corollary 5.5. Shi-Spencer algorithm [77] can be computed us-

ing 𝑂
(

(𝑚 + 𝑛𝜌) log 𝑛2

𝑚+𝑛𝜌
)

work and 𝑂
(

𝑛 log𝑛
𝜌

)

span, with 𝑂 (𝑚 +
𝑛𝜌2 log𝑛 log 𝜌) work and 𝑂 (log𝑛 log 𝜌) span for preprocessing.

We also derive the bounds for 𝜌-Stepping on directed graphs in

Thm. 3.1, and give the formal analysis for Δ∗-Stepping:

Theorem 5.6. Δ∗-Stepping uses 𝑂
(

𝑘𝑛 (Δ+𝐿)
Δ

)

steps, and thus has

𝑂
(

𝑘𝑛𝑚 log 𝑛𝐿
𝑚Δ

)

work and 𝑂
(

𝑘𝑛 (Δ+𝐿)
Δ

log𝑛
)

span based on LaB-PQ.

Due to the space limit, the proof of Δ∗-Stepping is given in the

full paper. We note that for the original Δ-Stepping, such bounds

do not hold. An additional factor of 𝑘𝑛 will be introduced in span if

each step needs to settle down all vertices in the distance threshold.

5.3 Number of Steps for Undirected Graphs

We can show tighter span bounds for 𝜌-Stepping on undirected

graphs, which is inspired by existing results including Radius-

Stepping [24] and Shi-Spencer’s algorithm [77].

Theorem 5.7 (Number of steps, Undirected). On an undirected

(𝑘𝜌 , 𝜌)-graph, the 𝜌-Stepping algorithm finishes in 𝑂
(

𝑘𝜌𝑛/𝜌
)

steps.

In real-world graphs, we usually have 𝑘𝜌 ≪ 𝜌 for large 𝜌 . Hence,

by picking a large 𝜌 , say 𝑛/log𝑛, 𝜌-Stepping only requires a small

number of rounds and provides ample parallelism. As a comparison,

Radius-Stepping requires𝑂
(

𝑘𝜌𝑛

𝜌 log 𝜌𝐿
)

steps, a factor of𝑂 (log 𝜌𝐿)
more for the worst-case guarantee.

Due to the space limit, we show the proof in the full version of

this paper, and only provide our proof sketch here. We will show

that after step (2𝑘𝜌 + 3)𝑡 for 𝑡 ≥ 1, 𝜌-Stepping will successfully

settle at least the closest 𝑡𝜌 vertices from 𝑠 and relax their neighbors.

This means we need 𝑛/𝜌 ·𝑂 (𝑘𝜌) = 𝑂
(

𝑘𝜌𝑛/𝜌
)

steps. We will show

this by induction. We note that the base case trivially holds when

𝑡 = 1, since 𝑠 can reach 𝜌 closest vertices in 𝑘𝜌 hops. Assume this

is true for 𝑡 , we will show that this is also true for 𝑡 + 1.
More specifically, letN𝜌 (𝑢) be the set of 𝜌-nearest vertices from

vertex 𝑢. For simplicity, let T𝜌 = N𝜌 (𝑠) where 𝑠 is the source vertex.
The inductive hypothesis assumes that vertices in T𝑡𝜌 are settled.

We then show that within the next 2𝑘𝜌 + 2 steps, all vertices in

T(𝑡+1)𝜌 \ T𝑡𝜌 are settled (updated to the exact distance).

Let 𝑣 ∈ T(𝑡+1)𝜌 \ T𝑡𝜌 and 𝑃 = {𝑠 = 𝑣0, 𝑣1, 𝑣2, . . . , 𝑣𝑙 = 𝑣} be a the
shortest path from 𝑠 to 𝑣 with the fewest hops. Assume all vertices

from 𝑣0 to 𝑣𝑖 are in T𝑡𝜌 , and beyond 𝑣𝑖 all vertices are not in T𝑡𝜌 .
We show that 𝑣 is within 2𝑘 + 2 hops from 𝑣𝑖 . More details will be

given in the full version of this paper.

5.4 Comparisons and Discussions

For 𝜌-Stepping, the number of total steps is 𝑂 (𝑘𝜌𝑛/𝜌) for undi-
rected graphs and 𝑂 (𝑘𝑛𝑛/𝜌) for directed graphs. The undirected

case is a factor of 𝑂 (log 𝜌𝐿) better than Radius-Stepping (Radius-

Stepping does not have non-trivial span bound on direct graphs).

Thework bound is off by a factor of𝑘𝑛/𝑘𝜌 on undirected graphs, but
it applies to directed graphs. Also, our experiments show that, on

social and web graphs, 𝑘𝑛/𝑘𝜌 is usually small (Fig. 6) for reasonably

large values of 𝜌 (e.g., 𝜌 >

√
𝑛).

Both 𝜌-Stepping and Δ
∗-Stepping focus on practical consider-

ations. Since in practice we usually pick a large 𝜌 , the number of

Paper Presentation SPAA ’21, July 6–8, 2021, Virtual Event, USA

191

steps is small. This leads to a small overhead for step-based synchro-

nization. Thm. 5.6 show that Δ∗-Stepping only incurs a factor of

1+𝐿/Δ more steps (recall 𝐿 = max𝑤 (𝑒)) than Bellman-Ford, upper

bounding the synchronization cost in practice (Fig. 5). Regarding

work, Thm. 3.1 and 5.6 show that both tournament tree-based and

array-based versions are efficient when using proper parameters

of 𝜌 and Δ. Exactly in our experiments, the best values 𝜌 and Δ

match the analysis here (e.g., a large 𝜌 on social networks). We note

that Bellman-Ford has better work and span than both 𝜌-Stepping

and Δ
∗-Stepping. In fact, it seems hard to beat the work and span

of Bellman-Ford (parameterized on 𝑘𝑛) if no shortcut edges are al-

lowed. Our analysis provides worst-case guarantees for 𝜌-Stepping

and Δ
∗-Stepping, and they seem good for the (𝑘𝜌 , 𝜌) parameters

of many real-world graphs. In practice, both 𝜌-Stepping and Δ
∗-

Stepping exhibit better performance than Bellman-Ford because

of visiting fewer vertices and edges (more efficient łworkž). Since

analyzing SSSP algorithms based on (𝑘, 𝜌)-graph is new, many

interesting questions remain open.

The work for Radius-Stepping and Shi-Spencer can be improved

by at most a logarithmic term.

6 IMPLEMENTATION DETAILS

We implemented three algorithms in the stepping algorithm frame-

work: 𝜌-Stepping, Δ∗-Stepping, and Bellman-Ford, all using array-

based LaB-PQ. Our implementations are simple, and are unified

for the three algorithms (we only need to change ExtDist and

FinishCheck accordingly, as shown in Tab. 2). We present some

useful optimizations we used in our implementation. Most of them

apply to all the three algorithms. Our code is available at: https:

//github.com/ucrparlay/Parallel-SSSP.

Sparse-dense optimization. We use sparse-dense optimization

similar to Ligra [78]. When the current frontier is small (sparse

mode), we explicitly maintain an array of vertices as the frontier.

Otherwise (dense mode), we use an array of 𝑛 bit flags to indicate

whether each vertex is in the current frontier, and skip those not

in the frontier when processing them. The dense mode has a more

cache-friendly access pattern, and avoids explicitly maintaining

the frontier array, but always needs 𝑂 (𝑛) time to check all vertices.

Hence, the sparse mode is used when the frontier size is small than

a certain threshold.

Queue size estimation and scattering. One challenge in the

sparse mode is maintaining the frontier array since the size can

change dramatically during the execution. Some existing implemen-

tations (e.g., Ligra) use a parallel pack to generate the next frontier

sequence, which scans all edges incident the current frontier for

two rounds (one for computing offsets and another round to pack).

This can incur a large overhead. To avoid this, we use a resizable

hash table to maintain the next frontier, and scatter the vertices

to the next frontier by putting them into random slots in the hash

table. In the process of our algorithm, we use sampling to estimate

the next frontier size in order to resize the hash table.

Bidirectional relaxation for undirected graphs.Weuse a novel

optimization for undirected graphs. Before the algorithm relaxes

all 𝑣 ’s neighbors (Line 5 in Algorithm 1), it first attempts to relax 𝑣

using all its neighbors. This aims to update 𝑣 ’s distance first, so it

will be more łeffectivež when 𝑣 relaxes other vertices later. Another

reason is that parallel SSSP implementation is usually I/O bounded.

Since in relaxations, we need to check 𝑣 ’s neighbors’ distances

anyway, we can load them to the cache and use them to relax

𝑣 ’s tentative distance first with small cost. This optimization only

applies to undirected graphs.

Threshold estimation for 𝜌-Stepping. In both Δ-Stepping and

Radius-Stepping (although we did not implement Radius-Stepping),

the distance threshold can be directly computed. In 𝜌-Stepping, we

need to compute the threshold (the 𝜌-th smallest element in the

frontier) in each step. We use the sampling-based idea as mentioned

in Sec. 3.2. In particular, at the beginning of Extract, we first

sample 𝑠 = 𝑂 (𝑛/𝜌 + log𝑛) uniformly random samples from the

current frontier. Then we sort the samples and pick the threshold

from the samples. Since 𝑠 is small, this step is sequential and fast.

In 𝜌-Stepping, if the frontier size is smaller than 𝜌 , we pick 𝜃 as the

maximum distances in the frontier.

In our experiments, we observe that in 𝜌-Stepping, the threshold

estimation in the first dense rounds is usually inaccurate. This is

because in the early stage, the 𝜌-th closest distance in the frontier is

usually far from the source, and during the relaxation, much more

vertices go below this threshold. Hence, we add a heuristic to adjust

the threshold: using 10% of 𝜌 at the first two dense rounds.

Large neighbor sets. On road networks and the begin and end

for all graphs, the frontier and its neighborhood are very small.

Relaxing the neighbors in a round-based manner leads to insuf-

ficient workload and thus overhead in the synchronization cost.

To optimize this case, we use a similar łbucket fusionž optimiza-

tion proposed by Zhang et al. [90], which is later integrated to

GAPBS [10]. In our Δ∗-Stepping and 𝜌-Stepping, when processing

a vertex 𝑣 , instead of using 𝑣 ’s direct neighbors, we run a local BFS

until we reach 𝑡 = 4096 vertices (or when the tentative distances

reachmore than 𝜃). We use these vertices as 𝑣 ’s neighborhoodN(𝑣),
and update them all. Note that this information is maintained and

processed locally. As such, we can extend multiple hops in one

round. We apply this optimization in sparse rounds with average

edge degree fewer than 20, and thus call them super sparse rounds.

This optimization can greatly optimize the performance for road

networks, since as shown in Fig. 6, the values of 𝑘𝜌 on road graphs

is large. The impact on the performance for social and web graphs

is smaller since the dense rounds spend the most time.

7 EXPERIMENTS

Experimental setup. We run all experiments on a quad-socket

machine with Intel Xeon Gold 6252 CPUs with a total of 96 cores

(192 hyperthreads). The system has 1.5TB of main memory and

36MB L3 cache on each socket. Our codes were compiled with g++

7.5.0 using CilkPluswith -O3 flag. For all parallel implementations,

we use all cores and numactl -i all, which evenly spreads the

memory pages across the processors in a round-robin fashion.

We implemented three algorithms based on the framework in

Sec. 3: Bellman-Ford (PQ-BF), Δ∗-Stepping (PQ-Δ∗), and 𝜌-Stepping
(PQ-𝜌). We use array-based LaB-PQ because we observe that when

the output size of Extract is large, the array-based implementa-

tion has better performance than tournament tree (see more details

in the full paper). For all graphs we use, the best running time is

Paper Presentation SPAA ’21, July 6–8, 2021, Virtual Event, USA

192

https://github.com/ucrparlay/Parallel-SSSP
https://github.com/ucrparlay/Parallel-SSSP

Graph
Social Web Road

OK LJ (D) TW (D) FT WB (D) GE USA
#vertices 3M 4M 42M 65M 89M 12M 24M
#edges 234M 68M 1.47B 3.61B 2.04B 32M 58M
#threads (1) (96h) (SU) (1) (96h) (SU) (1) (96h) (SU) (1) (96h) (SU) (1) (96h) (SU) (1) (96h) (SU) (1) (96h) (SU)

𝚫
-s
te
p
. GAPBS 3.42 .240 14.2 1.14 .103 11.0 58.6 2.42 24.2 84.7 2.95 28.7 50.8 1.92 26.5 2.01 0.22 9.1 1.83 0.33 5.5

Julienne[1] 4.82 .268 18.0 2.86 .140 20.4 43.1 1.82 23.7 95.4 2.75 34.7 86.1 2.04 42.2 1.54 6.62 0.2 2.04 10.16 0.2
Galois 3.08 .194 15.9 1.72 .113 15.1 29.7 1.23 24.2 92.2 2.76 33.4 45.0 1.45 31.1 2.80 0.22 12.8 2.72 0.29 9.3
*PQ-Δ∗ 3.45 .123 28.1 2.04 .082 25.0 39.3 1.07 36.9 115.4 2.55 45.3 62.8 1.27 49.6 5.54 0.18 30.7 4.81 0.26 18.8

B
F Ligra 5.07 .248 20.5 2.55 .115 22.1 42.6 1.55 27.5 218.2 5.12 42.6 81.4 2.13 38.2 - - - - - -

*PQ-BF 3.71 .134 27.7 2.58 .095 27.2 45.7 1.18 38.6 147.7 2.72 54.4 97.6 1.71 57.2 12.97 0.30 42.6 16.28 0.41 39.8

𝝆
-s
te
p
. *PQ-𝜌-fix 3.56 .132 27.0 2.46 .087 28.2 37.6 0.93 40.6 112.7 2.02 55.8 60.6 1.07 56.7 6.43 0.21 31.1 3.84 0.30 12.7

*PQ-𝜌-best 3.42 .125 27.5 2.07 .080 28.6 37.6 0.93 40.6 112.7 2.02 55.8 57.5 1.06 54.1 6.43 0.21 31.1 3.86 0.30 12.8
(𝜌 = 219) (𝜌 = 219) (𝜌 = 221) (𝜌 = 221) (𝜌 = 222) (𝜌 = 221) (𝜌 = 223)

Table 4: Parallel and sequential running times for all implementations on all graphs. Our implementations are noted with ∗. (D): directed graph.

(1): running time on one core. (96h): running time using 96 cores with hyperthreading (192 threads). (SU): speedup. On each graph, bold numbers are the

fastest running time, and underline numbers denote the fastest Δ-Stepping implementation and the fastest Bellman-Ford implementation on each graph

instance. For all Δ-Stepping algorithms, we report the best running time across all values of parameter Δ. For 𝜌-Stepping, we report the best running time

across all values of parameter 𝜌 as PQ-𝜌-best, and report the running time with a fixed value of 𝜌 = 221 as PQ-𝜌-fix.

[1]: Julienne does not achieve satisfactory performance on road graphs. We have checked this with the authors, and the reason is that Julienne was not

optimized on road graphs. The reported numbers are the best among all possible values of Δ.

achieved using a reasonably large 𝜌 . We compare our implementa-

tions with state-of-the-art SSSP implementations: Bellman-Ford al-

gorithm in Ligra [78], Δ-Stepping in Julienne [43], GAPBS [10, 90],

and Galois [70]. Throughout the section, when we refer to łΔ-

Steppingž, it includes our Δ∗-Stepping, and the existing Δ-Stepping
in Julienne, GAPBS and Galois.

We test seven graphs, including four social networks com-orkut

(OK) [89], Live-Journal (LJ) [8], Twitter (TW) [59] and Friend-

ster (FT) [89], one web graph WebGraph (WB) [64], and two road

graphs [1] RoadUSA (USA) and Germany (GE). The graph infor-

mation is provided in Table 4. In almost all experiments, the social

and web graphs show a similar trend. This is because they follow

similar power-law-like degree distribution. Throughout the section,

we use łscale-free networksž to refer to social and web graphs.

On scale-free networks, we set edge weight uniformly at random

in range [1, 218). On road graphs, the edge weights are from the

original dataset, which is up to 225.

For all Δ-Stepping algorithms (except for Fig. 1 where we vary Δ),

we report the best running time across all Δ values. When we report

average of multiple sources, we first find the best Δ value on one

source, and use it for other sources. We do this for every graph-

implementation combination. For all 𝜌-Stepping algorithms (except

for in Tab. 4 where we explicitly report the best running time across

𝜌 values), we use a fixed value of 𝜌 = 221. For most experiments,

we report the average of 10 sources. When taking the average is

meaningless, we use one representative source.

In this section, we will first discuss the overall performance of all

implementations. We then compare some statistics to better under-

stand the performance of PQ-𝜌 , PQ-Δ∗ and PQ-BF . We evaluate the

number of vertices visited by the algorithm as an indicator of the

overall work. Since road graphs exhibit different properties from

the scale-free networks, we then discuss road graphs separately.

We also analyze the two algorithms 𝜌-Stepping and Δ-Stepping

with their corresponding parameters. Due to page limit, we will

discuss the 𝑘𝜌 properties for each graph in the full version, and

only show the 𝑘𝜌 -𝜌 curves in this paper (Fig. 6). Due to page limit,

we postpone some figures, discussions and more experiments to

the full paper [48] (e.g., using different machines and different

types of sources). Generally, we show that our 𝜌-Stepping has es-

pecially good performance on scale-free networks, and the

performance gain of 𝜌-Stepping is from three aspects: good paral-

lelism, less overall work, and more evenly distributed work

to all steps. We summarize conclusions and interesting findings

at the end of this section.

Overall Performance. We present the running time of all im-

plementations in Tab. 4. In all cases, one of our implementations

achieves the best performance, and is 1.14× to orders of magnitude

faster than the previous implementations. We show a heat map of

relative parallel running time in Fig. 3.

On scale-free networks, PQ-𝜌 and PQ-Δ∗ outperform all existing

implementations. PQ-𝜌 has better performance. On average over

five graphs, PQ-𝜌 is 1.41× faster than Galois, 1.83× faster than

Julienne and GAPBS, and 1.93× faster than Ligra.

On road graphs, PQ-Δ∗ is the fastest, and PQ-𝜌 is also competitive.

Ligra did not finish in 30 seconds on road graphs, since Ligra uses

plain Bellman-Ford that is inefficient for graph with deep shortest-

path tree (more than 104, see Fig. 6). Our PQ-BF with the neighbor-

set optimization (see Sec. 6) finishes on both graphs in about 0.4s.

We report the sequential running time of the corresponding

parallel version and show self-speedup in Table 4. We note that

comparing the sequential running time of different implementations

does not seem useful because both Δ-Stepping and 𝜌-Stepping

are parameterized. To get the best sequential performance, one

should just use a small Δ or 𝜌 . The reported time is the sequential

performance using the corresponding parameter that performs best

in parallel, and it makes more sense just to compare the speedup

numbers. The self-speedup of PQ-𝜌 is almost always the best among

all implementations (PQ-Δ∗ is close but slightly worse). Hence, the

good performance of PQ-𝜌 , especially on scale-free networks, is

partially due to good scalability. In other words, PQ-𝜌 achieves the

best łwork-span tradeoffž in practice.

Paper Presentation SPAA ’21, July 6–8, 2021, Virtual Event, USA

193

Among the implementations of the same algorithm, PQ-BF out-

performs Ligra on all graphs. For all Δ-Stepping algorithms, PQ-Δ∗

is also the fastest on all graphs. Overall, our three algorithms outper-

form existing implementations, indicating the efficiency of stepping

algorithm framework for parallel SSSP implementations.

Number of visits to vertices. Unlike Dijkstra, other parallel SSSP

algorithms can visit each vertex or edge more than once. While this

allows for parallelism, the total work is also increased. To show

how much łredundantž work is done for the stepping algorithms,

we measure the average number of visits per vertex (Fig. 7), and

the number of visited vertices in each step on four representative

graphs (Fig. 5)2. We note that the other systems vary a lot in imple-

mentation details, and it is hard to directly measure these quantities

from their code. Hence, we compare among our implementations.

For the same reason, PQ-Δ∗ may not precisely reflect the numbers

of other Δ-Stepping implementations. In this paragraph, we first

focus on the scale-free networks, and discuss road graphs later.

Figure 7 shows the average number of visits per vertex. On the

two small graphs (OK and LJ), since the work cannot saturate all 192

threads, PQ-𝜌 act similar to Bellman-Ford to maximize parallelism

and uses visits more vertices than Δ-Stepping. For the larger graphs

(TW, FT, andWB), PQ-𝜌 always triggers the smallest average visit to

vertices. The trend showed in Fig. 7 exactly matches the sequential

time of each implementation. Hence, one advantage of PQ-𝜌 over

PQ-BF and PQ-Δ∗ on scale-free networks is less total work.

Figure 5 shows the number of visited vertices per step. In PQ-BF ,

the numbers always grow quickly to a large value, stay for a few

steps, and finish quickly. Although usually using the fewest steps,

PQ-BF is the slowest, since the dense steps cause many redundant

relaxations. PQ-Δ∗ usually uses more steps than both PQ-BF and

PQ-𝜌 . In most of the steps (at the beginning and the end), PQ-Δ∗

visits only a small number of vertices, but the peak values are much

higher than PQ-𝜌 . PQ-𝜌 shows a more even pattern across the steps:

in most of the steps, it processes a moderate number of vertices,

and the peak value is much smaller than PQ-Δ∗ or PQ-BF .
These patterns in Fig. 5 reflect the nature of the three algo-

rithms. Bellman-Ford always visits all vertices in the frontier in

each step. This created significant redundant work. Δ∗-Stepping
controls work-span tradeoff based on distances. On scale-free net-

works, it reaches the peak work in some middle steps, which is

significantly higher than other steps. 𝜌-Stepping controls the work-

span tradeoff using the number of vertices processed per step. We

believe on scale-free networks, this quantity is a closer indicator

to the actual łworkž in each step than the distance gap is. In other

words, 𝜌-Stepping controls the work in each step that is minimal

to saturate all processors, so it explores sufficient parallelism with

minimized redundant work.

Discussions for Road Graphs. Road graphs are (almost) planar

and have different 𝑘-𝜌 patterns than other graphs, and the shortest-

path trees are deep and slim. Hence, without the special optimiza-

tions (e.g., in Ligra and Julienne), the performance is slow. As men-

tioned in Sec. 6, our optimization expands multiple levels in the

2We also measured the number of visited edges, which show very similar trend to
the vertices. Due to page limit, we report the numbers in the full version of the paper,
which also shows the results for all seven graphs.

shortest-path tree in one step. This makes the performance of our

implementations competitive or better than GAPBS and Galois.

On road graphs, PQ-Δ∗ is the fastest. This somehow indicates that

expanding with distance may be a good strategy for road graphs.

One possible reason is that they are planar graphs with Euclidean

distance. Hence, setting fixed-width łannuliž seems a reasonable

work-parallelism tradeoff, when using a proper Δ. Since the frontier

on road graphs is small, PQ-𝜌 has insufficient frontier size in each

step for enough parallelism. Hence, it is hard for PQ-𝜌 to control the

number of vertices visited precisely, and the performance is slightly

slower than PQ-Δ∗. However, PQ-𝜌 has more stable performance

than PQ-Δ∗ in the parameter space (Figs. 1 and 2).

Δ-Stepping and Δ.We test all Δ-Stepping algorithms with varying

Δ on all graphs. For each test case, we normalize the running time

to the best time across all Δ values. For page limit, we present four

graphs in Fig. 1, and the full results in the full paper [48].

On the same graph, the best choice of Δ varies a lot for different

systems. On TW, Julienne’s best Δ is 212× larger than Galois’s. The

best Δ for one system canmake another system up to 4× slower. The
selection of Δ in one system does not generalize to other systems.

Secondly, even though all scale-free networks have the same edge

weight distribution, for the same implementation, the best choice of

Δ varies a lot on different graphs. Therefore, the selection of Δ on

one graph does not generalize to other graphs. On the same graph,

the performance is sensitive to the value of Δ. Usually, 2ś4× off may

lead to a 20% slowdown, and 4ś8× off may lead to a 50% slowdown.

A badly-chosen Δ can largely affect the performance. As a result,

for every graph-implementation combination, we have to search

the best parameter Δ. Fortunately, we find out that different sources

show relatively stable performance for the same implementation-

graph pair. This is also the conventional way of tuning Δ (we also

did so). We present the results in the full paper [48].

𝜌-Stepping and 𝜌 . We test 𝜌-Stepping with varying 𝜌 . When 𝜌 is

small, the running time increases significantly. This is also due to

the lack of parallelism (similar to when Δ-Stepping uses small Δ).

When 𝜌 gets large, the performance drops by no more than 20%.

The best choices of 𝜌 are very consistent on different graphs. This

is because the choice of 𝜌 in practice depends on the right level of

parallelism we want to achieve, instead of the graph structure or

edge weight distribution. As discussed, 𝜌-Stepping distributes work

more evenly to each step. The goal of setting 𝜌 is to enable enough

work to exploit full parallelism in each step, but without introducing

more redundant work. The performance on road graphs are less

sensitive, probably because the frontier size seldom reaches 𝜌 in

road graphs. We also tested 𝜌-Stepping on various machines. We

observe that the best choice of 𝜌 is still relatively consistent among

different settings. We will present more results in the full paper.

Generally speaking, using large Δ or 𝜌 gives better (and more sta-

ble) performance than small Δ or 𝜌 values. This is not surprising be-

cause when these parameters are large, Δ-Stepping and 𝜌-Stepping

degenerate to Bellman-Ford that still has reasonable performance

on social networks. When the parameters are small, Δ-Stepping

and 𝜌-Stepping both degenerate to Dijkstra and loses parallelism.

Summary. In summary, our PQ-𝜌 generally achieves the best

performance on the five scale-free networks. On average of the five

graphs, PQ-𝜌 is 1.41-1.93× faster better than existing systems. On

Paper Presentation SPAA ’21, July 6–8, 2021, Virtual Event, USA

194

0

10

20

30

0 5 10 15 20 25 30

M
il

li
o

n
s

o
f

v
e

rt
ic

e
s

v
is

it
e

d

rho-stepping

delta-stepping

Bellman-ford

𝜌-stepping, 28 steps,0.93sΔ-stepping, 65 steps,1.07s

Bellman-Ford, 15 steps,1.18s

0

10

20

30

0 5 10 15 20 25 30 35 40

M
il

li
o

n
s

o
f

v
e

rt
ic

e
s

v
is

it
e

d

rho-stepping

delta-stepping

Bellman-ford

𝜌-stepping, 39 steps,2.02sΔ-stepping, 109 steps,2.55s

Bellman-Ford, 13 steps,2.72s

0

10

20

30

0 5 10 15 20 25 30 35 40

M
il

li
o

n
s

o
f

v
e

rt
ic

e
s

v
is

it
e

d

rho-stepping

delta-stepping

Bellman-ford

𝜌-stepping, 47 steps,1.07sΔ-stepping, 357 steps,1.27s

Bellman-Ford, 75 steps,1.71s

0

5

10

0 50 100 150 200 250

M
il

li
o

n
s

o
f

v
e

rt
ic

e
s

v
is

it
e

d

rho-stepping

delta-stepping

Bellman-ford

𝜌-stepping, 257 steps,0.30sΔ-stepping, 208 steps,0.26s

Bellman-Ford, 114 steps,0.41s

(a). TW (b). FT (c). WB (d). USA

Figure 5: Number of visited vertices in each step in PQ-𝜌 , PQ-Δ∗ and PQ-BF . Here we only run on one source vertex, since it has

unclear meaning to compute the average of multiple runs on each step. Hence, the runtimes can be different from Table 4 (average on 100

runs from 10 source vertices), and some curves are bumpy. We use 96 cores (192 hyperthreads).

0

10

20

30

40

50

OK LJ TW FT WB

 a b c d e

0

2000

4000

6000

8000

10000

12000

14000

16000

GE USA𝜌 = log 𝑛 𝜌 = 𝑛 𝜌 = 𝑛/ log 𝑛 𝜌 = 𝑛/10 𝜌 = 𝑛

𝑘 𝜌

(161)

𝑘𝜌 = log 𝑛 𝑘𝜌 = 𝑛

𝑘𝜌

Figure 6: The values of 𝑘𝜌 with different values of 𝜌 for different graphs.

0

0.5

1

1.5

2

2.5

3

3.5

OK LJ TW FT WB
A

v
e

ra
g

e
 #

 v
is

it
s

p
e

r
v
e

rt
e

x
rh stepping dlt stepping Bellman-Ford

0

5

10

15

20

25

GE USA

A
v
e

ra
g

e
 #

 v
isits p

e
r v

e
rte

x𝜌- Δ∗-
Figure 7: Number of visits per vertex and per edge, re-

spectively, for PQ-𝜌 , PQ-Δ∗ and PQ-BF on all graphs.

the two road graphs, PQ-Δ∗ always has the best performance, which

is at least 14% better than existing systems. The good performance

of PQ-𝜌 on scale-free networks comes from three aspects. The first

is scalability, indicated by the good self-speedup. Secondly, it visits

fewer vertices and edges on large scale-free networks, which indi-

cates less overall work. Lastly, the work is more evenly distributed

to each step, such that each step can exploit sufficient parallelism,

and also avoid performing łineffectivež work to relax the neighbors

of unsettled vertices. This also indicates that on scale-free networks

with uniformly distributed edge weights, controlling the number

of vertices visited per step is a good strategy. On road graphs with

Euclidean distance, Δ-Stepping shows better performance.

Our PQ-𝜌 implementation generally shows stable performance

across 𝜌 values on all tested graphs. A fixed 𝜌 almost always gives

performance within 5% off the performance with the best 𝜌 .

Finally, on all tested graphs, PQ-𝜌 and PQ-Δ∗ are faster than all

existing SSSP implementations (except for RoadUSA, PQ-𝜌 is 0.01s

slower than Galois). PQ-BF is faster than Ligra on all graphs. This

indicates the efficiency of the stepping algorithm framework on

implementing and optimizing parallel SSSP algorithms.

8 RELATEDWORK ON PARALLEL SSSP

Practical parallel SSSP implementations. There have been dozens

of practical implementations of parallel SSSP. In this paper, we com-

pared to a few of them. Galois [70] uses an approximate priority

queue ordered by integer metric with NUMA-optimization to im-

prove the performance of SSSP. GraphIt [90, 91] proposed a priority

queue abstraction and a new optimization, bucket fusion, to reduce

the synchronization overhead of Δ∗-Stepping. The optimizations

are later adopted by GAPBS [10], which is the one we compared to.

Julienne [43] proposed and used the bucketing data structure to or-

der the vertices for Δ-Stepping based on semisorting [54]. Ligra [78]

includes one of the most efficient Bellman-Ford implementations.

There has also been a significant amount of work on other im-

plementations, include those on the distributed setting [14, 63, 93],

GPUs [41, 87], among many others. Our reported running time in

this paper is much faster than in these papers on the same graphs,

and comparing the superiorities of different settings on parallel

SSSP is out of the scope of this paper. Parallel SSSP based on parallel

priority queues are reviewed in Sec. 4.

Theoretical work on parallel SSSP. There has been a rich liter-

ature of theoretical parallel SSSP algorithms. Among them, many

algorithms [34, 35, 57, 77, 80, 86] achieve very similar bounds to

Radius-Stepping [24] we discussed in this paper, but require adding

shortcut edges. Basically the product of work and span is Θ̃(𝑛𝑚) (re-
ferred to as the transitive closure bottleneck [56]). Some algorithms

are analyzed based on edge weights [65, 67], and many others are

on approximate shortest-paths [6, 30, 49, 60, 69] and other mod-

els [7, 52, 58]. While these algorithms are insightful, to the best of

our knowledge, none of them have implementations.

ACKNOWLEDGEMENT

This work is in partial supported by NSF grant CCF-2103483.

Paper Presentation SPAA ’21, July 6–8, 2021, Virtual Event, USA

195

REFERENCES
[1] Openstreetmap © openstreetmap contributors. https://www.openstreetmap.org/,

2010.
[2] U. A. Acar, D. Anderson, G. E. Blelloch, and L. Dhulipala. Parallel batch-dynamic

graph connectivity. In ACM Symposium on Parallelism in Algorithms and Archi-
tectures, pages 381ś392, 2019.

[3] K. Agrawal, J. T. Fineman, K. Lu, B. Sheridan, J. Sukha, and R. Utterback. Provably
good scheduling for parallel programs that use data structures through implicit
batching. In ACM Symposium on Parallelism in Algorithms and Architectures
(SPAA), 2014.

[4] D. Alistarh, J. Kopinsky, J. Li, and N. Shavit. The spraylist: A scalable relaxed prior-
ity queue. In ACM Symposium on Principles and Practice of Parallel Programming
(PPOPP), pages 11ś20, 2015.

[5] D. Anderson, G. E. Blelloch, and K. Tangwongsan. Work-efficient batch-
incremental minimum spanning trees with applications to the sliding-window
model. In ACM Symposium on Parallelism in Algorithms and Architectures (SPAA),
2020.

[6] A. Andoni, C. Stein, and P. Zhong. Parallel approximate undirected shortest
paths via low hop emulators. In ACM Symposium on Theory of Computing (STOC),
pages 322ś335, 2020.

[7] J. Augustine, K. Hinnenthal, F. Kuhn, C. Scheideler, and P. Schneider. Shortest
paths in a hybrid networkmodel. InACM-SIAM Symposium onDiscrete Algorithms
(SODA), pages 1280ś1299. SIAM, 2020.

[8] L. Backstrom, D. Huttenlocher, J. Kleinberg, and X. Lan. Group formation in
large social networks: membership, growth, and evolution. In ACM International
Conference on Knowledge Discovery and Data Mining (SIGKDD), pages 44ś54,
2006.

[9] A. Bäumker, W. Dittrich, F. Meyer, and I. Rieping. Realistic parallel algorithms:
Priority queue operations and selection for the bsp*model. In European Conference
on Parallel Processing, pages 369ś376. Springer, 1996.

[10] S. Beamer, K. Asanović, and D. Patterson. The gap benchmark suite. arXiv
preprint arXiv:1508.03619, 2015.

[11] R. Bellman. On a routing problem. Quarterly of applied mathematics, 16(1):87ś90,
1958.

[12] N. Ben-David, G. E. Blelloch, J. T. Fineman, P. B. Gibbons, Y. Gu, C. McGuffey, and
J. Shun. Parallel algorithms for asymmetric read-write costs. In ACM Symposium
on Parallelism in Algorithms and Architectures (SPAA), 2016.

[13] N. Ben-David, G. E. Blelloch, J. T. Fineman, P. B. Gibbons, Y. Gu, C. McGuffey,
and J. Shun. Implicit decomposition for write-efficient connectivity algorithms.
In IEEE International Parallel and Distributed Processing Symposium (IPDPS), 2018.

[14] M. Besta, M. Podstawski, L. Groner, E. Solomonik, and T. Hoefler. To push or to
pull: On reducing communication and synchronization in graph computations. In
International Symposium on High-Performance Parallel and Distributed Computing
(HPDC), pages 93ś104, 2017.

[15] T. Bingmann, T. Keh, and P. Sanders. A bulk-parallel priority queue in external
memory with stxxl. In International Symposium on Experimental Algorithms
(SEA), pages 28ś40. Springer, 2015.

[16] G. E. Blelloch, R. A. Chowdhury, P. B. Gibbons, V. Ramachandran, S. Chen, and
M. Kozuch. Provably good multicore cache performance for divide-and-conquer
algorithms. In ACM-SIAM Symposium on Discrete Algorithms (SODA), 2008.

[17] G. E. Blelloch, D. Ferizovic, and Y. Sun. Just join for parallel ordered sets. In ACM
Symposium on Parallelism in Algorithms and Architectures (SPAA), 2016.

[18] G. E. Blelloch, J. T. Fineman, P. B. Gibbons, and H. V. Simhadri. Scheduling
irregular parallel computations on hierarchical caches. In ACM Symposium on
Parallelism in Algorithms and Architectures (SPAA), 2011.

[19] G. E. Blelloch, J. T. Fineman, Y. Gu, and Y. Sun. Optimal parallel algorithms in
the binary-forking model. In ACM Symposium on Parallelism in Algorithms and
Architectures (SPAA), 2020.

[20] G. E. Blelloch and P. B. Gibbons. Effectively sharing a cache among threads. In
ACM Symposium on Parallelism in Algorithms and Architectures (SPAA), 2004.

[21] G. E. Blelloch, P. B. Gibbons, and H. V. Simhadri. Low depth cache-oblivious
algorithms. In ACM Symposium on Parallelism in Algorithms and Architectures
(SPAA), 2010.

[22] G. E. Blelloch, Y. Gu, J. Shun, and Y. Sun. Parallel write-efficient algorithms and
data structures for computational geometry. In ACM Symposium on Parallelism
in Algorithms and Architectures (SPAA), 2018.

[23] G. E. Blelloch, Y. Gu, J. Shun, and Y. Sun. Randomized incremental convex hull is
highly parallel. In ACM Symposium on Parallelism in Algorithms and Architectures
(SPAA), 2020.

[24] G. E. Blelloch, Y. Gu, Y. Sun, and K. Tangwongsan. Parallel shortest paths using
radius stepping. InACM Symposium on Parallelism in Algorithms and Architectures
(SPAA), 2016.

[25] G. E. Blelloch and M. Reid-Miller. Fast set operations using treaps. In ACM
Symposium on Parallelism in Algorithms and Architectures (SPAA), 1998.

[26] G. E. Blelloch and M. Reid-Miller. Pipelining with futures. Theory of Computing
Systems (TOCS), 32(3), 1999.

[27] G. E. Blelloch, H. V. Simhadri, and K. Tangwongsan. Parallel and I/O efficient
set covering algorithms. In ACM Symposium on Parallelism in Algorithms and

Architectures (SPAA), 2012.
[28] G. S. Brodal, J. L. Träff, and C. D. Zaroliagis. A parallel priority queue with

constant time operations. Journal of Parallel and Distributed Computing, 49(1):4ś
21, 1998.

[29] I. Calciu, H.Mendes, andM. Herlihy. The adaptive priority queuewith elimination
and combining. In International Symposium on Distributed Computing (DISC),
pages 406ś420. Springer, 2014.

[30] N. Cao, J. T. Fineman, and K. Russell. Efficient construction of directed hopsets and
parallel approximate shortest paths. In ACM Symposium on Theory of Computing
(STOC), pages 336ś349, 2020.

[31] D. Z. Chen and X. S. Hu. Fast and efficient operations on parallel priority queues.
In International Symposium on Algorithms and Computation, pages 279ś287.
Springer, 1994.

[32] R. Chowdhury, P. Ganapathi, Y. Tang, and J. J. Tithi. Provably efficient scheduling
of cache-oblivious wavefront algorithms. In ACM Symposium on Parallelism in
Algorithms and Architectures (SPAA), pages 339ś350, 2017.

[33] R. A. Chowdhury, V. Ramachandran, F. Silvestri, and B. Blakeley. Oblivious
algorithms for multicores and networks of processors. Journal of Parallel and
Distributed Computing, 73(7):911ś925, 2013.

[34] E. Cohen. Using selective path-doubling for parallel shortest-path computations.
Journal of Algorithms, 22(1):30ś56, 1997.

[35] E. Cohen. Polylog-time and near-linear work approximation scheme for undi-
rected shortest paths. Journal of the ACM (JACM), 47(1):132ś166, 2000.

[36] R. Cole and V. Ramachandran. Resource oblivious sorting on multicores. ACM
Transactions on Parallel Computing (TOPC), 3(4), 2017.

[37] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein. Introduction to Algorithms
(3rd edition). MIT Press, 2009.

[38] A. Crauser, K. Mehlhorn, U. Meyer, and P. Sanders. A parallelization of dijkstra’s
shortest path algorithm. In International Symposium onMathematical Foundations
of Computer Science, pages 722ś731. Springer, 1998.

[39] V. A. Crupi, S. K. Das, and M. C. Pinotti. Parallel and distributed meldable priority
queues based on binomial heaps. In ICPP Workshop on Challenges for Parallel
Processing, volume 1, pages 255ś262. IEEE, 1996.

[40] S. K. Das, M. C. Pinotti, and F. Sarkar. Optimal and load balanced mapping
of parallel priority queues in hypercubes. IEEE Transactions on Parallel and
Distributed Systems, 7(6):555ś564, 1996.

[41] A. Davidson, S. Baxter, M. Garland, and J. D. Owens. Work-efficient parallel
gpu methods for single-source shortest paths. In IEEE International Parallel and
Distributed Processing Symposium (IPDPS), pages 349ś359. IEEE, 2014.

[42] N. Deo and S. Prasad. Parallel heap: An optimal parallel priority queue. The
Journal of Supercomputing, 6(1):87ś98, 1992.

[43] L. Dhulipala, G. E. Blelloch, and J. Shun. Julienne: A framework for parallel graph
algorithms using work-efficient bucketing. In ACM Symposium on Parallelism in
Algorithms and Architectures (SPAA), 2017.

[44] L. Dhulipala, G. E. Blelloch, and J. Shun. Theoretically efficient parallel graph algo-
rithms can be fast and scalable. In ACM Symposium on Parallelism in Algorithms
and Architectures (SPAA), 2018.

[45] L. Dhulipala, C. McGuffey, H. Kang, Y. Gu, G. E. Blelloch, P. B. Gibbons, and
J. Shun. Semi-asymmetric parallel graph algorithms for nvrams. Proceedings of
the VLDB Endowment (PVLDB), 13(9), 2020.

[46] E. W. Dijkstra. A note on two problems in connexion with graphs. Numerische
mathematik, 1(1), 1959.

[47] D. Dinh, H. V. Simhadri, and Y. Tang. Extending the nested parallel model to the
nested dataflow model with provably efficient schedulers. In ACM Symposium
on Parallelism in Algorithms and Architectures (SPAA), 2016.

[48] X. Dong, Y. Gu, Y. Sun, and Y. Zhang. Efficient stepping algorithms and imple-
mentations for parallel shortest paths. arXiv preprint 2105.06145, 2021.

[49] M. Elkin and O. Neiman. Hopsets with constant hopbound, and applications to
approximate shortest paths. SIAM Journal on Computing, 48(4):1436ś1480, 2019.

[50] L. R. Ford Jr. Network flow theory. Technical report, Rand Corp Santa Monica
Ca, 1956.

[51] M. L. Fredman and R. E. Tarjan. Fibonacci heaps and their uses in improved
network optimization algorithms. J. ACM, 34(3), 1987.

[52] M. Ghaffari and J. Li. Improved distributed algorithms for exact shortest paths.
In ACM Symposium on Theory of Computing (STOC), pages 431ś444, 2018.

[53] Y. Gu, O. Obeya, and J. Shun. Parallel in-place algorithms: Theory and practice.
pages 114ś128, 2021.

[54] Y. Gu, J. Shun, Y. Sun, and G. E. Blelloch. A top-down parallel semisort. In ACM
Symposium on Parallelism in Algorithms and Architectures (SPAA), 2015.

[55] T. A. Henzinger, C. M. Kirsch, H. Payer, A. Sezgin, and A. Sokolova. Quantitative
relaxation of concurrent data structures. In ACM Symposium on Principles of
Programming Languages (POPL), pages 317ś328, 2013.

[56] R. M. Karp and V. Ramachandran. Parallel algorithms for shared-memory ma-
chines. In Handbook of Theoretical Computer Science, Volume A: Algorithms and
Complexity (A). MIT Press, 1990.

[57] P. N. Klein and S. Subramanian. A randomized parallel algorithm for single-source
shortest paths. Journal of Algorithms, 25(2):205ś220, 1997.

Paper Presentation SPAA ’21, July 6–8, 2021, Virtual Event, USA

196

https://www.openstreetmap.org/

[58] F. Kuhn and P. Schneider. Computing shortest paths and diameter in the hybrid
network model. In ACM-SIAM Symposium on Discrete Algorithms (SODA), pages
109ś118, 2020.

[59] H. Kwak, C. Lee, H. Park, and S. Moon. What is twitter, a social network or a
news media? In Proceedings of the 19th international conference on World wide
web, pages 591ś600, 2010.

[60] J. Li. Faster parallel algorithm for approximate shortest path. In ACM Symposium
on Theory of Computing (STOC), pages 308ś321, 2020.

[61] J. Lindén and B. Jonsson. A skiplist-based concurrent priority queue with minimal
memory contention. In International Conference On Principles Of Distributed
Systems, pages 206ś220. Springer, 2013.

[62] Y. Liu and M. Spear. A lock-free, array-based priority queue. In ACM Symposium
on Principles and Practice of Parallel Programming (PPOPP), pages 323ś324, 2012.

[63] G. Malewicz, M. H. Austern, A. J. Bik, J. C. Dehnert, I. Horn, N. Leiser, and
G. Czajkowski. Pregel: a system for large-scale graph processing. In Proceedings
of the 2010 ACM SIGMOD International Conference on Management of data, pages
135ś146, 2010.

[64] R. Meusel, O. Lehmberg, and S. Bizer, Christian andVigna. Web data commons -
hyperlink graphs. http://webdatacommons.org/hyperlinkgraph.

[65] U. Meyer. Heaps are better than buckets: parallel shortest paths on unbalanced
graphs. In European Conference on Parallel Processing, pages 343ś351. Springer,
2001.

[66] U. Meyer. Single-source shortest-paths on arbitrary directed graphs in linear
average-case time. In ACM-SIAM Symposium on Discrete Algorithms (SODA),
pages 797ś806, 2001.

[67] U. Meyer. Buckets strike back: Improved parallel shortest-paths. In IEEE Interna-
tional Parallel and Distributed Processing Symposium (IPDPS), pages 8śpp. IEEE,
2002.

[68] U. Meyer and P. Sanders. Δ-stepping: a parallelizable shortest path algorithm.
Journal of Algorithms, 49(1):114ś152, 2003.

[69] G. L. Miller, R. Peng, A. Vladu, and S. C. Xu. Improved parallel algorithms for
spanners and hopsets. In ACM Symposium on Parallelism in Algorithms and
Architectures (SPAA), pages 192ś201, 2015.

[70] D. Nguyen, A. Lenharth, and K. Pingali. A lightweight infrastructure for graph
analytics. In Proceedings of the Twenty-Fourth ACM Symposium on Operating
Systems Principles, pages 456ś471, 2013.

[71] M. C. Pinotti and G. Pucci. Parallel priority queues. Information Processing Letters,
40(1):33ś40, 1991.

[72] A. Ranade, A. Cheng, E. Deprit, J. Jones, and S. Shih. Parallelism and locality
in priority queues. In IEEE International Parallel and Distributed Processing
Symposium (IPDPS), pages 490ś496. IEEE, 1994.

[73] P. Sanders. Fast priority queues for cached memory. J. Experimental Algorithmics.
[74] P. Sanders. Randomized priority queues for fast parallel access. Journal of Parallel

and Distributed Computing, 49(1):86ś97, 1998.
[75] P. Sanders, K. Mehlhorn, M. Dietzfelbinger, and R. Dementiev. Sequential and

Parallel Algorithms and Data Structures. Springer.

[76] N. Shavit and I. Lotan. Skiplist-based concurrent priority queues. In IEEE
International Parallel and Distributed Processing Symposium (IPDPS), pages 263ś
268. IEEE, 2000.

[77] H. Shi and T. H. Spencer. Time-work tradeoffs of the single-source shortest paths
problem. Journal of Algorithms, 30(1):19ś32, 1999.

[78] J. Shun and G. E. Blelloch. Ligra: A lightweight graph processing framework
for shared memory. In ACM Symposium on Principles and Practice of Parallel
Programming (PPOPP), 2013.

[79] J. Shun and G. E. Blelloch. Phase-concurrent hash tables for determinism. In
ACM Symposium on Parallelism in Algorithms and Architectures (SPAA), pages
96ś107, 2014.

[80] T. H. Spencer. Time-work tradeoffs for parallel algorithms. jacm, 44(5):742ś778,
1997.

[81] Y. Sun and G. Blelloch. Implementing parallel and concurrent tree structures.
In ACM Symposium on Principles and Practice of Parallel Programming (PPOPP),
page 447ś450, 2019.

[82] Y. Sun and G. E. Blelloch. Parallel range, segment and rectangle queries with
augmented maps. In SIAM Symposium on Algorithm Engineering and Experiments
(ALENEX), pages 159ś173, 2019.

[83] Y. Sun, D. Ferizovic, and G. E. Blelloch. Pam: Parallel augmented maps. In ACM
Symposium on Principles and Practice of Parallel Programming (PPOPP), 2018.

[84] H. Sundell and P. Tsigas. Fast and lock-free concurrent priority queues for multi-
thread systems. Journal of Parallel and Distributed Computing, 65(5):609ś627,
2005.

[85] T. Tseng, L. Dhulipala, and G. Blelloch. Batch-parallel euler tour trees. In
2019 Proceedings of the Twenty-First Workshop on Algorithm Engineering and
Experiments (ALENEX), pages 92ś106. SIAM, 2019.

[86] J. D. Ullman and M. Yannakakis. High-probability parallel transitive-closure
algorithms. SIAM Journal on Computing, 20(1):100ś125, 1991.

[87] Y. Wang, A. Davidson, Y. Pan, Y. Wu, A. Riffel, and J. D. Owens. Gunrock: A
high-performance graph processing library on the gpu. In ACM Symposium on
Principles and Practice of Parallel Programming (PPOPP), pages 1ś12, 2016.

[88] Y. Wang, S. Yu, Y. Gu, and J. Shun. A parallel batch-dynamic data structure for
the closest pair problem. In ACM Symposium on Computational Geometry (SoCG),
2021.

[89] J. Yang and J. Leskovec. Defining and evaluating network communities based on
ground-truth. Knowledge and Information Systems, 42(1):181ś213, 2015.

[90] Y. Zhang, A. Brahmakshatriya, X. Chen, L. Dhulipala, S. Kamil, S. Amarasinghe,
and J. Shun. Optimizing ordered graph algorithms with graphit. In ACM/IEEE
International Symposium on Code Generation and Optimization (CGO), pages
158ś170, 2020.

[91] Y. Zhang, M. Yang, R. Baghdadi, S. Kamil, J. Shun, and S. Amarasinghe. Graphit: A
high-performance graph dsl. Proceedings of the ACM on Programming Languages,
2(OOPSLA):1ś30, 2018.

[92] T. Zhou, M. Michael, and M. Spear. A practical, scalable, relaxed priority queue.
In International Conference on Parallel Processing (ICPP), pages 1ś10, 2019.

[93] X. Zhu,W. Chen,W. Zheng, and X.Ma. Gemini: A computation-centric distributed
graph processing system. In USENIX conference on Operating Systems Design and
Implementation (OSDI), pages 301ś316, 2016.

Paper Presentation SPAA ’21, July 6–8, 2021, Virtual Event, USA

197

http://webdatacommons.org/hyperlinkgraph

	Abstract
	1 Introduction
	2 Preliminaries
	3 Frameworks
	3.1 The LaB-PQ Abstraction
	3.2 The Stepping-Algorithm Framework

	4 LaB-PQ Implementation
	4.1 Related Work
	4.2 Tournament-Tree-Based Implementation
	4.3 Array-Based Implementation

	5 Analysis for Stepping Algorithms
	5.1 Useful Results for All Stepping Algorithms
	5.2 Cost Bounds for Stepping Algorithms
	5.3 Number of Steps for Undirected Graphs
	5.4 Comparisons and Discussions

	6 Implementation Details
	7 Experiments
	8 Related Work on Parallel SSSP
	References

