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Abstract—We present an efficient method that computes dense
stereo correspondences by stochastically sampling match quality
values. Nonexhaustive sampling facilitates the use of quality
metrics that take unique values at noninteger disparities. Depth
estimates are iteratively refined with a stochastic cooperative
search by perturbing the estimates, sampling match quality, and
reweighting and aggregating the perturbations. The approach
gains significant efficiencies when applied to video, where initial
estimates are seeded using information from the previous pair in a
novel application of the Z-buffering algorithm. This significantly
reduces the number of search iterations required. We present a
quantitative accuracy evaluation wherein the proposed method
outperforms a microcanonical annealing approach by Barnard
[2] and a cooperative approach by Zitnick and Kanade [27], while
using fewer match quality evaluations than either. The approach
is shown to have more attractive memory usage and scaling than
alternatives based on exhaustive sampling.

Index Terms—Computational geometry, cooperative stereo, re-
cursive estimation, simulated annealing, stereo vision, stochastic
approximation.

I. INTRODUCTION

A
FTER more than 30 years of research, intensive effort is

still being applied to improve computational stereo tech-

niques that reconstruct dense scene structure estimates from

stereo or monocular imagery. The core problem is to determine

the correspondences between all the pixels in two (or more) im-

ages being analyzed. This computation, which at its root is based

on a measure of local match quality, remains a challenge, and it

accounts for the majority of complexity and runtime in compu-

tational stereo approaches.

We present a new method, named quality-efficient stochastic

sampling (QUESS), which reduces the number of match quality

computations required to accurately estimate dense stereo corre-

spondences from calibrated monocular video. Most approaches

exhaustively compute the match qualities of all potential cor-

respondences. Instead, we apply a stochastic and cooperative
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search in the solution space. This approach reduces the number

of match quality evaluations and facilitates the use of more com-

plex quality metrics, as well as metrics defined on noninteger

depth or disparity domains (for which exhaustive search is im-

possible). QUESS iteratively applies a simple formulation of

local and aggregated influences which, together with techniques

for seeding depth estimates from the previous frame, enables

an efficient stochastic and cooperative search for dense stereo

correspondences in calibrated video. It is motivated by passive

aerial modeling applications, although it can be applied to other

related problems.

Following a brief background discussion in Section II, Sec-

tion III describes the approach as it is applied to standard-ge-

ometry stereo pairs. Section IV describes extensions that enable

use on calibrated monocular video. Section V presents analyses

of accuracy, number of match quality evaluations, scalability,

runtime, and memory usage. Comparisons against an early sto-

chastic approach by Barnard [2] and a cooperative approach by

Zitnick and Kanade [27] are also presented. We end with con-

clusions in Section VI.

II. BACKGROUND

The topic of automated stereo reconstruction still lacks a ro-

bust and deployable general solution. A number of open re-

search problems remain. Runtime and efficiency continue to be

challenges, as well as finding match quality metrics that are ro-

bust to image quality, lighting, and perspective changes. Robust-

ness to camera path (in single-camera stereo) and scene orien-

tation are also issues.

Aerial modeling from calibrated monocular video has re-

ceived somewhat less attention than other stereo applications

and lacks a generally applicable solution. A single camera fol-

lows an aerial platform’s known but independently controlled

path, with position and orientation changing incrementally

between frames. The stereo geometry is nonstandard and

constantly changing, and stereo frame pairings must be se-

lected from a set of buffered frames. Intrinsic and extrinsic

camera parameter values are available. Expected characteris-

tics include large absolute ranges (hundreds or thousands of

meters), large absolute disparities (tens or hundreds of pixels),

and large disparity ranges. Approaches must address complex

and uncontrolled outdoor scenes with moving objects, and be

robust to uncontrolled lighting and other imaging artifacts. A

reliable solution to this challenging problem would enable a

wide variety of applications in the commercial, government,

and military domains.

A substantial body of related work exists. Relevant surveys of

sparse stereo approaches can be found in [7], dense stereo in [4]
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and [22], and multiview stereo in [23]. A few techniques are of

particular relevance. Cooperative techniques [17], [27] repeat-

edly apply local (and/or nonlocal) effects to iterate towards a

solution. Approaches using simulated annealing [9] or micro-

canonical annealing [2], [5] apply stochastic sampling and sto-

chastic optimization. Beyond these, however, the use of either

stochastic sampling or stochastic optimization is very rare in

the literature. Multiview stereo systems simultaneously process

a sequence of many images in nonstandard stereo geometries.

Also relevant are systems targeting real-time operation (see [4]).

The system in [14] is unique in its use of an active, foveating and

vergent stereo geometry.

These approaches provide inspiration, but they each have dis-

advantages that require recombination and extension. Cooper-

ative techniques typically compute local match quality exhaus-

tively at integer-valued disparities. As a result, the match quality

metric is evaluated many times, requiring considerable amounts

of memory and runtimes which change with the camera and

scene geometries. Stochastic search approaches avoid exhaus-

tive sampling of all possible local solutions, but they can be

slow to converge and still typically quantize disparity values.

Real-time systems [13], [26] often require unattractive assump-

tions, such as a fixed geometry (yielding an insufficient stereo

baseline for aerial modeling) or specialized hardware.

QUESS combines existing techniques with new methods

yielding particular advantages. Iterative cooperative processing

allows straightforward control of runtimes and facilitates ini-

tialization of estimates using results from previous frame pairs.

Directly estimating real-valued depths allows the use of quality

metrics that are not constrained to integer disparity values

[24]. Stochastic sampling exploits piecewise continuity and

continuity of matching likelihood constraints [15] to greatly

reduce the search space, allowing the use of more complex local

match quality metrics (see [11]) while maintaining acceptable

runtimes. QUESS is cooperative and stochastic, combining the

advantages of both.

III. BASIC TWO-FRAME APPROACH

Here, we discuss the representation of the estimated quan-

tities, the core stochastic cooperative search and the local and

aggregated influences on which it is based.

A. Definitions and Representations

Consider two 2-D images and , with image

defined as the reference image. The images are assumed to be

in a standard stereo geometry with known (or assumed) stereo

baseline and intrinsic parameters. A scalar floating-point depth

can be estimated at each pixel based on the local match

quality function , which varies with depth esti-

mate . Depth estimates can be converted to and from equivalent

disparities as required (e.g., to compute or for evaluation in

disparity-based frameworks).

TABLE I
OVERVIEW OF THE QUESS APPROACH

Direct depth estimation contrasts with estimating integer dis-

parity values and postprocessing to recover sub-pixel disparities

or depths. Estimating floating-point depth directly is preferable

in situations with large depth ranges and significant spatial vari-

ations. It also avoids quantization and supports match quality

metrics defined on continuous domains.

B. Stochastic Cooperative Search

An overview of QUESS is given in Table I. Depth estimates

are iteratively refined with a stochastic cooperative search.

QUESS perturbs the depth estimates, reweights perturbations

using local influence computed from their effects on , and

adds aggregated influence to the estimates to incrementally

move them towards a better solution. The search is guided by a

schedule analogous to those used in simulated annealing.

Depth estimates at each pixel are initialized from the previous

search stage, previous frame, or from a uniform distribution over

the bounds and . Depth bounds vary pixel

by pixel and are defined using any prior knowledge about the

scene (including disparity bounds).

In each iteration , random noise is

added to the previous depth estimate to form a can-

didate depth estimate . is

evaluated at the candidate to compute a new sample,

.

The noise added to each depth estimate is uni-

formly distributed, subject to two constraints. The first con-

straint is a maximum depth perturbation magnitude

relative to the pixel-specific depth bounds

(1)

By gradually reducing samples in later iterations are

forced to be closer to current estimates. The second constraint

limits so the perturbed estimate remains

within bounds; see (2), shown at the bottom of the page.

Constraint (2) is necessary because even if is small,

(1) may not prevent from falling outside the allowable

(2)
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range if is close to or . The

constraints are introduced before sampling, instead of sampling

and then clipping, to avoid biases caused by over-sampling at

the extremes of the depth range.

A local influence is computed at each pixel by pref-

erentially weighting depth perturbations that improve . Local

influence is aggregated over a support region to produce ag-

gregated influence . Aggregated influence is added to

the last iteration’s depth estimate to incrementally improve the

estimates, . Details of local

and aggregated influence appear in Section III-C.

Finally, depth estimates are smoothed at the end of each it-

eration, modeling the piecewise continuity constraint [18], and

helping the effects of the influence function to propagate.

Search parameters vary by stages. The search schedule de-

fines the maximum depth perturbation magnitude , aggre-

gation neighborhood , and number of iterations for each

stage. is a square region with side length specified as a frac-

tion of the average of the row and column resolutions, , to

insulate search parameters from changes in image resolution.

and are large in early stages to capture gross scene struc-

ture. They both shrink in later stages to capture detail and force

convergence of the estimates. This is analogous to the cooling

process of simulated annealing or the organization process of

self-organizing maps.

The QUESS approach is heuristic. While good results are

achieved and convergence is enforced by the search schedule,

the estimates are not guaranteed to be optimal.

C. Match Quality, Local Influence, and Aggregated Influence

Local influence is derived from the stochastic samples of .

Many alternative metrics were explored, including weighted

sum of absolute differences, squared error, and normalized

cross-correlation (hereafter, XCORR). Although QUESS en-

ables the use of more complex , excellent results are achieved

even with simple definitions. XCORR is used since it provides

superior performance in our simulations owing to the divisive

normalization.

Fig. 1 shows example depth perturbations (ex-

pressed in grayscale), resulting changes in match quality

, local influence , and

aggregated influence .

Local influence selectively weights depth perturbations that

improve the depth estimate as inferred by improve-

ments in . Random depth perturbations result in “noisy”

and . Some perturbations increase depth

while others decrease depth. Some increase quality while many

decrease quality. Local influence should be positive where per-

turbations that increase depth also increase quality, and negative

Fig. 1. Influence formulation and aggregation. (a) Depth perturbations
� ��� ��. (b) Changes in �� ��� ��. (c) Local influence � ��� ��.
(d) Aggregated influence � ��� ��.

where perturbations that decrease depth increase match quality.

Where perturbations decrease match quality, local influence

should be either zero or oriented away from the perturbation.

Results are improved by categorizing pixels as either con-

tributing or noncontributing. For contributing pixels, is

the depth perturbation realizing the maximum historical sample

of in the current search stage. For noncontributing pixels,

.

A pixel is contributing if it passes two tests.

1. A minimum on the standard deviation of local pixels.

2. A minimum on the range of samples at that pixel.

These tests inhibit local influence from pixels where is un-

reliable due to insufficient texture or other features that may

cause values to be similar (e.g., a dominant gradient along

the epipolar direction).

Local influence is defined as (3)–(5), shown at the bottom of

the page, where is the standard deviation in a

local 9 9 square region. The mask is defined rela-

tive to all historical samples, but the local influence of con-

tributing pixels is defined relative to samples in the current

search stage only (via ). This exploits all knowledge of

to identify reliable samples, but still forces the estimates to

converge and capture detail in later search stages. Computing

local influence requires maintaining only , , and

two minima/maxima of .

Like local influence, there is flexibility in the definition of ag-

gregated influence. It should capture consistent trends in local

influence that reflect scene structure, reject spurious local influ-

ences caused by artifacts, and tend towards zero when an ac-

ceptable solution is reached.

Averaging over is efficient and can be effective on

some scenes. However, this enforces smoothness where piece-

wise-smoothness is instead desired. Anisotropic smoothing pre-

vents loss of detail along boundaries [1], [20], with promising

accuracy but at a significant cost. Other robust aggregation ap-

proaches, including order-statistic filtering (e.g., [3] and [16])

or bilinear filtering can be applied.

We found a selective median filter to be particularly effective.

Median filters that combine partial histograms for each column

if true

if false
(3)

such that (4)

(5)

Authorized licensed use limited to: University of Texas at Austin. Downloaded on January 20, 2010 at 09:36 from IEEE Xplore.  Restrictions apply. 



454 IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. 19, NO. 2, FEBRUARY 2010

Fig. 2. Selective median filtering. (a) Reference image. (b) Disparity maxi-
mizing XCORR. (c) Contributing pixel mask � ��� ��. (d) aggregated influ-
ence � ��� ��.

are in pixel number and (1) in filter kernel size when

applied to integer images [21]. Efficiency is improved by incre-

mentally updating bin indices [12]. We implemented two novel

extensions. The first only includes a value in the histograms if

it passes a mask. The second applies the filter to floating point

images by returning the histogram bin center containing the me-

dian—an approximation with bounded error to the true median.

Fig. 2 illustrates the effects of the filter on a representative

disparity image. Depicted are the reference image, the disparity

at which XCORR is maximized, an example contribution mask,

and the results of selective median filtering.

IV. EXTENSIONS TO CALIBRATED VIDEO

Modifications of the search process combined with pre- and

postprocessing provide additional efficiencies when QUESS is

applied to calibrated video input.

A. Preprocessing

The processing necessary to operate on calibrated aerial video

comprises frame pairing, rectification, and input masking.

When applied to calibrated video, QUESS generates depth

estimates for each frame in the video stream. The most recent

frame in the stream is defined as the reference frame . Fol-

lowing [25], stereo pairs are formed by selecting a nonadjacent

frame (see Fig. 3) to maintain a target ratio between the

stereo baseline and the minimum depth to the scene. To sim-

plify computation, is defined simply as the Euclidean dis-

tance between the camera origins. In addition to providing a

stereo baseline sufficient to generate accurate depths (which

pairing adjacent frames would not do), this provides robustness

to changes in platform speed and direction, making it possible

to tune other parameters to a more consistent geometry.

QUESS gains advantages from rectifying, but rectification is

not strictly necessary. Image is reprojected to a plane that is

parallel to (but not necessarily coplanar with) the image plane

of , thereby creating . This can be described as a partial

planar rectification. After rectification, scene elements at infinite

depth exhibit zero disparity, and unit vectors in the epipolar di-

rection at each pixel in can be computed and stored. Epipolar

lines are not collinear or parallel as in a standard stereo ge-

ometry. However, the rectification allows quick conversion be-

tween estimated depth and equivalent disparity for computing

match quality. This process also enforces correspondences to

lie on epipolar lines.

Fig. 3. (a) Reference image � masked for artifacts. (b) Paired image �

masked for artifacts. (c) Rectified paired image � masked for artifacts,
rectification, and scene assumptions.

Fig. 4. (a) Depths (pseudocolored) in frame � . (b) Depths re-projected to
frame � by Z-buffering.

Following frame pairing and rectification, a mask is com-

puted to identify pixels satisfying various constraints on corre-

spondences.

1. That has the same domain as .

2. That corresponding pixels lie within the images.

3. That pixels are not coincident with known artifacts.

4. That depth estimates respect known scene boundaries.

Pixels failing these constraints are black in Fig. 3(c).

B. Modifications to Stochastic Cooperative Search

QUESS stochastic search is modified in three ways. First, es-

timates and intermediate values are initialized using results from

the previous frame pair when available. This lets estimates con-

verge over multiple frames—existing estimates are refined in-

stead of generating entirely new estimates. As shown in Fig. 4,

depth estimates can be seeded aggressively since camera posi-

tion and orientation differ little between adjacent frames. Es-

timates from the last frame are re-projected to the new refer-

ence frame and adjusted for changes in camera origin, using

Z-buffering [8] to address occlusion. A similar application of

Z-buffering is used to initialize key quantities such as ,

, and statistics of , letting the search leverage results

from the previous frame pair. Any small gaps can be filled by

nearest-neighbor interpolation.

Second, the search schedule is modified to exploit the

redundancy between frame pairs. The search schedules still

requiresuccessivestages todecrease theperturbationmagnitudes

andneighborhoodsizes, thuscapturingbothgross scenestructure
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Fig. 5. Results on Middlebury Teddy (a)–(d) and Cones (e)–(h) data. (a), (e) Reference image. (b), (f) Micro-Canonical Annealing (MCA) [2] disparities.
(c), (g) Zitnick–Kanade (ZK) [27] disparities. (d), (h) QUESS disparities.

TABLE II
QUESS SEARCH SCHEDULE PARAMETERS

and detail. A unique schedule is used for the first frame that

performs more iterations and emphasizes larger perturbations.

All subsequent frames use schedules with significantly fewer

iterations. These emphasize smaller neighborhoods and smaller

depth perturbation in order to refine the existing solution and

capture detail, although they must also capture larger structures

in newly-visible regions. Combined with aggressive seeding,

the modified search schedule lets estimates converge over many

frame pairs with very few iterations (and evaluations) per

pair.

Third, conservative assumptions constrain the depth es-

timates at each pixel. Application-specific assumptions can

considerably improve speed and accuracy. For example, aerial

modeling benefits more from bounds on elevation than bounds

on disparity, and those bounds are easier to estimate reliably

(e.g., from existing low-resolution elevation data).

C. Postprocessing

After computing depth estimates with respect to , intrinsic

and extrinsic camera parameters are used to compute equivalent

3-D positions in an absolute reference frame. The final output

is a 3-D point cloud for each frame. These clouds can be fused

and converted to surface models for further analysis using tools

and techniques such as [6] and [19].

V. PERFORMANCE ANALYSIS

A. Middlebury Stereo Pairs

Evaluation on the Middlebury data lets us compare QUESS

against many leading approaches, although the benefits of

QUESS are stronger when processing aerial video data.

A variety of parameter combinations were explored and the

best results are presented. QUESS used XCORR over a 5 5

window for , and influence thresholds of and .

Its search parameters are given in Table II. Relatively many

samples are required for a single stereo pair but far fewer

samples can used for video data. MCA parameters were set

following [2] (minimum temperature 30, maximum tempera-

ture 300, 500 iterations per scale, and 85% of iterations for

cooling). The parameter , which weights smoothness against

match quality, was set empirically to . Following [27],

ZK used 15 iterations, occlusion threshold 0.005, and a

support region. We empirically set inhibition exponent

and used 1 1 absolute differences (AD) for . Alterna-

tive quality metrics such as 5 5 sum of absolute differences,

1 1 squared differences, and 5 5 sum of squared differences

did not improve results.

Reference images and computed disparity are shown in

Fig. 5 for the Teddy and Cones datasets, and performance

metric values are given for all Middlebury datasets in Table III.

QUESS is not competitive with leading approaches on the

Tsukuba or Venus scenes. On the Teddy and Cones scenes it is

within the range of results posted for other approaches, although

it is not a top performer. This is not unexpected since many al-

gorithms leading the Middlebury evaluation emphasize single

stereo pairs of indoor scenes taken at short range, or scenes that

have large planar regions, large areas of low contrast, or rela-

tively simple geometries. These scenes allow assumptions and

techniques that may be less attractive for outdoor aerial mod-

eling or other data. QUESS performs best on the two scenes that

are most representative of outdoor scenes in their complexity,

disparity ranges, nonplanar geometry, and higher texture. These
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TABLE III
MIDDLEBURY EVALUATION RESULTS FOR MICRO-CANONICAL ANNEALING (MCA), ZITNICK-KANADE (ZK), AND QUESS (Q). NON, ALL, AND DISC STAND

FOR NONOCCLUDED, ALL, AND NEAR DISCONTINUITIES

results show that QUESS is viable even on types of data it does

not emphasize

Our ZK results did not repeat those achieved in [27], where

the authors obtained nonoccluded error rates of 1.5%–3.0% on

the Tsukuba scene. Results for other scenes were not given. Our

observed performance was significantly tdifferent on Tsukuba

(27.0%–28.5%) and was slightly worse than QUESS on all met-

rics except those exclusively measuring results near disparity

discontinuities. ZK provides a novel method for explicitly iden-

tifying occlusions, so superior performance near discontinuities

is expected. Because we used our own implementation of ZK,

the differences between our results and those of [27] imply that

an important subtlety of the approach may have been missed in

either the published description or in our implementation.

MCA performance was generally poor, both qualitatively and

quantitatively. Appealing qualitative results were shown in [2]

on other datasets, but we are not aware of prior MCA results

posted for Middlebury data.

Approaches that stochastically sample are rare in the

literature and none appear among the over 60 approaches with

posted Middlebury results at the time of writing. While many

approaches use stochastic models of the disparity field, they

sample exhaustively and apply deterministic optimization

algorithms. By combining stochastic and cooperative tech-

niques, QUESS outperforms approaches from each category. It

is also the only approach we are aware of using nonexhaustive

stochastic sampling and optimization that is competitive with

the top 60 performers on any of the Middlebury datasets.

Nonexhaustive sampling of provides complexity, runtime,

and memory benefits as discussed below.

B. Aerial Video

Performance was evaluated on a calibrated monocular aerial

video dataset provided by the Air Force Research Laboratory.

The dataset contains 32 videos of a suburban scene captured

at 60 frames per second (interlaced) and 720 480 resolution.

The scene spans m in the horizontal and 17 m in

the vertical. Sparse ground truth positions are known for 301

locations, including building corners, fiducial markers, and

ground locations. The platform traveled at 35 mph at elevations

around 110 m, with camera declinations of to degrees,

yielding true depths in the range of 150 to 220 m. Platform

position and orientation is known for each frame. Field of view

and nontrivial offsets in position and orientation between the

platform and camera were estimated by minimizing the re-pro-

jection error of ground truth positions. Analysis was performed

on a representative 200-frame de-interlaced sequence.

Calibration inaccuracies in intrinsic and extrinsic parameters

shape the definition of the accuracy metric. Sparse ground truth

is projected to a 2-D pixel location. Depth estimates for all pixels

within a radius are considered and absolute error (AE) is de-

fined as the minimum Euclidean distance between the ground

truth position and the estimated 3-D positions. Mean absolute

error (MAE) averages AE over all visible ground truth points

and all frames. This defines a family of MAE metrics with

error values decreasing monotonically with .

Results are presented for , which was selected by inspec-

tion based on residual re-projection error. Between 1800 and

2200 ground truth comparisons contributed to each MAE value.

Results are presented for downsampled 360 240 video due to

the memory limitations of the ZK approach, discussed in Sec-

tion V-E.

A variety of parameter combinations were explored and the

best results are presented. QUESS used XCORR over a 5 5

window for the match quality metric, and influence thresholds

of and . Its search parameters are given in

Table II, which require significantly fewer evaluations per

frame than when processing a single stereo pair. MCA param-

eters were identical to the evaluation on Middlebury data. ZK

used ten iterations, occlusion threshold 0.02, a support

region, and 5 5 sum of absolute differences (SAD)

for the match quality metric.

The target stereo baseline was varied over

for MCA and QUESS, and up to 0.25 for ZK to capture all im-

portant trends. Intentionally loose elevation assumptions simu-

lated imprecise a priori scene knowledge (45 m vertical range

versus the actual 17 m range) and defined the disparity ranges

for each approach. MCA and ZK require a standard stereo ge-

ometry, so a planar rectification following [10] was applied. Dis-

parity estimates were converted to depth estimates and trans-

formed to the reference frame for evaluation.

Fig. 6 shows a reference image and example reconstructions

for MCA, ZK, and QUESS. Results are shown for ,

at which QUESS achieves its best accuracy. Fig. 7 plots recon-

struction error against target stereo baseline ratio for the three

approaches.

As seen in Fig. 7, QUESS outperforms both MCA and ZK at

the sparse evaluation positions. QUESS achieves m

at . This equates to 0.62% estimate error relative to ab-

solute depth, which is 0.29 pixels average disparity magnitude

error at that baseline. ZK performance is somewhat competitive,

and achieves m at , resulting in 1.01%

depth estimate error and 1.50 pixels average disparity magni-

tude error. MCA performance is not competitive, achieving a

minimum at . These relative results are

consistent with evaluations on the Middlebury data.

A few trends are evident. The accuracy of all approaches de-

grades for small , where the reduced disparity range makes
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Fig. 6. Example reconstructions from aerial video. (a) Reference images with sparse evaluation positions marked. (b) MCA estimated elevations. (c) ZK estimated
elevations. (d) QUESS estimated elevations.

Fig. 7. Reconstruction error versus stereo baseline.

disparity estimates sharply quantized, and depth estimates are

simultaneously more sensitive to disparity error. Metrics de-

fined at sub-pixel disparities ([24]) would help, but increased

sensitivity will remain. QUESS and MCA accuracy degrade

at higher where viewpoint changes make correspondence

matching more difficult. ZK accuracy gradually improves as

grows and the effects of disparity quantization are reduced. ZK

accuracy becomes unstable as grows further, likely because

few frames are successfully paired and few depth estimates are

generated per frame. QUESS outperforms ZK and MCA, but it

can produce inaccurate results in large regions of low texture or

contrast (as do most other approaches).

These results demonstrate that by combining stochastic and

cooperative techniques, QUESS outperforms both a stochastic

approach and an exhaustive cooperative approach on a realistic

and complex dataset. Accurate range estimates are generated

from high-range calibrated aerial video. QUESS has a variety

of additional advantages which are discussed next.

C. Number and Scalability of Match Quality Evaluations

The primary advantages of QUESS are the generation of

depth estimates using fewer evaluations of , and its attractive

scaling properties with respect to video resolution, stereo

baseline ratio, and scene bound assumptions.

Analysis of evaluations is focused on comparing to ZK be-

cause ZK can be used as a representative for other approaches.

For example, the current MCA implementation is not compet-

itive with respect to evaluations because is recomputed

on each iteration which results in 500 samples per pixel per

scale. We could reimplement MCA to exhaustively sample

at each scale and then use a lookup table, but then MCA would

still be no better than ZK in number of Q samples. Any approach

that exhaustively samples will encounter the same scalability

issues as ZK.

QUESS requires evaluations of

for by images, where is the fraction of overlap-

ping pixels in the stereo pair (a function of and camera path

), and is the total number of iterations in the schedule.

The value , so . QUESS generates

depth estimates per frame pair.

Exhaustive approaches are more difficult to characterize. ZK

requires

evaluations, where and are the number of rows and

columns after projective rectification, is analogous to

, and is the range of potential disparities for resolution

and scene bounds . is a complex function of camera

path and stereo baseline that grows with increasing baseline.

An upper bound on is not easily determined. ZK generates

depth estimates per frame pair.

Fig. 8 plots the average evaluations per frame for the aerial

video test data, as a function of . QUESS requires fewer eval-

uations per frame only in some ranges. QUESS shows a steady

decline in as shrinks with increasing and other fac-

tors remain constant. For ZK, the number of evaluations grows

with for low until a decrease in dominates and

follows. The values of , , , and are all complicated

functions of camera path and baseline. QUESS achieves its best

accuracy at evaluations per frame and ZK achieves

its best accuracy at per frame. On the surface, ZK may

appear superior in number of evaluations (although its accu-

racy is worse), but this is not the complete story.

Fig. 9 plots the number of depth estimates generated per

frame. Increasing the stereo baseline decreases the number

of estimates per frame as overlap decreases. Qualitatively

different behavior is seen in the number of evaluations of Q

per depth estimate in Fig. 10. QUESS uses a constant number

of match quality evaluations per depth estimate, independent
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Fig. 8. Average � evaluations per frame.

Fig. 9. Average depth estimates per frame.

Fig. 10. Average � evaluations per depth estimate.

of stereo baseline. The number of ZK evaluations per estimate

is dominated by the growth of with increasing . QUESS

achieves its best performance at 52 evaluations per estimate,

but ZK requires an average of 203 per estimate. QUESS gener-

ates more accurate results using 75% fewer evaluations per

estimate.

The specifics of the analysis will differ between exhaustive

approaches, but the themes generalize. For roughly linear

camera paths, all factors will decrease with increasing

(here, by coincidence only). However, , ,

and are determined by frame pairing and rectification. Any

exhaustive algorithm that needs a standard stereo geometry and

uses the same projective rectification will share these values.

The value is also shared. For any exhaustive approach,

will decrease with and will increase, resulting in more

evaluations of per estimate. By contrast, QUESS can freely

optimize without changing the number of evaluations.

QUESS also has more attractive scaling properties with re-

spect to resolution and other factors. For QUESS, evaluations

scale directly with number of pixels . For ZK, dou-

bling and also doubles , so scales with .

This applies to any method that exhaustively computes at in-

teger disparity magnitudes in a search range based on camera

and scene geometry—doubling resolution causes an unavoid-

able scaling in evaluations of .

ZK inhibition computations scale with in the number

of pixels, as opposed to the scaling described in [27].

For each row, column, and disparity, inhibition is summed over

a second disparity index whose range is also linear in resolution.

For simple metrics, computing ZK inhibition may dominate

computing , but that is not necessarily true for complex

metrics or for other approaches.

Scene geometry and camera path have complex and signifi-

cant effects on for any exhaustive approach, further compli-

cating their use under uncontrolled scene and camera geome-

tries. By contrast, the number of evaluations in QUESS is in-

dependent of scene geometry and camera path once the number

of iterations is chosen.

D. Runtime

Runtimes are given in Table IV for each dataset at three

different resolutions. Runtime was measured with a single

2.5-GHz dual-core CPU with 3.5-GB RAM. While QUESS

was not the fastest of the three approaches, a direct compar-

ison does not reflect all the relevant issues. Algorithms were

implemented in Matlab and were vectorized, but with no effort

to optimize the implementations. As a result, QUESS did not

capitalize on opportunities to reduce the number of match

quality evaluations by exploiting increases in . MCA and ZK,

however, do benefit because lower frame overlap shrinks the

size of the data cube created for rectified stereo pairs.

QUESS runtimes were significantly lower on video data than

on the single stereo pairs because the initialization techniques

described in Section IV-B allow its search schedules to be short-

ened. Runtime scales with number of pixels, increasing by a

factor of about four for every doubling in resolution. QUESS

runtimes are independent of , and for an optimized imple-

mentation would actually decrease with increasing . This in-

sulation of runtimes also applies to stereo geometry and relative

scene orientation. Neither characteristic holds for approaches

that exhaustively sample .

ZK runtimes follow the number of evaluations shown in

Fig. 8. Runtime ranges are given because ZK runtime varies

significantly with . As expected, each doubling of resolution

creates an 8-fold increase per frame in evaluations, an ap-

proximate 8-fold increase in total runtime, and doubling of

evaluations and runtime per depth estimate. ZK thus scales with

in the number of pixels.
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TABLE IV
RUNTIME (SECONDS/FRAME) FOR MICRO-CANONICAL ANNEALING (MCA), ZITNICK-KANADE (ZK), AND QUESS (Q). RESULTS ARE GIVEN FOR

FULL-RESOLUTION (FR), 1/2 RESOLUTION, 1/4 RESOLUTION, AND 1/8 RESOLUTION

MCA runtimes also follow the number of evaluations, and

also vary significantly with . evaluations scale linearly in

pixels in the current implementation because is recomputed

each iteration. If we instead quantize the disparity space and

sample it exhaustively, MCA will scale with like ZK

but with a much lower hidden constant that it currently has.

The use of simple functions actually minimizes the runtime

advantages of QUESS over other approaches. As more complex

metrics are used, evaluation of becomes a larger percentage of

runtime and the advantages of quality-efficient stochastic sam-

pling become more pronounced.

E. Memory Usage

QUESS has memory advantages over approaches that ex-

haustively sample and retain all samples in memory, and it

is thus more attractive than exhaustive approaches on memory-

constrained devices or platforms. QUESS requires storing ap-

proximately 20 floating-point values for each pixel, independent

of . All aspects of memory usage scale with and are in-

dependent of stereo baseline, frame overlap, camera motion, and

scene structure.

ZK memory usage follows directly from the number of

evaluations analyzed in Section V-C, since all samples are

stored in a 3-D data cube. As a result, ZK memory also scales

with . ZK requires two data cubes of this size. At its

best accuracy, ZK requires the simultaneous storage of over 400

floating point values per depth estimate.

As currently implemented, MCA memory requirements are

similar to QUESS because is recomputed in each iteration.

If we instead compute values once at all disparities and store

them for later retrieval, MCA memory usage becomes nearly

identical to ZK. Both alternatives have significant disadvantages

for MCA.

Similar scaling properties are shared by other exhaustive ap-

proaches. The size of any exhaustive cube of samples is af-

fected by stereo baseline, frame overlap, camera motion, scene

orientation, and scene structure. Few of these factors are easily

controlled so exhaustive approaches can cause problems on lim-

ited memory devices. Our aerial video comparisons were per-

formed at 360 240 resolution because even on a modern ma-

chine with significant memory, ZK generated Matlab out-of-

memory errors on 720 480 imagery.

VI. CONCLUSION

This paper presents quality-efficient stochastic sampling

(QUESS), a new stochastic and cooperative sampling approach

for generating dense stereo correspondence estimates using

fewer local match quality metric evaluations than exhaustive

approaches. It is based on a set of general techniques that are

easily applied to a variety of applications. Its strengths are

maximized when operating on calibrated monocular video, but

in more common applications such as robotic navigation the

approach suffers no loss. It exploits the continuity of matching

likelihood constraint to skip portions of the disparity search

space. Estimates are initialized from the previous frame pair’s

results to allow convergence across multiple frame pairs. A

relatively simple formulation of local influence selectively

re-weights random perturbations injected into the solution,

and aggregated influence extracts consistent trends from the

stochastic sampling of match quality. QUESS is both stochastic

and cooperative, with advantages from both. It was shown to

outperform both Barnard’s stochastic approach [2] and Zitnick

and Kanade’s cooperative approach [27] on a complex and

representative dataset, while requiring fewer match quality

evaluations.

QUESS has a number of advantages over exhaustive ap-

proaches. It requires fewer match quality metric evaluations

per depth estimate, with corresponding gains in efficiency.

It reduces memory requirements and provides better scaling

in both runtime and memory. Runtime and memory usage

are insulated from a variety of factors that cannot be easily

controlled, including stereo baseline, camera path, and scene

orientation and structure. Advantages are demonstrated using

simple quality metrics, but become more pronounced as metric

complexity increases. It facilitates the use of complex and

robust metrics, and metrics defined on noninteger disparities.

Potential future work includes further tuning of search sched-

ules, exploring influence formulations based on gradient ascent

search, and exploring efficient anisotropic filtering [1] for influ-

ence aggregation and depth estimate smoothing. Further work

with more complex quality metrics is also of interest, as is de-

veloping optimized and parallelized implementations.

REFERENCES

[1] S. T. Acton, A. C. Bovik, and M. M. Crawford, “Anisotropic diffusion
pyramids for image segmentation,” presented at the IEEE Int. Conf.
Image Processing., 1994.

[2] S. Barnard, “Stochastic stereo matching over scale,” Int. J. Comput.

Vis., vol. 3, no. 1, pp. 17–32, 1989.
[3] A. C. Bovik, T. S. Huang, and D. C. Munson, “A generalization of me-

dian filtering using linear combinations of order statistics,” IEEE Trans.

Acoust., Speech, Signal Process., vol. ASSP-31, no. 6, pp. 1342–1350,
Dec. 1983.

[4] M. Z. Brown, D. Burschka, and G. D. Hager, “Advances in computa-
tional stereo,” IEEE Trans. Pattern Anal. Mach. Intell., vol. 25, no. 8,
pp. 993–1008, Aug. 2003.

[5] M. Creutz, “Microcanonical Monte Carlo simulation,” Phys. Rev. Lett.,
vol. 50, no. 9, pp. 1411–1414, 1983.

[6] B. Curless and M. Levoy, “A volumetric method for building complex
models from range images,” presented at the ACM Int. Conf. Computer
Graphics and Interactive Techniques, 1996.

[7] U. R. Dhond and J. K. Aggarwal, “Structure from stereo—A review,”
IEEE Trans. Syst., Man, Cybern., vol. 19, pp. 1489–1510, 1989.

Authorized licensed use limited to: University of Texas at Austin. Downloaded on January 20, 2010 at 09:36 from IEEE Xplore.  Restrictions apply. 



460 IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. 19, NO. 2, FEBRUARY 2010

[8] J. D. Foley, A. van Dam, S. K. Feiner, and J. F. Hughes, Computer

Graphics: Principles and Practice, 2nd ed. Boston, MA: Addison-
Wesley, 1996.

[9] S. Geman and D. Geman, “Stochastic relaxation, Gibbs distribution,
and the Bayesian restoration of images,” IEEE Trans. Pattern Anal.

Mach. Intell., vol. 6, no. 6, pp. 721–741, Jun. 1984.
[10] R. Hartley, “Theory and practice of projective rectification,” Int. J.

Comput. Vis., vol. 35, no. 2, pp. 115–127, 1998.
[11] H. Hirschmüller and D. Scharstein, “Evaluation of cost functions for

stereo matching,” presented at the IEEE CVPR, 2007.
[12] T. Huang, G. Yang, and G. Tang, “A fast two-dimensional median fil-

tering algorithm,” IEEE Trans. Acoust., Speech, Signal Process., vol.
27, pp. 13–18, 1979.

[13] T. Kanade, A. Yoshida, K. Oda, H. Kano, and M. Tanaka, “A stereo
machine for video-rate dense depth mapping and its new applications,”
presented at the IEEE CVPR, 1996.

[14] W. N. Klarquist and A. C. Bovik, “FOVEA: A foveated, multi-fixation,
vergent active stereo system for dynamic three-dimensional scene re-
covery,” IEEE Trans. Robot. Autom., vol. 14, no. 5, pp. 755–770, May
1998.

[15] Y. Kim and J. K. Aggarwal, “Positioning 3-D objects using stereo im-
ages,” IEEE J. Robot. Autom., vol. 3, no. 4, pp. 361–373, Apr. 1987.

[16] H. G. Longbotham and A. C. Bovik, “Theory of order statistic fil-
ters and their relationship to linear FIR filters,” IEEE Trans. Acoust.,

Speech, Signal Process., vol. 37, no. 2, pp. 275–287, Feb. 1989.
[17] D. C. Marr and T. Poggio, “Cooperative computation of stereo dis-

parity,” Science, vol. 194, pp. 283–287, 1976.
[18] D. C. Marr and T. Poggio, “A computational theory of human stereo

vision,” in Proc. Roy. Soc. Lond. B, 1979, vol. 204, pp. 301–328.
[19] P. Merrell et al., “Real-time visibility-based fusion of depth maps,”

presented at the IEEE ICCV, Oct. 2007.
[20] P. Perona and J. Malik, “Scale-space and edge detection using

anisotropic diffusion,” IEEE Trans. Pattern Anal. Mach. Intell., vol.
12, no. 7, pp. 629–639, Jul. 1990.

[21] S. Perreault and P. Hebert, “Median filtering in constant time,” IEEE

Trans. Image Process., vol. 18, no. 9, pp. 2389–2394, Sep. 2007.
[22] D. Scharstein and R. Szeliski, “A taxonomy and evaluation of dense

two-frame stereo correspondence algorithms,” Int. J. Comput. Vis., vol.
47, no. 1–3, pp. 7–42, 2002.

[23] S. M. Seitz, B. Curless, J. Diebel, D. Scharstein, and R. Szeliski, “A
comparison and evaluation of multi-view stereo reconstruction algo-
rithms,” presented at the IEEE CVPR, 2006.

[24] R. Szeliski and D. Scharstein, “Sampling the disparity space image,”
IEEE Trans. Pattern Anal. Mach. Intell., vol. 25, no. 3, pp. 419–425,
Mar. 2004.

[25] R. Vidal and J. Oliensis, “Structure from planar motions with small
baselines,” in Proc. ECCV, 2002, pp. 383–398.

[26] R. Yang and M. Pollefeys, “Multi-resolution real-time stereo on com-
modity graphics hardware,” presented at the IEEE CVPR, 2003.

[27] C. L. Zitnick and T. Kanade, “A cooperative algorithm for stereo
matching and occlusion detection,” IEEE Trans. Pattern Anal. Mach.

Intell., vol. 22, no. 7, pp. 675–684, Jul. 2000.

Thayne Richard Coffman (M’08–SM’09) received
the B.S. and M.Eng. degrees in computer science
and electrical engineering from the Massachusetts
Institute of Technology, Cambridge, in 1996. He is
currently pursuing the Ph.D. degree in electrical and
computer engineering at The University of Texas at
Austin.

He is also employed full-time as a Technical
Fellow and member of the executive team at
21st Century Technologies, Austin, TX, where
he identifies, directs, and performs research that

addresses critical needs in the military and intelligence communities. His
research interests include computational stereo, image processing, image and
video understanding, autonomous systems, statistical pattern classification,
graph-theoretic pattern classification, social network analysis, and network
intrusion detection. He has worked in the past for Trilogy Software, Hughes
Network Systems, and the National Institute of Standards and Technology. He
has authored or coauthored 16 technical articles and book chapters, and has
five U.S. and international patent applications pending.

Alan Conrad Bovik (S’80–M’81–SM’89–F’96) re-
ceived the B.S., M.S., and Ph.D. degrees in electrical
and computer engineering from the University of Illi-
nois at Urbana-Champaign, Urbana, in 1980, 1982,
and 1984, respectively.

He is currently the Curry/Cullen Trust Endowed
Professor at The University of Texas at Austin,
where he is the Director of the Laboratory for Image
and Video Engineering (LIVE) in the Center for
Perceptual Systems. His research interests include
image and video processing, computational vision,

digital microscopy, and modeling of biological visual perception. He has pub-
lished over 450 technical articles in these areas and holds two U.S. patents. He
is also the author of The Handbook of Image and Video Processing (Elsevier,
2005, 2nd ed.) and Modern Image Quality Assessment (Morgan & Claypool,
2006).

Dr. Bovik has received a number of major awards from the IEEE Signal Pro-
cessing Society, including: the Education Award (2007); the Technical Achieve-
ment Award (2005); the Distinguished Lecturer Award (2000); and the Merito-
rious Service Award (1998). He is also a recipient of the Distinguished Alumni
Award from the University of Illinois at Urbana-Champaign (2008), the IEEE
Third Millennium Medal (2000), and two journal paper awards from the Inter-
national Pattern Recognition Society (1988 and 1993). He is a Fellow of the Op-
tical Society of America and the Society of Photo-Optical and Instrumentation
Engineers. He has been involved in numerous professional society activities,
including: Board of Governors, IEEE Signal Processing Society, 1996–1998;
Editor-in-Chief, IEEE TRANSACTIONS ON IMAGE PROCESSING, 1996–2002; Ed-
itorial Board, PROCEEDINGS OF THE IEEE, 1998–2004; Series Editor for Image,
Video, and Multimedia Processing, Morgan and Claypool Publishing Company,
2003–present; and Founding General Chairman, First IEEE International Con-
ference on Image Processing, Austin, TX, November 1994. He is a registered
Professional Engineer in the State of Texas and is a frequent consultant to legal,
industrial, and academic institutions.

Authorized licensed use limited to: University of Texas at Austin. Downloaded on January 20, 2010 at 09:36 from IEEE Xplore.  Restrictions apply. 


