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Abstract

Stochastic approximation methods play a central role in maximum likelihood estimation problems involving intractable
likelihood functions, such as marginal likelihoods arising in problems with missing or incomplete data, and in parametric
empirical Bayesian estimation. Combined with Markov chain Monte Carlo algorithms, these stochastic optimisation methods
have been successfully applied to a wide range of problems in science and industry. However, this strategy scales poorly
to large problems because of methodological and theoretical difficulties related to using high-dimensional Markov chain
Monte Carlo algorithms within a stochastic approximation scheme. This paper proposes to address these difficulties by
using unadjusted Langevin algorithms to construct the stochastic approximation. This leads to a highly efficient stochastic
optimisation methodology with favourable convergence properties that can be quantified explicitly and easily checked. The
proposed methodology is demonstrated with three experiments, including a challenging application to statistical audio analysis
and a sparse Bayesian logistic regression with random effects problem.

Keywords Maximum marginal likelihood estimation · Empirical Bayesian inference · Stochastic approximation · Markov
chain Monte Carlo methods · Unadjusted Langevin Algorithm · Recursive estimation

1 Introduction

Maximum likelihood estimation (MLE) is central to modern
statistical science. It is a cornerstone of frequentist infer-
ence (Berger and Casella 2002), and also plays a fundamental
role in parametric empirical Bayesian inference (Carlin and
Louis 2000; Casella 1985). For simple statistical models,
MLE can be performed analytically and exactly. However,
for most models, it requires using numerical computation
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methods, particularly optimisation schemes that iteratively
seek to maximise the likelihood function and deliver an
approximate solution. Following decades of active research
in computational statistics and optimisation, there are now
several computationally efficient methods to perform MLE
in a wide range of classes of models (Gentle et al. 2012; Boyd
and Vandenberghe 2004).

In this paper, we consider MLE in models involving
incomplete or “missing” data, such as hidden, latent or unob-
served variables. Expectation maximisation (EM) optimisa-
tion methods (Dempster et al. 1977) are common strategies
to obtain approximate solutions in this setting. However, they
rely on a maximization step of a surrogate which is not pos-
sible in most models (Robert and Casella 2004). Several
strategies can be considered to overcome this issue. In partic-
ular, we consider Robbins–Monro stochastic approximation
(SA) schemes that use a Monte Carlo stochastic simulation
algorithm to approximate the gradients that drive the opti-
misation procedure (Robbins and Monro 1951; Delyon et al.
1999; Kushner and Yin 2003; Fort et al. 2011). When com-
bined with Markov chain Monte Carlo (MCMC) algorithm,
SA schemes provide a powerful general methodology which
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is simple to implement, has a detailed convergence theory
(Atchadé et al. 2017), and can be easily applied to a wide
range of moderately low-dimensional models.

The expectations and demands on SA methods constantly
rise as we seek to address larger problems and provide
stronger theoretical guarantees on the solutions delivered.
Unfortunately, existing SA methodology and theory do not
scale well to large problems. The reasons are twofold. First,
the family of MCMC kernels driving the SA scheme needs to
satisfy uniform geometric ergodicity conditions that are usu-
ally difficult to verify for high-dimensional MCMC kernels.
Second, the existing theory requires using asymptotically
exact MCMC methods. For large models, these are usu-
ally high-dimensional Metropolis–Hastings methods such as
the Metropolis-adjusted Langevin algorithm (Roberts and
Tweedie 1996) or Hamiltonian Monte Carlo (Girolami and
Calderhead 2011; Durmus et al. 2017), which are some-
times difficult to calibrate within the SA scheme to achieve a
prescribed acceptance rate (both automatic and manual cal-
ibration can be difficult as the target density changes with
each iteration of the SA scheme). For these reasons, practi-
tioners rarely use SA schemes with Markovian disturbances
in high-dimensional settings.

In this paper, we propose to address these limitations by
exploiting recent developments in inexact MCMC methodol-
ogy to drive the SA scheme, particularly unadjusted Langevin
algorithms, which have easily verifiable geometric ergodicity
conditions and are easy to calibrate (Durmus and Moulines
2017; Dalalyan 2017). This will allow us to design a high-
dimensional stochastic optimisation scheme with favourable
convergence properties that can be quantified explicitly and
easily checked.

Our contributions are structured as follows: Sect. 2 for-
malises the class of MLE problems considered and presents
the proposed stochastic optimisation method, which is
based on a SA approach driven by an unadjusted Langevin
algorithm. Detailed theoretical convergence results for the
method are reported in Sect. 3, which also describes a gen-
eralisation of the proposed methodology and theory to other
inexact Markov kernels. Section 4 presents three numerical
experiments that demonstrate the proposed methodology in
a variety of scenarios. The online supplementary material
includes additional theoretical results, postponed proofs and
some details on computational aspects.

2 The stochastic optimisation via unadjusted
Langevinmethod

The proposed Stochastic Optimisation via Unadjusted
Langevin (SOUL) method is useful for solving maximum
likelihood estimation problems involving intractable likeli-
hood functions. The method is a SA iterative scheme that

is driven by an unadjusted Langevin MCMC algorithm.
Langevin algorithms are very efficient in high dimensions
and lead to an SA scheme that inherits their favourable con-
vergence properties.

2.1 Maximummarginal likelihood estimation

Let Θ be a convex closed set in R
dΘ . The proposed optimisa-

tion method is well-suited for solving maximum likelihood
estimation problems of the form

θ⋆ ∈ arg max
θ∈Θ

log p(y|θ) − g(θ) , (1)

where the parameter of interest θ is related to the observed
data y ∈ Y by a likelihood function p(y, x |θ) involv-
ing an unknown quantity x ∈ R

d , which is removed
from the model by marginalisation. More precisely, we
consider problems where the resulting marginal likelihood
p(y|θ) =

∫

Rd p(y, x |θ)dx is computationally intractable,
and focus on models where the dimension of x is large, mak-
ing the computation of (1) even more difficult. For complete-
ness, we allow the use of a penalty function g : Θ → R, or set
g = 0 to recover the standard maximum likelihood estimator.

As mentioned previously, the maximum marginal likeli-
hood estimation problem (1) arises in problems involving
latent or hidden variables (Dempster et al. 1977). It is cen-
tral to parametric empirical Bayes approaches that base
their inferences on the pseudo-posterior distribution given by
p(x |y, θ⋆) = p(y, x |θ⋆)/p(y|θ⋆) (Carlin and Louis 2000;
Vidal et al. 2019). The same problem also arises in hierarchi-
cal Bayesian maximum-a-posteriori estimation of θ given y,
with marginal posterior p(θ |y) ∝ p(y|θ)p(θ) where p(θ)

denotes the prior for θ ; in that case g(θ) = − log p(θ)

(Berger and Casella 2002).
Finally, in this paper we assume that log p(y, x |θ) is con-

tinuously differentiable with respect to x and θ , and that g is
also continuously differentiable with respect to θ . A general-
isation of the proposed methodology to non-smooth models
is presented in Vidal et al. (2019), De Bortoli et al. (2020b)
which focus on non-smooth statistical imaging models.

2.2 Stochastic approximationmethods

The scheme we propose to solve the optimisation problem (1)
is derived in the SA framework (Delyon et al. 1999), which
we recall below.

Starting from any θ0 ∈ Θ , SA schemes seek to solve (1)
iteratively by computing a sequence (θn)n∈N associated with
the recursion

θn+1 = ΠΘ [θn + δn+1(H̄θn − ∇g(θn))] , (2)

123



Statistics and Computing (2021) 31 :29 Page 3 of 18 29

where H̄θn is some estimator of the intractable gradient
θ �→ ∇θ log p(y|θ) at θn , ΠΘ denotes the projection onto
Θ , and (δn)n∈N∗ ∈ (R∗

+)N
∗

is a sequence of stepsizes. From
an optimisation viewpoint, iteration (2) is a stochastic gener-
alisation of the projected gradient ascent iteration (Boyd and
Vandenberghe 2004) for models with intractable gradients.
For n ∈ N, Monte Carlo estimators H̄θn for ∇θ log p(y|θ) at
θn are derived from Fisher’s identity

∇θ log p(y|θ) =
∫

Rd

∇θ p(x, y|θ)

p(x, y|θ)
p(x |y, θ)dx

=
∫

Rd

∇θ log p(x, y|θ)p(x |y, θ)dx ,

which suggests to consider

H̄θn (Xn
1:mn

) = m−1
n

∑mn

k=1 ∇θ log p(Xn
k , y|θn) , (3)

where (mn)n∈N ∈ (N∗)N is a sequence of batch sizes and
Xn

1:mn
= (Xn

k )k∈{1,...,mn} is either a sequence of exact Monte
Carlo samples from p(x |y, θn) = p(x, y|θn)/p(y|θn), or a
Markov chain targeting this distribution.

Given a sequence (θk)k∈{1,...,N } generated by using (2), an
approximate solution of (1) can then be obtained by calcu-
lating, for example, the average of the iterates, i.e.

θ̂N =
{

∑N
n=1 δnθn

}/{

∑N
n=1 δn

}

. (4)

This estimate converges a.s to a solution of (1) as N →
∞ provided that some conditions on p(y|θ), p(x |y, θ),
g, (δn)n∈N, and H̄θn are fulfilled. Indeed, following three
decades of active research efforts in computational statistics
and applied probability, we now have a good understanding
of how to construct efficient SA schemes, and the conditions
under which these schemes converge (see for example Ben-
veniste et al. 1990; Fort and Moulines 2003; Duchi et al.
2011; Andrieu and Moulines 2006; Nemirovski et al. 2008;
Atchadé et al. 2017).

SA schemes are successfully applied to maximum marginal
likelihood estimation problems where the latent variable x

has a low or moderately low dimension. However, they are
seldomly used when x is high-dimensional because this usu-
ally requires using high-dimensional MCMC samplers that,
unless carefully calibrated, exhibit poor convergence prop-
erties. Unfortunately, calibrating the samplers within a SA
scheme is challenging because the target density p(x |y, θn)

changes at each iteration. As a result, it is, for example, dif-
ficult to use Metropolis–Hastings algorithms that need to
achieve a prescribed acceptance probability range. Addition-
ally, the conditions for convergence of MCMC SA schemes
are often difficult to verify for high-dimensional samplers.

As mentioned previously, we propose to address these
difficulties by using modern inexact Langevin MCMC sam-

plers to drive (3). These samplers have received a lot of
attention lately because they can exhibit excellent large-
scale convergence properties and empirically outperform
their Metropolised counterparts in many situations (see Dur-
mus et al. 2018 for an extensive comparison in the context
of Bayesian imaging models). Stimulated by developments
in high-dimensional statistics and machine learning, we now
have detailed theory for these algorithms, including explicit
and easily verifiable geometric ergodicity conditions (Dur-
mus and Moulines 2017; Dalalyan 2017; Eberle and Majka
2018; De Bortoli and Durmus 2019). This will allow us
to design a stochastic optimisation scheme with favourable
convergence properties that can be quantified explicitly and
easily checked.

2.3 Langevin Markov chain Monte Carlo methods

Langevin MCMC schemes to sample from p(x |y, θ) are
based on stochastic continuous dynamics (X

θ
t )t≥0 for which

the target distribution p(x |y, θ) is invariant. One funda-
mental example is the Langevin dynamics solution of the
following stochastic differential equation (SDE)

dX
θ
t = −∇x log p(X

θ
t |y, θ)dt +

√
2dBt , (5)

where (Bt )t≥0 is a standard d-dimensional Brownian motion.
Under mild assumptions on p(x |y, θ), this SDE admits a
strong solution for which p(x |y, θ) is the invariant prob-
ability measure. In addition, there are detailed explicit
convergence results for (X

θ
t )t≥0 to p(x |y, θ) under differ-

ent metrics (Eberle 2016; Eberle et al. 2017). Note that other
SDEs satisfy these favorable properties such as the kinetic
Langevin dynamics (Dalalyan and Riou-Durand 2018).

However, sampling solutions for these continuous-time
dynamics is not feasible in general. Therefore, discretisations
have to be used instead. In this paper, we mainly focus on the
Euler-Maruyama discrete-time approximation of (5), known
as the Unadjusted Langevin Algorithm (ULA) (Roberts and
Tweedie 1996), given by

Xk+1 = Xk − γ∇x log p(Xk |y, θ) +
√

2γ Zk+1 , (6)

where γ > 0 is the discretisation time step and (Zk)k∈N∗

is a i.i.d. sequence of d-dimensional zero-mean Gaussian
random variables with identity covariance matrix. We will
use this Markov kernel to drive our SA schemes.

Observe that (6) does not exactly target p(x |y, θ) because
of the bias introduced by the discrete-time approxima-
tion. Computational statistical methods have traditionally
addressed this issue by complementing (6) with a Metropolis–
Hastings correction step to asymptotically remove the bias
(Roberts and Tweedie 1996). This correction empirically
deteriorates the convergence properties of the chain and may
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lead to poor non-asymptotic estimation results, particularly
in very high-dimensional settings (see for example Durmus
et al. 2018). However, until recently it was considered that
using (6) without a correction step was too risky. Fortu-
nately, recent works have established detailed theoretical
guarantees for (6) that do not require using any correction
(Dalalyan 2017; Durmus and Moulines 2017). In addition,
new explicit convergence bounds have been derived under
various assumptions on the target probability distribution
(Dalalyan 2017; Cheng et al. 2018; Cheng and Bartlett 2017;
Lee et al. 2018). In addition, accelerations and variations of
ULA have been studied, both theoretically and experimen-
tally, yielding better ergodic convergence rates (Maddison
et al. 2018; Ma et al. 2019; Muehlebach and Jordan 2019;
Dalalyan and Riou-Durand 2018). However, such extensions
are out of the scope of the present work whose main contribu-
tion is not to provide new results to the existing Markov chain
theory but to use the theoretical guarantees of ULA in order to
study SA schemes driven by this efficient but inexact sampler.

Note also that the methodology we propose and analyse
in this paper is fundamentally different from the Stochas-
tic Gradient Langevin dynamics (Vollmer et al. 2016; Teh
et al. 2016; Welling and Teh 2011a; Patterson and Teh 2013;
Ahn et al. 2014, 2012) which is an MCMC algorithm to
sample from p(x |y, θ) using estimators of ∇x log p(x |y, θ).
Finally, it should be highlighted that, in an independent line
of work, a similar methodology is studied under a different
set of assumptions in (Karimi et al. 2019).

2.4 The SOUL algorithm andmain results

We are now ready to present the proposed Stochastic Opti-
mization via Unadjusted Langevin (SOUL) methodology.
Let (δn)n∈N∗ ∈ (R∗

+)N
∗

and (mn)n∈N ∈ (N∗)N be the
sequences of stepsizes and batch sizes defining the SA
scheme (2)–(3). For any θ ∈ Θ and γ > 0, denote by Rγ,θ

the Langevin Markov kernel associated with (6) to approxi-
mately sample from p(x |y, θ), and by (γn)n∈N ∈ (R∗

+)N the
sequence of discrete time steps used.

Formally, starting from some X0
0 ∈R

d and θ0 ∈Θwe define
recursively ({Xn

k : k ∈ {0,. . ., mn}}, θn)n∈N on a probability
space (Ω,F , P): for any n ∈ N Xn

0:mn
is a Markov chain

with Markov kernel Rγn ,θn , Xn
0 = Xn−1

mn−1
given Fn−1, and

θn+1 = ΠΘ

[

θn − δn+1

mn

mn
∑

k=1

{

H̄θn (Xn
k ) + ∇g(θn)

}

]

,

where for any n ∈ N and k ∈ {1, . . . , mn}, H̄θn (Xn
k ) =

∇θ log p(Xn
k , y|θn) and we recall that ΠΘ is the projection

onto Θ , and for all n ∈ N

Fn = σ
(

θ0, {Xℓ
1:mℓ

: ℓ ∈ {0, . . . , n}}
)

,

F−1 = σ(θ0) . (7)

Note that such a construction is always possible by Kol-
mogorov extension theorem (Kallenberg 2006, Theorem
5.16), hence for any n ∈ N, θn+1 is Fn-measurable. Then,
as mentioned previously, we compute a sequence of approxi-
mate solutions of (1) by calculating the average of the iterates
(4). The pseudocode associated with the proposed SOUL
method is presented in Algorithm 1 below. Observe that,
for additional efficiency, instead of generating independent
Markov chains at each SA iteration, we warm-start the chains
by setting Xn

0 = Xn−1
mn−1

, for any n ∈ {1, . . . , N }.

Algorithm 1 The Stochastic Optimization via Unadjusted
Langevin (SOUL) method
1: Inputs:

θ0 ∈ Θ , X0
0 ∈ R

d , (γn, δn, mn)n∈N, N

2: for n ∈ {1, . . . , N − 1} do

3: if n ≥ 1 then

4: Xn
0 = Xn−1

mn−1
5: end if

6: for k ∈ {0, . . . , mn − 1} do

7: Zn
k+1 ∼ N(0, Id )

8: Xn
k+1 = Xn

k + γn∇x log p(Xn
k |y, θn) + √

2γn Zn
k+1

9: end for

10: H̄θn = m−1
n

∑mn

k=1 ∇θ log p(Xn
k , y|θn)

11: θn+1 = ΠΘ [θn + δn+1(H̄θn − ∇g(θn))]
12: end for

13: Outputs:

θ̂N =
{

∑N
n=1 δnθn

}/{

∑N
n=1 δn

}

In Sect. 3 we prove the following results for SOUL, which
we derive in more generality by analysing a broader class of
methods where the Markov kernel associated with ULA is
replaced by any regular and geometrically ergodic Markov
kernel, see H1 and H2. For any a ∈ R

d and R ≥ 0 denote
by B(a, R) the open ball centered at a and radius R ≥ 0 and
B(a, R) its closure.

Theorem 1 Assume that Θ is convex, compact and Θ ⊂
B(0, R) with R ≥ 0. In addition, assume that θ �→
− log(p(y|θ)) + g(θ) ∈ C2(Θ, R) and is convex, that

(x, θ) �→ log(p(x, y|θ)) ∈ C2(Rd × Θ, R) and that there

exists m1 > 0 such that for any θ ∈ Θ and x ∈ R
d

sup
x∈Rd

‖∇θ log(p(x, y|θ))‖ exp[−(m1/4)
√

1 + ‖x‖2] < +∞ .

Assume that there exist L1,L2, R1,c ≥ 0 and m2 > 0 such

that for any θ ∈ Θ and x ∈ R
d we have

‖∇2
x log(p(x, y|θ))‖ ≤ L1 ,

‖∇x∇θ log(p(x, y|θ))‖ ≤ L2 exp[(m1/2)
√

1 + ‖x‖2] ,

〈∇x log(p(x, y|θ)), x〉 ≤ −m1‖x‖1B(0,R1)
c(x)

− m2‖∇x log(p(x, y|θ))(x)‖2 + c .
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Let (γn, δn)n∈N ∈ ((R∗
+)2)N non-increasing, (mn)n∈N ∈

(N∗)N non-decreasing and
∑

n∈N
δn = +∞. Assume

∑

n∈N

δn(γ
1/2
n + (mnγn)

−1) < +∞ , (8)

or alternatively

∑

n∈N

δn(γ
1/2
n + δn/γ 2

n + (γn+1 − γn)/γ 3
n ) < +∞ . (9)

Then almost surely, θ̂∞ = limN→+∞ θ̂N exists and θ̂∞ ∈
arg minΘ f for δ0, γ0 sufficiently small.

Note that (8) only holds if lim mn = +∞ (increasing
batch size setting) whereas (9) holds even if mn = 1 under
tighter conditions on (δn)n∈N and (γn)n∈N (fixed batch size
setting). For constant sequences (γn)n∈N and (δn)n∈N, The-
orem 1 does not apply and ( f (θ̂N ))N∈N is biased. However,
we can control the asymptotic bias using the following result.

Theorem 2 Under the same conditions on Θ , (x, θ) �→
log(p(x, y|θ)) and θ �→ − log(p(y|θ)) + g(θ) as in Theo-

rem 1, there exist δ̄, γ̄ > 0 and C ≥ 0 such that if for any

n ∈ N, δn = δ ∈ (0, δ̄], γn = γ ∈ (0, γ̄ ] and mn = 1 then

lim supN→+∞{E[ f (θ̂N )] − minθ f } ≤ Cγ 1/2.

We believe Theorem 2 to be highly relevant to practition-
ers, as we often empirically observe that the best trade-off
between accuracy and computing-time is obtained by setting
(γn)n∈N to a constant and relatively large value (determined,
e.g. from a bound on the Lipschitz constant of the target
density). In our experience, this leads to a fast converging
sequence that stabilises quickly close to the MLE, albeit with
some bias.

The detailed theoretical analysis of the proposed SOUL
method and its generalization is reported to Sect. 3. To con-
clude, Sect. 4 demonstrates the proposed methodology with
three numerical experiments related to high-dimensional
logistic regression and statistical audio analysis with spar-
sity promoting priors. Finally, we also study the case where
f is not convex. In that case, we use the results of Kushner
and Yin (2003) to establish that (θn)n∈N converges a.s to a
stationary point of the projected ordinary differential equa-
tion associated with ∇ f and Θ . We postpone this result to
Section S3 in De Bortoli et al. (2019).

3 Theoretical convergence analysis for
SOUL, and generalisation to other inexact
MCMC kernels (SOUK)

In this section, we state our main theoretical results in
a broader framework than the one introduced in Sect. 2.

After establishing notation and conventions in Sects. 3.1, 3.2
presents the general stochastic optimisation setting consid-
ered in this paper, which encompasses the MLE estimation
problem (1). In order to address this class of optimisation
problems, we develop a generalisation of SOUL: the Stochas-
tic Optimisation via Unadjusted Kernel (SOUK) method. In
this class of methods, ULA is replaced by a generic inexact
Markov chain Monte Carlo method. We then establish our
main results regarding the convergence properties of SOUK
in Sect. 3.3. We conclude the section by showing that our
general results apply to the specific MLE optimisation prob-
lem (1), and to the specific Langevin algorithm (6) used in
SOUL in Sect. 3.4. All the proofs are postponed to the sup-
plementary document.

3.1 Notation and convention

Denote by B(Rd) the Borel σ -field of R
d , and for f : R

d →
R measurable, ‖ f ‖∞ = supx∈Rd | f (x)|. For μ a probabil-
ity measure on (Rd ,B(Rd)) and f a μ-integrable function,
denote by μ( f ) the integral of f with respect to μ. For
f : R

d → R measurable, the V -norm of f is given by
‖ f ‖V = supx∈Rd | f (x)|/V (x). Let ξ be a finite signed mea-
sure on (Rd ,B(Rd)). The V -total variation distance of ξ is
defined as

‖ξ‖V = sup‖ f ‖V ≤1

∣

∣

∫

Rd f (x)dξ(x)
∣

∣ .

If V = 1, then ‖ · ‖V is the total variation denoted by ‖ · ‖TV.
Let U be an open set of R

d . We denote by Ck(U, R
p) the

set of R
p-valued k-differentiable functions, respectively the

set of compactly supported R
p-valued and k-differentiable

functions. Let f : U → R, we denote by ∇ f , the gradient
of f if it exists. f is said to me m-convex with m ≥ 0 if for
all x, y ∈ R

d and t ∈ [0, 1],

f (t x+(1−t)y) ≤ t f (x)+(1−t) f (y)−mt(1−t) ‖x − y‖2 /2 .

For any a ∈ R
d and R > 0, denote B(a, R) the open ball

centered at a with radius R. Let (X,X ) and (Y,Y) be two
measurable spaces. A Markov kernel P is a mapping K :
X×Y → [0, 1] such that for any x ∈ X, P(x, ·) is a probability
measure and for any A ∈ Y , P(·,A) is measurable. For any
probability measure μ on (X,X ) and measurable function
f : Y → R+ we denote μP =

∫

X
P(x, ·)dμ(x) and P f =

∫

Y
f (y)P(·, dy). In what follows the Dirac mass at x ∈ R

d

is denoted by δx (which should not be confused with the
stepsize sequence (δn)n∈N). The complement of a set A ⊂
R

d , is denoted by A
c. All densities are w.r.t. the Lebesgue

measure unless stated otherwise.
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3.2 Stochastic Optimization with inexact MCMC
methods

We consider the problem of minimizing a function f : Θ →
R with Θ ⊂ R

dΘ under the following assumption.

A 1 (i) Θ is convex, closed, Θ ⊂ B(0, MΘ ) for MΘ > 0.

(ii) There exist an open set U ⊂ R
dΘ and L f ≥ 0 such that

Θ ⊂ U, f ∈ C1(U, R) and for any θ1, θ2 ∈ Θ

‖∇ f (θ1) − ∇ f (θ2)‖ ≤ L f ‖θ1 − θ2‖ .

(iii) For any θ ∈ Θ , there exist Hθ : R
d → R

dΘ and a

probability distribution πθ on (Rd ,B(Rd)) satisfying

that πθ (‖Hθ‖) < +∞ and

∇ f (θ) =
∫

Rd Hθ (x)dπθ (x) .

In addition, (θ, x) �→ Hθ (x) is measurable.

Note that for the maximum marginal likelihood estimation
problem (1), f corresponds to θ �→ − log(p(y|θ)) + g(θ),
for any θ ∈ Θ , Hθ : x �→ −∇θ log(p(x, y|θ)) + ∇g(θ)

and πθ is the probability distribution with density x �→
p(x |y, θ).

To minimise the objective function f we suggest the use
of a SA strategy which extends the one presented in Sect. 2.
More precisely, motivated by the methodology described in
Sect. 2, we propose a SA scheme which relies on biased
estimates of ∇ f (θ) through a family of Markov kernels
{Kγ,θ , γ ∈ (0, γ̄ ], θ ∈ Θ}, for γ̄ > 0, such that for any
θ ∈ Θ and γ ∈ (0, γ̄ ], Kγ,θ admits an invariant probability
distribution πγ,θ on (Rd ,B(Rd)). γ̄ is an extra parameter
which ensures the stability of the Markov kernel. In the
SOUL method, the Markov kernel Kγ,θ stands for Rγ,θ for
any γ ∈ (0, γ̄ ] and θ ∈ Θ , where Rγ,θ is the Markov ker-
nel associated with (6). We assume in addition that the bias
associated to the use of this family of Markov kernels can be
controlled with respect to to γ uniformly in θ , i.e. for exam-
ple there exists C > 0 such that for all γ ∈ (0, γ̄ ] and θ ∈ Θ ,
‖πγ,θ − πθ‖TV ≤ Cγ α with α > 0.

Let now (δn)n∈N ∈ (R∗
+)N and (mn)n∈N ∈ (N∗)N be

sequences of stepsizes and batch sizes which will be used to
define the sequence relatively to the variable θ similarly to
(2) and (3). Let (γn)n∈N ∈ (R∗

+)N be a sequence of stepsizes
which will be used to get approximate samples from πθn ,
similarly to (6). Starting from X0

0 ∈ R
d and θ0 ∈ Θ , we

define on a probability space (Ω,F , P), (Xn
1:mn

, θn)n∈N by
the following recursion for n ∈ N and k ∈ {0, . . . , mn − 1}

Xn
1:mn

is Markov chain with kernel Kγn ,θn

and Xn
0 = Xn−1

mn−1
given Fn−1 ,

θn+1 = ΠΘ [θn − δn+1
mn

∑mn

k=1 Hθn (Xn
k )] , (10)

where ΠΘ is the projection onto Θ and Fn is defined by
(7). By (10), for any n ∈ N, θn+1 is Fn-measurable. Then,
the sequence of approximate minimisers of f is given by
(θ̂N )N∈N, see (4). The recursion (10) defines the SOUK
methodology.

Under different sets of conditions on f , H , (δn)n∈N,
(γn)n∈N and (mn)n∈N we obtain that (θn)n∈N converges a.s
to an element of arg minΘ f . In particular in this section we
consider the case where f is assumed to be convex. We estab-
lish that if (γn)n∈N and (δn)n∈N go to 0 sufficiently fast,
E[ f (θ̂N )] − minΘ f goes to 0 with a quantitative rate of
convergence. In the case where (γn)n∈N is held fixed, i.e.

for all n ∈ N, γn = γ , we show that while E[ f (θ̂N )]
does not converge to 0, there exist C, α > 0 such that
lim supN→+∞ E[ f (θ̂N )] − minΘ f ≤ Cγ α . In the case
where f is non-convex, we apply some results from stochas-
tic approximation (Kushner and Yin 2003) which establish
that the sequence (θn)n∈N converges a.s to a stationary point
of the projected ordinary differential equation associated
with ∇ f and Θ . Note that we restrict ourselves to the
study of the convergence of (θn)n∈N and do not derive non-
asymptotic bounds. We postpone this result to Section S3
in De Bortoli et al. (2019), since it involves a theoretical
background which we think is out of the scope of the main
document.

The SOUK methodology allows for the use of Markov
kernels beyond the one associated with the ULA algo-
rithm considered in Sect. 2.4. Important examples include
the Moreau Yosida ULA and Proximal ULA algorithms
see De Bortoli et al. (2020a), De Bortoli et al. (2020b).
We are currently investigating application of the SOUK
framework using other samplers, in particular the Stochastic
Gradient Langevin Dynamics (Welling and Teh 2011b), the
underdamped Langevin algorithm (Ma et al. 2019) and the
Hamiltonian Monte Carlo algorithm (Girolami and Calder-
head 2011; Durmus et al. 2017; Maddison et al. 2018).

Finally note that this general optimisation setting encom-
passes many cases of interest which are generalizations
of the SOUL algorithm. If (W,W, μW) is a probability
space and f (θ) =

∫

W
f̂ (θ, w)dμW(w) for any θ ∈ Θ ,

with f̂ such that for any w ∈ W, f̂ (·, w) satisfies A1
with πθ ← Pθ (w, ·), Hθ ← Hθ (·, w), where for any
θ ∈ Θ , Pθ : W × X → [0, 1] is a Markov kernel.
Assume that

∫

W

∫

Rd ‖Hθ (x, w)‖Pθ (w, dx)dμW(w) < +∞
for any θ ∈ Θ . Then, we can consider the following
algorithm

Wn is a sample from μW
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Xn
1:mn

is Markov chain with kernel Kγn ,θn ,Wn

and Xn
0 = Xn−1

mn−1
given Fn−1 ,

θn+1 = ΠΘ [θn − δn+1
mn

∑mn

k=1 Hθn (Xn
k , Wn)] ,

where {Kγ,θ,w : θ ∈ Θ, γ ∈ (0, γ̄
]

, w ∈ W} is a family of
Markov kernels. Similar convergence guarantees and control
of the bias as the ones established in Sect. 3.3 can be obtained
for this algorithm which allows to tackle the case where f

can be written as a sum of functions.

3.3 Main results

We impose a stability condition on the stochastic process
Xn

1:mn
defined by (10) and that for any γ ∈ (0, γ̄

]

and θ ∈ Θ

the iterates of Kγ,θ are close enough to πθ after a sufficiently
large number of iterations.

H 1 There exists a measurable function V : R
d → [1,+∞)

satisfying the following conditions.

(i) There exists A1 ≥ 1 such that for any n, p ∈ N, k ∈
{0, . . . , mn}

E1=[Kp
γn ,θn

V (Xn
k )|X0

0] ≤ A1V (X0
0) , E

[

V (X0
0)
]

< +∞ .

(ii) For any γ ∈ (0, γ̄
]

, θ ∈ Θ , Kγ,θ admits a stationary

distribution πγ,θ and there exist A2, A3 ≥ 1, ρ ∈ [0, 1)

such that for any γ ∈ (0, γ̄
]

, θ ∈ Θ , x ∈ R
d and n ∈ N

‖ δ
x

Kn
γ,θ −πγ,θ‖1=V ≤ A2ρ

nγ V (x) , πγ,θ (V ) ≤ A3 .

(iii) There exists Ψ : R
⋆
+ → R+ such that for any γ ∈

(0, γ̄
]

and θ ∈ Θ , ‖πγ,θ − πθ‖V 1/2 ≤ Ψ (γ ).

H1-(ii) is an ergodicity condition in V -norm for the
Markov kernel Kγ,θ uniform in θ ∈ Θ . There exists an
extensive literature on the conditions under which a Markov
kernel is ergodic (Meyn and Tweedie 1992; Douc et al. 2018).
Many MCMC algorithms enjoy geometric ergodicity such as
the independence sampler (Tierney 1994), the Random Walk
Metropolis–Hastings algorithm (Jarner and Hansen 2000),
the Hamiltonian Monte-Carlo algorithm (Durmus et al. 2017)
or the ULA algorithm (Dalalyan 2017; Durmus and Moulines
2017). However, obtaining bounds which are independent
from θ ∈ Θ can be arduous. In Sect. 3.4, we show that such
bounds can be established for ULA under regularity and cur-
vature conditions on the family of potentials {Uθ : θ ∈ Θ}
if for any θ ∈ Θ , πθ admits a density proportional to
x �→ exp[−Uθ (x)]. A popular way to establish geomet-
ric ergodicity is to derive minorization and Foster-Lyapunov
drift conditions (Hairer and Mattingly (2011); De Bortoli
and Durmus (2019)) which can be verified on a case-by-case

basis depending on the Markov kernel at hand, see Douc
et al. (2018) for instance. H1-(iii) ensures that the distance
between the invariant measure πγ,θ of the Markov kernel
Kγ,θ and πθ can be controlled uniformly in θ . We show that
this condition holds in the case of the Langevin Monte Carlo
algorithm in Proposition S15 in De Bortoli et al. (2019). We
now state our mains results.

Theorem 3 (Increasing batch size 1) Assume A1 and that f is

convex. Let (γn)n∈N, (δn)n∈N be sequences of non-increasing

positive real numbers and (mn)n∈N be a sequence of positive

integers satisfying δ0 < 1/L f , γ0 < γ̄ and

+∞
∑

n=0

δn+1 = +∞ ,

+∞
∑

n=0

δn+1(Ψ (γn) + (mnγn)−1) < +∞ .

(11)

Let (θn)n∈N and (Xn
1:mn

)n∈N be given by (10). Assume in

addition that H1 is satisfied and that for any θ ∈ Θ and

x ∈ R
d , ‖Hθ (x)‖ ≤ V 1/2(x). Then, the following statements

hold:

(a) (θn)n∈N converges a.s to some θ⋆ ∈ arg minΘ f ;

(b) furthermore, a.s there exists C ≥ 0 such that for any

n ∈ N
∗

f (θ̂n) − minΘ f ≤ C
/(
∑n

k=1 δk

)

.

Proof The proof is postponed to Section S1.1 in De Bortoli
et al. (2019). ⊓⊔

Note that in (10), Xn
0 = Xn−1

mn−1
for n ∈ N

∗. This proce-
dure is referred to as warm-start in the sequel. An inspection
of the Proof of Theorem 3 shows that Xn

0 could be any ran-
dom variable independent from Fn−1 for any n ∈ N with
supn∈N∗ E

[

V (Xn
0 )
]

< +∞. It is not an option in the fixed
batch size setting of Theorem 5, where the warm-start pro-
cedure is crucial for the convergence to occur.

We extend this theorem to non-convex objective function,
see Section S3 in De Bortoli et al. (2019). Under the con-
ditions of Theorem 3 with the additional assumption that Θ

is a smooth manifold we obtain that (θn)n∈N converges a.s
to some point θ⋆ such that ∇ f (θ⋆) + n = 0 with n = 0 if
θ⋆ ∈ int(Θ) and n ∈ N(θ⋆,Θ) where N(θ⋆,Θ) is the convex
cone generated by the outer normals at point θ⋆, see (Aubin
2000, Chapter 2).

In the case where Kγ,θ = Rγ,θ is the Markov kernel
associated with the Langevin update (6), under appropriate
conditions Proposition S15 in De Bortoli et al. (2019) shows
that H1-(iii) holds with for any γ ∈ (0, γ̄

]

, Ψ (γ ) = O(γ 1/2).
Assume that there exist a, b, c > 0 such that for any n ∈ N

∗,
δn = n−a , γn = n−b and mn = ⌈nc⌉ then (11) is equivalent
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to

a ≤ 1 , a + b/2 > 1 , a − b + c > 1 . (12)

Suppose a ∈ [0, 1] is given, (12) reads

b = 2(1−a)+ς1 , c = 3(1−a)+ς2 , ς2 > ς1 > 0 .

This illustrates the trade-off between the intrinsic inaccuracy
of our algorithm through the family of Markov kernels (10)
which do not exactly target πθ and the minimization aim of
our scheme. Note also that (δn)n∈N is allowed to be constant.
In this worst-case scenario, the convergence is guaranteed if
γn = n−2−ς1 and mn =

⌈

n3+ς2
⌉

with ς2 > ς1 > 0.
In our next result we derive an non-asymptotic upper-

bound of (E[ f (θ̂n) − minΘ f ])n∈N.

Theorem 4 (Increasing batch size 2) Assume A1 and that f is

convex. Let (γn)n∈N, (δn)n∈N be sequences of non-increasing

positive real numbers and (mn)n∈N be a sequence of positive

integers satisfying δ0 < 1/L f , γ0 < γ̄ . Let (θn)n∈N and

(Xn
1:mn

)n∈N be given by (10). Assume in addition that H1 is

satisfied and that for any θ ∈ Θ and x ∈ R
d , ‖Hθ (x)‖ ≤

V 1/2(x). Then, there exists (En)n∈N such that for any n ∈ N
∗

E[ f (θ̂n) − minΘ f ] ≤ En

/(
∑n

k=1 δk

)

,

with for any n ∈ N
∗,

En = 2M2
Θ + 2B1 MΘE[V 1/2(X0

0)]
n−1
∑

k=0

δk+1/(mkγk)

+ 2MΘ

n−1
∑

k=0

δk+1Ψ (γk)

+ 4B2
1 E

[

V (X0
0)
]

n−1
∑

k=0

δ2
k+1/(mkγk)

2

+ 4
n−1
∑

k=0

δ2
k+1Ψ (γk)

2 + B2

n−1
∑

k=0

δ2
k+1/(mkγk)

2 , (13)

with B1, B2 given in Lemmas S3 and S4 in De Bortoli et al.

(2019).

Proof The proof is postponed to Section S1.2 in De Bortoli
et al. (2019). ⊓⊔

We recall that in the case where Kγ,θ = Rγ,θ is the Markov
kernel associated with the Langevin update (6). Under appro-
priate conditions, Proposition S15 in De Bortoli et al. (2019)
shows that for any γ ∈ (0, γ̄

]

, Ψ (γ ) = O(γ 1/2). In that
case, if there exist a, b, c ≥ 0 such that for any n ∈ N

∗,
δn = n−a , γn = n−b, mn = nc and (12) holds, the accu-
racy, respectively, the complexity, of the algorithm are of

orders
(
∑n

k=1 δk

)−1 = O(na−1), respectively
∑n

k=0 mk =
O(n3(1−a)+ς2+1) for ς2 > 0. Therefore, for a fixed target
precision ε > 0, it requires that ε = O(na−1) and the com-
plexity reads O(ε−3 (log(1/ε)/(1 − a))1+ς2). On the other
hand, if we fix the complexity budget to N the accuracy is
of order O(N−(3+(1+ς2)/(1−a))−1

). These two considerations
suggest to set a close to 0. In the special case where a = 0, we
obtain that the accuracy is of order O(n−1), which matches
the order identified in the deterministic gradient descent for
convex functionals, see (Bertsekas 1997, Proposition 1.3.3)
for instance in the unconstrained case. This behavior is spe-
cific to the increasing batch size setting.

Another case of interest is the fixed stepsize setting, i.e.

for all n ∈ N, γn = γ > 0. Assume that (δn)n∈N is non-
increasing, limn→+∞ δn = 0 and limn→+∞ mn = +∞. In
addition, assume that

∑

n∈N∗ δn = +∞ then, by (Pólya and
Szegő 1998, Problem 80, Part I), it holds that

{

limn→+∞
[ (
∑n

k=1 δk/mk

)/(
∑n

k=1 δk

) ]

= 0 ;
limn→+∞

[ (
∑n

k=1 δ2
k

)/(
∑n

k=1 δk

) ]

= 0 .

Therefore, we obtain that

lim sup
n→+∞

E[ f (θ̂N ) − min f ] ≤ 2MΘΨ (γ ) .

Similarly, if the stepsize is fixed and the number of Markov
chain iterates is fixed, i.e. for all n ∈ N, γn = γ and mn = m

with γ > 0 and m ∈ N
∗, we obtain that

lim supn→+∞ E[ f (θ̂N ) − min f ] ≤ Ξ1(γ ) , (14)

with Ξ1(γ ) = 2B1 MΘE[V 1/2(X0
0)]/γ + 2MΘΨ (γ ). How-

ever if (mn)n∈N is constant the convergence cannot be
obtained using Theorem 3. Strengthening the conditions of
Theorem 3 and making use of the warm-start property of the
algorithm we can derive the convergence in that case.

We now are interested in the case where the batch size is
fixed, i.e. mn = m0 for all n ∈ N. For ease of exposition we
only consider m0 = 1 and let X̃n+1 = Xn

1 for any n ∈ N.
However, the general case can be adapted from the proof
of the result stated below. More precisely we consider the
setting where the recursion (10) can be written for any n ∈ N

as

X̃n+1 has distribution Kγn ,θ̃n
(X̃n, ·) conditional to F̃n ,

θ̃n+1 = ΠΘ

[

θ̃n − δn+1 Hθ̃n
(X̃n+1)

]

, (15)

with θ̃0 ∈ Θ , X̃0 ∈ R
d and where F̃n is given by

F̃n = σ
(

θ̃0, (X̃ℓ)ℓ∈{0,...,n}
)

. (16)

We consider the following assumption.
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A 2 There exists L H ≥ 0 such that for any x ∈ R
d and

θ1, θ2 ∈ Θ , ‖Hθ1(x) − Hθ2(x)‖ ≤ L H ‖θ1 − θ2‖V 1/2(x),

where V is given in H1.

We consider a similar property as A2 on the family of
Markov kernels

{

Kγ,θ , γ ∈ (0, γ̄
]

, θ ∈ Θ
}

, which weakens
the assumption (Atchadé et al. 2017, H6). Indeed, we do not
assume that for any γ ∈ (0, γ̄

]

, θ �→ Kγ,θ is Lipschitz.

H 2 There exist Λ1 :
(

R
∗
+
)2 → R+ and Λ2 :

(

R
∗
+
)2 → R+

such that for any γ1, γ2 ∈ (0, γ̄
]

with γ2 < γ1, θ1, θ2 ∈ Θ ,

x ∈ R
d and a ∈ [1/4, 1/2]

‖ δ
x

Kγ1,θ1 − δ
x

Kγ2,θ2‖V a

≤
[

Λ1(γ1, γ2) + Λ2(γ1, γ2)‖θ1 − θ2‖
]

V 2a(x) ,

where V is given in H1.

The following theorem ensures convergence properties for
(θn)n∈N similar to the ones of Theorem 3. The proof of this
result is based on a generalization of (Fort et al. 2011, Lemma
4.2) for inexact MCMC schemes.

Theorem 5 (Fixed batch size 1) Assume A1, A2 hold and f

is convex. Let γ̄ > 0, (γn)n∈N and (δn)n∈N be sequences of

non-increasing positive real numbers satisfying δ0 < 1/L f ,

γ0 < γ̄ , supn∈N |δn+1 − δn|δ−2
n < +∞,

∑+∞
n=0 δn+1 = +∞

and

+∞
∑

n=0

δn+1γ
−2
n+1

[

Λ1(γn, γn+1) + δn+1Λ2(γn, γn+1)
]

< +∞ ,

+∞
∑

n=0

δn+1Ψ (γn) < +∞ ,

+∞
∑

n=0

δ2
n+1γ

−2
n < +∞ . (17)

Let (θ̃n)n∈N and (X̃n)n∈N be given by (15). Assume in addi-

tion that H1 and H2 are satisfied and that for any θ ∈ Θ and

x ∈ R
d , ‖Hθ (x)‖ ≤ V 1/4(x). Then, the following statements

hold:

(a) (θ̃n)n∈N converges a.s to some θ⋆ ∈ arg minΘ f ;

(b) furthermore, a.s there exists C ≥ 0 such that for any

n ∈ N
∗

f (θ̂n) − minΘ f ≤ C
/(
∑n

k=1 δk

)

.

Proof The proof is postponed to Section S1.3 in De Bortoli
et al. (2019). ⊓⊔

In the case where Kγ,θ = Rγ,θ is the Markov kernel
associated with the Langevin update (6), under appropriate
conditions, Propositions S15 and S16 in De Bortoli et al.
(2019) show that for any γ1, γ2 ∈ (0, γ̄

]

with γ̄ > 0 and

γ1 > γ2, Ψ (γ1) = C1γ
1/2
1 , Λ1(γ1, γ2) = C2(γ1/γ2 − 1),

Λ2(γ1, γ2) = C3γ
1/2
2 , and C1, C2, C3 ≥ 0. Thus, we obtain

that the following series should converge

+∞
∑

n=0

δn+1γ
1/2
n < +∞ ,

+∞
∑

n=0

δ2
n+1/γ

2
n+1 < +∞ ,

+∞
∑

n=0

δn+1(γn − γn+1)/γ
3
n+1 < +∞ .

In addition, assume that δn = n−a and that γn = n−b with
a, b > 0. In this case, the summability conditions of Theo-
rem 5 read

a ≤ 1 , a + b/2 > 1 , 2a − 2b > 1 , a + (b + 1) − 3b > 1 ,

i.e. b ∈ I = (2(1 − a), a − 1/2) and a ∈ [0, 1]. Note that
I �= ∅ as soon as a > 5/6. In the special setting where a = 1
then the convergence in Theorem 5 occurs if b ∈ (0, 1/2).
Since a > b+1/2 we obtain that limn→+∞(δn/γn) = 0. This
means that the stochastics gradient descent dynamic associ-
ated with (θ̃n)n∈N moves slower than the sequence (X̃n)n∈N.

Theorem 6 (Fixed batch size 2) Assume A1, A2 hold and f is

convex. Let (γn)n∈N, (δn)n∈N be sequences of non-increasing

positive real numbers and (mn)n∈N be a sequence of positive

integers satisfying δ0 < 1/L f and γ0 < γ̄ . Let (θn)n∈N

and (X̃n)n∈N be given by (15). Assume in addition that H1

and H2 are satisfied and that for any θ ∈ Θ and x ∈ R
d ,

‖Hθ (x)‖ ≤ V 1/4(x). Then, there exists (Ẽn)n∈N such that

for any n ∈ N
∗

E[ f (θ̂n) − minΘ f ] ≤ Ẽn

/

(
∑n

k=1 δk

)

,

with for any n ∈ N
∗,

Ẽn = 2MΘ + 2MΘ

n
∑

k=0

δk+1Ψ (γk) + C3

n
∑

k=0

|δk+1 − δk | γ −1
k

+ 2MΘC2

n
∑

k=0

δk+1γ
−1
k+1

[

γ −1
k+1 {Λ1(γk, γk+1)

+Λ2(γk, γk+1)δk+1} + δk+1
]

+ C3

n
∑

k=0

δ2
k+1γ

−1
k+1

+ C3(δn+1/γn − δ0/γ0) + C1

n
∑

k=0

δ2
k+1 .

where C1, C2 and C3 are given in Lemmas S5, S8 and S7 in

De Bortoli et al. (2019), respectively.

Proof The proof is postponed to Section S1.4 in De Bortoli
et al. (2019). ⊓⊔
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Theorem 6 improves the conclusions of Theorem 4 in
the case where γn = γ > 0 for any n ∈ N. Indeed, in
that case, similarly to (14), assuming that limn→+∞ δn = 0,
supn∈N |δn+1 − δn| δ−2

n < +∞ and that for any γ ∈ (0, γ̄
]

,
Λ1(γ, γ ) = 0 and we obtain that

lim supn→+∞ E[ f (θ̂n) − min f ] ≤ Ξ2(γ ) ,

with

Ξ2(γ ) = 2MΘΨ (γ )

≤ Ξ1(γ ) = 2B1 MΘE[V 1/2(X0
0)]/γ + 2MΘΨ (γ ) .

In the case where supγ∈(0,γ̄ ] Ψ (γ ) < +∞, Ξ2(γ ) is of

order O(Ψ (γ )) and Ξ1(γ ) is of order O(γ −1). Therefore
if limγ→0 Ψ (γ ) = 0, even in the fixed batch size setting,
the minimum of the objective function f can be approached
with arbitrary precision ε > 0 by choosing γ small enough.

Note that the conclusions of Theorem 6 are similar to
the ones of (Karimi et al. 2019, Theorem 2). In Karimi et al.
(2019) the main result is a bound on E[

∑n
k=1 δk ‖∇θ f (θk)‖2 /

∑n
k=1 δk] and ∇ f (θ) is not assumed to be convex but only

related to a Lyapunov functional (Karimi et al. 2019, A1-A3).
However, it is assumed that for any θ ∈ Θ and γ ∈ (0, γ̄

]

the invariant probability distribution of the Markov kernel
Kγ,θ is πθ , i.e. Ψ = 0 in H1-(iii), which is not the case in
our analysis. Following this line of work, one could estab-
lish similar non-asymptotic result in the non-convex setting
using the SOUK methodology. However, this is highly tech-
nical study that is beyond the scope of the present paper, and
which we defer to future work.

To conclude, we highlight the differences between our
work and Atchadé et al. (2017). Our results are based on
the deterministic estimates derived in (Atchadé et al. 2017,
Theorem 1, Theorem 2). However (Atchadé et al. 2017, The-
orem 4, Theorem 6) rely on (i) the fact that for any θ ∈ Θ ,
πθ is an invariant probability measure for Kγ,θ , see (Atchadé
et al. 2017, H5) and (ii) a Lipschitz regularity property for
(γ, θ) �→ Kγ,θ , see (Atchadé et al. 2017, H6). Conditions
(i) and (ii) do not hold if we consider unadjusted (inexact)
Markov kernels. In this work we relax (Atchadé et al. 2017,
H5) and (Atchadé et al. 2017, H6) by considering H1-(ii),
respectively H2. As an important example, the results of
Atchadé et al. (2017) do not apply if the Markov kernel is
the one associated with ULA, whereas in Sect. 3.4 we show
that our results do hold.

3.4 Application to SOUL

We now apply our results to the SOUL methodology intro-
duced in Sect. 2 where the Markov kernel Rγ,θ with γ ∈
(0, γ̄
]

and θ ∈ Θ is given by a Langevin Markov kernel

and associated with recursion (6). We consider the follow-
ing assumption on the family of probability distributions
(πθ )θ∈Θ .

L 1 For any θ ∈ Θ , there exists Uθ : R
d → R such that πθ

admits a probability density function proportional to x �→
exp[−Uθ (x)]. In addition (θ, x) �→ Uθ (x) is continuous,

x �→ Uθ (x) is differentiable for all θ ∈ Θ and there exists

L ≥ 0 such that for any x, y ∈ R
d ,

sup
θ∈Θ

‖∇xUθ (x) − ∇xUθ (y)‖ ≤ L ‖x − y‖ ,

and {‖∇xUθ (0)‖ : θ ∈ Θ} is bounded.

In the case where Kγ,θ = Rγ,θ for any γ ∈ (0, γ̄
]

and
θ ∈ Θ , the first line of (10) can be rewritten for any n ∈ N

and k ∈ {0, . . . , mn − 1}

Xn
k+1 = Xn

k − γn∇xUθn (Xn
k ) +
√

2γn Zn
k+1 ,

with Xn
0 = Xn−1

mn−1
if n ≥ 1 ,

θn+1 = ΠΘ [θn − δn+1
mn

∑mn

k=1 Hθn (Xn
k )] . (18)

given (γn)n∈N ∈ (0, γ̄
]N

, (mn)n∈N ∈ (N∗)N and also
(Zn

k )n∈N,k∈{1,...,mn} a family of i.i.d d-dimensional zero-mean
Gaussian random variables with covariance matrix identity.
In the following propositions, we show that the above results
hold by deriving sufficient conditions under which H1 and
H2 are satisfied. Consider now the following additional tail
condition on Uθ which ensures geometric ergodicity of Rγ,θ

for any θ ∈ Θ and γ ∈ (0, γ̄
]

, with γ̄ > 0 which will be
specified below.

L 2 There exist m1,m2 > 0 and c, R1 ≥ 0 such that for any

θ ∈ Θ and x ∈ R
d ,

〈∇xUθ (x), x〉 ≥ m1‖x‖1B(0,R1)
c(x) + m2‖∇xUθ (x)‖2 − c .

L 3 There exists LU ≥ 0 such that for any x ∈ R
d

and θ1, θ2 ∈ Θ ,
∥

∥∇xUθ1(x) − ∇xUθ2(x)
∥

∥ ≤ LU ‖θ1 −
θ2‖V (x)1/2.

The next theorems assert that under L1, L2 and L3, the
SOUL algorithm introduced in Section 2 satisfies H1 and H2
and therefore Theorems 3, 4, 5 and 6 can be applied if in
addition A1 and A2 hold. Under L2 define for any x ∈ R

d

Ve(x) = exp[m1

√

1 + ‖x‖2/4] .

Theorem 7 Assume L1 and L2. Then, H1 holds with V ← Ve,

γ̄ ← min(1, 2m2) and Ψ (γ ) = D4
√

γ where D4 is given in

Proposition S15 in De Bortoli et al. (2019).

Proof The proof is postponed to Section S1.5 in De Bortoli
et al. (2019). ⊓⊔
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Theorem 8 Assume L1, L2, L3 and that for any θ ∈ Θ and

x ∈ R
d , ‖Hθ (x)‖ ≤ V

1/4
e (x). H2 holds with V ← Ve and

γ̄ ← min(1, 2m2) and for any γ1, γ2 ∈ (0, γ̄
]

, γ2 < γ1,

Λ1(γ1, γ2) = D5(γ1/γ2 − 1) , Λ2(γ1, γ2) = D5γ
1/2
2 ,

where D5 is given in Proposition S16 in De Bortoli et al.

(2019).

Proof The proof is postponed to Section S1.6 in De Bortoli
et al. (2019). ⊓⊔

Finally, we discuss the dependency of the complexity of
the SOUL algorithm with respect to the dimension of the
latent space d in the specific case where {Uθ : θ ∈ Θ}
satisfies the following assumption.

L 4 There exist m3 > 0, R3 ≥ 0 such that for any θ ∈ Θ

and x ∈ R
d with ‖x‖ ≥ R3, 〈∇xUθ (x), x〉 ≥ m3 ‖x‖2, Uθ is

convex and there exist C,̟0 ≥ 0 such that

sup
θ∈Θ

{‖∇xUθ (0)‖ : θ ∈ Θ} ≤ C(1 + d̟0) ,

where C and ̟0 are independent of the dimension d.

In what follows, we show that under L1, L3 and L4, the
constants appearing in H1 and H2 depend polynomially on
the dimension of the latent space d. This implies that the com-
plexity of the SOUL algorithm is polynomial with respect to
the dimension d since the constants appearing in Theorems 4
and 6 depend polynomially on the constants of H1 and H2.

Theorem 9 Assume L1, L3 and L4. Then H1 and H2 are

satisfied with V : R
d → [1,+∞) given for any x ∈ R

d by

V (x) = 1 + ‖x‖4 and Ψ ,Λ1,Λ2 given by Theorems 7 and

8, respectively. Hence, the conclusions of Theorems 4 and 6

hold with (En)n∈N and (Ẽn)n∈N given for any n ∈ N by

En = A(1 + d̟ )

{

n
∑

k=0

δk+1γ
1/2
k +

n
∑

k=0

δk+1/(mkγk)

+
n
∑

k=0

δ2
k+1/(mkγk)

2

}

,

and

Ẽn = A(1 + d̟ )

{

n
∑

k=0

δk+1γ
1/2
k +

n
∑

k=0

|δk+1 − δk | γ −1
k

+
n
∑

k=0

δk+1 |γk+1 − γk | γ −3
k +

n
∑

k=0

δ2
k+1γ

−1
k + δn+1/γn

}

,

with ̟ ∈ N and A ≥ 0 independent from d.

Proof The proof is postponed to Section S1.7 in De Bortoli
et al. (2019) . ⊓⊔

4 Numerical results

We now demonstrate the proposed methodology with three
experiments that we have chosen to illustrate a variety of
scenarios. Section 4.1 presents an application to empirical
Bayesian logistic regression, where (1) can be analytically
shown to be a convex optimisation problem with an unique
solution θ⋆, and where we benchmark our MLE estimate
against the solution obtained by calculating the marginal
likelihood p(y|θ) over a θ -grid by using an harmonic mean
estimator. Furthermore, Sect. 4.2 presents a challenging
application related to statistical audio compressive sensing
analysis, where we use SOUL to estimate a regularisation
parameter that controls the degree of sparsity enforced, and
where a main difficulty is the high-dimensionality of the
latent space (d = 2900). Finally, Sect. 4.3 presents an appli-
cation to a high-dimensional empirical Bayesian logistic
regression with random effects for which the optimisation
problem (1) is not convex. All experiments were carried
out on an Intel i9-8950HK@2.90 GHz workstation running
MATLAB R2018a.

4.1 Bayesian Logistic Regression

In this first experiment we illustrate the proposed methodol-
ogy with an empirical Bayesian logistic regression problem
(Wakefield 2013; Polson et al. 2013). We observe a set of

covariates {vi }
dy

i=1 ∈ R
d , and binary responses {yi }

dy

i=1 ∈
{0, 1}, which we assume to be conditionally independent
realisations of a logistic regression model: for any i ∈
{1, . . . , dy}, yi given β and vi has distribution Ber(s(vT

i β)),
where β ∈ R

d is the regression coefficient, Ber(α) denotes
the Bernoulli distribution with parameter α ∈ [0, 1] and
s(u) = eu/(1 + eu) is the cumulative distribution function
of the standard logistic distribution. The prior for β is set
to be N(θ1d , σ 2 Id), the d-dimensional Gaussian distribu-
tion with mean θ1d and covariance matrix σ 2 Id , where θ is
the parameter we seek to estimate, 1d = (1, . . . , 1) ∈ R

d ,
σ 2 = 5 and Id is the d-dimensional identity matrix. Fol-
lowing an empirical Bayesian approach, the parameter θ is
computed by maximum marginal likelihood estimation using
Algorithm 1 with the marginal likelihood p(y|θ) given by

p(y|θ) = (2 π σ 2)−d/2
∫

Rd

⎧

⎨

⎩

dy
∏

i=1

s(vT
i β)yi (1 − s(vT

i β))1−yi

⎫

⎬

⎭

× exp[−‖β − θ1d‖2/(2σ 2)]dβ . (19)

Lemma S18 in De Bortoli et al. (2019) shows that (19) is
log-concave with respect to θ . In addition, using Lebesgue’s
dominated convergence theorem A1 is satisfied for any con-
vex and compact set Θ with Hθ : β �→ −∇θ log(p(β, y|θ)).
We use the proposed SOUL methodology to estimate θ⋆ for
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Fig. 1 Bayesian logistic regression-Evolution of the iterates θ̂n and θn

for the proposed method during a burn-in phase and b convergence
phase. An estimate of θ⋆, the true maximiser of p(y|θ), is plotted as a
reference

the Wisconsin Diagnostic Breast Cancer dataset1, for which
dy = 683 and d = 10, and where we suitably normalise the
covariates. In order to assess the quality of our estimation
results, we also calculate p(y|θ) over a grid of values for θ

by using a truncated harmonic mean estimator.
To implement Algorithm 1 we derive the log-likelihood

function

log p(y|β, θ) =
dy
∑

i=1

{

yiv
T
i β − log(1 + e(vT

i β))
}

,

and obtain the following expressions for the gradients used
in the MCMC steps (6) and SA steps (2), respectively

∇β log p(β|y, θ) =
dy
∑

i=1

{

yivi − s(vT
i β)vi

}

− (β − θ1d)

σ 2 ,

∇θ p(β, y|θ) = 〈1d , β − θ1d〉 /σ 2 .

Note that {β �→ − log p(β|y, θ) : θ ∈ Θ} satisfies L1 and
L2. Therefore, since A1 holds and θ �→ − log p(y|θ) is con-
vex we get that Theorems 7 and 8 apply and the conclusions
of Theorems 1 and 2 hold. For the MCMC steps, we use a
fixed stepsize γn = 8.34 × 10−5, and batch size mn = 1, for
any n ∈ N. On the other hand, we consider for the SA steps,
the sequence of stepsizes δn = 60n−0.8, Θ = [−100, 100]
and θ0 = 0. Finally, we first run 100 burn-in iterations with
fixed θn = θ0 to warm-up the Markov chain, followed by 50
iterations of Algorithm 1 to warm-up the iterates. This proce-
dure is then followed by N = 106 iterations of Algorithm 1
to compute θ̂N .

Figure 1a shows the evolution of the iterates θn during
the first 100 iterations. Observe that the sequence initially
oscillates, and then stabilises close to θ⋆ after approximately
50 iterations. Figure 1b presents the iterates θn for n =
105, . . . , 106. For completeness, Fig. 2 shows the histograms

1 Available online: https://archive.ics.uci.edu/ml/datasets/
Breast+Cancer+Wisconsin+(Diagnostic).

Fig. 2 Bayesian logistic regression-Normalised histograms of each
component of β obtained with 2 × 106 Monte Carlo samples

corresponding to the marginal posteriors p(β j |y, v, θ̂N ), for
j = 1, . . . , 10, obtained as a by-product of Algorithm 1. In
order to verify that the obtained estimate θ̂N is close to the
true MLE θ⋆ we use a truncated harmonic mean estimator
(THME) Robert and Wraith (2009) to calculate the marginal
likelihood p(y|θ) for a range of values of θ . Although obtain-
ing the THME is usually computationally expensive, it is
viable in this particular experiment as β is low-dimensional.
Given n samples (βi )i∈{1,...,n} from p(β|y, θ), we obtain an
approximation of p(y|θ) by computing

p̂(y|θ) = n Vol(B(β̄, R))
/(

∑n
k=1

1A(βk )
p(βk ,y|θ)

)

,

with β̄ = n−1∑n
k=1 βk , and radius R ≥ 0 such that

n−1∑n
i=1 1A(βi ) ≈ 0.4. Using n = 6 × 105 samples, we

obtain the approximation shown in Fig. 3a, where in addi-
tion to the estimated points we also display a quadratic fit
(corresponding to a Gaussian fit in linear scale), which we
use to obtain an estimate of θ⋆ (the obtained log-likelihood
values are small because the dataset is large (dy = 683)).

To empirically study the estimation error involved, we
replicate the experiment 1000 times. Figure 3 shows the
obtained histogram of (θ̂n)n∈N, where we observe that all
these estimators are very close to the true maximiser θ⋆.
Besides, note that the distribution of the estimation error
is close to a Gaussian distribution, as expected for a max-
imum likelihood estimator. Also, there is a small estimation
bias of the order of 3%, which can be attributed to the
discretisation error of SDE (5), and potentially to a small
error in the estimation of θ⋆. We conclude this experi-
ment by using SOUL to perform a predictive empirical
Bayesian analysis on the binary responses. We split the
original dataset into an 80% training set (ytrain, vtrain) of
size dtrain = 546, and a 20% test set (ytest, vtest) of size
dtest = 137, and use SOUL to draw samples from the
predictive distribution p(ytest|ytrain, vtrain, vtest, θ̂N ). More
precisely, we use SOUL to simultaneously calculate θ̂N and
simulate from p(β|ytrain, vtrain, θ̂N ), followed by simula-
tion from p(ytest|β, ytrain, vtrain, vtest). We then estimate the
maximum-a-posteriori predictive response ŷtest, and measure
prediction accuracy against the test dataset by computing the
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(a)

(b)

Fig. 3 Bayesian logistic regression-a Estimated points of the marginal
log-likelihood log p̂(y|θ) with quadratic fit (corresponding to a Gaus-
sian fit in linear scale). b Normalised histogram of θ̂N for 1000
repetitions of the experiment. An estimate of θ⋆, the maximiser of
p̂(y|θ), is plotted as a reference

Fig. 4 Bayesian logistic regression-Percentage of mislabelled binary
observations in terms of θ . In blue we show the value of θ̂N obtained
with Algorithm 1

error ǫ =
∑dtest

i=1

∣

∣ytest
i − ŷtest

i

∣

∣ /dtest and obtain ǫ = 2.2%.
For comparison, Fig. 4 below reports the error ǫ as a function
of θ (the discontinuities arise because of the highly non-linear
nature of the model). Observe that the estimated θ̂N produces
a model that has a very good performance in this regard.

4.2 Statistical audio compression

Compressive sensing techniques exploit sparsity properties
in the data to estimate signals from fewer samples than
required by the Nyquist–Shannon sampling theorem (Can-
dès et al. 2006; Candès and Wakin 2008). Many real-world
data admit a sparse representation on some basis or dic-
tionary. Formally, consider an ℓ-dimensional time-discrete
signal z ∈ R

ℓ that is sparse in some dictionary Ξ ∈ R
ℓ×d ,

i.e, there exists a latent vector x ∈ R
d such that z = Ξ x

and ‖x‖0 =
∑d

i=1 1R∗(xi ) ≪ ℓ. This prior assumption is
be modelled using a smoothed-Laplace distribution (Lingala
and Jacob 2012)

p(x |θ) ∝ exp
[

−(θ/λ)
∑d

i=1 hλ(xi )
]

, (20)

where hλ is the Huber function given for any u ∈ R by

hλ(u) =
{

u2/2 if |u| ≤ λ ,

λ(|u| − λ/2) otherwise .
(21)

Acquiring z directly would call for measuring ℓ univari-
ate components. Instead, a carefully designed measurement
matrix M ∈ R

p×ℓ, with p ≪ ℓ, is used to directly observe
a “compressed” signal Mz, which only requires taking p

measurements. In addition, measurements are typically noisy
which results in an observation y ∈ R

p modeled as y =
Mz + w where we assume that the noise w has distribution
N(0, σ 2 Ip), and therefore the likelihood function is given by

p(y|x) ∝ exp
[

−‖y − Ax‖2
2 /(2σ 2)

]

,

where A = MΞ , leading to the posterior distribution

p(x |y) ∝ exp
[

− ‖y − Ax‖2
2 /(2σ 2) − (θ/λ)

∑d
i=1 hλ(xi )

]

.

To recover z from y, we then compute the maximum-a-
posteriori estimate

x̂MAP ∈ argmin
x∈Rd

{

‖y − Ax‖2
2 /2σ 2 + (θ/λ)

∑d
i=1 hλ(xi )

}

, (22)

and set ẑMAP = Ξ x̂MAP.
Following decades of active research, there are now many

convex optimisation algorithms that can be used to efficiently
solve (22), even when d is very large (Chambolle and Pock
2016; Monga 2017). However, the selection of the value of
θ in (22) remains a difficult open problem. This parameter
controls the degree of sparsity of x and has a strong impact
on estimation performance.

A common heuristic within the compressive sensing com-
munity is to set θcs = 0.1 × ‖A⊤y‖∞/σ 2, where for any
z ∈ R

ℓ, ‖z‖∞ = maxi∈{1,...,ℓ} |zi |, as suggested in Kim et al.
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(2007) and Figueiredo et al. (2007); however, better results
can be obtained by adopting a statistical approach to estimate
θ .

The Bayesian framework offers several strategies for esti-
mating θ from the observation y. In this experiment, we
adopt an empirical Bayesian approach and use SOUL to
compute the MLE θ⋆, which is challenging given the high-
dimensionality of the latent space.

To illustrate this approach, we consider the audio exper-
iment proposed in Balzano et al. (2010) for the “Mary had

a little lamb” song. The MIDI-generated audio file z has
ℓ = 319, 725 samples, but we only have access to a noisy
observation vector y with p = 456 random time points of
the audio signal, corrupted by additive white Gaussian noise
with σ = 0.015. The latent signal x has dimension d = 2900
and is related to z by a dictionary matrix Ξ whose row
vectors correspond to different piano notes lasting a quarter-
second long 2. The parameter λ for the prior (20) is set to
λ = 4 × 10−5. We used the heuristic θcs as the initial value
for θ in our algorithm. To solve the optimisation problem
(22) we use the Gradient Projection for Sparse Reconstruc-
tion (GPSR) algorithm proposed in Figueiredo et al. (2007).
We use this solver because it is the one used in the online
MATLAB demonstration of Balzano et al. (2010), however,
more modern algorithms could be used as well. We imple-
mented Algorithm 1 using a fixed stepsize γn = 6.9 × 10−6,
a fixed batch size mn = 1, δn = 20 n−0.8/d = 0.0069 n−0.8

and 100 burn-in iterations.
Note that in this problem θ �→ − log p(y|θ) is non-

convex whereas x �→ − log p(x |y, θ) is convex. Using
Lebesgue’s dominated convergence theorem we get that A1
holds for any compact and convex set Θ . Note also that
{x �→ − log p(x |y, θ) : θ ∈ Θ} satisfies L1 and L2.

The algorithm converged in approximately 500 iterations,
which were computed in only 325 milliseconds. Figure 5
(left), shows the first 250 iterations of the sequence θn and
of the weighted average θ̂n . Again, observe that the iter-
ates oscillate for a few iterations and then quickly stabilise.
Finally, to assess the quality of the estimate θ̂N , Fig. 5 (right)
presents the reconstruction mean squared error as a function
of θ . The error is measured with respect to the reconstructed
signal and is given by MSE(x̂MAP) = ‖z⋆ − Ξ x̂MAP‖2

2/ℓ,
where z⋆ is the true audio signal. Observe that the estimated
value θ̂N is very close to the value that minimises the estima-
tion error, and significantly outperforms the heuristic value
θcs commonly used by practitioners.

2 Each quarter-second sound can have one of 100 possible frequencies
and be in 29 different positions in time.

Fig. 5 Statistical audio compression-Evolution of the the iterate θn and
θ̂n with σ = 0.015 in log scale (left). Reconstruction mean squared
error (MSE) in dB as a function of the θ (right)

4.3 Sparse Bayesian logistic regression with random
effects

Following on from the Bayesian logistic regression in Sect.
4.1, where p(y|θ) is log-concave and hence θ⋆ unique,
we now consider a significantly more challenging sparse
Bayesian logistic regression with random effects problem. In
this experiment p(y|θ) is no longer log-concave, so SOUL
can potentially get trapped in local maximisers. Further-
more, the dimension of θ in this experiment is very large
(dθ = 1001), making the MLE problem even more challeng-
ing. This experiment was previously considered by Atchadé
et al. (2017) and we replicate their setup.

Let {yi }
dy

i=1 ∈ {0, 1} be a vector of binary responses which
can be modelled as dy conditionally independent realisations
of a random effect logistic regression model,

yi |x ∼ Ber
(

s(vT
i β + σ zT

i x)
)

, i ∈ {1, . . . , dy} ,

where vi ∈ R
p are the covariates, β ∈ R

p is the regression
vector, zi ∈ R

d are (known) loading vectors, x are random
effects and σ > 0. In addition, recall that Ber(α) denotes
the Bernoulli distribution with parameter α ∈ [0, 1] and
s(u) = eu/(1 + eu) is the cumulative distribution function
of the standard logistic distribution. The goal is to estimate
the unknown parameters θ = (β, σ) ∈ R

p × (0,+∞)

directly from {yi }
dy

i=1, without knowing the value of x ,
which we assume to follow a standard Gaussian distribu-
tion, i.e. p(x) = exp{− ‖x‖2

2 /2}/(2π)d/2. We estimate θ

by MLE using Algorithm 1 to maximise (1), with marginal
likelihood given by

p(y|θ) =
∫

Rd

dy
∏

i=1

s(vT
i β + σ zT

i x)yi

× (1 − s(vT
i β + σ zT

i x))1−yi p(x)dx ,
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and penalty function g(θ) = (λδ0)
−1∑d

j=1 hλδ0(β j ), where
hλ is the Huber function defined in (21). Using Lebesgue’s
dominated convergence theorem we get that A1 holds for any
compact and convex set Θ .

We follow the procedure described in Atchadé et al.

(2017) to generate the observations {yi }
dy

i=1, with dy = 500,
p = 1000 and d = 53. The vector of regressors βtrue is gen-
erated from the uniform distribution on [1, 5] and 98% of
its coefficients are randomly set to zero. The variance σtrue

of the random effect is set to 0.1, and the projection interval
for the estimated σ is [10−5,+∞). Finally, the parameter λ

is set to λ = 30. We emphasise at this point that θ is high-
dimensional in this experiment (dΘ = 1001), making the
estimation problem particularly challenging.

The conditional log-likelihood function is log p(y|x, θ) =
∑dy

i=1{yi (v
T
i β+σ zT

i x)−log(1+evT
i β+σ zT

i x )}. To implement
Algorithm 1 we use the gradients

∇x log p(x |y, θ) =
dy
∑

i=1

{

σ zi (yi − s(vT
i β + σ zT

i x))
}

− x ,

∇θ log p(x, y|θ) =
dy
∑

i=1

{

(yi − s(vT
i β + σ zT

i x))

[

vi

zT
i x

]}

.

Note that {x �→ − log p(x |y, θ) : θ ∈ Θ} satisfies L1 and
L2. Therefore, since A1 holds we get that Theorems 7 and 8
apply and the conclusions of Theorem S19 in De Bortoli et al.
(2019) hold. Finally, the gradient of the penalty function is
given by

∂

∂βi

g(θ) =
{

βi |βi | ≤ λ

λ sign(βi ), |βi | > λ
,

∂

∂σ
g(θ) = 0 ,

where sign denotes the sign function, i.e. for any s ∈ R,
sign(s) = |s|/s if s �= 0, and sign(s) = 0 otherwise.

We use γn = 0.01, δn = n−0.95/d = 0.2 ×n−0.95, a fixed
batch size mn = 1, β0 = 1p and σ0 = 1 as initial values.
Moreover, we perform 104 burn-in iterations with a fixed
value of θ0 = (β0, σ0) to warm-up the Markov chain, and
further 600 iterations of Algorithm 1 to warm-start the iter-
ates. Following on from this, we run N = 5 × 104 iterations
of Algorithm 1 to compute θ̂N . Computing this estimates
required 25 seconds in total.

Figure 6 shows the evolution of the iterates throughout
iterations, where we used ‖β̂n‖0 as a summary statistic to
track the number of active components. Because the Huber
penalty (21) does not enforce exact sparsity on β, to estimate
the number of active components we only consider values
that are larger than a threshold τ (we used τ = 0.005).

3 We renamed some symbols for notation consistency. What we denote by vi , x , dy

and d, is denoted in Atchadé et al. (2017) by xi , U, N and q, respectively.

Fig. 6 Sparse Bayesian logistic regression with random effects-
Evolution of the ‖β̂n‖0 and of the iterate σ̂n for the proposed method.
The true values are plotted in red as a reference

Fig. 7 Sparse Bayesian logistic regression with random effects-Support
of the estimated β̂N compared with the support of βtrue

From Fig. 6 we observe that σ̂n converges to a value that is
very close to σtrue, and that the number of active components
is also accurately estimated. Moreover, Fig. 7 shows that most
active components were correctly identified. We also observe
that β̂n stabilises after approximately 6300 iterations, which
correspond to 6300 Monte Carlo samples as mn = 1. This
is in close agreement with the results presented in (Atchadé
et al. 2017, Figure 5), where they observe stabilization after a
similar number of iterations of their highly specialised Polya-
Gamma sampler.

It is worth emphasising at this point that Atchadé et al.
(2017) considers the non-smooth penalty g(θ) = λ‖β‖1

instead of the Huber loss. Consequently, instead of using
the gradient of g, they resort to the so-called proximal oper-
ator of g (Chambolle and Pock 2016). The generalisation of
the SOUL methodology proposed in this paper to models
that have non-differentiable terms is addressed in Vidal and
Pereyra (2018), Vidal et al. (2019).
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