
Method

Efficient storage of high throughput DNA sequencing
data using reference-based compression
Markus Hsi-Yang Fritz, Rasko Leinonen, Guy Cochrane, and Ewan Birney1

European Molecular Biology Laboratory’s European Bioinformatics Institute (EMBL-EBI), Wellcome Trust Genome Campus, Hinxton,

Cambridgeshire CB10 1SD, United Kingdom

Data storage costs have become an appreciable proportion of total cost in the creation and analysis of DNA sequence data.
Of particular concern is that the rate of increase in DNA sequencing is significantly outstripping the rate of increase in
disk storage capacity. In this paper we present a new reference-based compression method that efficiently compresses
DNA sequences for storage. Our approach works for resequencing experiments that target well-studied genomes. We
align new sequences to a reference genome and then encode the differences between the new sequence and the reference
genome for storage. Our compression method is most efficient when we allow controlled loss of data in the saving of
quality information and unaligned sequences. With this new compression method we observe exponential efficiency gains
as read lengths increase, and the magnitude of this efficiency gain can be controlled by changing the amount of quality
information stored. Our compression method is tunable: The storage of quality scores and unaligned sequences may be
adjusted for different experiments to conserve information or to minimize storage costs, and provides one opportunity to
address the threat that increasing DNA sequence volumes will overcome our ability to store the sequences.

[Supplemental material is available for this article.]

DNA sequencing has had a major impact on life sciences since the

wide scale adoption of the Sanger sequencing method (Sanger et al.

1977). With the advent of array-based pyrosequencing in 2005

(Margulies et al. 2005), followed rapidly by new sequencing-by-

synthesis and sequencing-by-ligation techniques, there has been

an exponential increase in the generation of DNA sequence data

(Stein 2010). Critically, these newer technologies are developing at

a much greater rate than was seen for the older technologies, with

the current doubling time for DNA sequence output—as measured

by output per unit cost—of around 5 mo (Stein 2010). In practical

terms this has provided a 1000-fold drop in sequencing costs since

1990 and has made economically possible an increasing number of

large data projects. These include the 1000 Genomes Project (The

1000 Genomes Project Consortium 2010), the International Can-

cer Genome Project (ICGC 2010), and a variety of projects that use

DNA sequences as an assay platform, such as the ENCODE project

(ENCODE Project Consortium 2004).

There are many challenges in handling this ‘‘next generation’’

of sequence data, from the highly fragmented nature of the shorter

reads generated by the new technologies, to storage, analysis, and

computational requirements for such large data volumes. The new

technologies typically create large direct storage costs as a result of

the imaging data that require post-sequencing processing and

analysis. These storage costs have sometimes exceeded reagent

costs. However, this large excess storage requirement is primarily

for ‘‘unprocessed’’ data and large-scale facilities have streamlined

their pipelines to discard images at the earliest possible stage and

use standard compression methods for the ‘‘processed’’ data in

order to reduce storage requirements and associated costs. For ex-

ample, the Sequence Read Archive (SRA) (Shumway, Cochrane,

and Sugawara, 2010), run by the INSDC partners (http://www.insdc.

org) as a raw data repository for data from new sequencing plat-

forms, has adopted more efficient compression routines to deliver

a final on-disk footprint some 200- to 500-fold reduced relative to

that of raw image-containing sequence data.

However, the absolute data volume, whether stored near to

the sequencing machines or compressed in archives, is of less

concern than the consistent growth in sequencing capacity. Prior

to 2005 the rate of increase in sequencing capacity (doubling time

around 18 mo) was close to the rate of increase in disk storage

capacity (doubling time between 18 and 24 mo) on a per unit cost

basis. This meant that, even with conservative engineering tech-

niques, stable budgeting allowed production sequencing facilities

and archival databases to match the increase in sequencing rate

with the required storage hardware. The drop in sequencing ca-

pacity doubling time without a concomitant decrease in storage

costs means either that there must be a progressive reduction in the

fraction of sequence data that are stored data or, alternatively,

a progressive increase in storage budgets. The latter seems an un-

attractive and unlikely solution.

A number of scientific projects and activities have similar

‘‘large data’’ components, albeit with differing parameters and

doubling times. One such high-profile project is the Large Hadron

Collider (LHC) at CERN, which will generate an estimated 15 peta-

bytes of data per year when fully active (http://public.web.cern.ch/

public/en/LHC/Computing-en.html). LHC scientists are concerned

only with a very small subset of ‘‘interesting’’ events recorded against

an overwhelming backdrop of unimportant physical events. By

processing the LHC data stream in real-time and discarding all un-

interesting measurements as noise, vastly reduced data volumes can

be achieved for long-term storage. Medical and scientific image

processing provide a different large-data set processing example. In

many fields, images, and in particular video images, can be collected

in almost unlimited quantities, and the application of selective data

compression, sensitive to scientific decisions about the value of data

components, is essential. A key concept in the compression of im-

ages is ‘‘controlled loss of precision’’ in which different compression

routines lose precision of the image appropriate for the desired reuse.

1Corresponding author.
E-mail birney@ebi.ac.uk.
Article published online before print. Article, supplemental material, and pub-
lication date are at http://www.genome.org/cgi/doi/10.1101/gr.114819.110.
Freely available online through the Genome Research Open Access option.

734 Genome Research
www.genome.org

21:734–740 � 2011 by Cold Spring Harbor Laboratory Press; ISSN 1088-9051/11; www.genome.org



There are three approaches to dealing with the growth in se-

quences submitted to the public databases: (1) A add storage; (2)

throw away some data (‘‘triage’’); and (3) compress the stored data.

These three are not mutually exclusive. A number of arguments for

not storing all sequence data have been put forward. These include

‘‘don’t store the data, just store the physical DNA sample,’’ ‘‘discard

older data,’’ ‘‘discard data from samples that can be regenerated,’’

and ‘‘don’t store the raw data, store only the analysis output, such as

the differences.’’ The last parallels the approaches taken by the LHC

and image processing work in that it saves only informative data.

What is common to most of these suggestions is the implied

ability to resequence any sample at any given point of time, thus

obviating the need to store the available sequence data electroni-

cally. Given the large scale of international projects, it is clear that

at least in the short term the large volumes of data generated by

distributed production centers will have to be kept available and

ready for aggregation and analysis. One might argue that after

analysis, the raw data should no longer be stored electronically.

However, many of these projects run for several years and, even after

they have been completed, further follow-up projects arise that re-

quire easy access to the data. In addition, the exponential decrease

in storage costs means that the cost for storing any particular data

set is heavily weighted to the early years of its storage. Given the

large worldwide investment in variation and cancer sequencing, it

seems inappropriate to limit the reanalysis of sequencing data over

the forthcoming decade for the sake of data storage costs.

An additional major concern is the feasibility of storing or

reacquiring samples. Many clinical samples have low DNA con-

tent, meaning that the samples cannot be stored and freely dis-

tributed in the future. Where samples are nonrenewable, as it is for

many cancer and other human samples, future availability of se-

quence data may only be guaranteed through permanent elec-

tronic archives. Even when samples are renewable, the cost of ac-

quiring them can be considerable, especially for clinical samples.

Finally, long-term storage and distribution of DNA samples world-

wide is a complex operation, with considerable costs in physical

storage, shipping, and end-point sequencing.

Another option for dealing with increasing sequencing data is

compression. In its natural representation as a string of characters,

a DNA sequence can be compressed using generic approaches, for

which a rich literature exists. Beyond this, though, compressibility

of DNA sequence can take advantage of certain biological charac-

teristics, such as, for example, repeat content and relationship to

existing sequence. Prior work on DNA sequence compression,

reviewed in Matsumoto et al. (2000) has yielded DNACompress,

exploiting redundancy within DNA sequences due to approximate

repeats (Chen et al. 2002), and DNAzip (Christley et al. 2009), in-

troducing the important idea of only storing differences to a ref-

erence sequence, but in this case for storing an entire, assembled

genome as a series of differences.

In this paper we describe a new and more efficient method for

raw DNA sequence data storage, reference-based compression, that

nevertheless does have some aspects of ‘‘triage’’ in that some in-

formation is lost. This is closest to the ‘‘don’t store the raw data,

store only the analysis output, such as the differences’’ intuition

cited above, but changes the challenge from appropriate scientific

analysis to appropriate compression. We do not aim to perform a

certain type of analysis under our scheme, nor do we constrain

ourselves to current resources, such as any one current reference

genome. A key feature of reference-based compression is that its

performance improves exponentially with respect to areas of

growth in DNA sequencing technology, so it can mitigate the

mismatch between DNA sequencing capacity and disk technology

growth rates as well as reducing the absolute quantity of stored

data. Efficient reference-based compression requires a controlled

loss of precision in terms of the sequencing information stored.

Usefully, the trade-off between loss of precision and storage effi-

ciency cost can be quantified and presented to the scientific com-

munity for discussion of where it is most appropriate to maintain

higher precision. Our goal is to bring about a scenario where, for any

reasonable sustained improvement in DNA sequencing technology,

a constant cost storage solution is available with a well understood

loss of precision appropriate for future reuse.

Results

Lossless reference-based compression of DNA sequence

The basis of our method is the efficient storage of information that

is identical or near-identical to input ‘‘reference’’ sequences. The

key feature of our method is that new sequences identical to the

reference have minimal impact on storage regardless of their

length or depth of sequencing coverage. Additionally, we use the

reference genome strictly as a compression framework, and do not

require any biological correctness for the reference. We first focus

on lossless compression of the base sequence, then discuss in-

formation that cannot easily be represented by mapping to the

reference genome (such as unaligned reads), and finally cover ap-

propriate controlled loss of precision on continuous information

(such as qualities). The overall outline of our method is shown in

Figure 1.

To store information efficiently using a known reference se-

quence as a compression framework, we need to take advantage of

the fact that most reads in a resequencing run match the sequence

perfectly or near-perfectly. In our approach, we take a mapping of

the reads against the reference sequence (Fig. 1B) and summarize

both mapping properties and deviations from the reference in an

efficient manner (Fig. 1C). Much of the efficiency of our method

relies on appropriate use of Golomb codes (Golomb 1966) that are

now a standard compression technique for storing integer values.

The method works as follows:

1. We store the lookup position of each read on the reference se-

quence as the integer position on this compression framework.

The lengths of reads are compressed using Huffman coding

(Huffman 1952). For constant read length across a file, we store

the length once.

2. We assume that read order does not have any meaning for any

given data set and reorder the reads with respect to the integer

position determined in (1), allowing efficient relative encoding

of the positions by storing the differences between successive

values instead of the absolute values. Given coverage and read

length, a Golomb code is chosen that is parameterized on the

expected distance between reads.

3. Any variation from the reference is stored as an offset relative to

the integer position from (1), along with the base identities (for

substitutions and insertions) or the length (for deletions). Offset

values, again, are assigned a Golomb code parameterized on the

distance between successive variation positions.

4. The read pair information is stored as an unsigned rank offset

from the positionally lower read to the positionally higher

read, with three bits present to indicate relative orientation of

reads and the strands from which they were sequenced. Again,

Golomb encoding, parameterized on expected rank offsets, is

used.

Genome Research 735
www.genome.org

Reference-based compression for DNA sequence storage



Figure 2 shows the behavior of this compression technique

for simulated data sets at a variety of different read lengths, error

rates, and coverage, for both unpaired and paired data sets. The

worst case scenario uses 0.66 bits/base pair, and the best case uses

0.02 bits/base pair. These compare very favorably with efficient

bzip2 compression for raw base DNA of about 1 bit/base pair, and

are considerably more efficient than BAM-based storage (Li et al.

2009). We observe an exponential increase in efficiency of storage

with higher read lengths (at any given coverage). Similarly, there

is a progressive increase in efficiency in storage as coverage

increases between 13 and 303, but this is eventually saturated.

At different error, coverage, and read length costs, the different

components take differing proportions of the storage. Figure 3

shows the breakdown in storage costs for three parameterizations,

and shows that the relative proportion of read information to

variant information changes considerably for different coverage

and error rate scenarios.

Table 1 shows two real data sets with their alignable portion

compressed using this method, while Supplemental Table 1 shows

error rates for the same two data sets. The compression rates are

close to the simulated data sets, and are between fivefold to 54-fold

smaller than compressed FASTA or BAM, respectively. Even if one

distributed the reference sequence along with the data set each

time, the reference bases contribute a small amount to the total

storage. A key question is whether to keep soft clipped information

or not. Clipping is the process of removing the sequencing

chemistry adaptors from the sequence. Soft clipping is the usual

standard for sequencing in which the adaptors are identified, but

not removed explicitly, allowing future analysis routines to change

the clip point. Although soft clipped DNA information might add

a small percentage of bases onto each read, for this compression

method it creates an edit structure, and thus a storage overhead, on

nearly every read. Interestingly in the bacterial set, because the soft

clipped reads are of constant length, the soft clipped data com-

presses better than hard clipped. For the human 1000 genomes

case, with a mixture of read lengths and considerable variation in

soft clip length, the hard clipped sequences compress better.

Efficient compression frameworks for unmapped reads

While mapped sequence is efficiently stored using the reference

sequence compression framework, unmapped sequences cannot

be compressed in this manner and may dominate storage cost.

Usually between 10% and 40% of reads remain unmapped to tra-

ditional references; the exact figure depends upon the experi-

mental and mapping strategies. Furthermore, for some experi-

ments, such as short RNA sequencing, the unmapped proportion

can rise to 60%–70% of reads. For the highest efficiency of com-

pression, we aim to develop a compression framework in which as

many reads as possible can be placed. Here the distinction between

a biologically correct reference sequence and a ‘‘useful’’ compres-

sion framework becomes more pronounced. Critically, a compres-

sion framework need not be biologically correct or interpretable; it

simply needs to provide efficient compression.

Our strategy is to pool unmapped reads from a variety of

‘‘similar’’ experiments, e.g., those using the same individual or

species, and then discover runs of sequences that are present across

the experiments. These sequences then serve as a secondary com-

pression framework upon which we can provide efficient storage.

This is similar but not identical to the task of finding the ‘‘correct’’

assembled sequence from the fragmented reads from genome

shotgun sequencing. Here, we have used a large-scale de Bruijn

graph framework, Cortex (Z Iqbal and M Caccamo, in prep.), to

find regions of contiguous sequence in unaligned reads. From a

sample of unaligned reads from the NA12878 genome, which is

the most sequenced human individual from the 1000 Genomes

panel, we observe that a novel 45 MB of contiguous sequences

could be generated, to which 14% of the previously unaligned

reads could be mapped. The reads compressed to 0.26 bits/base if

stored without read pair information. Finally, we matched the

remaining unaligned reads to both a further human sequence (the

Venter sequence) and all bacterial and viral sequences (assuming

potential laboratory or sample contamination), with the under-

standing that the proportion of reads that mapped at this step

could be compressed against these further references. In this step,

an additional 3% of reads could be compressed at a similar com-

pression rate. However, this left a considerable number of reads

(83%) that cannot be easily compressed. Compressing the raw

sequence of these reads yields a compression rate of 2.12 bits/base,

somewhat higher than average sequencing reads. Furthermore, the

reads do not show dense, repeated kmer frequencies; 57% of 21

mers were unique in the data set and <1% showed >10 frequencies.

This strongly suggests that there is not a systematic source of

Figure 1. Schematic of the compression technique. (A) Reads are first
aligned to an established reference. (B) Unaligned reads are then pooled to
create a specific ‘‘compression framework’’ for this data set. (C ) The base pair
information is then stored using specific offsets of reads on the reference, with
substitutions, insertions, or deletions encoded in separate data structures.

Fritz et al.

736 Genome Research
www.genome.org



sequence at high coverage in the remaining unaligned sequences.

We comment on how these unalignable sequences may be treated

in the Discussion section below.

Storage of continuous values related to base quality

So far we have focused on the development of lossless base se-

quence compression. Also important for a number of applications

of sequencing data is per-base continuous value information.

While previously this was commonly raw intensity data, the recent

trend amongst large projects has been to recommend not pre-

serving these data due to the lack of observed reuse of this infor-

mation, but rather to preserve phred or log-scale base call quality

values (Ewing and Green 1998). Although these phred scores are

reasonably compressible due to their limited integer range and

very biased composition (in our hands, real data sets have about

3.5 bits/quality score after Huffman-based compression), this is

still far higher than the lossless base pair compression described

above. Instead we have implemented a different scheme in which

all the quality scores of positions showing variation are stored and,

in addition, a user-defined percentage of quality positions that are

identical to reference are stored. In both cases, the qualities are

then further compressed using a Huffman-based code.

A scientific decision regarding the scope and best use of this

‘‘quality budget’’ for any given data set can then ensue. For example,

it may be sensible to have all reads mapping to known copy number

variation regions or sites with ambiguous SNP calls associated with

rich quality information. For this paper we have chosen a simple

scheme to store the lowest set of qualities of bases that are identical

to the reference. This scientific decision about how to use the quality

budget will be specific to at least classes of data, and potentially

specific data sets. By allowing the quality budget to be variable, this

compression can place more value on some data sets than others,

and there can be a progressive reduction of quality budgets over

time to mitigate the risk of discarding important differences in

quality values early on in any practical implementation process.

Figure 4 shows the overall storage cost at different quality

budgets and different read lengths. Unsurprisingly, decreasing the

Figure 2. Compression efficiency for simulated data sets. The plot shows storage of DNA sequence expressed as a bits/base stored on the y-axis (log
scale) vs. coverage of data sets (x-axis) for different read lengths (the different colors) after reference-based compression. The different columns indicate
different simulated error rates (0.01%, 0.1%, 1.0%). The left three panels show this for unpaired data, the right three for paired data.

Reference-based compression for DNA sequence storage

Genome Research 737
www.genome.org



quality budget leads to more compressible data. In addition, the

budget level affects the efficiency of compression at increasing read

lengths; i.e., for a lower quality budget, not only is there an abso-

lute shift in the compressibility of the data, but also the data be-

comes proportionally more compressible at longer lengths. This is

because much of the benefit of the compression occurs when a

read matches identically to the reference at high quality, and so the

compression is driven by the proportion of reads that require no

additional data structures. As our current simulations assume a

random distribution of where quality information is used, any

heterogeneity in errors or decisions on where to use quality in-

formation will improve the compressibility of the data. Table 1

shows the impact of using a 2% quality budget on storage on two

real data sets with a 10- to 30-fold compression to compressed

FASTQ or BAM, respectively.

Discussion
Although the challenge of storing DNA sequencing information is

manageable in the near term, it is important for the biological

community to consider the implications of sustained technology

improvements in DNA sequencing and to plan for better data

compression methods—potentially with controlled loss of pre-

cision—before there is a critical mismatch between data generation

and storage. We present here a novel compression method that

creates a more explicit balance between storage cost and the pre-

cision at which data is stored. This compression framework enables

us to evaluate the impact of discarding different components of the

sequencing information and thereby to make informed choices

that choose precision at the expense of storage costs, loss of pre-

cision to reduce storage costs, or some value in between.

Our method takes advantage of a number of standard com-

pression techniques on a specific data structure, namely alignment

of reads to a reference sequence, and relatively standard compres-

sion techniques. It is quite possible that other compression tech-

niques could provide even more efficiency. For example, the ob-

servation that once one has decided to store quality information on

a read, the quality information for a second base is less expensive to

store than the first, may be leveraged in some way. However, our

method already achieves 10- to 30-fold better compression than

standard approaches with real data, and this is expected to rise to

100-fold better with longer read lengths. In particular, our com-

pression technique becomes more efficient for longer read lengths,

and the increase in efficiency is a function of the ‘‘quality budget’’

we allow for each data set. As increase in read length accounts for

about half of the gains in productivity of the DNA sequence

technology, this suggests we can set a quality budget level that

allows a matching of the increase of DNA sequence output to the

increase of disk storage capacity, providing a sustainable model for

electronic DNA sequence storage. As much of the potential in-

crease in output in the so-called ‘‘third generation’’ technologies is

currently around read length, our compression system is well

Figure 3. Storage components for three parameterizations of simulated data: 0.1% error and 13 coverage (left panel), 1% error and 13 coverage
(middle), and 1% error and 253 coverage (right). readpos and readflags is the storage of the read positions and read flags (strand, exact match), re-
spectively. Variation storage for substitutions (subst), insertions (insert), and deletions (del) is split into positional information (pos), flags (flags), and bases
(bases, for substitutions and insertions) or length (len, for deletions). The pie charts show overall storage requirements, where readinfo sums over read
positions and read flags, and variation is the sum over all variation storage components.

Table 1. Compression efficiencies for two real data sets.

Compression method
NA12878
chrom20

Pseudomonas syringae
pathovar

syringae B728a

Raw FASTQ 19.96 21.04
Raw FASTA 11.45 12.37
Bzip2 FASTQ 6.64 4.77
Bzip2 FASTA 1.84 1.66
Bzip2 Raw sequence 1.09 0.99
BAM 17.48 7.02
Bzip2 BAM 17.55 7.03
Hard clipped, reference-

based, sequence only
0.32 (0.37) 0.21 (0.28)

Bzip2 hard clipped, reference-
based, sequence only

0.30 (0.35) 0.16 (0.22)

Soft clipped, reference-based,
sequence only

0.41 (0.46) 0.19 (0.25)

Bzip2 soft clipped, reference-
based, sequence only

0.37 (0.42) 0.16 (0.22)

Hard clipped, reference-based,
2% quality budget

0.59 (0.64) 0.47 (0.53)

Bzip2 hard clipped, reference-
based, 2% quality budget

0.56 (0.61) 0.39 (0.45)

Soft clipped, reference-based,
2% quality budget

0.79 (0.84) 0.44 (0.50)

Bzip2 soft clipped, reference-
based, 2% quality budget

0.69 (0.74) 0.39 (0.45)

Left column shows data format, middle and right columns show the size
of each of two data sets, one human and one bacterial (see Methods for
sources), in bits/base. Under all conditions our reference-based com-
pression method is significantly more efficient than standard compression
techniques. The bracketed numbers shows bits/base when a bzip2-
compressed copy of the reference sequence is stored with the data set.

Fritz et al.

738 Genome Research
www.genome.org



placed to increase in efficiency in step with improvements in se-

quence technology throughput. However, it is certainly possible

that single molecule technology will have higher or at the very

least, different, error profiles, and it may be a more complex

landscape in which to work out an optimal ‘‘quality budget.’’

Recently Daily et al. (2010) published a similar compression

scheme for DNA sequences. Their general approach, as well, is

using a reference sequence as lookup key and storing position,

length, and edit structure of reads, applying relative encoding and

efficient integer codes. While these authors do explore different

integer codes, they don’t consider the handling of unaligned data,

paired-end reads, and quality scores. For a high coverage, human

data set, they achieve a similar compression rate (;0.35 bits per

base) to our method, although they don’t consider indels at all and

restrict to a maximum of two substitutions per read.

We have focused our efforts on compressing whole genome

shotgun information. This is because such data will be the largest

component of sequence archive growth for the next decade,

mainly because of the high sample numbers per cancer (;500),

high coverage requirements (303 on tumor and normal samples),

and high scientific interest (at least 10 declared projects so far) in

cancer resequencing (ICGC 2010). In addition, whole genome

sequencing for medical genetics purposes is likely to be the next

largest segment of growth. Although there may be a large number

of RNA-seq, ChIP-seq, or other more basic biology focused exper-

iments, they currently occupy <20% of the SRA archive by bases,

and are likely to occupy progressively less due to the growth in

cancer and medical sequencing. Our method can also be applied to

RNA-seq and ChIP-seq data, though careful attention must be paid

to such aspects as unaligned data. Taking RNA-seq data, for ex-

ample, even if the current transcript sequences augmented the

reference sequence, thus capturing known splice junction reads

efficiently, it is expected that new RNA-seq experiments would

discover new junction reads potentially at low coverage. Other

data types, such as shotgun data for de novo genome assembly in

previously unstudied organisms and environmental sequencing

projects aimed at understanding genomics at the community level,

will bring further challenges in relation to unaligned reads.

Our reference-based method provides efficient lossless com-

pression for reads that align to the reference sequence with few, or

no, differences, as efficiently as 0.02 bits/base. This corresponds to

most people’s intuition that one needs to ‘‘store only the analysis

output, such as the differences’’ of a sequencing run. However,

there are still critical decisions about what information to discard.

One is to what extent unaligned reads should be discarded. With

an individual- or species-level creation of specific ‘‘compression

frameworks’’ an additional 15% of unaligned reads can be effi-

ciently stored. A critical scientific question is whether the re-

maining unaligned reads should be stored or discarded, and if they

should be stored, can some other compression approach be used to

decrease the storage cost. It seems likely that this decision would be

different for different data sets; for example, cancer genomes

compared to their normal controls. A further critical decision is

how large the ‘‘quality’’ budget should be, and how this budget

should be distributed. A practical approach is to adjust the quality

budget to balance the disk improvement rate with improvements

in DNA sequencing technologies. As with unaligned reads, such

decisions should ideally be made at the level of the data set and, as

we need to control the overall storage cost, we might increase the

quality budget on some samples (such as tumors) at the expense of

other samples (such as their matched normals). Importantly, this

framework is flexible with regard to quality budgets, so early im-

plementations can be generous in their quality budget while dis-

cussions with analyst and user communities about the impact of

different quality budgets in production pipelines are undertaken.

In this scheme, the quality budget is bounded by the number

of differences between reads and the reference genome to ensure

the correct base sequence is returned; in turn, this difference rate is

likely to be dominated by sequencing error rates rather than bi-

ologically interesting phenomena. In scenarios where there is a

large systematic biological difference (e.g., a very high density of

SNPs), one can imagine providing a condensed edit structure for

the reference sequence to improve compressibility. Achieving

quality budgets lower than the sequencing error rate will be more

challenging. Potentially one could imagine preprocessing reads

to recognize ‘‘clear’’ sequencing errors, by a combination of the

weight of evidence from other reads and quality values, and ‘‘fix’’

such errors to be more consistent. However, such manipulations

are a more fundamental change of the experimental data, and

would require considerable discussion of the consequence for

downstream analysis before implementation.

We have implemented our algorithms in a prototype written

in the Python programming language. The source files are available

at http://www.ebi.ac.uk/;markus/mzip. This prototype works with

BAM-based input, but it has been deliberately written to experiment

with different component compression schemes; as such its run

time is slow, with around 2 h taken for compression (see Methods);

however, we are confident that this can be improved at least five-

fold, if not more. The current on-disk format in our prototype is

both streamable and indexable by genomic position, so slice func-

tionality, as provided in BAM format associated tools (Li et al. 2009),

would be feasible. Practical implementation of these ideas will be

more productive inside of specific tool kits, such as BAM or SRA, and

Figure 4. Storage costs for different quality budgets. The plot shows
the change in storage cost (expressed as bits/base, including quality in-
formation, y-axis) with respect to read length for different quality budgets
for a fixed coverage (103) simulated data set. Note that not only do lower
quality budgets compress better, but also the compression efficiency
improves proportionally more at lower quality budgets for higher read
lengths. Quality budgets are the percentage of base pairs in the data set
for which quality scores are retained.

Reference-based compression for DNA sequence storage

Genome Research 739
www.genome.org



we are actively working on this integration. There are other complex

practical aspects for using this scheme, such as who is responsible

for providing the reference alignment, how reference sequences are

stored and verified in different locations, and how additional as-

sembled references would be computed. Again, a practical imple-

mentation would have to fit into the current data flow from se-

quencing groups into the archive sites. However, many of these

questions are relevant to current discussions on how to handle

alignment submission in general. By asking for submission as an

alignment, itself a very common part of local analysis, some of the

complex compute stages would be distributed to the submitters

rather than the central resources. In summary, although there are

many individual technical details to resolve before this compression

routine becomes part of production processes, there is no critical

piece that is not solvable with appropriate effort.

DNA sequence has become the first molecular data for which

the cost of storage has become a significant proportion of the

overall cost of generation and analysis. In common with other

technologies with a high storage to generation cost, in particular

imaging, we must consider carefully what information, and at what

level of precision, is worth storing. As with imaging, intelligent

decisions about the precision of the information stored allow effi-

cient, loss compression algorithms that retain key components of

the information for future analysis. By creating efficient compres-

sion algorithms we can at least postpone any harder decision about

whether specific data sets should be deleted in their entirety, and at

best not limit future analysis of DNA data based on constraints on

current storage budgets. It seems likely that similar decisions will

eventually be necessary for other biological data, from proteomics to

metabolomics, as well as for the compression algorithms used for

biological and clinical images.

Methods

Compression
For every read we store its starting position with respect to the
reference, its strand, and a flag indicating whether the read
matches to the reference perfectly. Positions are relative encoded
(i.e., the difference between successive positions is stored rather
than the absolute value) and stored as a Golomb code, resulting in
a variable length code. Strand and match flags require one bit each.
In the case of a nonperfect match, we store a list of variations.
Every variation is stored as its position on the read, the variation
type (substitution, insertion, deletion), and additional informa-
tion (the base change in the case of a substitution, the inserted
bases, or the length of the deletion). Again, positions are relative
and Golomb encoded. The variation type (substitution, insertion,
or deletion) is encoded in 1 or 2 bits. Given the reference base, any
substitution to A, C, G, T, or N (other than the reference base) can
be encoded in 2 bits. For quality budgets, where identical bases are
present we store a bit indicating whether the base is the same as the
reference, optionally followed by an encoding of the change of
base as explained before. Inserted bases are encoded in 2 or 3 bits
(in truncated binary encoding, similar to the variation type). De-
letion lengths are currently Gamma encoded (Elias 1975). If dif-
ferent read lengths are present across the input file, we store the
length Huffman-encoded, and store the length values and their
counts at the beginning of the file. For paired-end reads, we store a
bit indicating whether a read is paired, the strand from which the
read was sequenced, the relative orientation of the mate, and the
relative offset from the position of the lower to the higher read. For
the latter, a Golomb code is used. More details are given in the
supplemental material.

The code is available from http://www.ebi.ac.uk/;markus/
mzip/.

Files: Table 1

The file NA12878.chrom20.ILLUMINA.bwa.CEU.high_coverage.
20100311.bam was downloaded from ftp://ftp.1000genomes.
ebi.ac.uk/vol1/ftp/data/NA12878/alignment. The reference genome
was obtained from http://hgdownload.cse.ucsc.edu/goldenPath/
hg19/chromosomes.

The Pseudomonas syringae files ERR005143_1.fastq and
ERR005143_2.fastq were downloaded from http://www.ebi.ac.uk/
ena/data/view/ERR005143, the reference genome file from http://
www.ncbi.nlm.nih.gov/nuccore/NC_007005. The read files were
concatenated and mapped to the reference using BWA 0.5.8 (Li and
Durbin 2009) with default options.

Running times

Supplemental Table 2 shows the running time for compressing the
two experimental data sets. BAM compression is currently imple-
mented as two steps: i) conversion of BAM into lists of read in-
formation and variation; and ii) the compression of these data.

Acknowledgments
We thank James Bonfield, Eugene Yaschenko, Richard Durbin,
Paul Flicek, Richa Agarwal, and David Lipman for thoughtful
comments and discussion. Charles Cook provided invaluable
proofreading of the manuscript. The authors were funded by EMBL
core funds. The SRA archive is supported by the Wellcome Trust.

References

The 1000 Genomes Project Consortium. 2010. A map of human genome
variation from population-scale sequencing. Nature 467: 1061–1073.

Chen X, Li M, Ma B, Tromp J. 2002. DNACompress: Fast and effective DNA
sequence compression. Bioinformatics 18: 1696–1698.

Christley S, Lu Y, Li C, Xie X. 2009. Human genomes as email attachments.
Bioinformatics 25: 274–275.

Daily K, Rigor P, Christley S, Xie X, Baldi P. 2010. Data structures and
compression algorithms for high-throughput sequencing technologies.
BMC Bioinformatics 11: 514. doi: 10.1186/1471-2105-11-514.

Elias P. 1975. Universal codeword sets and representations of the integers.
IEEE Trans Inf Theory 21: 194–203.

ENCODE Project Consortium. 2004. The ENCODE (ENCyclopedia Of DNA
Elements) Project. Science 306: 636–640.

Ewing B, Green P. 1998. Base-calling of automated sequencer traces using
phred. II. Error probabilities. Genome Res 8: 186–194.

Golomb SW. 1966. Run-length encodings. IEEE Trans Inf Theory 12: 399–401.
Huffman D. 1952. A method for the construction of minimum redundancy

codes. In Proceedings of the I.R.E., Vol. 40, (No. 9) , pp. 1098–1101.
Massachusetts Institute of Technology, Cambridge, MA.

ICGC (The International Cancer Genome Consortium). 2010. International
network of cancer genome projects. Nature 464: 993–998.

Li H, Durbin R. 2009. Fast and accurate short read alignment with Burrows-
Wheeler transform. Bioinformatics 25: 1754–1760.

Li H, Handsaker B, Wysoker A, Fennell T, Ruan J, Homer N, Marth G,
Abecasis G, Durbin R. 2009. The Sequence Alignment/Map format and
SAMtools. Bioinformatics 25: 2078–2079.

Margulies M, Egholm M, Altman WE, Attiya S, Bader JS, Bemben LA, Berka J,
Braverman MS, Chen Y-J, Chen Z, et al. 2005. Genome sequencing in
microfabricated high-density picolitre reactors. Nature 437: 376–380.

Matsumoto T, Sadakane K, Imai H. 2000. Biological sequence compression
algorithms. Genome Inform Ser Workshop Genome Inform 11: 43–52.

Sanger F, Nicklen S, Coulson AR. 1977. DNA sequencing with chain-
terminating inhibitors. Proc Natl Acad Sci 74: 5463–5467.

Shumway M, Cochrane G, Sugawara H. 2010. Archiving next generation
sequencing data. Nucleic Acids Res 38: D870–D871.

Stein LD. 2010. The case for cloud computing in genome informatics.
Genome Biol 11: 207. doi: 10.1186/gb-2010-11-5-207.

Received September 2, 2010; accepted in revised form January 13, 2011.

Fritz et al.

740 Genome Research
www.genome.org


