
Efficient Stream Compaction on Wide SIMD Many-Core Architectures

Markus Billeter∗

Chalmers University of Technology
Ola Olsson†

Chalmers University of Technology
Ulf Assarsson‡

Chalmers University of Technology

Abstract

Stream compaction is a common parallel primitive used to remove
unwanted elements in sparse data. This allows highly parallel algo-
rithms to maintain performance over several processing steps and
reduces overall memory usage.

For wide SIMD many-core architectures, we present a novel stream
compaction algorithm and explore several variations thereof. Our
algorithm is designed to maximize concurrent execution, with min-
imal use of synchronization. Bandwidth and auxiliary storage re-
quirements are reduced significantly, which allows for substantially
better performance.

We have tested our algorithms using CUDA on a PC with an
NVIDIA GeForce GTX280 GPU. On this hardware, our reference
implementation provides a3× speedup over previous published al-
gorithms.

CR Categories: D.1.3 [Concurrent Programming]: Parallel Pro-
gramming

Keywords: stream compaction, prefix sum, parallel sorting,
GPGPU, CUDA

1 Introduction

Stream compaction, also known as stream reduction, is an impor-
tant primitive building block for algorithms that exploit the massive
parallelism that is emerging in mainstream hardware [Seiler et al.
2008; Fatahalian and Houston 2008].

Highly parallel algorithms tend to produce sparse data, or data con-
taining unwanted elements, especially if each input element can
produce a varying number of output elements. In order to main-
tain performance, it is often necessary to compact the data prior to
further processing steps.

This can be observed in parallel breadth first tree traversal [Roger
et al. 2007b; Zhou et al. 2008; Lauterbach et al. 2009]: after each
traversal step, the list of open nodes must be pruned of invalid
nodes, as otherwise an exponential explosion of nodes takes place.

Similar problems are encountered in many recent publications, e.g.
in ray stream tracing[Wald et al. 2007], and GPU-based collision
detection [Greß et al. 2006]. Another way to think of the com-
paction pass is as a form of load balancing; a compact input range
makes it easier to provide an equal workload for all processors.

∗billeter ’at’ chalmers.se
†ola.olsson ’at’ chalmers.se
‡uffe ’at’ chalmers.se

Contributions In this paper, we present a novel algorithm for
compacting streams on graphics hardware, which offers substan-
tially better performance than previously published algorithms.
Most previous algorithms depend on computing and storing a prefix
sum for all elements, which is then used in a second stage to move
the valid data to a compact range. Our new approach avoids ex-
plicit construction of a prefix sum of the same size as the input data,
which allows substantial savings in bandwidth and storage. On cur-
rent hardware, our implementation offers a3× speedup, compared
to previous published algorithms.

Our algorithms require very little synchronization, making use of
only implicit atomicity in SIMD operations and global barrier syn-
chronization. This makes our algorithm suitable for implementa-
tion on various many- or multi-core processors with wide SIMD
instruction sets, e.g. current generation NVIDIA and AMD GPUs
and also the upcoming Intel Larrabee GPU.

Our general approach can be applied to several related problems,
which we illustrate by a few variations, such asstream splitand
prefix sum. We also demonstrate a high performance radix sort, in
terms of stream split, which shows performance competitive with
the currently fastest published implementation [Satish et al. 2008].

Organization of this paper Section 2 provides an overview of
previous work. In Section 3, we describe our new algorithm, in-
cluding a couple of variations. Section 4 goes into the details of
a CUDA implementation. In Section 5, we present and compare
detailed performance measurements of our algorithm. Section 6
contains discussion, and we finally conclude in Section 7.

2 Previous Work

The simplest implementation of stream compaction is a sequential
algorithm, which is trivial to implement on an uniprocessor ma-
chine. The algorithm is shown in Listing 1.

1 j ← 0
2 for (i ← 0; i < N; i++)
3 if valid input[i]
4 output[j] ← input[i]
5 j++

Listing 1: Sequential compaction algorithm. Valid elements are moved frominput
to output.

Implementing an efficient stream compaction on parallel architec-
tures is more challenging: the output location of each element in
a stream depends on the state of every element before it. A trivial
implementation with synchronization after each element would be
very inefficient.

To overcome this, most of the previous approaches are based on
performing a parallelexclusive prefix sum[Blelloch 1990; Chatter-
jee et al. 1990]. The prefix sum is performed on a stream containing
a 1 for each valid element in the input and0 for each invalid. The
result of this operation is a stream containing, for each element, the
number of valid elements preceding it. This information is then
used to move each valid element to the new location, as illustrated
in Figure 1.



Figure 1: Main steps of performing compaction with a prefix sum. First a prefix sum
of the valid element flags is computed. Then a gather or scatter step is used to move
the valid input elements into the output vector.

This approach has been implemented on a GPU [Horn 2005]. Since
the GPUs at that time lacked support for random write access to
memory (scattering), a common workaround was to usegathering,
where a binary search is performed to find the input element cor-
responding to each output. Both steps of the algorithm, the prefix
sum and theO(N) binary searches ofO(log N) complexity, have
an overall complexity ofO(N log N).

The same approach was used again later [Sengupta et al. 2006], but
the prefix sum is improved by using awork-efficientimplementa-
tion, running inO(N) time. However, the gathering step was un-
changed and thus the overall complexity remainedO(N log N).

A somewhat different approach [Ziegler et al. 2006; Greß et al.
2006] is to construct a tree containing the number of valid elements,
which is similar to an up-sweep tree [Blelloch 1990]. Performing
the gathering step can then be done by searching the tree to find
the correct input element corresponding to each output. Again, the
time complexity isO(N log N).

To improve the complexity, the algorithm can be applied to small
fixed size chunks [Roger et al. 2007a]. Chunks of sizeK can be
compacted with the earlier algorithms inO(K log K) steps. The
individual compacted chunks are finally concatenated using line
drawing hardware on the GPU. This design achieves a time com-
plexity of O(N).

Modern GPUs providegeometry shaders, which, together with
transform feedback, can be used to implement stream compaction
in a simple way. However, geometry shaders have so far not been
able to deliver competitive performance [Roger et al. 2007a], and
our own results confirm this.

Recent GPUs also support scattering, which can be used to re-
place the gathering stage [Sengupta et al. 2006; Horn 2005].
An implementation of this approach, available in the CUDPP li-
brary [CUDPP 2008], achieves anO(N) time complexity.

Stream reduction, and its sibling,stream splitting, is intimately con-
nected to sorting; e.g. a recent and fast sort [Satish et al. 2008] uses
stream splitting to implement a radix sort.

3 Algorithm

The basic idea for our new algorithm follows the approach taken in
Chatterjee et al. [1990] whereN > P , i.e. the number of input el-
ements is larger than the number of processors. The input stream is
divided intoP roughly equal, and continuous, ranges. Each proces-
sor can then count the number of valid elements in a single range
independently. These counts are transformed using a parallel prefix
sum, which gives an offset for each processor, where it can start
writing valid elements. This enables a third phase to use sequen-
tial compaction within each of theP ranges. Listing 2 shows this

algorithm in pseudo code.

With CUDA [NVIDIA 2008], it is straightforward to implement the
basic parallel algorithm in Listing 2 by using each thread as an in-
dividual processor, but performance will be poor. The reason is that
the underlying hardware does not actually consist of a large num-
ber of independent scalar processors, but rather a smaller number
of independent processor cores with wide SIMD units [Fatahalian
and Houston 2008; Lindholm et al. 2008]. The SIMD units must
access memory coherently to enable high performance.

We therefore develop an algorithm that is more suited to actual GPU
architecture. In the next sections, we will first describe a model for
how modern GPUs operate, which will allow us to design several
flavors of efficient compaction algorithms, in the sections follow-
ing.

1 // Phase 1: Count Valid Elements
2 in parallel for each processor p
3 count ← 0
4 for (i ← 0; i < Kp; i ← i + 1)
5 if valid inputp[i]
6 count++
7 processorCounts[p] ← count
8

9 // Phase 2: Compute Offsets
10 processorOffsets[0..P) ← prefixSum processorCounts[0..P)
11

12 // Phase 3: Move Valid Elements
13 in parallel for each processor p
14 j = processorOffsets[p]
15 for (i ← 0; i < Kp; i ← i + 1)
16 e ← inputp[i]
17 if valid e
18 output[j] ← e
19 j ← j + 1

Listing 2: Basic parallel algorithm. The number of elements processed by a processor
is denotedKp, andinputp is the associated range of input elements. The notation
[0..P) is used to describe the range of elements from0 (inclusive) toP (exclusive).

3.1 GPU model

A modern GPU consists of a number of processor cores, in the or-
der of 10s, that contain a number of ALU’s that execute instruc-
tions in a SIMD fashion. On current, and announced, GPU hard-
ware, functional SIMD width vary between 16 [Seiler et al. 2008]
and 64. E.g. on the NVIDIA GTX 280 each processor core has a
SIMD width of 8, which executes the same instruction four times,
yielding a functional SIMD width of 32 [Lindholm et al. 2008]. A
similar arrangement on current AMD hardware results in 64 wide
SIMD [Fatahalian and Houston 2008].

To hide memory latency, each processor core executes a large num-
ber of threads that are grouped according to SIMD width. The pro-
cessor can switch between groups with little or no overhead, allow-
ing another SIMD group to execute when a long latency memory
operation is initiated.

The SIMD groups execute independently from each other, and
have access to a small, fast, shared memory and are, by virtue of
SIMD execution, internally synchronized. Each SIMD group can
be viewed as aconcurrent read concurrent write PRAM(Parallel
Random Access Machine) with a fixed number of processors and
arbitrary resolution of write collisions. There exists a large number
of parallel algorithms developed for the PRAM model, for example
prefix sum [Hillis and Steele 1986] and reduction [Blelloch 1990].

The memory interface is very wide and the access is largely un-
cached, as thread switching is used to hide latency. As a conse-
quence of this, hardware attempts to gather memory accesses from



a SIMD group intotransactions. For optimal performance, the start
address of the transactions must be aligned.

To summarize, one can view the GPU as a machine withP vir-
tual processor cores, each with a functional SIMD width ofS. The
numberP is chosen to ensure all physical processors have sufficient
threads for efficient latency hiding, but is otherwise kept as small
as possible. KeepingP small maximizes the amount of sequential
work each processor can perform independently. We assume the
memory transaction size, and required alignment, to be a multiple
of the functional SIMD width,S. This is, on current hardware, a
common requirement for good performance when accessing mem-
ory.

Notation In the following sections, we will make frequent use of
the subscript, and index,p to indicate a specific virtual processor
in the range[0..P ). The symbols is similarly used to refer to the
SIMD lane in range[0..S).

The notation[A..B) is used to access a range ofB − A elements
simultaneously, starting at, and including, the element at indexA.
An example isoutput[A..B) ←tmp[A..B) whereB−A elements are
copied. We make use subscript notation to indicate SIMD variables.
SIMD variables are otherwise treated like vectors of lengthS.

3.2 Parallel SIMD stream compaction

Given the model detailed in the previous section, it is natural to
let each virtual SIMD processor take the role of a processor in the
basic parallel algorithm described in Listing 2. We shall refer to
each virtual SIMD processor as aprocessorfor the remainder of
this paper.

If each processor is used to perform the work of a scalar processor,
(S − 1) P SIMD lanes are unused. To make use of these compu-
tational resources, and to improve memory coherency, an internal
SIMD compaction step is performed: each processor will now pro-
cessS elements each iteration.

Our new algorithm extends the basic algorithm from Listing 2 by
utilizing SIMD capabilities during phases 1 and 3. The remaining
parts of the algorithm are unchanged. Input data is, as before, di-
vided into rangesinputp of sizeKp.

In the first phase, each SIMD lane is used to count the valid
elements it encounters, independently. After processing the en-
tire range, the processor performs a parallel sum-reduction, which
yields the total number of valid elements in the rangeinputp.
Pseudo code describing these modifications is provided in Listing 3.

1 // Phase 1: Count Valid Elements
2 in parallel for each processor p
3 count[0..S) ← 0[0..S)

4 for (i ← 0; i < Kp; i ← i + S)
5 in parallel for each SIMD lane s
6 if valid inputp[i + s]
7 count[s]++
8

9 processorCounts[p] ← reduce(+, count[0..S))

Listing 3: The first phase, extended to make use of the SIMD capabilities to count the
number of valid elements. After reducing the count fromS individual SIMD lanes,
the resulting total is stored in the vectorprocessorCounts. We use a parallel
reduction to sum the values incounts[0..S), as shown on line 9. However, this
reduction is performed only once per processor, and is thus not time critical.

The second phase remains identical to the basic algorithm in List-
ing 2: a parallel prefix sum [Horn 2005; Sengupta et al. 2006] is
used to compute offsets for the processors. The prefix sum is not
a time-critical part of the algorithm, as it is performed over a small

Figure 2: Illustration of thecompactSIMD procedure. Here, the SIMD width is
S = 16, and the number of valid elements isQ = 8. The elementA moves from
s = 0 to s′

= 0, whereas the elementB moves froms = 3 to s′
= 1. The output

is compact in the sense that theQ valid elements occupy lanes0 throughQ − 1.

number of elements. On current hardware, the number of proces-
sorsP is several orders of magnitude lower than the number of
input elements,N , commonly seen in GPU applications.

The final phase of the algorithm consists of moving the valid el-
ements to the output vector. The pseudo code, shown in List-
ing 4, assumes the existence of a procedurecompactSIMD. We
present several variants of thecompactSIMD procedure in the follow-
ing sections. These procedures provide efficient compaction within
a SIMD unit, as illustrated in Figure 2.

1 // Phase 3: Move Valid Elements
2 in parallel for each processor p
3 j ← processorOffsets[p]
4 for (i ← 0; i < Kp; i ← i + S)
5 a[0..S) ← inputp[i..i+S)
6 b[0..S), numValid ← compactSIMD a[0..S)

7 output[j..j+numValid) ← b[0..numValid)

8 j ← j + numValid

Listing 4: Each processor compacts its range,inputp, to the correct location in the
global output vector,output, taking advantage of the SIMD processing capabilities.

The algorithm reads data with perfect coherency for each processor,
which is a substantial improvement over the basic parallel imple-
mentation. Writes, however, while improved, are neither aligned
nor whole transactions. Depending on the ratio of valid elements,
the processor may write less than a full SIMD width of data each
iteration. This can be improved, at the cost of a more complex algo-
rithm, which uses buffering. Buffering is discussed in Section 3.5.

3.3 SIMD-Compaction with a prefix sum

This section describes an implementation of thecompactSIMD pro-
cedure referred to in Section 3.2.

The goal is to move valid elements from a source SIMD lanes to
a target SIMD lanes′ in a fashion that groups valid elements in
lanes[0..Q), whereQ ≤ S is the number of valid elements. This
process is illustrated in Figure 2. After compaction, elements in
lanes[Q..S) are undefined.

1 procedure compactSIMD (a[0..S))
2 in parallel for each SIMD lane s
3 validFlags[s] ← valid a[s]

4

5 index[0..S), numValid ← prefixSum validFlags[0..S)

6

7 in parallel for each SIMD lane s
8 if validFlags[s]

9 s’ ← index[s]

10 result[s’] ← a[s]

11

12 return (result[0..S), numValid)

Listing 5: Implementation ofcompactSIMD using a prefix sum. The procedure
returns the number of valid elements,numValid, andr, which contains the valid
elements in lanes0 throughnumValid-1.



An efficient SIMD prefix sum [Hillis and Steele 1986] is used to
find the target lane indexs′ in log S steps. ThecompactSIMD pro-
cedure is summarized in Listing 5.

Note that we use the SIMD prefix sum described by Hillis and
Steele [1986], which is not work-efficient [Sengupta et al. 2006].
A work-efficient implementation uses2 · log S steps, whereas the
prefix sum used here performslog S steps. This is preferable, since
nothing is gained by letting SIMD lanes idle.

3.4 SIMD-Compaction with POPC

The secondcompactSIMD implementation uses a population count
operation (POPC; count number of set bits) to find the target SIMD
lane index for each element.

AssumingPOPC is present in the native SIMD instruction set, the
log S steps required by the SIMD prefix sum can be avoided. The
architecture must also support a word size ofS bits. Listing 6 shows
the newcompactSIMD procedure.

1 procedure compactSIMD (a[0..S))
2 m ← 0
3 in parallel for each SIMD lane s
4 if valid a[s]

5 m ← m | (1 << s)
6

7 in parallel for each SIMD lane s
8 if valid a[s]

9 m’ ← m & ((1 << s) - 1)
10 s’ ← POPC m’
11 result[s’] ← a[s]

12

13 numValid ← POPC m
14

15 return (result[0..S), numValid)

Listing 6: Implementation ofcompactSIMD using a population count. The variable
m must be large enough to storeS bits. Settingm, on line 5, assumes that the architec-
ture allows simultaneous setting of bits. This is not always the case, anda workaround
is described in Section 4.2.

The number,s′, of valid elements in front of the current element
is found by masking the corresponding bits inm. Then, applying
POPC gives the desired offset. This is shown on lines 9 and 10 of
Listing 6.

Building the bit mask, as shown on line 5 in Listing 6, is not per-
mitted by our model, because of current GPU hardware limitations.
However, a SIMD instruction set will often allow the creation of a
mask register that can be broadcast to all SIMD lanes. This prob-
lem is discussed further in Section 4.2, in context of our CUDA
implementation.

3.5 Buffering

As noted in Section 3.2, the algorithm achieves perfect coherence
when reading memory. Writes are always consecutive, but to maxi-
mize bandwidth they must also be aligned, and of the optimal trans-
action size, i.e. a multiple of the SIMD widthS (discussed in Sec-
tion 3.1).

To achieve alignment and full write transactions, the algorithm can
make use of fast on-chip storage to buffer elements. The on-chip
storage is usually very small, so the algorithm should buffer a min-
imal number of elements.

The buffering only affects the last phase of the algorithm. In Listing
7, the third phase is modified to buffer elements. Elements will be
added to the buffer untilS elements can be written to the output.

The strategy is to bufferS elements: this is a convenient number,
since a single iteration can produce at mostS valid elements. The
buffer is flushed to the output vector only when it is full, guaran-
teeing complete write transactions. To ensure proper alignment, the
algorithm must first move enough valid elements to reach the re-
quired alignment boundary.

As the alignment phase will write at mostS − 1 elements, these
writes will not contribute significantly to the run time of the al-
gorithm and can therefore be unbuffered, as long as the buffer is
correctly initialized.

1 // Phase 3: Move Valid Elements will full buffering
2 in parallel for each processor p
3 j ← processorOffsets[p]
4 i, #buffered, buffer ← alignOutput()
5 for (; i < Kp; i ← i + S)
6 a[0..S) ← inputp[i..i+S)
7 d[0..S), numValid ← prefixSum valid a[0..S)

8 in parallel for each SIMD lane s
9 if valid a[s] && d[s] + #buffered < S

10 buffer[d[s] + #buffered] ← a[s]

11 if numValid + #buffered > S
12 output[j + s] ← buffer[s]
13 j ← j + S
14 if valid a[s] && d[s] + #buffered >= S
15 buffer[d[s] + #buffered - S] ← a[s]

16 #buffered ← (#buffered + numValid) % S
17 in parallel for each SIMD lane s
18 if s < #buffered
19 output[j + s] ← buffer[s]

Listing 7: The buffered implementation of the third phase. The buffer is flushed
when it is full, and the overflowing elements are then written to the buffer. The
alignOutput procedure moves enough elements to alignj to the next multiple of
S, and initializes the buffer and counters. There are many short branches in the inner
loop, however, they can be compiled into efficient predicated instructions.

3.6 Analysis

Our algorithm avoids computation of a prefix sum ofN elements,
when compared to previous approaches. Thisglobal prefix sum is
replaced by an efficient counting pass and a prefix sum of onlyP
elements. As a result, the bandwidth usage is substantially reduced,
e.g. nearly halved for32 bit data.

Auxiliary storage requirements are only in the order ofO(P ) ele-
ments. Note that, like previous algorithms, compaction is not per-
formed in place.

In the previous work, time complexity is usually not given with
the number of processorsP as a factor. One reason is that earlier
programming models, e.g. through graphics APIs, made it difficult
or impossible to perform this analysis. Today, with a more direct
control over execution on the hardware, it makes sense to use this
information in the analysis to guide our design of more efficient
algorithms.

To summarize, our algorithm consists of three distinct phases. The
time complexity of each phase is simple to estimate:

Phase 1:O
(

N

P S
+ log S

)

Phase 2:O (log P )

Phase 3:O
(

N

P S
· log S

)

Thus, for all three phases, the overall time complexity becomes

O

(

N

P S
· log S + log P

)

(1)



Asymptotic behavior is hence proportional toO (N) whenN ≫

P > S.

The complexity presented in equation 1 indicates that using wide
SIMD (large S) is disadvantageous. Indeed, if the algorithm is
run independently on each SIMD lane, as done in Listing 2, the
time complexity is reduced toO

(

N

P ′ + log P ′
)

, whereP ′ = P S.
However, this introduces a memory access pattern that is generally
very inefficient on current hardware.

It is possible to perform further trade-offs between computational
load and better memory access patterns by using buffering tech-
niques.

4 CUDA Implementation

We have implemented our algorithm, and its variations, using
CUDA [NVIDIA 2008]. Our development hardware is an NVIDIA
GTX 200 series GPU.

4.1 CUDA Introduction and Specifics

CUDA is described by NVIDIA as aSIMT, Single Instruction Mul-
tiple Thread, programming model. This model lets the programmer
write a scalar program that executes, seemingly independently, on
a SIMD lane. The hardware, however, actually executes the threads
in SIMD fashion.

On the G80 and later NVIDIA architectures, the functional SIMD
width S is 32. Each group of 32 threads is referred to as awarp.
The warps are further grouped intoblocks, of which a number can
execute simultaneously on a processor core. We only make use of
the warp level which maps to the role of a processor in our model.
We do not use the block level, since this would require explicit syn-
chronization.

While it is possible to chooseS smaller than32, which would re-
duce the computational workload according to equation 1, this re-
sults in a worse memory access pattern.

Our algorithms assume that it is possible to shuffle data between
SIMD lanes. In CUDA, this is achieved by the use ofshared mem-
ory, a fast memory area that is shared between all threads in one
block.

When choosing an appropriate value ofP , one has to take sev-
eral factors into consideration: while it is advantageous to choose
a smallP , in order to maximize the sequential work performed by
each processor, there must be enough jobs available for latency hid-
ing to work.

For full occupancy, i.e. full use of hardware resources, a thread
block must have at least128 threads (four warps) [NVIDIA 2008].
An NVIDIA GTX280 GPU has30 processor cores, and therefore
we should start at least as many blocks.

In order to determine good values, we measured performance using
different configurations, and arrived empirically at the following
values: we use120 thread blocks with four warps each. This con-
figuration results inP = 480 virtual processors, which offered best
performance in all our tests.

The current implementation assumes thatN is a multiple ofS for
simplicity. If N

S
is not evenly divisible byP , our algorithm will

adjust the amount of data assigned to each processor.

4.2 Algorithm Implementation

Implementation of phase 1 follows closely the pseudo code given
in Listing 3. Phase 2 can be implemented by applying an existing
prefix sum implementation, such as in CUDPP [CUDPP 2008].

Phase three of our algorithm uses thecompactSIMD procedure to
compact elements to consecutive SIMD lanes. In CUDA, we have
to perform this compaction into shared memory, and then flush the
shared memory to our global output vector. We refer to this ver-
sion of the algorithm asstaged, since output is assembled in shared
memory prior to flushing.

A second option, as described in Section 3.5, is to fully buffer and
align the output. This results in whole transactions, also known
as coalesced writesin CUDA terminology, each time the shared
memory buffer is flushed.

A third variation available in CUDA is to directly scatter valid ele-
ments into the global output vector, bypassing the staging or buffer-
ing step in shared memory.

One final alternative dynamically chooses between the staged and
scattered variants on a processor (warp) level based on a heuris-
tic involving the per-range ratio of valid elements. In Section 5,
we shall show that thisselectivevariant perform best on our target
hardware.

Prefix sum based compactSIMD Implementation of the prefix
sum based algorithm poses no new challenges. We closely follow
the pseudo code presented in Section 3. All four output alterna-
tives presented in this section were tested, as the prefix sum based
implementation promised best performance on our target hardware.
Additionally, we implemented optimizations presented in Section
4.3.

POPC based compactSIMD Implementing thePOPC based ap-
proach is more challenging, since CUDA does not allow us to
quickly build a bit-mask for all SIMD lanes. To build such a mask,
and to maintain a good access pattern, we work onS ×S blocks of
elements.

For eachS × S block, we construct anS × S bit-matrix in shared
memory, during the first phase. This matrix is transposed inS steps
using bit-wise operations, yieldingS words each containing flags
for S consecutive elements. The first phase stores these words to
global memory; in the third phase we broadcast one word at a time
to all lanes. Each lane applies a mask and uses thePOPC to find the
number of preceding elements.

However, thePOPC operation is not a native instruction in the GTX
280 architecture. Instead the operation compiles to a binary bitwise
reduction, which performslog S operations. Thus, it does not, in
CUDA, save any computation over the prefix sum version presented
in Section 3.3.

4.3 Optimizations and Problems

We have encountered some problems that are related to the memory
access pattern. Also, bandwidth can be increased by using different
transaction sizes.

Our tests show that it is often advantageous to load elements as
32 × 64 bits, rather than the more obvious32 × 32 bits for 32 bit
data. Thus, during each iteration, we load and handle two32 bit
elements, instead of one. Table 1 presents measured bandwidths
using different transaction sizes.



Table 1: Measured pass-through memory bandwidth in CUDA, using different trans-
action sizes. The pass-through kernel divides data into the same rangesinputp as
our stream compaction implementation. The input data is then simply copiedfrom the
input buffer to the output buffer. Measured on an NVIDIA GTX280 GPU.

Size (32×) 32 bit 64 bit 128 bit
Bandwidth (GB/s) 77.8 102.5 73.4

Using64 bit accesses requires64 bit alignment. Since writing data
in the third phase may be misaligned (odd number of preceding el-
ements), elements are written using32 bit writes. Using a fully
buffered algorithm enables the use of64 bit writes. This optimiza-
tion is also specific to32 bit (or smaller) data.

The division of data into ranges that each processor can handle in-
dependently sometimes conspires to give a suboptimal memory ac-
cess pattern.

We presented average bandwidth in Table 1 for a pass-through ker-
nel. For certain combinations ofP and N , bandwidth drops by
almost one order of magnitude. For instance, one such region ex-
ists forP = 480 andN = 24M 32 bit elements. The region with
reduced bandwidth is relatively narrow, as shown in Table 2.

We believe that this is a hardware related issue, but have insuffi-
cient information about hardware memory operation to be certain.
A simple workaround that we have implemented is to sequentially
apply the stream compaction to smaller amounts of data. Since the
first bandwidth drop forP = 480 is observed at approximately
N = 11M, we will simply subdivide the data into chunks of10M,
and compact these sequentially. In Section 5, we show that any
performance penalty incurred by this workaround is minimal.

Table 2: Pass-through bandwidth for a small region aroundN = 24M 32 bit ele-
ments. AtN = 24M , the bandwidth falls to one fourth of the expected bandwidth,
but for largerN , it quickly returns to the expected values. Measured on an NVIDIA
GTX280 GPU.

N = 24M −100k 24M 24M +100k
Bandwidth (GB/s) 105.4 24.0 106.0

5 Results

We have compared our implementations with existing stream com-
paction solutions, e.g. using geometry shaders with transform feed-
back and the freely available CUDPP library [CUDPP 2008]. We
also present data from previously published stream compaction al-
gorithms.

Timings and tests were performed on random data, with a specific
ratio of valid elements. For verification purposes, both uniform
(white) and frequency filtered brownian noise was used. Only re-
sults using uniform noise are presented, as we observed no signifi-
cant differences in performance for other kinds of noise.

All results were measured on a Intel Core2 Quad Q9300 at 2.5GHz
with a NVIDIA GTX280 graphics card with 1GB of memory. We
used the CUDA 2.1 release.

5.1 Performance

In Figure 3, we show the performance of our implementations for
an increasing proportion of valid32 bit elements. Our prefix sum
based implementations all use the optimized64 bit loads, as de-
scribed in Section 4.3.

0 10 20 30 40 50 60 70 80 90 100
0.4

0.45

0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

Proportion of valid elements (%)

T
im

e 
(m

s)

Stream Compaction (4M elements)

 

 

POPC

Prefix (Buffered)

Prefix (Staged)

Prefix (Scatter)

Prefix (Selective)

Figure 3: Time (in milliseconds) required to compact 4M (2
22) 32 bit elements with a

varying ratio of valid elements. We have compared our implementations, usingboth the
prefix sum and thePOPC basedcompactSIMD implementations, as well as staged,
scattered and buffered variations. In addition, our selective implementation, which
automatically switches between staged and scattered output on a warp level, is shown.

The graph shows that ourselectiveimplementation, which dynam-
ically chooses between staged and scattered operation based on the
result of the previous phases, is the fastest for all densities. This
is the implementation we will use in further performance compar-
isons.

The buffered version is, despite a better memory access pattern,
slower for all densities. Performance is almost constant, which in-
dicates that the algorithm is becoming computational bound. This
is expected to change on future hardware, as discussed in Section 6.

The scattered version shows a near-linear performance scaling.
Since we cannot use64 bit writes, but must resort to several scat-
tered32 bit writes, the number of write transactions quickly in-
creases.

0 10 20 30 40
0

5

10

15

Number of elements (M)

T
im

e 
(m

s)

 

 CUDPP − 32 bit

Geometry Shader

Our − 32 bit

Our − 64 bit

Our − 128 bit

100 300 500 700 900
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Number of elements (k)

T
im

e 
(m

s)

Figure 4: Time (in milliseconds) required to compact a varying number of elements.
We compare our best implementation with the CUDPP implementation and geometry
shaders. The geometry shader plot is cut off to provide a better view of CUDPP and
our implementation. The error bars in the left figure display variations in time as the
proportion of valid elements is changed. The graphs represent the average time for
varying proportions of valid elements. Also shown are curves for compaction of64 bit
and128 bit elements.

Figure 4 shows how the performance compares to other algorithms
for increasing numbers of elements. A clear linear relation between



performance and number of elements can be observed, as previ-
ously indicated in Section 3.6. No observable discontinuities exist
at multiples of10M elements, showing that the penalties from the
workaround described in Section 4.3 are indeed minimal.

Our implementation outperforms CUDPP roughly by a factor 3, and
the geometry shader based algorithm by an order of magnitude. Our
algorithm uses much less memory, which can be seen in Figure
4: under equivalent conditions, our algorithm runs out of memory
much later. Times reported for CUDPP include an additional pass
that creates an array of flags indicating valid elements, which is
required by the CUDPP API. This pass takes approximately0.31
ms; if excluded from the measurements, our implementation out-
performs CUDPP by a factor of2.65.

Also observable in Figure 4 is that our algorithm can compact the
same amount of128 bit elements faster than competing algorithms
can compact32 bit elements.

Further comparisons to other earlier algorithmsare summarized in
Table 3. Our algorithm performs approximately three times faster
than any previously reported. Since all the algorithms have linear
asymptotic behavior, this observation can be expected to hold for
largerN on future hardware.
Table 3: Comparison of compaction performance with competing techniques. If avail-
able, we have used reference implementations for measurements on our hardware. We
have created our own CUDA implementation of the algorithm presented in Ziegler et
al. The reported times are averages over uniform distributions with0% to 100% valid
elements.

Time Time
(4M, 32 bit) (relative)

Our GTX280 0.561 ms
1.0×

min / max 0.435 ms /0.648 ms

CUDPP GTX280 1.81 ms
3.22×

min / max 1.22 ms /1.95 ms

Ziegler et al. GTX280 2.54 ms
4.53×[2006] min / max 0.539 ms /4.04 ms

Geometry GTX280 7.05 ms
12.6×Shaders min / max 7.03 ms /7.09 ms

Roger et al. 8800 GTS 10.6 ms
18.9×[2007a] min / max 9.09 ms /11.4 ms

Results from some earlier works [Horn 2005; Sengupta et al. 2006]
are not included in Table 3. This is because the publicly available
CUDPP implementation uses the same basic strategy, and offers
higher performance.

5.2 Global Prefix Sum

In order to find the correct output offsets for the valid elements, our
algorithm computes, albeit temporarily, what amounts to a global
prefix sum over the validity of elements. It is therefore simple to
modify the algorithm to compute a global prefix sum of the ele-
ments.

Using the variant that utilizes a SIMD prefix sum, as described in
Section 3.3, we need to change phase 1 to sum the input values,
as opposed to counting valid elements. Similarly, phase 3 must be
modified to perform a prefix sum on the values, and add the offset
from phase 2. Phase 2, however, remains unchanged.

Since the algorithm always reads and writesS elements, it achieves
perfect alignment and coherence for both reads and writes. In Ta-
ble 4, we compare the performance to some recent parallel prefix
sum implementations [Dotsenko et al. 2008; Sengupta et al. 2007].
An optimized version of the algorithm in Sengupta et al. [2007] is
implemented in CUDPP [CUDPP 2008].

Table 4: Required time to compute a prefix sum of32M elements. We compare our
implementation to two different algorithms. Measurements performed by Dotsenko et
al. used older hardware, but also compare performance to CUDPP. We have included
prefix sum performance reported by Dotsenko et al. for CUDPP.

Time (32M, 32 bit)
Our GTX280 3.7 ms

CUDPP GTX280 5.3 ms
8800 GTX 11.50 ms

Dotsenko et al. [2008] 8800 GTX 8.5 ms

If desired, our algorithm can compute the prefix sum in-place. E.g.
a prefix sum over220M elements (or880M byte of data) takes
25.3 ms to compute using our algorithm.

5.3 Stream Split and Radix Sort

Another commonly used primitive isstream split, by which a
stream is partitioned into two compact ranges. This is useful, for
example, when constructing binary trees. The stream split is sim-
ply two compactions, where the second has the negated validity.

Modifying our stream compaction algorithm to perform this oper-
ation is simple. All required information is already computed in
phases 1 and 2. The third phase must be modified to output all the
invalid elements in the same way as the valid ones at the end of the
range.

To test the efficiency of the split operation, we implemented a radix
sort and compared it to the fastest state of the art implementa-
tion [Satish et al. 2008], provided in the CUDA 2.1 SDK. The re-
sults are presented in Table 5.

Table 5: Comparison of our stream split based radix-sort and the currently fastest pub-
lished implementation. Our implementation shows almost identical performance, but
is more flexible. Our implementation operates on interleaved key-value pairs; Satish et
al. have separate arrays for keys and values. We can handle separate keys and values
by a pre- and postprocessing step that transforms the separate arrays into interleaved
data and back.

Input Data Satish et al. Our CUDPP(4M elements)
32 bit keys only 27.6 ms 28.2 ms 50.1 ms
32 bit key, 32 bit value

interleaved - 35.4 ms -
separate 38.5 ms 36.5 ms -

32 bit key, 96 bit value
interleaved - 61.7 ms -

Our performance is comparable with that of Satish et al. [2008],
and outperforms the CUDPP library [CUDPP 2008]. The imple-
mentation is very simple, we did not perform any in-depth analysis
or special optimization. We simply invoke the stream split opera-
tion once for each bit in the radix sort key. The simplicity makes
it very flexible, allowing any data type and number of bits as radix
keys.

6 Discussion

It is commonly assumed that, on future hardware, the compute-
to-bandwidth ratio will increase. To see how our algorithms might
perform if this is the case, we lowered the memory clock on our test
GTX 280. We tested our algorithms with a compute-to-bandwidth
ratio that is twice that of a GTX 280. In this scenario, the imple-
mentation that employs buffering using shared memory, described



in Section 3.5, outperforms the scattering and staging variants at
high proporions of valid elements.

A more conventional cache hierarchy, with e.g. write-combining
caches, on future hardware may favor our more simplistic imple-
mentations. Our manual buffering techniques, which incur some
computational overhead, would be made superfluous.

Our new algorithm should map well to the upcoming Intel Larrabee.
This architecture sports a native instructionvcompress [Abrash
2009], which is similar to ourcompactSIMD procedure.

7 Conclusion

We have presented a new algorithm, with several variations, for ef-
ficient stream compaction on the GPU; all variations perform, to the
best of our knowledge, better than any previously published work.

Since stream compaction is a commonly used primitive, applying
our algorithm should improve the performance in many existing
applications, e.g. tree traversal algorithms [Lauterbach et al. 2009],
GPU raytracing [Roger et al. 2007b] and algorithms utilising sort-
ing [Satish et al. 2008].

The algorithms make minimal demands on the capabilities of the
hardware, and should thus be implementable efficiently on most
multi-core SIMD processors, including, for example, the upcoming
Intel Larrabee GPU [Seiler et al. 2008] or AMD graphics hardware.

Since all global communication is limited to a single cheap pass,
this algorithm should scale well with an increasing number of inde-
pendent processor cores.

The algorithm also illustrates a successful general strategy for min-
imizing synchronization and maximizing the use of independent
SIMD processors. Different algorithms can be formulated by di-
viding the work into independent chunks and then combining the
results. This is illustrated by our implementation of a high perfor-
mance stream split and radix sort.

Source code of our reference implementations will be made avail-
able online.

Acknowledgments

We would like to thank Erik Sintorn and the anonymous reviewers
for their valuable comments.

References

ABRASH, M., A First Look at the Larrabee New Instructions
(LRBni), 2009.
http://www.ddj.com/hpc-high-performance-
computing/216402188.

BLELLOCH, G. E. 1990. Prefix Sums and Their Applications.
Tech. rep., Synthesis of Parallel Algorithms.

CHATTERJEE, S., BLELLOCH, G. E., AND ZAGHA , M. 1990.
Scan Primitives for Vector Computers. InIn Proceedings Super-
computing ’90, 666–675.

CUDPP: CUDA data parallel primitives library, 2008.
http://www.gpgpu.org/developer/cudpp/.

DOTSENKO, Y., GOVINDARAJU, N. K., SLOAN , P.-P., BOYD,
C., AND MANFERDELLI, J. 2008. Fast scan algorithms on
graphics processors. InICS ’08: Proceedings of the 22nd annual
international conference on Supercomputing, ACM, New York,
NY, USA, 205–213.

FATAHALIAN , K., AND HOUSTON, M. 2008. A closer look at
GPUs.Commun. ACM 51, 10, 50–57.

GRESS, A., GUTHE, M., AND KLEIN , R. 2006. GPU-based Col-
lision Detection for Deformable Parameterized Surfaces.Com-
puter Graphics Forum 25, 3 (Sept.), 497–506.

HILLIS , W. D., AND STEELE, JR., G. L. 1986. Data parallel
algorithms.Commun. ACM 29, 12, 1170–1183.

HORN, D. 2005. Stream reduction operations for GPGPU applica-
tions.

LAUTERBACH, C., GARLAND , M., SENGUPTA, S., LUEBKE, D.,
AND MANOCHA, D. 2009. Fast BVH Construction on GPUs. In
Proceedings of the Eurographics Symposium on Rendering, the
Eurographics Association, Eurographics and ACM/SIGGRAPH.

L INDHOLM , E., NICKOLLS, J., OBERMAN, S.,AND MONTRYM,
J. 2008. NVIDIA Tesla: A Unified Graphics and Computing
Architecture.IEEE Micro 28, 2, 39–55.

NVIDIA, CUDA Zone: Toolkit & SDK, 2008.
http://developer.nvidia.com/object/cuda.html.

ROGER, D., ASSARSSON, U., AND HOLZSCHUCH, N. 2007. Ef-
ficient Stream Reduction on the GPU. InWorkshop on General
Purpose Processing on Graphics Processing Units, D. Kaeli and
M. Leeser, Eds.

ROGER, D., ASSARSSON, U., AND HOLZSCHUCH, N. 2007.
Whitted Ray-Tracing for Dynamic Scenes using a Ray-Space
Hierarchy on the GPU. InRendering Techniques 2007 (Pro-
ceedings of the Eurographics Symposium on Rendering), the Eu-
rographics Association, J. Kautz and S. Pattanaik, Eds., Euro-
graphics and ACM/SIGGRAPH, 99–110.

SATISH, N., HARRIS, M., AND GARLAND , M. 2008. Design-
ing Efficient Sorting Algorithms for Manycore GPUs. NVIDIA
Technical Report NVR-2008-001, NVIDIA Corporation, Sept.

SEILER, L., CARMEAN , D., SPRANGLE, E., FORSYTH, T.,
ABRASH, M., DUBEY, P., JUNKINS, S., LAKE , A., SUGER-
MAN , J., CAVIN , R., ESPASA, R., GROCHOWSKI, E., JUAN ,
T., AND HANRAHAN , P. 2008. Larrabee: a many-core x86
architecture for visual computing. InSIGGRAPH ’08: ACM
SIGGRAPH 2008 papers, ACM, New York, NY, USA, 1–15.

SENGUPTA, S., LEFOHN, A. E., AND OWENS, J. D. 2006. A
Work-Efficient Step-Efficient Prefix Sum Algorithm. InPro-
ceedings of the 2006 Workshop on Edge Computing Using New
Commodity Architectures, D–26–27.

SENGUPTA, S., HARRIS, M., ZHANG, Y., AND OWENS, J. D.
2007. Scan Primitives for GPU Computing. InGraphics Hard-
ware 2007, ACM, 97–106.

WALD , I., GRIBBLE, C. P., BOULOS, S., AND KENSLER, A.
2007. SIMD Ray Stream Tracing - SIMD Ray Traversal with
Generalized Ray Packets and On-the-fly Re-Ordering. Tech.
Rep. UUSCI-2007-012.

ZHOU, K., HOU, Q., WANG, R., AND GUO, B. 2008. Real-time
KD-tree construction on graphics hardware. InSIGGRAPH Asia
’08: ACM SIGGRAPH Asia 2008 papers, ACM, New York, NY,
USA, 1–11.

ZIEGLER, G., TEVS, A., THEOBALT, C., AND SEIDEL, H.-P.
2006. GPU Point List Generation through Histogram Pyramids.
Technical Reports of the MPI for Informatics MPI-I-2006-4-002,
June.


