
Efficient Structure Learning of Markov Networks
using L1-Regularization

Su-In Lee Varun Ganapathi Daphne Koller
Department of Computer Science

Stanford University
Stanford, CA 94305-9010

{silee,varung,koller}@cs.stanford.edu

Abstract

Markov networks are widely used in a wide variety of applications, in problems
ranging from computer vision, to natural language, to computational biology. In
most current applications, even those that rely heavily on learned models, the
structure of the Markov network is constructed by hand, due to the lack of effec-
tive algorithms for learning Markov network structure from data. In this paper, we
provide a computationally effective method for learning Markov network structure
from data. Our method is based on the use of L1 regularization on the weights of
the log-linear model, which has the effect of biasing the model towards solutions
where many of the parameters are zero. This formulation converts the Markov
network learning problem into a convex optimization problem in a continuous
space, which can be solved using efficient gradient methods. A key issue in this
setting is the (unavoidable) use of approximate inference, which can lead to er-
rors in the gradient computation when the network structure is dense. Thus, we
explore the use of different feature introduction schemes and compare their per-
formance. We provide results for our method on synthetic data, and on two real
world data sets: modeling the joint distribution of pixel values in the MNIST data,
and modeling the joint distribution of genetic sequence variations in the human
HapMap data. We show that our L1-based method achieves considerably higher
generalization performance than the more standard L2-based method (a Gaussian
parameter prior) or pure maximum-likelihood learning. We also show that we can
learn MRF network structure at a computational cost that is not much greater than
learning parameters alone, demonstrating the existence of a feasible method for
this important problem.

1 Introduction
Undirected graphical models, such as Markov networks or log-linear models, have been used in an
ever-growing variety of applications, including computer vision, natural language, computational
biology, and more. However, as this modeling framework is used in increasingly more complex and
less well-understood domains, the problem of selecting from among the exponentially large space
of possible network structures becomes of great importance. Including all of the possibly relevant
interactions in the model generally leads to overfitting, and can also lead to difficulties in running
inference over the network. Moreover, learning a “good” structure can be an important task in its
own right, as it can provide insight about the underlying structure in the domain.

Unfortunately, the problem of learning Markov networks remains a challenge. The key diffi-
culty is that the maximum likelihood (ML) parameters of these networks have no analytic closed
form; finding these parameters requires an iterative procedure (such as conjugate gradient [14] or
BFGS [5]), where each iteration runs inference over the current model. This type of procedure is
computationally expensive even for models where inference is tractable. The problem of structure
learning is considerably harder. The dominant type of solution to this problem uses greedy local

heuristic search, which incrementally modifies the model by adding and possibly deleting features.
One approach [6, 13] adds features so as to greedily improve the model likelihood; once a feature
is added, it is never removed. As the feature addition step is heuristic and greedy, this can lead
to the inclusion of unnecessary features, and thereby to overly complex structures and overfitting.
An alternative approach [1, 7] explicitly searches over the space of low-treewidth models, but the
utility of such models in practice is unclear; indeed, hand-designed models for real-world problems
generally do not have low tree-width. Moreover, in all of the greedy heuristic search methods, the
learned network is (at best) a local optimum of a penalized likelihood score.

In this paper, we propose a different approach for learning the structure of a log-linear graphi-
cal model (or a Markov network). Rather than viewing it as a combinatorial search problem, we
embed the structure selection step within the problem of parameter estimation: features that have
weight zero (in log-space) are degenerate, and do not induce dependencies between the variables
they involve. To appropriately bias the model towards sparsity, we use a technique that has become
increasingly popular in the context of supervised learning, in problems that involve a large number of
features, many of which may be irrelevant. It has been long known [20] that using L1-regularization
over the model parameters — optimizing a joint objective that trades off fit to data with the sum of
the absolute values of the parameters — tends to lead to sparse models, where many weights have
value 0. More recently, Dudik et al. (2004) showed that density estimation in log-linear models us-
ing L1-regularized likelihood has sample complexity that grows only logarithmically in the number
of features of the log-linear model; Ng. (2004) shows a similar result for L1-regularized logistic
regression. These results show that this approach is useful for selecting the relevant features from a
large number of irrelevant ones. Other recent work proposes effective algorithms for L1-regularized
generalized linear models (e.g., [17, 9, 8]), support vector machines (e.g., [23]), and feature selection
in log-linear models encoding natural language grammars [18].

Surprisingly, the use of L1-regularization has not been proposed for the purpose of structure
learning in general Markov networks. In this paper, we explore this approach, and discuss issues
that are important to its effective application to large problems. A key point is that, for a given L1-
based model score and given candidate feature set F , we have a fixed convex optimization problem
that admits a unique optimal solution. Due to the properties of the L1 score, in this solution, many
features will have weight 0, generally leading to a sparse network structure. However, it is generally
impractical to simply initialize the model to include all possible features: exact inference in such
a model is almost invariably intractable, and approximate inference methods such as loopy belief
propagation [16] are likely to give highly inaccurate estimates of the gradient, leading to poorly
learned models. Thus, we propose an algorithm schema that gradually introduces features into
the model, and lets the L1-regularization scheme eliminate them via the optimization process. We
explore the use of different approaches for feature introduction, one based on the gain-based method
of Della Pietra, Della Pietra and Lafferty [6] and one on the grafting method of Perkins, Lacker and
Theiler [17]. We provide a sound termination condition for the algorithm based on the criterion
proposed by Perkins et al. [17]; given correct estimates of the gradient, this algorithm is guaranteed
to terminate only at the unique global optimum, for any reasonable feature introduction method.

We test our method on synthetic data generated from known MRFs and on two real-world tasks:
modeling the joint distribution of pixel values in the MNIST data [11], and modeling the joint
distribution of genetic sequence variations — single-nucleotide polymorphisms (SNPs) — in the
human HapMap data [3]. Our results show that L1-regularization out-performs other approaches,
and provides an effective method for learning MRF structure even in large, complex domains.

2 Preliminaries
We focus our presentation on the framework of log-linear models, which forms a convenient basis
for a discussion of learning. Let X = {X1, . . . , Xn} be a set of discrete-valued random variables. A
log-linear model is a compact representation of a probability distribution over assignments toX . The
log-linear model is defined in terms of a set of feature functions fk(Xk), each of which is a function
that defines a numerical value for each assignment xk to some subset Xk ⊂ X . Given a set of
feature functions F = {fk}, the parameters of the log-linear model are weights θ = {θk : fk ∈ F}.
The overall distribution is then defined as: Pθ(x) = 1

Z(θ) exp(
∑

fk∈F θkfk(xk)), where xk is the
assignment to Xk within x, and Z(θ) is the partition function that ensures that the distribution is
normalized (so that all entries sum to 1). Note that this definition of features encompasses both
“standard” features that relate unobserved network variables (e.g., the part of speech of a word
in a sentence) to observed elements in the data (e.g., the word itself), and structural features that

encode the interaction between hidden variables in the model. A log-linear model induces a Markov
network over X , where there is an edge between every pair of variables Xi, Xj that appear together
in some feature fk(Xk) (Xi, Xj ∈ Xk). The clique potentials are constructed from the log-linear
features in the obvious way. Conversely, every Markov network can be encoded as a log-linear
model by defining a feature which is an indicator function for every assignment of variables xc to a
clique Xc. The mapping to Markov networks is useful, as most inference algorithms, such as belief
propagation [16, 15], operate on the graph structure of the Markov network.

The standard learning problem for MRFs is formulated as follows. We are given a set of IID
training instances D = {x[1], . . . , x[M]}, each consisting of a full assignment to the variables in
X . Our goal is to output a log-linear model M over X , which consists of a set of features F and a
parameter vector θ that specifies a weight for each fk ∈ F .

The log-likelihood function log P (D | M) has the following form:

`(M : D) =
∑

fk∈F

θkfk(D)−M log Z(θ) = θ>f(D)−M log Z(θ), (1)

where fk(D) =
∑M

m=1 fk(xk[m]) is the sum of the feature values over the entire data set, f(D)
is the vector where all of these aggregate features have been arranged in the same order as the
parameter vector, and θ>f(D) is a vector dot-product operation. There is no closed-form solution
for the parameters that maximize Eq. (1), but the objective is concave, and can therefore be optimized
using numerical optimization procedures such as conjugate gradient [14] or BFGS [5]. The gradient
of the log-likelihood is:

∂`(M : D)
∂θk

= fk(D)−M IEx∼Pθ
[fk(x)]. (2)

This expression has a particularly intuitive form: the gradient attempts to make the feature counts in
the empirical data equal to their expected counts relative to the learned model. Note that, to compute
the expected feature counts, we must perform inference relative to the current model. This inference
step must be performed at every step of the gradient processs.

3 L1-Regularized Structure Learning
We formulate our structure learning problem as follows. We assume that there is a (possibly very
large) set of features F , from which we wish to select a subset F ⊆ F for inclusion in the model.
This problem is generally solved using a heuristic search over the combinatorial space of possible
feature subsets. Our approach addresses it as a search over the possible parameter vectors θ ∈ IR|F|.

Specifically, rather than optimizing the log-likelihood itself, we introduce a Laplacian parame-
ter prior for each feature fk takes the form P (θk) = βk/2 · exp(−βk|θk|). We define P (θ) =∏

k P (θk). We now optimize the posterior probability P (D,θ) = P (D | θ)P (θ) rather than the
likelihood. Taking the logarithm and eliminating constant terms, we obtain the following objective:

max
θ

[θ>f(D)−M log Z(θ)−
∑

k

βk|θk|]. (3)

In most cases, the same prior is used for all features, so we have βk = β for all k. This objective
is convex, and can be optimized efficiently using methods such as conjugate gradient or BFGS,
although care needs to be taken with the discontinuity of the derivative at 0. Thus, in principle, we
can simply optimize this objective to obtain its globally optimal parameter assignment.

The objective of Eq. (3) should be contrasted with the one obtained for the more standard param-
eter prior used for log-linear models: the mean-zero Gaussian prior P (θk) ∝ exp(−θ2

k/2σ2). The
gaussian prior induces a regularization term that is quadratic in θk, which penalizes large features
much more than smaller ones. Conversely, L1-regularization still penalizes small terms strongly,
thereby forcing parameters to 0. Overall, it is known that, empirically, optimizing an L1-regularized
objective leads to a sparse representation with a relative small number of non-zero parameters.

Aside from this intuitive argument, recent theoretical results also provide a formal justification
for the use of L1-regularization over other approaches: The analysis of Dudik et al. (2004) and Ng.
(2004) suggests that this form of regularization is effective at identifying relevant features even with
a relatively small number of samples. Building directly on the results of Dudik et al. (2004) , we
can show the following result:

Corollary 3.1: Let X = {X1, . . . , Xn} be a set of variables each of domain size d, and P ∗ (X)
be a distribution. Let F be the set of indicator features over all subsets of variables X ⊂ X of

cardinality at most c, and δ, ε, B > 0. Let be the parameterization over F that optimizes

θ∗B = arg max
θ : ‖θ‖≤B

IEξ∼P∗
[
`(ξ : θ̂∗B)

]
.

For a data set D, let θ̂D be the assignment that optimizes Eq. (3), for regularization parameter
βk = β =

√
c ln(2nd/δ)/(2m) for all k. Then with probability at least 1 − δ, for a data set D of

IID instances from P ∗ of size

m ≥ 2cB2 1
ε2

ln
(

2nd

δ

)
.

we have that:
IEξ∼P∗

[
`(ξ : θ̂D)

]
≥ IEξ∼P∗ [`(ξ : θ∗B)]− ε.

In words, using the L1-regularized log-likelihood objective, we can learn a Markov network with
a maximal clique size c, whose expected log-likelihood relative to the true underlying distribution is
at most ε worse than the log-likelihood of the optimal Markov network in this class whose L1-norm
is at most B. The number of samples required grows logarithmically in the number of nodes in
the network, and polynomially in B. The dependence on B is quite natural, indicating that more
samples are required to learn networks containing more “strong” interactions. Note, however, that
if we bound the magnitude of each potential in the Markov network, then B = O((nd)c), so that a
polynomial number of data instances suffices.

4 Incremental Feature Introduction
The above discussion implicitly assumed that we can find the global optimum of Eq. (3) by simple
convex optimization. However, we cannot simply include all of the features in the model in advance,
and use only parameter optimization to prune away the irrelevant ones. Recall that computing the
gradient requires performing inference in the resulting model. If we have too many features, the
model may be too densely connected to allow effective inference. Indeed, even approximate infer-
ence, such as belief propagation, may fail to converge and therefore give rise to unstable estimates
of the gradient and thereby to suboptimal solutions. Thus, our approach also contains a feature
introduction component, which gradually selects features to add into the model, allowing the opti-
mization process to search for the optimal values for their parameters. More precisely, our algorithm
maintains a set of active features F ⊆ F . An inactive feature fk has its parameter θk set to 0; the
parameters of active features are free to be changed when optimizing the objective Eq. (3).

In addition to various simple baseline methods, we explore two feature introduction methods,
both of which are greedy and myopic, in that they compute some heuristic estimate of the likely
benefit to be gained from introducing a single feature into the active set.

The grafting procedure of Perkins et al. [17], which was developed for feature selection in stan-
dard classification tasks, the features are selected based on the gradient: We first optimize the ob-
jective relative to the current active weights F , so that, at convergence, the gradient relative to these
features is zero. Then, for each inactive feature f , we compute the partial derivative of the objective
Eq. (3) relative to θf , and select the one whose gradient is largest.

A more conservative estimate is obtained from the gain-based method of Della Pietra et al. [6].
This method was designed for the log-likelihood objective. It begins by optimizing the parameters
relative to the current active set F . Then, for each inactive feature f , it computes the log-likelihood
gain of adding that feature, assuming that we could optimize its feature weight arbitrarily, but that
the weights of all other features are held constant. It then introduces the feature with the greatest
gain. Della Pietra et al. show that the gain is a concave objective that can be computed efficiently
using a one-dimensional line search. For the restricted case of binary-valued features, they provide
a closed-form solution for the gain.

Our task is to compute not the optimal gain in log-likelihood, but rather the optimal gain of Eq. (3).
It is not difficult to see that the gain in this objective, which differs from the log-likelihood in only
a linear term, is also a concave function that can be optimized using line search. Moreover, for the
case of binary-valued features, we can also provide a closed-form solution for the gain, which we
omit for lack of space. In our experiments, we use a slightly different form of feature, which takes
values in ±1. For this feature, the change in the objective function for introducing a feature f is:

∆L1 = θkfk(D)− β‖θk‖ −M log[exp(θk)Pθ(fk) + exp(−θk)Pθ(¬fk)],

where M is the number of training instances. If we take the derivative of the above function and set
it to zero, we also get a closed form solution:

θk =
1
2

log
(

(M + fk(D)− βM sign(θk))Pθ(¬fk)
(M − fk(D) + βM sign(θk))Pθ(fk)

)
.

Both methods are heuristic, in that they consider only the potential gain of adding a single feature
in isolation, assuming all other weights are held constant. However, the grafting method is more
optimistic, in that it estimates the value of adding a single feature via the slope of adding it, whereas
the gain-based approach also considers, intuitively, how far one can go in that direction before the
gain “peaks out”. The gain based heuristic is, in fact, a lower bound on the actual gain obtained from
adding this feature, while allowing the other features to also adapt. Overall, the gain-based heuristic
provides a better estimate of the value of adding the feature, albeit at slightly greater computational
cost (except in the limited cases where a closed-form solution can be found).

As observed by Perkins et al.. [17], the use of the L1-regularized objective also provides us with
a sound stopping criterion for any incremental feature-induction algorithm. If we have that, for
every inactive fk 6∈ F , the gradient of the log-likelihood |∂`(M:D)

∂θk
| ≤ β, then the gradient of the

objective in any direction is non-positive, and the objective is at a stationary point. Importantly,
as the overall objective is a concave function, it has a unique global maximum. Hence, once the
termination condition is achieved, we are guaranteed that we are at the local maximum, regardless
of the feature introduction method used. In other words, although the method contains a heuristic
component for introducing features, there is no impact of the heuristic on the final outcome, but only
on the complexity.

5 The Use of Approximate Inference
All of the steps in the above algorithm rely on the use of inference for computing key quantities: The
gradient is needed for the parameter optimization, for the grafting method, and for the termination
condition, and the expression for the gradient requires the computation of marginal probabilities
relative to our current model. Similarly, the computation of the gain also requires inference. As
we discussed above, in most of the networks that are useful models for real applications, exact
inference is intractable. Therefore, we must resort to approximate inference, which results in errors
in the gradient. While many approximate inference methods have been proposed, one of the most
commonly used is the general class of loopy belief propagation (BP) algorithms [16, 15, 22]. The
use of an approximate inference algorithm such as BP raises several important points.

One important question issue relates to the computation of the gradient or the gain for features that
are currently inactive. The belief propagation algorithm, when executed on a particular network with
a set of active features F , creates a cluster for every subset of variables Xk that appear as the scope of
a feature fk(Xk). The output of the BP inference process is a set of marginal probabilities over all of
the clusters; thus, it returns the necessary information for computing the expected sufficient statistics
in the gradient of the objective (see Eq. (2)). However, for features fk(Xk) that are currently
inactive, there is no corresponding cluster in the induced Markov network, and hence, in most cases,
the necessary marginal probabilities over Xk will not be computed by BP. We can approximate this
marginal probability by extracting a subtree of the calibrated loopy graph that contains all of the
variables in Xk. At convergence of the BP algorithm, every subtree of the loopy graph is calibrated,
in that all of the belief potentials must agree [21]. Thus, we can view the subtree as a calibrated
clique tree, and use standard dynamic programming methods over the tree (see, e.g.. [4]) to extract
an approximate joint distribution over Xk.

A second key issue is that the performance of BP algorithms generally degrades significantly as
the density of the network increases: they are less likely to converge, and the answers they return
are typically much less accurate. Moreover, non-convergence of the inference is more common
when the network parameters are allowed to take larger, more extreme values; see, for example, [19,
10, 12] for some theoretical results supporting this empirical phenomenon. Thus, it is important
to keep the model amenable to approximate inference, and thereby continue to improve, for as
long as possible. This observation has two important consequences. First, while different feature
introduction achieve the same results when using exact inference, their outcomes can vary greatly
when using approximate inference, due to differences in the structure of the networks arising during
the learning process. Thus, as we shall see, feature introduction methods that introduce the more
relevant features first work much better in practice. Second, in order to keep the inference feasible for
as long as possible, we utilize an annealing schedule for the regularization parameter β, beginning

with large values of β, leading to greater sparsification of the structure, and then gradually reducing
β, allowing additional (weaker) features to be introduced. This method allows a greater part of the
learning to be executed with a more robust model.

6 Results
In our experiments, we focus on binary pairwise Markov networks, where each feature function is
an indicator function for a certain assignment to either a pair of nodes of a single node. We used
conjugate gradient method for solving the optimization problem Eq. (3). We use the conditional
marginal log-likelihood (CMLL) as our evaluation metric on the learned network. To calculate
CMLL, we first divide the variables into two groups: Xhidden and Xobserved. Then, for any test
instance X[m], we compute CMLL(X[m]) =

∑
Xh∈Xhidden[m] log P (Xh|Xobserved[m]). In practice,

we divided the variables into four groups and calculated the average CMLL when observing only
one group and hiding the rest. Note that the CMLL is defined only with respect to the marginal
probabilities (but not the global partition function Z(θ)), which are empirically thought to be more
accurate.

We considered three feature induction schemes: (a) Gain: based on estimated change of gain, (b)
Grad: using grafting and (c) Simple: based on a simple pairwise similarity metric. Under the Sim-
ple scheme, the score of a pairwise feature between Xi and Xj is the mutual information between
Xi and Xj . For each scheme, we varied the regularization method: (a) None: no regularization, (b)
L1: L1 regularization and (c) L2: L2 regularization.1

Experiments on Synthetically Generated Data. We generated synthetic data through Gibbs
sampling on a synthetic network. A network structure with N nodes was generated by treating
each possible edge as a Bernoulli random variable and sampling the edges. We chose the parameter
of Bernoulli distribution so that each node had K neighbors on average. In order to analyze the
dependence of the performance on the size and connectivity of a network, we varied N and K.

Figure 1: Results from the experiments on the synthetic data (See text for details.)

We compare our algorithm using L1 regularization (-L1) against no regularization (-None) and
L2 regularization (-L2) in three different ways. Figure 1 summarizes our results on these data sets,
and includes information about the networks used for each experiment.

In Figure 1 (a), we measure performance using CMLL and reconstruction error as the number of
training examples increases. As expected, L1 produces the biggest improvement when the number
of training instances is small, whereas L2 and None are more prone to overfitting. This effect is
much more pronounced when measuring the Hamming distance, the number of disagreeing edges
between the learned structure and the true structure. The figure shows that L2 and None learn many
spurious edges. Not surprisingly, L1 shows sparser distribution on the weights, thereby it has smaller
number of edges with non-negligible weights; the structures from None and L2 tend to have many
edges with small values.

In Figure 1 (b), we plot performance as a function of the density of the synthetic network. As
the synthetic network gets denser, L1 increasingly outperforms the other algorithms. This may be
because as the graph gets more dense, it is likely to introduce an spurious edge, which L1 may later
remove, whereas None and L2 do not.

In Figure 1 (c), we measure the wall-clock time as a function of the size of the synthetic network.
The method labeled ’True’ simply learns the parameter given the true model. Figure 1 (c) shows that
the computational cost of learning the structure of the network using Gain-L1 not much more than

1We ignore certain combinations for efficiency. Calculating the approximate gain with the L2 regularization
involves a line search in feature induction step.

that of learning the parameter alone. Moreover, L1 increasingly outperforms other regularization
methods as the number of nodes increases.
Experiments on MNIST Digit Dataset. We then applied our algorithm to handwritten digits.
The MNIST training set consists of 32 × 32 binary images of handwritten digits. In order to speed
up inference and learning, we resized the image to 16 × 16. We trained the model for each digit
separately, using a training set consisting of 189–195 images per digit. For each digit, we used 50
as training instances and the remainder as test instances.

Figure 2 compares CMLL of the different methods. To save space, we show the digits on which
the relative difference in performance of L1 compared to the next best competitor is the lowest (digit
5) and highest (digit 0), as well as the average performance.

Figure 2: Results from the experiments on MNIST dataset

As mentioned earlier, the performance of the regularized algorithm should be insensitive to the
feature induction method, assuming inference is exact. However, in practice, because inference is
approximate, an induction algorithm that introduces spurious features will affect the quality of in-
ference, and therefore the performance of the algorithms. This effect is substantiated by the poor
performance of the Simple-L1 and Simple-L2 methods that introduce features based on mutual infor-
mation rather than gradient (Grad-) or approximate gain (Gain-). Nevertheless, L1 still outperforms
None and L2, regardless of which feature induction algorithm with which it is paired. Figure 2 (b)
illustrates that as the induction algorithm introduces more features, L1 increasingly outperforms the
others.

Figure 2 (c) shows a visualization of the MRF learned when modeling digits 4 and 7. Of course,
one would expect many short-range interactions, such as the associativity between neighboring pix-
els, and the algorithm does indeed capture these relationships. (They are not shown in the graph
to simplify the analysis of the relationships.) Interestingly, the algorithm picks up long-range in-
teractions, which presumably allow the algorithm to model the variations in the size and shape of
hand-written digits.

Experiments on Human Genetic Variation Data. Human HapMap data 2 represent the binary
genetic variation among individuals. Each of five data sets used in our experiment contains binary
genotype values on 618-1052 genomic spots of 120 individuals. Table 1 compares CMLLs among
three methods for these data sets. For all data sets, L1 shows better performance than L2 and None.

Table 1: Results from the experiments on human HapMap dataset

Data ENm010 ENm013 ENr321 ENr232 ENr123 ENr213
Number of Nodes 618 1042 768 614 1052 796

Gain-L1 -6.52 -9.76 -7.21 -6.12 -11.9 -8.22
Grad-L2 -7.56 -12.6 -8.53 -6.93 -13.2 -9.54
Gain-None -7.1 -14.3 -9.13 -7.13 -12.9 -10.1

7 Discussion and Future Work
We have presented a simple and effective method for learning the structure of Markov networks. We
viewed the structure learning problem as an L1-regularized parameter estimation task, allowing it
to be solved using convex optimization techniques. We showed that the computational cost of our
method is not considerably greater than pure parameter estimation for a fixed structure, suggesting
that MRF structure learning is a feasible option for many applications.

There are some important directions in which our work can be extended. Currently, our method
handles each feature in the log-linear model independently, with no attempt to bias the learning

2Human HapMap data are available at:http://www.hapmap.org.

towards sparsity in the structure of the induced Markov network. We can extend our approach to
introduce such a bias by using a variant of L1 regularization that penalizes blocks of parameters
together, such as the block-L1-norm of [2].

A key limiting factor in MRF learning, and in our approach, is the fact that it requires inference
over the model. Thus, the cost of MRF learning can become prohibitive in complex domains in-
volving large numbers of variables and/or a dense interaction structure. Our experiments show that
the results obtained from approximate algorithms, such as belief propagation, even when imprecise,
are often good enough to lead to improvement in the objective. However, as the learned network
structure becomes dense, the performance of the algorithm does degrade. This is exacerbated by
the fact that the approximate gradient does not always move the parameters to 0, diminishing the
sparsifying effect of the L1 regularization, and rendering the inference even less precise. It would
be interesting to explore inference methods whose goal is correctly estimating the direction (even if
not the magnitude) of the gradient.

Finally, it would be interesting to explore the viability of the learned network structures in real-
world applications, both for density estimation and for knowledge discovery. For example, the
HapMap data provides opportunities for both: The learned network can be used to predict important
SNPs from a smaller subset of measured SNPs. Moreover, the structure of the learned network may
reveal interesting insights about the viability of different combinations of SNPs.

8 Acknowledgments
We give warm thanks to Ben Taskar for many useful discussions. This work was supported by
National Science Foundation grant DBI-0345474 and DARPA under Transfer Learning Program.

References
[1] F. Bach and M. Jordan. Thin junction trees. In NIPS 14, 2002.
[2] F.R. Bach, G.R.G. Lanckriet, and M.I. Jordan. Multiple kernel learning, conic duality, and the smo

algorithm, 2004.
[3] The International HapMap Consortium. The international hapmap project. Nature, 426:789–796, 2003.
[4] Robert G. Cowell and David J. Spiegelhalter. Probabilistic Networks and Expert Systems. Springer-Verlag

New York, Inc., Secaucus, NJ, USA, 1999.
[5] H. Daumé III. Notes on CG and LM-BFGS optimization of logistic regression. August 2004.
[6] S. Della Pietra, V.J. Della Pietra, and J.D. Lafferty. Inducing features of random fields. IEEE Transactions

on Pattern Analysis and Machine Intelligence, 19(4):380–393, 1997.
[7] A. Deshpande, M.N. Garofalakis, and M.I. Jordan. Efficient stepwise selection in decomposable models.

In Proc. UAI, pages 128–135, 2001.
[8] A. Genkin, D. D. Lewis, and D. Madigan. Large-scale bayesian logistic regression for text categorization.

2004.
[9] J. Goodman. Exponential priors for maximum entropy models. In North American ACL, 2005.

[10] Alexander T. Ihler, John W. Fischer III, and Alan S. Willsky. Loopy belief propagation: Convergence and
effects of message errors. J. Mach. Learn. Res., 6:905–936, 2005.

[11] Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner. Gradient-based learning applied to document recognition.
Proceedings of the IEEE, 86(11):2278–2324, November 1998.

[12] Martijn A. R. Leisink and Hilbert J. Kappen. General lower bounds based on computer generated higher
order expansions. In UAI, pages 293–300, 2002.

[13] A. McCallum. Efficiently inducing features of conditional random fields. In Proc. UAI, 2003.
[14] Thomas P. Minka. Algorithms for maximum-likelihood logistic regression. 2001.
[15] K. P. Murphy, Y. Weiss, and M. I. Jordan. Loopy belief propagation for approximate inference: an

empirical study. pages 467–475, 1999.
[16] J. Pearl. Probabilistic Reasoning in Intelligent Systems. Morgan Kaufmann, 1988.
[17] S. Perkins, K. Lacker, and J. Theiler. Grafting: Fast, incremental feature selection by gradient descent in

function space. 3(2003):1333–1356, 2003.
[18] Stefan Riezler and Alexander Vasserman. Incremental feature selection and l1 regularization for relaxed

maximum-entropy modeling. In Proceedings of EMNLP 2004.
[19] Sekhar Tatikonda and Michael I. Jordan. Loopy belief propogation and gibbs measures. In UAI, pages

493–500, 2002.
[20] R Tibshirani. Regression shrinkage and selection via the lasso. J. Royal. Statist. Soc B, 1996.
[21] Martin J. Wainwright, Erik B. Sudderth, and Alan S. Willsky. Tree-based modeling and estimation of

gaussian processes on graphs with cycles. In Todd K. Leen, Thomas G. Dietterich, and Volker Tresp,
editors, Advances in Neural Information Processing Systems 13, pages 661–667. MIT Press, 2001.

[22] Jonathan S. Yedidia, William T. Freeman, and Yair Weiss. Generalized belief propagation. In Advances
in Neural Information Processing Systems 13. MIT Press, 2001.

[23] J. Zhu, S. Rosset, T. Hastie, and R. Tibshirani. 1-norm support vector machines. In Proc. NIPS, 2003.

