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Abstract We consider the problem of fitting a subspace of a specified dimension k

to a set P of n points in R
d . The fit of a subspace F is measured by the Lτ norm, that

is, it is defined as the τ -root of the sum of the τ th powers of the Euclidean distances
of the points in P from F , for some τ ≥ 1. Our main result is a randomized algorithm

that takes as input P , k, and a parameter 0 < ε < 1; runs in nd · 2O( τk2
ε

log2 k
ε
) time,

and returns a k-subspace that with probability at least 1/2 has a fit that is at most
(1 + ε) times that of the optimal k-subspace.

Keywords Dimension reduction · Low-rank approximation · Shape fitting

1 Introduction

Confronted with high-dimensional data arising from either word-document count,
global climate patterns or any one of the myriad other sources, most scientific ap-
proaches extract a good low-dimensional summary. This desire to reduce dimension-
ality may be seen as a consequence of Occam’s Razor, and the scientific methodolo-
gies we have in mind include those from data mining and statistics.

Computationally efficient statistical techniques for reducing dimensionality in-
clude principal component analysis and multidimensional scaling [24]. These essen-
tially fit a flat of a specified dimension to the set of observed points in a relatively

A preliminary version of this paper appeared in the proceedings of the ACM-SIAM Symposium
on Discrete Algorithms (SODA), 2007.
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high-dimensional space. In the case that the data points lie close to a low-dimensional
flat, these techniques are also consistent in the sense of being able to discover this flat,
asymptotically. Interestingly, these techniques can also be adapted to discover under-
lying low-dimensional non-linear manifolds, see for example [27, 29, 31]. Motivated
by such applications we consider the problem of fitting a flat of a specified dimension
to a finite set P of n points in R

d .
Specifically, we are interested in the following approximate subspace fitting prob-

lem: Given P as above, an integer 0 ≤ k ≤ d − 1, a measure RD(F ′,P ) of the fit
of any subspace F ′ to P , and a parameter ε ≥ 0, find a k-dimensional subspace F

such that RD(F,P ) ≤ (1 + ε)RD(F ′,P ) for every k-dimensional subspace F ′. We
will refer to the special case where ε = 0 as the exact subspace fitting problem. Here
and throughout the rest of the paper, the word ‘subspace’ will refer to a linear sub-
space and the phrase ‘k-subspace’ will refer to a k-dimensional linear subspace. A flat
(resp., k-flat) F in R

d is defined to be a translation of a subspace (resp., k-subspace).
For each τ ≥ 1, a measure of how well the flat F fits P is RDτ (F,P ) =

(
∑

p∈P d(p,F )τ )1/τ , where d(p,F ) is some measure of the distance between point
p and flat F . In the case τ = ∞, RDτ (F,P ) is naturally defined as maxp∈P d(p,F ).
In this article, we take d(p,F ) to be minx∈F ‖p − x‖2, the minimum Euclidean dis-
tance between p and a point in F . We will consider the flat fitting problem with the fit
thus measured by RDτ (·, ·). This problem has received considerable attention, par-
ticularly for the cases τ = 1,2,∞. We note that the choice of τ can be very important
in some applications. For example, let us consider the case of k = 0. The optimal flat
with τ = 1 is the spatial median which is known to be very robust to the presence
of outliers in contrast to the sample mean which corresponds to the case τ = 2, see
for example [6] and the references therein. Our main result is that for any τ ≥ 1, the
approximate flat fitting problem can be solved in O(nd) time, with the constant of
proportionality depending solely on ε, k, and τ . Importantly, note that the dimension
d is considered part of the input and not a constant.

We now review some work on the flat fitting problem, beginning with the case
τ = ∞. When k = 0, the problem corresponds to the minimum enclosing ball prob-
lem and can be solved in time polynomial in the number of points, the dimension,
and log 1

ε
; see for instance [17]. The case k = 1, the minimum enclosing cylinder

problem, is NP-hard [25]. For any fixed k, there are algorithms that solve the prob-
lem in O(ndCε,k) time, where Cε,k is a constant that is exponential in 2k/ε [22, 26].
When k is part of the input and is large relative to d , the problem becomes hard
to approximate in polynomial time to within a factor of (logn)δ , for some δ > 0
[4, 30]. The best known polynomial-time approximation algorithms yield an approx-
imation guarantee of O(

√
logn) [30]. (For the case k = d − 1, an approximation

guarantee of O(
√

d
logd

) is also known [5].) If d is a constant, the problem can be

solved in time polynomial in the number of points and log 1
ε

for every k [14]; approx-
imation algorithms with running time near linear in n and exponential in d are also
known [1].

We now turn to the case τ = 2, focusing on the subspace fitting problem, where
some remarkable algebraic properties help the problem. For instance, it is well known
that the optimal k-subspace is obtained by the span of the k right singular vectors cor-
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responding to the top k singular values of the singular value decomposition (SVD) of
the n×d matrix whose rows correspond to points in P . This leads to a polynomial (in
fact, O(nd × min{n,d})) time algorithm for this problem; see the discussion in [11].
For the ε-approximate problem, recent works give algorithms that are near linear in
ndk
ε

[2, 10, 19, 28]; this running time improves over O(nd × min{n,d}) when k is
small.

The case τ = 1 and k = 0 of flat fitting is the Fermat–Weber problem, which
reduces to minimizing a convex function over R

d . For this problem, an algorithm
that is polynomial in the number of points, the dimension, and log 1

ε
is given by [7].

The case k = d − 1 is referred to as the median hyperplane problem. Assuming the
input point set P spans R

d , it was observed that the optimal hyperplane is the span of
a subset of d points of P . Based on this, algorithms that run in O(nd) time are known
for solving this problem exactly; see the surveys [12, 23]. For 0 < k < d − 1, we are
not aware of other work on the polynomial-time solvability of this problem for either
the exact or approximate versions. If d is fixed, ε-approximation algorithms that are
near linear in n (but exponential in d) are known, see [15, 20].

A problem related to the median hyperplane problem is the well-studied L1 re-
gression problem; here we are given a real n × d matrix A, and a column vector
b ∈ R

n, and the goal is to find x ∈ R
d that minimizes ‖Ax − b‖1. For recent work on

this and more generally the Lτ regression we refer to [8, 13].
The flat fitting problem studied in this article assumes the underlying distance

d(p,F ) of a point p from flat F to be defined in terms of the Euclidean norm. Our
techniques appear to rely on the special properties of the Euclidean norm. There has
been significant interest in the flat fitting problem when this distance is defined using
other norms [17, 18]. We briefly mention a few highlights from [17] here, focusing on
the case where τ = ∞. When d(p,F ) is defined using the ‖ · ‖∞ norm, that is, when
d(p,F ) = minx∈F ‖p − x‖∞, the flat fitting problem with k = d − 1 remains NP-
hard. On the other hand, when d(p,F ) is defined using the ‖ · ‖1 norm, the flat fitting
problem with k = d − 1 has a polynomial-time algorithm. Thus the choice of the
norm used to measure the distance has significant consequences for the computational
complexity. At the other extreme, the flat fitting problem with k = 0 has a polynomial-
time algorithm when the distance d(p,F ) is measured using either the ‖ · ‖∞ or the
‖ · ‖1 norm. For the case of constant k ≥ 1, we are not aware of prior work on the
subspace fitting problem when the distance d(p,F ) is measured using norms other
than the Euclidean norm.

1.1 Results and Techniques

Our main result is the following.

Theorem 1.1 There is a randomized algorithm that, given any set P of n points

in R
d , any 1 ≤ k < d , 0 < ε < 1, and constant τ ∈ [1,∞), runs in O(ndk2

ε
log k

ε
)

time and returns with probability 2−O( τk2
ε

log2 k
ε
) a k-subspace F such that

RDτ (F,P ) ≤ (1 + ε)RDτ

(
F ′,P

)
,

for any k-subspace F ′.
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It is also useful to highlight the version of this result where the success probability
is at least 1/2; its proof is included in the Appendix.

Corollary 1.2 There is a randomized algorithm that, given any set P of n points

in R
d , any 1 ≤ k < d , 0 < ε < 1, and τ ∈ [1,∞), runs in nd · 2O( τk2

ε
log2 k

ε
) time and

returns with probability at least 1/2 a k-subspace F such that

RDτ (F,P ) ≤ (1 + ε)RDτ

(
F ′,P

)
,

for any k-subspace F ′.

Thus the running time of the algorithm of Corollary 1.2 is O(nd) if τ , k, and ε are
treated as constants, and the constant is exponential in τk

ε
. Ours is the first work that

achieves such a running time for each τ 	= 2,∞.
We now outline our algorithm for Theorem 1.1 and its analysis, starting with the

case k = 1, where we want to fit a line. We compute a sequence of lines �0, �1, . . . , �i ,
where i = O( 1

ε
log 1

ε
), as follows. We pick a random point from the input set P by

sampling according to the τ th powers of the Euclidean norms of the points, and let �0

be the line through this point. Having computed �0, . . . , �j , we extend the sequence
by picking a random point w from P according to the same distribution as above, and
letting �j+1 be a randomly chosen line (according to a suitable distribution) from the
2-subspace spanned by �j and w. Having computed the entire sequence �0, �1, . . . , �i ,
we pick one of these i + 1 lines uniformly at random and return this as our solution.

We note that our algorithm avoids the curse of dimensionality by generating �j+1

from a known 2-subspace. Our analysis begins by observing that �0 is likely to
be close to the optimal line �∗ in terms of angle. Furthermore, if RDτ (�j ,P ) >

(1 + ε)RDτ (�
∗,P ), then it is likely that the sampled point w will be a “witness” to

it, that is, d(w,�j ) > (1 + ε
2 )d(w, �∗). If w is in fact a witness, we show that �j+1 is

likely to make a significantly smaller angle with �∗ when compared to �j .
The argument concludes by noting that if there are sufficiently many angle im-

provements, then one of the lines in the computed sequence is a solution with the
desired accuracy. For k > 1, our algorithm works by guessing a larger sequence of
O(k

ε
log k

ε
) lines using the same algorithm as above. We show that with probability

2−O( τk
ε

log2 k
ε
) at least one line � in the sequence has the property that a k-subspace

containing � is nearly optimal. The algorithm then guesses � from this sequence,
projects to the orthogonal complement of �, and recursively finds a nearly optimal
(k−1)-subspace. The algorithm returns the k-subspace spanned by � and this (k−1)-
subspace.

Theorem 1.1 is readily extended to the approximate flat fitting problem as well.
Essentially, the problem of finding an approximately optimal flat of dimension k can
be reduced to the problem of finding an approximately optimal subspace of dimension
k + 1. To keep our exposition from being repetitive, we focus on the subspace fitting
problem.
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1.2 Discussion of Related Work

Our algorithm and analysis draws ideas from several recent papers. Bădoiu et al. [3]
highlighted a useful principle when studying related problems for k = 0: if a candi-
date point is not nearly optimal, then a point in P that is much closer to the optimal
point compared to the candidate point can, in some sense, be used to make progress
from the current candidate point. Har-Peled and Varadarajan [22], who consider the
case τ = ∞, show how this principle can be refined and usefully applied when k > 0.
This principle in its further refined form plays a role here. Another related idea from
Frieze et al. [16] and Bădoiu et al [3] is the possibility of avoiding the curse of di-
mensionality by working in the span of a small number of appropriately chosen points
from P . Finally, Frieze et al. [16] and Deshpande et al. [11], addressing the case of
τ = 2, use the idea of sampling points from P in proportion to their squared norms.
Our algorithm samples points in proportion to the τ th power of their norms to guess
the sequence of lines referred to above. Our main contribution is to show that further
development of these ideas along with some new ones has the ability to address the
approximate flat fitting problem for all τ ≥ 1.

Our algorithm and analysis are perhaps closest in spirit to the work of Har-Peled
and Varadarajan [22], who address the case of τ = ∞. A key difference is that for
the case of k > 1, our algorithm does not have a k-subspace at hand that it repeatedly
improves upon.

A comparison of the bounds in Corollary 1.2 with the results of [10, 19] for the
case τ = 2 is useful. These results rely on Theorem 6 from [11] whose proof exploits
the fact that the optimal k-subspace is given by the SVD. Since such a characteri-
zation of the optimal k-subspace is lacking for the case τ 	= 2, we have to resort to
different methods. Another consequence of the SVD is that it allows the computa-
tion of the optimal k-subspace for τ = 2 in O(nd2) time. If one is able to restrict
the search to a space of much smaller dimension, the running time can be improved
further. This is the approach that [10, 19, 28] take, enabling a running time that is
nd poly( k

ε
).

Building on some of the techniques from this article, Deshpande and Varadara-
jan [9] have shown that for subspace fitting with any τ ≥ 1, one can compute in
nd poly( τk

ε
) time a subspace V of dimension poly( τk

ε
) that with high probability

contains an approximately optimal k-subspace. This is a dimension reduction result
that allows us to restrict our search for a nearly optimal k-subspace to within the low-
dimensional subspace V . Such a search can be conducted by plugging in modifica-
tions of algorithms developed for the fixed-dimensional context, such as the methods
of Har-Peled [20], because the dimension of the ambient space is now effectively
poly( τk

ε
). However, this approach does not lead to significant improvements over the

running time guaranteed by Theorem 1.1. In particular the exponential dependence
on k/ε remains, because all previous methods such as that of [20] have at least an ex-
ponential dependence on the dimension when applied to the subspace fitting problem
for τ 	= 2.

Organization of the Paper The remainder of this paper is organized as follows. In
Sect. 2, we describe some useful geometric lemmas and a definition. In Sect. 3, we
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show that for any set P of points in R
d and ε > 0, there exists a subset Q ⊆ P with

size O(k2

ε
log k

ε
) whose span contains an approximately optimal k-subspace for P .

This Q can be thought of as a “core-set” for the problem, in the sense that the search
for an approximately optimal subspace can be restricted to the span of Q, whose
dimension is bounded by the size of Q and therefore independent of n and d . Notice
that this is a rather weak requirement of a core-set. A stronger notion, for instance, is
to require that a nearly optimal k-subspace for Q is also nearly optimal for the original
set P . This paper does not construct core-sets satisfying these stronger conditions.
Core-sets (of different flavors) have played an important role in the development of
fast approximation algorithms for several geometric problems [1].

Although our core-set result is implicit (and thus subsumed) in the proof of The-
orem 1.1, we present a direct and much simpler proof that serves as motivation and
warm-up for the algorithm of Theorem 1.1. Core-sets with sizes bounds similar to
ours were shown for the approximate subspace fitting problem with τ = ∞ and
τ = 2 by Har-Peled and Varadarajan [21] and Deshpande et al. [11], respectively.
Such core-sets have applications to the projective clustering problem, where we want
to fit multiple subspaces. For more details we refer to [11, 21]. The core-set result is
only existential, in the sense that it does not directly yield an algorithm for comput-
ing the core-set within the time bounds of Theorem 1.1. In Sect. 4, we develop the
algorithm that establishes Theorem 1.1, our main result.

2 Preliminaries

The following lemma is taken from [22] and is given below for the convenience of
the reader. For brevity, we will use ‖v‖ to denote the 2-norm ‖v‖2 of a point v ∈ R

d .

Lemma 2.1 Let w, w∗, and w′ be three points in R
d such that ‖w − w′‖ ≥

(1 + ε)‖w − w∗‖, where 0 < ε ≤ 1. Then there exists a point s on the segment w′w
such that

‖w∗ − s‖ ≤ (1 − ε/2)‖w∗ − w′‖.

Proof Let ρ = ‖w − w∗‖/‖w − w′‖, and let s be the point on the segment w′w at a
distance ρ‖w − w∗‖ from w (see Fig. 1). It is easy to see that the triangle wsw∗ is
similar to the triangle ww∗w′ with a scaling factor of ρ. Therefore,

‖s − w∗‖ = ρ‖w∗ − w′‖ ≤ ‖w∗ − w′‖/(1 + ε) ≤ (1 − ε/2)‖w∗ − w′‖. �

The following lemma is in the same spirit as Lemma 2.4 of [22]. Recall that
d(p,F ) = minx∈F ‖p − x‖ denotes the distance of point p from subspace F .

Lemma 2.2 Let r, v ∈ R
d be any two points, let f, z be any two points on the line

through r and v, and G a subspace. Then

|d(z,G) − d(f,G)|
‖z − f ‖ ≤ d(r,G) + d(v,G)

‖r − v‖ .



50 Discrete Comput Geom (2012) 47:44–63

Fig. 1 The triangles ww∗w′
and wsw∗ are similar, because
‖w−w∗‖
‖w−w′‖ = ‖w−s‖

‖w−w∗‖

Proof For a point a ∈ R
d , let aG and aG⊥(= a − aG) be the projections of a onto G

and G⊥, respectively, where G⊥ is the orthogonal complement of G. Also note that
d(a,G) = ‖aG⊥‖. We have

|d(z,G) − d(f,G)|
‖z − f ‖ = |‖zG⊥‖ − ‖fG⊥‖|

‖z − f ‖ ≤ ‖zG⊥ − fG⊥‖
‖z − f ‖

= ‖rG⊥ − vG⊥‖
‖r − v‖ ≤ ‖rG⊥‖ + ‖vG⊥‖

‖r − v‖
= d(r,G) + d(v,G)

‖r − v‖ . �

Let us recall that for each τ ≥ 1, our measure of how well the subspace F fits
P is RDτ (F,P ) = (

∑
p∈P d(p,F )τ )1/τ . We conclude this section by defining the

rotation of a k-subspace F through a line � that passes through the origin.

Definition 1 Let F be a k-subspace and � a line through the origin. If the projection
of a line � onto F is the origin, then we take any (k −1)-subspace H of F , and define
the rotation of F through � to be the k-subspace spanned by H and �. Otherwise,
the projection of � onto F is a line �′. In this case we take H to be the orthogonal
complement of �′ in F , and define the rotation of F through � to be the k-subspace
spanned by H and �.

3 Small Core-Sets for k-Subspaces

In this section, we show that any point set P has a small subset whose span contains
an approximately optimal k-subspace:
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Theorem 3.1 Fix τ ≥ 1. Let P be a set of points in R
d and let F ∗ be the k-subspace

that minimizes RDτ (·,P ) over all k-subspaces. In the nontrivial case of strictly posi-

tive RDτ (F
∗,P ), and any 0 < ε < 1, there exists a Q ⊂ P consisting of O(k2

ε
log k

ε
)

points such that the span of Q contains a k-subspace F such that

RDτ (F,P ) ≤ (1 + ε)RDτ

(
F ∗,P

)
.

The proof of Theorem 3.1 is composed of two parts: in Lemma 3.2, we first
establish it for the case k = 1 and in Lemma 3.3, we leverage this to the case of
larger k via an inductive argument. The overall approach in the proof resembles that
of [21] for the case τ = ∞; certain simplifications and improvements (that pertain to
Lemma 3.2) enable us to handle any τ ≥ 1.

3.1 Core-Sets for Lines

Lemma 3.2 Let P be a set of points in R
d , and let �∗ be the line that minimizes

RDτ (�,P ) over all lines � through the origin o. Assume that RDτ (�
∗,P ) > 0. There

exists a constant c > 0 such that for any 0 < ε < 1, there exists a set of at most
c
ε

log 1
ε

points in P whose span contains a point t 	= o such that RDτ (�(t),P ) ≤
(1 + ε)RDτ (�

∗,P ), where �(p) denotes the line through p (assumed different from
o) and o.

Proof For any p ∈ R
d , let p∗ denote its projection onto �∗. For any line � through

the origin, let α(�) denote the distance ‖x − x∗‖, where x is a point on � at distance
1 from o. Note that α(�) stands for the sine of the angle between � and �∗.

We construct a sequence q0, . . . , qi of points different from o, where i = � c
ε

log 1
ε
�

and c > 0 is an appropriate constant, such that

1. q0 is the point in P that minimizes α(�(p)) over each p ∈ P distinct from o.
2. qj is in the span of at most j + 1 points from P .
3. For 1 ≤ j ≤ i, if

RDτ

(
�(qj−1),P

)
> (1 + ε)RDτ (�

∗,P ),

then α(�(qj )) ≤ (1 − ε/2)α(�(qj−1)).

The sequence consisting of just the point q0 clearly satisfies conditions (2)
and (3). Suppose that we have inductively constructed the sequence q0, . . . , qj−1,
where j ≥ 1. We describe how to extend the sequence. If RDτ (�(qj−1),P ) ≤
(1 + ε)RDτ (�

∗,P ), this is trivial because we can take qj to be any point of P

different from o. Otherwise, there is a point w ∈ P such that d(w,�(qj−1)) >

(1 + ε)d(w, �∗). Let w′ denote the projection of w∗ onto �(qj−1). We have
‖w − w′‖ > (1 + ε)‖w − w∗‖. From Lemma 2.1, there is a point s on the seg-
ment w′w (see Fig. 2) such that ‖w∗ − s‖ ≤ (1 − ε/2)‖w∗ − w′‖. Let qj = s. Since
‖w∗ − qj‖ < ‖w∗ − w′‖ ≤ ‖w∗ − o‖, qj is different from o. We have

d
(
w∗, �(qj )

) ≤ ‖w∗ − s‖ ≤ (1 − ε/2)‖w∗ − w′‖ = (1 − ε/2)d
(
w∗, �(qj−1)

)
.
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Fig. 2 Extending the sequence
q1, . . . , qj−1

This implies that α(�(qj )) ≤ (1 − ε/2)α(�(qj−1)), and so the extended sequence
satisfies condition (3). Since qj−1 is in the span of at most j points from P , and qj

lies in the span of qj−1 and w, qj lies in the span of at most j + 1 points from P . So
the extended sequence also satisfies condition (2).

We now argue that at least one of the points qj in the sequence satisfies
RDτ (�(qj ),P ) ≤ (1+ε)RDτ (�

∗,P ), thus proving the lemma. If �(q0), . . . , �(qi−1)

do not satisfy this inequality then condition (3) tells us that

α
(
�(qi)

) ≤ (1 − ε/2)iα
(
�(q0)

) ≤ e−εi/2α
(
�(q0)

) ≤ e− log 1
ε α

(
�(q0)

) = εα
(
�(q0)

)

by our choice of i = � c
ε

log 1
ε
�, provided c ≥ 2. Then for any p ∈ P , we have

d
(
p,�(qi)

) ≤ ‖p − p∗‖ + ‖p∗‖α(
�(qi)

) ≤ ‖p − p∗‖ + ‖p‖εα(
�(q0)

)

≤ ‖p − p∗‖ + ε‖p‖‖p − p∗‖
‖p‖ = (1 + ε)‖p − p∗‖ = (1 + ε)d

(
p,�∗),

where the third inequality follows from the choice of q0. It then follows that
RDτ (�(qi),P ) ≤ (1 + ε)RDτ (�

∗,P ). �

3.2 Core-Sets for k-Subspaces

Lemma 3.3 Let P be a set of points in R
d and let F ∗ be the k-subspace

that minimizes RDτ (F,P ) over all k-subspaces F , where k ≥ 1. Assume that
RDτ (F

∗,P ) > 0. Let 0 < ε < 1 be a parameter, and let δ = ε/2k. There exists a

set of at most ck
δ

log 1
δ

= ck2

ε
log k

ε
points in P whose span contains a k-subspace G
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such that RDτ (G,P ) ≤ (1 + δ)k RDτ (F
∗,P ) < (1 + ε)RDτ (F

∗,P ). Here c > 0 is
the constant appearing in Lemma 3.2.

Proof The proof, which resembles that of Lemma 2.4 of [21], is by induction on k.
The base case of k = 1 is furnished by Lemma 3.2. So we suppose that k > 2.

Let e1, . . . , ek denote a set of orthogonal unit vectors on F ∗. Let π denote the pro-
jection to the orthogonal complement of the subspace spanned by e1, . . . , ek−1. The
crucial property of π is that for any k-subspace F in R

d that contains e1, . . . , ek−1

and any point p, we have d(p,F ) = d(π(p),π(F )). Note that for such a k-subspace
F , π(F) is a line.

Using Lemma 3.2, there exists a set Q1 ⊆ P of at most c
δ

log 1
δ

points such that
the span of π(Q1) contains a line � such that

RDτ

(
�,π(P )

) ≤ (1 + δ)RDτ

(
π

(
F ∗),π(P )

)
.

Let F be the k-subspace in R
d spanned by � and e1, . . . , ek−1. The key property of π

implies that

RDτ (F,P ) ≤ (1 + δ)RDτ

(
F ∗,P

)
.

Using the linearity of π and its key property, we can also conclude that there is a line
�′ through o that is contained in F as well as in the span of Q1.

Now consider the projection π ′ to the orthogonal complement of �′. We have

RDτ

(
π ′(F ),π ′(P )

) = RDτ (F,P ),

π ′(F ) is a (k − 1)-subspace, and RDτ (H,π ′(P )) > 0 for any (k − 1)-subspace H

in the orthogonal complement of �′. Inductively, we obtain a set Q2 ⊆ P of at most
(k−1)c

δ
log 1

δ
points such that the span of π ′(Q2) contains a (k − 1)-subspace H such

that RDτ (H,π ′(P )) ≤ (1 + δ)k−1 RDτ (π
′(F ),π ′(P )). Let G be the k-subspace

such that π ′(G) = H . That is, G is the span of H and �′. We have RDτ (G,P ) =
RDτ (H,π ′(P )) and so

RDτ (G,P ) ≤ (1 + δ)k−1 RDτ

(
π ′(F ),π ′(P )

)

= (1 + δ)k−1 RDτ (F,P )

≤ (1 + δ)k RDτ

(
F ∗,P

)
.

Since �′ lies in the span of Q1, and H lies in the span of π ′(Q2), we can conclude
that G lies in the span of Q = Q1 ∪ Q2. Clearly, |Q| ≤ |Q1| + |Q2| ≤ ck

δ
log 1

δ
. �

4 Efficient Computation of Good Subspaces

In this section, we describe the algorithm and the analysis needed to establish Theo-
rem 1.1.
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4.1 The Algorithm

Let δ = ε/2k; note that (1 + δ)k ≤ (1 + ε). We now describe a recursive algo-
rithm, Good-Subspace, that takes as arguments a subspace S of R

d , a (multi-)
set P of points lying on S , an integer 1 ≤ k < dim(S), and the parameter δ. Let
F ∗ denote the k-subspace in S that minimizes RDτ (·,P ). The algorithm Good-
Subspace returns a k-subspace F̂k of S , and we will later argue that RDτ (F̂k,P ) ≤
(1+δ)k RDτ (F

∗,P ) with a reasonably large probability. The parameter on which the
algorithm recurses is k; the base case will be k = 1. (The algorithm for Theorem 1.1
is obtained by calling Good-Subspace on inputs S = R

d , P , k, and δ.)
If every point in the multiset P is the same as o, the origin, we return any k-

subspace lying in S . Otherwise, we first compute a sequence �0, . . . , �i of lines,
where i = � c

δ
log 1

δ
� and c > 0 is an appropriately chosen constant. The sequence is

not deterministic, but a function of the probabilistic choices made by the algorithm.
We first pick a random point p from P so that the probability of picking q ∈ P is

‖q‖τ
∑

p∈P ‖p‖τ and set �0 = �(p). (Recall that �(p) is the line through the origin and p.)

Having picked �0, . . . , �j , where 0 ≤ j ≤ i − 1, we pick �j+1 as follows. We pick a
random point w from P according to the same distribution used above. Let u and v

be unit vectors in the direction �j and �(w), respectively. We choose one of the fol-
lowing two segments with equal probability: the segment uv and the segment (−u)v.
We then pick a point uniformly at random from the chosen segment, and let �j+1 be
the line through o and the chosen point.

Having computed the sequence �0, . . . , �i , we pick a line � uniformly at random
from this sequence.

If k = 1, we simply return the line �. Otherwise, let S ′ denote the orthogonal
complement of � in S . Let π denote the projection function onto S ′. We recursively
call Good-Subspacewith the parameters S ′, π(P ), k−1, and δ. The recursive call
returns a (k −1)-subspace G of S ′. The subspace G and � together span a k-subspace
of S . This is what the algorithm Good-Subspace returns on inputs S , P , k, and δ.

4.2 Running Time

It is clear that the computation of each line in the sequence can be done in O(nd)

time. It also takes O(nd) time to set up the recursive call once we have �. Thus the
running time, excluding the time taken by the recursive call, is O(nd

δ
log 1

δ
). Since the

depth of the recursion is k, the overall running time of the algorithm is O(ndk
δ

log 1
δ
).

4.3 Performance

Let Fj denote the rotation of F ∗ through �j , for 1 ≤ j ≤ i, and F̂1 the rotation of
F ∗ through �. Let μ = (δ/4)τ · δ2/432. The following lemma is the essence of the
performance guarantee of the algorithm.

Lemma 4.1 Suppose that P contains some point that is different from o. With a
probability of at least μi/2, there exists a j between 0 and i such that RDτ (Fj ,P ) ≤
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(1 + δ)RDτ (F
∗,P ). Consequently, we have

Pr
(

RDτ

(
F̂1,P

) ≤ (1 + δ)RDτ

(
F ∗,P

)) ≥ μi

2(i + 1)
.

Proof For any p ∈ R
d , let p∗ denote its projection onto F ∗. For any line � through

the origin, let α(�) denote the sine of the angle between � and F ∗. That is, α(�) =
‖p − p∗‖/‖p‖ for any point p 	= o on �. For better readability we structure the proof
around two claims:

Claim 1 With a probability of at least 1/2, we have

(∑

p∈P

‖p‖τ

)1/τ

α(�0) ≤ 21/τ RDτ

(
F ∗,P

)
. (1)

Claim 2 For any 1 ≤ j ≤ i, suppose RDτ (Fj−1,P ) > (1+δ)RDτ (F
∗,P ) and sup-

pose �0, . . . , �j−1 are such that

• �0 satisfies the inequality (1), and
• α(�j ′) ≤ α(�j ′−1), for 1 ≤ j ′ ≤ j − 1.

Then the probability that α(�j ) ≤ (1 − δ/20)α(�j−1) is at least μ.

Assuming the two claims, it follows that with a probability of at least μi/2, the
following two events simultaneously occur:

1.
(∑

p∈P

‖p‖τ

)1/τ

α(�0) ≤ 2RDτ

(
F ∗,P

)
.

2. For each 1 ≤ j ≤ i, either

RDτ (Fj−1,P ) ≤ (1 + δ)RDτ

(
F ∗,P

)

or

α(�j ) ≤ (1 − δ/20)α(�j−1).

We argue that these events imply that

RDτ (Fj ,P ) ≤ (1 + δ)RDτ

(
F ∗,P

)

for some j between 0 and i. If this inequality holds for some 0 ≤ j ≤ i − 1, we are
done. Otherwise, we have

α(�i) ≤ (1 − δ/20)iα(�0) ≤ δ

2
α(�0)
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by our choice of i. Denoting by p′ the projection of p∗ onto Fi , using Minkowski’s
inequality and the occurrence of the first event, we have

RDτ (Fi,P ) ≤
(∑

p∈P

(‖p − p∗‖ + ‖p∗ − p′‖)τ
)1/τ

≤
(∑

p∈P

‖p − p∗‖τ

)1/τ

+
(∑

p∈P

‖p∗ − p′‖τ

)1/τ

≤ RDτ

(
F ∗,P

) + α(�i)

(∑

p∈P

‖p∗‖τ

)1/τ

≤ RDτ

(
F ∗,P

) + δ

2
α(�0)

(∑

p∈P

‖p‖τ

)1/τ

≤ (1 + δ)RDτ

(
F ∗,P

)
.

Now all that is left is to prove the claims.

Proof of Claim 1 Let E(X) denote, as usual, the expectation of random variable X.
We have

(∑

p∈P

‖p‖τ

)

E
(
α(�0)

τ
) =

(∑

p∈P

‖p‖τ

) ∑

q∈P

‖q‖τ

∑
p∈P ‖p‖τ

‖q − q∗‖τ

‖q‖τ

=
∑

q∈P

‖q − q∗‖τ = RDτ

(
F ∗,P

)τ
.

Non-negativity of α(�) implies that with Markov’s Inequality we have Claim 1. �

Proof of Claim 2 Let us call a point p ∈ P a witness if d(p,Fj−1) > (1 + δ/2) ×
d(p,F ∗) and let Pj−1 be the set of all witnesses. The proof follows along the follow-
ing steps with Fig. 3 serving as a visual aid for the argument.

Step 1: We show that there is a sufficient probability of the sampled point w, used to
go from �j−1 to �j , being a witness.

Step 2: In the case that w is a witness, we show that there is a line �(q) through a
point q on the span of �j−1 and the sampled point w that makes a signifi-
cantly smaller angle with F ∗ than �j−1.

Step 3: Our final step is to show that the �j chosen by the algorithm is close enough
to �(q) with a reasonable probability.

We proceed to establish the goal of Step 1. Precisely, we prove by contradiction
that

( ∑

p∈Pj−1

‖p‖τ

)1/τ

≥ δ

4

(∑

p∈P

‖p‖τ

)1/τ

. (2)
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Fig. 3 Visual aid for Step 2: The angle α(�(q)) is significantly smaller than α(�j−1)

which implies that the point w chosen by the algorithm in constructing �j from �j−1

has a probability of at least (δ/4)τ of being a witness.
Assuming the contrary of (2), bounding d(p,Fj−1) by (1 + δ/2)d(p,F ∗) for p ∈

P \ Pj−1 and by ‖p − p∗‖ + d(p∗,Fj−1) ≤ (1 + δ/2)d(p,F ∗) + d(p∗,Fj−1) for
p ∈ Pj−1, we have, by Minkowski’s inequality,

(∑

p∈P

d(p,Fj−1)
τ

)1/τ

≤ (1 + δ/2)

(∑

p∈P

d
(
p,F ∗)τ

)1/τ

+
( ∑

p∈Pj−1

d
(
p∗,Fj−1

)τ
)1/τ

≤ (1 + δ/2)RDτ

(
F ∗,P

) + α(�j−1)

( ∑

p∈Pj−1

‖p∗‖τ

)1/τ

≤ (1 + δ/2)RDτ

(
F ∗,P

) + α(�0)

( ∑

p∈Pj−1

‖p‖τ

)1/τ
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≤ (1 + δ/2)RDτ

(
F ∗,P

) + δ

4
α(�0)

(∑

p∈P

‖p‖τ

)1/τ

≤ (1 + δ/2)RDτ

(
F ∗,P

) + (δ/2)RDτ

(
F ∗,P

)

= (1 + δ)RDτ

(
F ∗,P

)
.

Here, the second inequality is based on the fact that Fj−1 is the rotation of F ∗ through
�j−1 and α(�j−1) is the sine of the angle between the two subspaces; the penultimate
inequality used the fact that �0 satisfies inequality (1). But we have now arrived at
a contradiction to the assumption that RDτ (Fj−1,P ) > (1 + δ)RDτ (F

∗,P ), hence
proving (2).

Assuming that w is a witness, we proceed to Step 2. Recall that Fj−1 is the rotation
of F ∗ through �j−1. Let H denote the (k − 1)-subspace of Fj−1 and F ∗ that is used
in the definition of the rotation. Observe that H is the orthogonal complement of �j−1

in Fj−1 and also in F ∗, the latter holding provided the projection of �j−1 onto F ∗
is a line. Let πH (·) denote the projection onto H . Of course, πH (�j−1) is just the
origin o.

Let w′ denote the projection of w∗ onto Fj−1, where w∗, recall, is the projec-
tion of w onto F ∗. Since w is a witness, we have ‖w − w′‖ > (1 + δ/2)‖w − w∗‖.
From Lemma 2.1, there is a point s on the segment w′w such that ‖w∗ − s‖ ≤
(1 − δ/4)‖w∗ − w′‖. Let β be such that s = βw′ + (1 − β)w.

Let ŵ = πH (w) = πH (w∗) = πH (w′). We note that the point q̄ = w′ − ŵ lies
on the line �j−1, and define q as the point on the segment q̄w given by s − βŵ =
β(w′ − ŵ) + (1 − β)w = βq̄ + (1 − β)w. We now have

α
(
�(q)

) ≤ ‖w∗ − βŵ − q‖
‖w∗ − βŵ‖ = ‖w∗ − s‖

‖w∗ − βŵ‖ ≤
(

1 − δ

4

) ‖w∗ − w′‖
‖w∗ − βŵ‖

≤
(

1 − δ

4

)‖r ′ − βr̂ − (r̄ − βr̂)‖
‖r̄ − βr̂‖ ≤

(

1 − δ

4

)‖w∗ − w′‖
‖w∗ − ŵ‖

=
(

1 − δ

4

)

α(�j−1). (3)

The first inequality follows because we can bound the sine of the angle between
�(q) and F ∗ by the sine of the angle between �(q) and the line through w∗ − βŵ,
which lies on F ∗. The penultimate inequality is because ‖w∗ − βŵ‖ = ‖(w∗ − ŵ) +
(1 − β)ŵ‖ ≥ ‖w∗ − ŵ‖, as (w∗ − ŵ) · ŵ = 0. This guarantee on α(�(q)) brings us
to the end of Step 2.

Now we proceed to our final step and show that the �j chosen by the algorithm is
close to �(q) with a reasonable probability. Following the notation of the algorithm,
let u and −u denote the unit vectors lying on �j−1, and v the unit vector w

‖w‖ . Suppose
that the inner product w · u > 0, and that in fact the angle uow is at most π/4. In this
case, we argue that q̄ lies on the ray {tu|t > 0}. First, observe that w∗ ·u > 0. For oth-
erwise, ‖w −w∗‖ is at least as large as the distance of w from the hyperplane normal
to �j−1 which in turn is at least as large as d(w,�j−1) due to the angle uow being at
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Fig. 4 Visual aid for Step 3. For any f on segment ab, α(�(f )) is close enough to α(�(z))

most π/4. Hence we have d(w,F ∗) = ‖w − w∗‖ ≥ d(w,�j−1) ≥ d(w,Fj−1), con-
tradicting the fact that w is a witness. Now since the vectors w′ − w∗ and q̄ − w′ are
orthogonal to �j−1, we have

q̄ · u = (
q̄ + (w′ − q̄) + (w∗ − w′)

) · u = w∗ · u > 0,

that is, q̄ lies on the ray {tu|t > 0}.
Let r = u/ − u be the unit vector such that q̄ lies on the ray {tr|t ≥ 0}. Please see

Fig. 4 for a visual aid to the argument that follows. We have just argued that the angle
rov is at most 3π/4. Since q lies on the segment q̄w, the line �(q) intersects the
segment rv at some point, call it z. There is a segment ab containing z and contained
in rv so that

‖a − b‖
‖r − v‖ = δ2

216
.

Since w is a witness, we have ‖w − w∗‖ + ‖w∗ − w′‖ ≥ ‖w − w′‖ >

(1 + δ
2 )‖w − w∗‖, which implies that δ

2‖w − w∗‖ ≤ ‖w∗ − w′‖. Thus,

δ

2
‖w‖α(

�(w)
) = δ

2
‖w − w∗‖ ≤ ‖w∗ − w′‖ = ‖w∗ − ŵ‖‖w∗ − w′‖

‖w∗ − ŵ‖
= ‖w∗ − ŵ‖α(�j−1) ≤ ‖w∗‖α(�j−1) ≤ ‖w‖α(�j−1),

so α(�(w)) ≤ 2
δ
α(�j−1). Using Lemma 2.2, we see that if f is a point on the segment

ab, then

‖f − f ∗‖ − ‖z − z∗‖

≤ ‖f − z‖
‖v − r‖

(‖v − v∗‖ + ‖r − r∗‖) ≤ ‖a − b‖
‖v − r‖

(‖v − v∗‖ + ‖r − r∗‖)

= ‖a − b‖
‖v − r‖

(
α
(
�(w)

) + α(�j−1)
) ≤ δ2

216

(
4

δ

)

α(�j−1) = δ

54
α(�j−1).
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Observe that ‖a − b‖ ≤ δ2

216‖v − r‖ ≤ δ2

108 . Also, for any point f on rv, we have
‖f ‖ ≥ 1/3 as a consequence of the angle vor being at most 3π/4. Thus for any
f ∈ ab, we have

‖f ‖ ≥ ‖z‖ − ‖f − z‖ ≥ ‖z‖ − δ2

108
≥ ‖z‖

(

1 − δ2

36

)

.

So for any f ∈ ab,

α
(
�(f )

) − α
(
�(z)

) = ‖f − f ∗‖
‖f ‖ − ‖z − z∗‖

‖z‖

≤ ‖f − f ∗‖
(1 − δ2/36)‖z‖ − ‖z − z∗‖

‖z‖

≤ ‖f − f ∗‖(1 + δ2/18) − ‖z − z∗‖
‖z‖

≤ (1 + δ2/18)(‖z − z∗‖ + (δ/54)α(�j−1)) − ‖z − z∗‖
‖z‖

≤ δ2

18

‖z − z∗‖
‖z‖ + δ

54

α(�j−1)

‖z‖ + δ3

18 ∗ 54

α(�j−1)

‖z‖

≤ δ2

18
α(�j−1) + δ

18
α(�j−1) + δ3

162
α(�j−1)

≤ δ

5
α(�j−1).

So for any f ∈ ab, we have

α
(
�(f )

) ≤ α
(
�(z)

) + δ

5
α(�j−1) ≤ (1 − δ/4)α(�j−1) + (δ/5)α(�j−1)

≤ (1 − δ/20)α(�j−1).

This completes the proof of the claim as the probability that α(�j ) ≤ (1 −
δ/20)α(�j−1) is bounded below by the probability of w being a witness times the
probability of choosing the point that defines �j from the segment ab given that w

was a witness, and this is at least (δ/4)τ · (δ2/216) · (1/2). �

Theorem 1.1 immediately follows from the following Lemma (by invoking
Good-Subspace with S = R

d ).

Lemma 4.2 For any inputs P , S , 1 ≤ k ≤ dim(S), and δ, the algorithm Good-
Subspace returns a k-subspace F̂k of S with the guarantee that

Pr
(

RDτ

(
F̂k,P

) ≤ (1 + δ)k RDτ

(
F ∗,P

)) ≥ 
k,
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where


 = μi

2(i + 1)
.

Proof The lemma clearly holds if P contains no point different from the origin. So
henceforth we assume that this is not the case and prove by induction on k. The base
case, k = 1, is furnished by Lemma 4.1. For the induction step, assume k > 1. By
Lemma 4.1 we have that RDτ (F̂1,P ) ≤ (1 + δ)RDτ (F

∗,P ) with a probability of at
least 
. Given this event, π(F̂1) is a (k − 1)-subspace of S ′ such that

RDτ

(
π

(
F̂1

)
,π(P )

) = RDτ

(
F̂1,P

) ≤ (1 + δ)RDτ

(
F ∗,P

)
.

Thus by induction hypothesis, the (k − 1)-subspace G returned by the recursive call
satisfies

RDτ

(
G,π(P )

) ≤ (1 + δ)k−1 RDτ

(
π

(
F̂1

)
,π(P )

)

with a (conditional) probability of at least 
k−1. It follows that

RDτ

(
F̂k,P

) = RDτ

(
G,π(P )

) ≤ (1 + δ)k−1 RDτ

(
π

(
F̂1

)
,π(P )

)

≤ (1 + δ)k RDτ

(
F ∗,P

)

with a probability of at least 
k . �

5 Conclusion

We have shown that for any set P of n points in R
d , and constants τ ≥ 1, 0 < ε < 1,

and integer k ≥ 1, we can find in time O(nd) a k-subspace F that with probabil-
ity at least 1/2 has the property that RDτ (F,P ) ≤ (1 + ε)RDτ (F

′,P ) for any k-
subspace F ′. The “constant” in the running time is exponential in τk

ε
. This is the

first result of its kind for each τ 	= 2,∞. A natural question is whether algorithms
with similar running times can be obtained when the distance d(p,F ) of point p

from subpace F (that is used in measuring the fit RDτ (F,P )) is defined to be
minx∈F ‖p − x‖M where now ‖ · ‖M is a norm that is from a larger class of norms
that includes the Euclidean norm.

Acknowledgements K. Varadarajan was supported by NSF award CCR 0237431. We thank the review-
ers for detailed comments on the presentation.

Appendix: Proof of Corollary 1.2

The algorithm in Theorem 1.1 fails with a probability of at most (1 − 1
α
), where

α = 2O( τk2
ε

log2 k
ε
). We run α independent trials of the algorithm in Theorem 1.1 and

return the best solution.
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Observe that the overall algorithm fails (to return a subspace whose fit is at most
(1 + ε) times the optimal) only if every one of the trials fails. The probability that
every one of the trials fails is at most (1 − 1

α
)α < 1

e
< 1

2 .
The bound on the running time follows from a straight calculation.
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