Introduction

We propose two computationally efficient subspace detection algorithms, based on a preprocessing stage that consists of special layer ordering, followed by permutation-robust QR decomposition (QRD) and elementary matrix operations.

Reference MIMO Detection Schemes:

- ZF and MMSE
- ML detection
- Sphere detection
- Subspace detection (SD)

Decomposes an effective channel matrix into lower order subchannels Reduces the number of jointly detected streams
Layered orthogonal lattice detector (LORD)
A special class of SD

System Model

H: $N \times N$ channel matrix
\mathbf{x} : transmitted QAM symbols
n : complex additive white Gaussian noise - zero mean and variance σ^{2}

$$
\begin{gathered}
\sigma^{2}=\frac{N_{t}}{\mathrm{SNR}} \\
d^{\mathrm{ML}}=\min _{\mathbf{x} \in \boldsymbol{X}}\|\mathbf{y}-\mathbf{H x}\|^{2} \\
\lambda_{n, k}^{\mathrm{ML}}=\min _{\mathbf{x} \in \boldsymbol{X}_{n k}^{(0)}} d(\mathbf{x})-\min _{\mathbf{x} \in \boldsymbol{X}_{n k}^{(1)}} d(\mathbf{x})
\end{gathered}
$$

WR Decomposition

QRD/QLD followed by matrix puncturing

Detection Algorithm

CYSD: Streams are decoupled, one at a time, by cyclically shifting the columns of H and generating the punctured R

$$
\begin{gathered}
\tilde{\mathbf{y}}=\mathbf{W}^{*} \mathbf{y}=\mathbf{R} \mathbf{x}+\mathbf{W}^{*} \mathbf{n}=\mathbf{R} \mathbf{x}+\widetilde{\mathbf{n}} \\
\tilde{\mathbf{y}}=\left[\begin{array}{l}
\widetilde{\mathbf{y}}_{1} \\
\tilde{y}_{2}
\end{array}\right], \quad \mathbf{R}=\left[\begin{array}{cc}
\mathbf{A} & \mathbf{b} \\
0 & c
\end{array}\right], \quad \mathbf{x}=\left[\begin{array}{l}
\mathbf{x}_{1} \\
x_{2}
\end{array}\right] \\
\mathbf{x}^{\mathrm{WR}}=\underset{\mathbf{x} \in \mathcal{X}}{\arg \min }\|\tilde{\mathbf{y}}-\mathbf{R x}\|^{2} \\
\mathbf{x}^{\mathrm{WR}}=\underset{\mathbf{x}_{2} \in \mathcal{X}_{N}}{\arg \min }\left(\left|\tilde{y}_{2}-c x_{2}\right|^{2}+\left\|\widetilde{\boldsymbol{y}}_{1}-\mathbf{A} \hat{\mathbf{x}}_{\mathbf{1}}-\mathbf{b} \mathbf{x}_{2}\right\|^{2}\right)
\end{gathered}
$$

$\hat{\mathbf{x}}_{1}$ is the sliced output of the projection of x_{2} on upper layers (\mathbf{A} is real diagonal)

$$
\boldsymbol{u}_{n, k}^{\mathrm{WR}}=\underset{\mathbf{x} \in \boldsymbol{X}_{n, k}^{(0)}}{\arg \min }\|\tilde{\mathbf{y}}-\mathbf{R x}\|^{\mathbf{2}}, \quad \boldsymbol{v}_{n, k}^{\mathrm{WR}}=\underset{\mathbf{x} \in \boldsymbol{X}_{n, k}^{(1)}}{\arg \min }\|\tilde{\mathbf{y}}-\mathbf{R x}\|^{\mathbf{2}}
$$

$$
\lambda_{n, k}^{\mathrm{WR}}=\left\|\tilde{\mathbf{y}}-\mathbf{R} \boldsymbol{u}_{n, k}^{\mathrm{WR}}\right\|^{2}-\left\|\tilde{\boldsymbol{y}}-\mathbf{R} \boldsymbol{v}_{n, k}^{\mathrm{WR}}\right\|^{2}
$$

Proposed Low-Complexity SD

Two proposed layer ordering schemes resulted in two SD schemes:
Single-Permutation Subspace Detection (SPSD)
Swapping each layer of interest with the last layer
Pairwise Subspace Detection (PWSD)
Lumping the channel columns in pairs and handling each at a time
WR decomposition is then carried in two stages:
Permutation-Robust QR Decomposition (PR-QRD)
With proposed layer ordering, successive decompositions are one swap apart Part of the decomposition result remains unaltered

Efficient matrix puncturing

Puncturing is executed via elementary matrix operations

Results

CYLD, SPLD, and PWLD are the LORD versions of CYSD, SPSD, and PWSD, with no matrix puncturing
Saving in QRD overhead are 30% in 8x8 MIMO, but can reach 50% with very high order systems.
The computational saving came at no performance degradation cost.

