
IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE 1

Efficient Subwindow Search: A Branch and Bound

Framework for Object Localization
Christoph H. Lampert, Matthew B. Blaschko, and Thomas Hofmann

Abstract—Most successful object recognition systems rely on
binary classification, deciding only if an object is present or not,
but not providing information on the actual object location. To
estimate the object’s location one can take a sliding window
approach, but this strongly increases the computational cost,
because the classifier or similarity function has to be evaluated
over a large set of candidate subwindows.

In this paper, we propose a simple yet powerful branch and
bound scheme that allows efficient maximization of a large class
of quality functions over all possible subimages. It converges to
a globally optimal solution typically in linear or even sublinear
time, in constrast to the quadratic scaling of exhaustive or
sliding window search. We show how our method is applicable
to different object detection and image retrieval scenarios. The
achieved speedup allows the use of classifiers for localization
that formerly were considered too slow for this task, such
as SVMs with a spatial pyramid kernel or nearest neighbor
classifiers based on the χ

2-distance. We demonstrate state-of-
the-art localization performance of the resulting systems on the
UIUC Cars dataset, the PASCAL VOC 2006 dataset and in the
PASCAL VOC 2007 competition.

Index Terms—Object Localization, Sliding Window, Global
Optimization, Branch and Bound.

I. INTRODUCTION

RECENT years have seen great progress in the area of

object category recognition for natural images. Recogni-

tion rates beyond 95% are the rule rather than the exception

on many datasets. However, in their basic form, many state-

of-the-art methods only solve a binary classification problem.

They can decide whether an object is present in an image or

not, but not where exactly in the image the object is located.

Object localization is an important task for the automatic

understanding of images as well, e.g. to separate an object

from the background, or to analyze the spatial relations of

different objects in an image to each other. To add this

functionality to generic object categorization systems, sliding

window approaches have established themselves as state-of-

the-art. Most successful localization techniques at the recent

PASCAL VOC challenges on object category localization

relied on this technique. The sliding window principle treats

localization as localized classification, applying a classifier

function subsequently to subimages within an image and

taking the maximum of the classification scores as indicators

for the presence of an object in this region. However, already

Manuscript received XXX; revised YYY.
Christoph H. Lampert is with the Max Planck Institute for Biological

Cybernetics, Tübingen, Germany. Matthew B. Blaschko is with the De-
partment of Engineering Science, University of Oxford, United Kingdom.
Thomas Hofmann is with Google Inc., Zürich, Switzerland.

an image of as low resolution as 320×240 contains more than

one billion rectangular subimages. In general, the number of

subimages grows quadratically with the number of image pix-

els, which makes it computationally too expensive to evaluate

the quality function exhaustively for all of these. Instead, one

typically uses heuristics to speed up the search that introduce

the risk of mispredicting the location of an object or even

missing it.

A similar problem exists in the field of image retrieval: ex-

isting methods for content-based image retrieval (CBIR) rely

on global properties of images, e.g. color distribtions, or global

statistics of local features, e.g. bag-of-words representations.

Such methods typically fail when it is only a subregion of the

image is of interest, e.g. a certain object or symbol as part of

a larger scene.

In this paper, we propose Efficient Subwindow Search (ESS),

a method for object localization that does not suffer from these

drawbacks. It relies on a branch and bound scheme to find

the global optimum of a quality function over all possible

subimages in the possible candidate image, thus returning

the same object locations that an exhaustive sliding window

approach would. At the same time it requires much fewer

classifier evaluations than there are candidate regions in the

images—often even less than there are pixels— and typically

runs in linear time or faster. Branch and bound optimization

has been used in computer vision for geometric matching

objectives [1]–[6], but we rather use branch and bound to

optimize more general object localization objectives, including

those based on quantized local features.

This paper extends [7] with additional empirical results

and an in-depth analysis of ESS’s performance compared

to sliding window approaches. Sections II–IV explain how

ESS allows the efficient maximization of an image quality

functions over all subregions of an image. This enables object

localization by localized classification and region-based image

retrieval for quality functions that previously were considered

unusable in these applications because they were too slow

or had too many local maxima in their classification scores.

Consequently, one obtains improved localization performance,

as we will demonstrate in Sections V–VII. In the next section,

we give an overview of other approaches for object localization

and their relation to ESS.

A. Sliding Window Object Localization

Many different definitions of object localization exist in the

scientific literature. Typically, they differ in the form that the

location of an object in the image is represented, e.g. by its

center point, its contour, a bounding box, or by a pixel-wise

IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE 2

segmentation. In the following we will only study localization

where the target is to determine a bounding box around the

object. This is a reasonable compromise between the simplicity

of the parametrization and its expressive power for subsequent

tasks like scene understanding. An additional advantage is

that it is much easier to provide ground truth annotation for

bounding boxes than e.g. for pixel-wise segmentations.

In the field of object localization with bounding boxes,

sliding window approaches have been the method of choice

for many years [8]–[12]. They rely on evaluating a quality

function, e.g. a classifier’s decision function, over many rect-

angular subregions of the image and taking its maximum as

the object’s location. Because the number of rectangles in an

n×m image is of the order n2m2, one cannot check all possible

subregions exhaustively. Instead, several heuristics have been

proposed to speed up the search. Typically, these consist of

reducing the number of necessary function evaluations by

searching only with rectangles of certain fixed sizes as can-

didates and only over a coarse grid of possible locations [8]–

[11]. Additionally, local optimization methods can be applied

instead of global ones, by first identifying promising regions

in the image and then using discrete gradient ascent procedure

to refine the detection [12].

The reduced search techniques sacrifice localization robust-

ness to achieve acceptable speed. Their implicit assumption

is that the quality function is smooth and slowly varying.

This can lead to false estimations or even complete misses

of the objects locations, in particular if the quality function’s

maximum takes the form of a sharp peak in the parameter

space. Note, however, that such a sharply peaked maximum

is exactly what one would hope for to achieve accurate and

reliable object localization.

II. EFFICIENT SUBWINDOW SEARCH (ESS)

This section introduces efficient subwindow search (ESS), a

technique to efficiently predict the best location of an object in

an image for a fixed (usually trained) quality function. We start

by formalizing the setup of window-based object detection.

For this, we assume a quality function

f : X × Y → R (1)

where X is the space of all images and Y is the space of

rectangular subregions. We interpret f(x, y) as the quality of

the prediction that an object of the target class is located at

position y in x. Note that we do not impose any a priori

smoothness assumption on f .

We first study the situation where x is a single fixed image.

Since no confusion can arise in this case, we use the notation

f(y) for f(x, y). To predict the best location of the object,

we have to solve

yopt = argmax
y∈Y

f(y). (2)

Because Y has of the order O(n2m2) elements for an n×m
image, we cannot perform this maximization exhaustively,

except for very small images. Search based object detection

methods like sliding window approximate the solution to

Equation (2) by searching only over a small subset of Y ,

Fig. 1. Representation of rectangle sets by 4 integer intervals.

which can result in suboptimal performance. In the following,

we show that efficient subwindow search (ESS), which relies

on a branch and bound scheme, can find the exact maximum

of Equation (2) in a very computationally efficient way.

A. Branch and Bound Search

The insight behind ESS is an interpretation of Equation (2)

not procedurally, i.e. not as a loop over all candidate regions,

but mathematically as an optimization problem over a struc-

tured search space. This naturally leads to a targeted search

towards the maximum instead of an exhaustive one. Since f
might not be differentiable and can have many local maxima,

we do not rely on local, e.g. gradient based techniques, but

use a global branch and bound search [13].

The optimization works by hierarchically splitting the pa-

rameter space into disjoint subsets, while keeping bounds for

the maximal quality for each of the subsets. Promising parts

of the parameter space are explored first, and large parts of the

parameter space do not have to be examined further if their

upper bound indicates that they cannot contain the maximum.

In the case of ESS, the parameter space is the set of all

possible rectangles, Y , in an image, and subsets are formed

by imposing restrictions on the values that the rectangle

coordinates can take. We parameterize rectangles by their top,

bottom, left and right coordinates (t, b, l, r), and we extend this

parametrization to sets of rectangles by using intervals instead

of single integers for each coordinate. This allows the efficient

representation of sets of rectangles as tuples [T, B, L,R],
where T = [tlow , thigh] etc., see Figure 1 for an illustration.

The full n×m image corresponds to the region y =̂ [1, n, 1, m]
in this representation, and Y =̂ [[1, n], [1, n], [1, m], [1, m]].

For each rectangle set, we calculate a bound for the highest

score that the quality function f could take on any of the

rectangles in the set. ESS terminates when it has identified a

rectangle with a quality score that is at least as good as the

upper bound of all remaining candidate regions. This criterion

guarantees that a global maximum has been found.

ESS organizes the search over candidate sets in a best-first

manner, always examining next the rectangle set that looks

most promising in terms of its quality bound. The candidate

set is split along its largest coordinate interval into halves, thus

forming two smaller disjoint candidate sets (Figure 2). The

IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE 3

Fig. 2. Splitting rectangle sets is done by dividing one of the intervals in two. In this case, [T, B, L, R]→ [T, B, L, R1] ∪̇ [T, B, L, R2], where R1 :=
[rlo, ⌊ rlo+rhi

2
⌋] and R2 := [⌊ rlo+rhi

2
⌋+1, rhi].

search is stopped when the most promising set contains only

a single rectangle with the guarantee that this is the rectangle

of globally maximal score. This form of branch and bound

search has been shown to require the minimal possible number

of function evaluations [14] in the setup chosen. Algorithm 1

gives pseudo-code for ESS using a priority queue to hold the

search states.

III. CONSTRUCTION OF QUALITY BOUNDING FUNCTIONS

ESS is a completely generic optimization technique. It

can be applied to any quality function f , for which we can

construct a function that upper bounds the values of f over

sets of rectangles Y ⊂ Y . This bounding function f̂ has to

fulfill the following two properties:

i) f̂(Y) ≥ max
y∈Y

f(y),

ii) f̂(Y) = f(y), if y is the only element in Y .

Condition i) ensures that f̂ acts as an upper bound on f ,

whereas condition ii) guarantees the optimality of the solution

to which the algorithm converges. In practice, f̂ only has

to be defined for rectangles sets Y that have a [T, B, L,R]
representation, as only these can occur during the algorithm.

Note that for any f there is a spectrum of possible bounding

functions f̂ . On the one end, one could perform an exhaustive

search to achieve exact equality in i). On the other end, one

could set f̂ to a large constant on everything but single rectan-

gles. A good bound f̂ is located between these extremes: fast

to evaluate but also tight enough to ensure fast convergence. In

the following sections we show how such bounding functions

f̂ can be constructed for different choices of f .

Algorithm 1 Efficient Subwindow Search

Require: image x
Require: quality bounding function f̂ (see Sect.III)

Ensure: (topt, bopt, lopt, ropt) = argmaxy∈Y f(y)
initialize P as empty priority queue

set [T, B, L,R] = [1, n] × [1, n] × [1, m] × [1, m]
repeat

split [T, B, L,R]→ [T1, B1, L1, R1] ∪̇ [T2, B2, L2, R2]
push ([T1, B1, L1, R1]; f̂([T1, B1, L1, R1]) onto P
push ([T2, B2, L2, R2]; f̂([T2, B2, L2, R2]) onto P
retrieve top state [T, B, L,R] from P

until [T, B, L,R] consists of only one rectangle

set (topt, bopt, lopt, ropt) = [T, B, L,R]

A. Linear Classifiers

As demonstration of how to construct the necessary quality

bounding function, we first study the case where the quality

function f is the decision function of a support vector machine

(SVM) with a linear kernel over a bag-of-visual-words (bovw)

IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE 4

histogram representation. Each image x is represented by a

set of feature points dj , j = 1, . . . , n, where for each feature

point we store its image coordinates and a bag-of-visual-

words cluster id cj . Given any rectangular region y in x,

we can form x|y , i.e. the image x cropped to the region y,

which is again an image and some of the feature points lie

inside it. For any such x|y , we can form the K-bin histogram

h = h(x|y), where each entry hk counts how many feature

points of the cluster id k occur in x|y . Such bovw-histograms

will be the underlying representations for all quality functions

that we study in this section. Note that for simplicity, we use

unnormalized histograms in this construction, except where

indicated otherwise.

In its canonical form, the corresponding SVM decision

function is f(h) = β +
∑

i αi〈h, hi〉, where 〈. , .〉 denotes

the scalar product in R
K . hi are the bovw-histograms of the

training examples and αi and β are the constant weights

and bias term that are learned during SVM training. Because

of the linearity of the scalar product, we can rewrite this

expression as a sum over per-point contribution with weights

wm =
∑

i αih
i
m:

f(y) = β +
∑

dm∈ x|y

wcm
. (3)

where the sum runs over all feature points dm that lie in the

region y. Because we are only interested in the argmax of f
over all y ∈ Y (Equation (2)), we can drop the constant bias

term β.

It is now straight-forward to construct a function f̂ that

bounds f over sets of rectangles Y ⊆ Y . First, we decompose

f =f+ + f−, where f+ contains only the positive summands

of Equation (3) and f− only the negative ones. For a set of

regions Y , we denote by y∪ the union of all rectangles in Y
and by y∩ their intersection. Then

f̂(Y) ≡ f+(y∪) + f−(y∩) (4)

will be a bound for f that fulfills the criteria i) and ii). Check-

ing property ii) is trivial, in this case, since y∪ = y∩ = y if

Y = {y}, and f+(y) + f−(y) = f(y) by construction. To

show i), we observe that for any y ∈ Y the feature points

that lie in y are a subset the points in y∪ and a superset of

the points in y∩. Since f+ contains only positive summands,

we have f+(y∪) ≥ f+(y), and analogously f−(y∩) ≥ f−(y)
because f− contains only negative summands. In combination,

we obtain that

f̂(Y) = f+(y∪) + f−(y∩) ≥ f(y) (5)

holds for any y ∈ Y and therefore also for the element

maximizing the right handside.

To make f̂ a useful quality bounding function, we have to

show that we can evaluate it efficiently for arbitrarily large

Y ∈ Y . If Y was an arbitrary set of rectangles, finding y∪
and y∩ could require iterating over all elements. However,

rectangle sets in the ESS algorithm are always given in

their parametrization [T, B, L,R]. This ensures that y∪ and

y∩ will be rectangles again, which is important in order

to efficiently represent them. It also allows us to determine

y∪ and y∩ in constant time: writing T = [tlow , thigh],
etc., one sees that y∪ = [tlow , bhigh , llow , rhigh] and y∩ =
[thigh , blow , lhigh , rlow]. If the latter is not a legal representa-

tion of a rectangle, i.e. if rlow < lhigh or blow < thigh , then

y∩ is empty.

Using integral images [15] we can make the evaluations

of f+ and f− constant time operations, thus making each

evaluation of f̂ an O(1) operation. The fact that the evaluation

time of f̂ is independent of the number of rectangles contained

in Y is a crucial factor in why ESS is fast.

B. Spatial Pyramid Features

Raw bag-of-visual-words models, as used in the previous

section, have no notion of geometry. They are therefore not

the best choice for the detection of object classes which have

characteristic geometric arrangements, e.g. cars or buildings.

Spatial pyramid features have been developed to overcome this

limitation. They divide every image into a grid of regions and

represent each grid cell by a separate histogram. Typically, a

pyramid of increasingly fine subdivisions is used, see [16] for

the exact construction.

We consider an SVM classifier with linear kernel on top of

such a hierarchical spatial pyramid histogram representation.

The decision function f for a region y in an image x is

calculated as

f(y) = β +
L

∑

l=1

∑

i=1,... l
j=1,..., l

N
∑

k=1

α
l,(i,j)
k 〈hy

l,(i,j), h
k
l,(i,j)〉, (6)

where hy

l,(i,j) is the histogram of all features of the image

x that fall into the spatial grid cell with index (i, j) of an

l× l spatial pyramid in the region y. α
l,(i,j)
k and β are the

coefficients learned by the SVM when trained with training

histograms hk
l,(i,j).

Using the linearity of the scalar products, we can again

transform this into a sum of per-point contributions:

f(y) = β +
∑n

m=1

L
∑

l=1

∑

i=1,... l
j=1,..., l

wl,(i,j)
cm

, (7)

where w
l,(i,j)
cm =

∑

k α
l,(i,j)
k hk

l,(i,j);cm
, if the feature point dm

has cluster label cm and falls into the (i, j)-th cell of the l-

th pyramid level of y. Otherwise, we set w
l,(i,j)
cm = 0. As

before, we can ignore the bias term β for the maximization

over y ∈ Y .

A comparison with Equation (3) shows that Equation (7)

is a sum of bovw contributions, one for each level and cell

index (l, i, j). We bound each of these as explained in the

previous section: for a given rectangle set Y , we calculate box

regions containing the intersection and union of all grid cells

yl,(i,j) that can occur for any y ∈ Y . Calling these y
l,(i,j)
∪ and

y
l,(i,j)
∩ , we obtain an upper bound for a cell’s contribution by

adding all weights of the feature points with positive weights

w
l,(i,j)
c that fall into y

l,(i,j)
∪ and the weight of all feature points

with negative weights that fall into y
l,(i,j)
∩ . An upper bound

f̂ for f is obtained by summing the bounds for all levels

IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE 5

and cells. If we make use of two integral images per triplet

(l, i, j), evaluating f̂(Y) becomes an O(1) operation. This

shows that also for the spatial pyramid representation, efficient

localization using ESS is possible.

C. Non-linear additive classifiers

Many window-based object detection systems can benefit

from non-linear classifiers to achieve better performance. ESS

is applicable to these as well, if a suitable bound is available. In

this section, we show how to construct exemplary bounds for

the histogram intersection kernel and χ2-distance. The former

is popular in the context of the pyramid match kernel [17]. The

latter has been used e.g. for nearest-neighbor based classifiers

[18], but by setting k(h, h′) = −χ2(h, h′), it can also be used

as the kernel of an SVM classifier.

1) (Generalized) histogram intersection kernel: The gener-

alized histogram intersection kernel [19] is defined as

kGHI(h, h′) =

K
∑

k=1

[min(hk, h′
k)]γ . (8)

where γ > 0 is a normalization parameter. For γ = 1 we

obtain the ordinary histogram intersection measure [20], [21].

To use this kernel for ESS localization, we need to construct

bounds for

f(y) =

n
∑

j=1

αj

K
∑

k=1

[min(hj
k, hy

k)]γ , (9)

where hj are fixed training histograms and hy is the histogram

of the cropped image x|y , and y varies within a candidate set

Y . As before, we have ignored the SVM’s bias term.

Notice at first that the value of each histogram bin hy
k for

y ∈ Y can be bounded from above and from below by the

number of keypoints with corresponding cluster index that fall

into y∪ and y∩ respectively. We denote these bounds by h
Y

k

and hY
k . Thus, we obtain

min(hk, hY
k) ≤ min(hk, hy

k) ≤ min(hk, h
Y

k) (10)

with equality in the situation that Y = {y}. This implies that

for any γ > 0, we can now bound the summands in Equation

(8) from above and from below by

[min(hk, hY
k)]γ ≤ [min(hk, hy

k)]γ ≤ [min(hk, h
Y

k)]γ . (11)

Consequently,

f̂(Y) =
∑

αj>0

αj [min(hk, h
Y

k)]γ +
∑

αj<0

αj [min(hk, hY
k)]γ

(12)

is a quality bound for Equation (9) that fulfills i) and ii).

2) χ2-distance and kernel: The χ2-distance between two

histograms is calculated from the squared distance between

the bins, reweighted in a data dependent way. In contrast to

the kernels used previously, it is common to normalize the

histograms before calculating their distance, giving them the

properties of empirical probability distributions:

χ2(h, h′) =
K

∑

k=1

(pk − p′k)2

pk + p′k
(13)

with pk ≡ 1
P

k hk
hk and p′k ≡ 1

P

k h′

k

h′
k. To construct a bound

over a set of boxes Y , we first use the same construction

as for the intersection kernel to obtain unnormalized per-bin

bounds h
Y

k and hY
k . We can bound each normalized entry by

p
k
≤ pk ≤ pk by

pY

k
≡

1

max{1, hY
k +

∑

k′ 6=k h
Y

k′}
hY

k , (14)

pY
k ≡

1

max{1, h
Y

k +
∑

k′ 6=k hY
k′}

h
Y

k . (15)

Each component of the χ2-distance is bounded from below by

(pk − pY
k)2

pk + pY
k

≥

(pk − pY

k
)2/(pk + pY

k
) for pk < pY

k
,

0 for pY

k
≤ pk ≤ pY

k ,

(pk − pY
k)2/(pk + pY

k) for pk > pY
k ,

(16)

The negative sum of these expressions fulfills properties i)
and ii) for a quality function f(y) = −χ2(h, hy). For use in a

support vector machine, one forms an upper bound in analogue

to (16) and combines both as has been done in Equation (12)

for the histogram intersection kernel, splitting the linear com-

bination into positive and negative contributions. Note that

bounds based on such chained constructions as for χ2-distance

are generally looser than direct ones, and the branch and bound

search typically requires more iterations to converge than for

the linear kernels used previously. Althought both bounds in

this section require more computation than in the linear cases,

they can nevertheless be evaluated efficiently by using integral

histograms [22]. However, this comes at the expense of highly

increased memory usage, which can become prohibitive for

very large bovw codebooks. A promising alternative way has

been opened by Maji et al. [23], who derived an efficient

evaluation of the quality function based on interchanging the

order of summations in Equations (9). It can be presumed

that a similar construction would be possible for the bound

calculation as well.

D. Quality bounds by interval arithmetic

Another powerful approach to obtain quality bounding

functions for nearly arbitrary quality functions is interval

arithmetic, see e.g. [24], [25]. It allows computation with

uncertain quantities, in our case the intervals used to represent

rectangle sets. Breuel [26] applied this idea to a specific

quality function for the detection of geometric objects in line

drawings.

IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE 6

An advantage of interval arithmetic is the reduced human

effort in constructing a bound and a reduced risk of error

in implementing it. With existing class or template libraries,

interval computations can be performed transparently, with

the same routines that perform single evaluations of the

quality function. On the downside, bounds that are derived

automatically are usually less tight than those constructed

manually, causing a slowdown of the branch and bound search.

IV. EXTENSIONS OF ESS

Several extensions of the basic ESS search scheme are

possible in order to provide additional functionality. To favor

boxes with specific shape properties one can add a geometric

penalization term to f . Typically, this could be a Gaussian

that takes its maximum at a certain rectangle size or aspect

ratio. Of course this term has to be taken in account when

deriving the bound for f . An alternate approach is to modify

the topology of a bounding region, e.g. as has been proposed

for piecewise linear bounding regions [27].

Object localization tasks often require the detection of more

than one object location in an image. For this, we can apply

Algorithm 1 repeatedly: whenever an object is found, all

feature points of the corresponding region are removed from

the image and the search is restarted until the desired number

of locations have been returned. Alternatively, one can simply

continue the search after the best location has been identified,

detecting the second best, third best region, etc.. However,

this requires a non-maximum suppression step, similar to what

sliding window approaches do to achieve multiple detections.

Finally, ESS can also be parallelized to make better use of

multi-core CPUs, HPC clusters or even computation on the

GPU. See e.g. [28] for a survey of techniques to parallelize

branch and bound algorithms.

A. Simultaneous ESS for multiple images and classes

A common situation in realistic applications is that one

does not have to evaluate only one quality function for one

test image, but rather several quality functions, e.g. for multi-

class classification, or one has to process many images, e.g.

an image database. Formally, this situation can be written as

(yopt, xopt, ωopt) = argmax
y∈Y, ω∈Ω

x∈{x1,...,xn}

fω(x, y), (17)

where each fω is a quality function for a class ω from a set

of classes Ω that are to be detected1, and x ranges over all

images in an image collection {x1, . . . , xN}. Other index sets

would, of course, also be possible.

A straight-forward application of ESS to this situation

would be to search for the best region for each class in

each image and choose the one with largest quality score.

However, we can achieve a much more efficient search by

interleaving the maximization over the best region within each

image with the maximizations over all images and all classes

into a single best-first search. For this, we add the start states

1Note that query by multiple examples is a special case of this setting in
which the different classes represent different query examples.

of all images and all classes into the priority queue before

starting the search.2 While ESS runs, the candidate regions

of all images and classes are simultaneously brought into an

order according to how relevant they are to the query. Search

states that do not contain promising candidate regions always

stay at the bottom of the queue and might never be expanded.

In retrieval scenarios, one is interested not only in the single

best result, but e.g. the top N images containing an object.

This is possible by a continued search approach: whenever

an optimal match has been found, we remove the states

corresponding to the image found from the search queue and

continue the search until N regions have been detected.

Note that the appealing idea of extending the full branch and

bound search to also cover Ω and {x1, . . . , xN} is not possible

in general. Since these domains do not have a geometric

structure as Y does, it is unclear how to come up with non-

trivial bounds for the quality function across different images

and classes. Domain dependent solutions could, however, be

possible, e.g. for video sequences where subsequent frames

are strongly correlated.

V. APPLICATION I: LOCALIZATION OF ARBITRARY OBJECT

CATEGORIES

To demonstrate the performance of ESS in terms of speed

and accuracy, we apply it to several realistic problem settings

from the areas of object localization and image retrieval. We

start by building a system that performs localization of arbi-

trary object categories. It uses an SVM classifier based on the

bag of visual words image representation as quality function,

as has been introduced in Section III. By choosing the bovw

representation, all relative spatial information between feature

points in an image is disregarded and the detection system

becomes invariant to any changes in the object geometry, pose

and viewpoint. Consequently, we obtain a localization system

that in principle is robust enough to detect arbitrary objects. In

particular, it is eligible for the detection of object classes that

show a large amount of variance in their visual appearance as

is the case, e.g., for many natural objects and animals.

A. PASCAL VOC 2006 dataset

In a first set of experiments, we tested the bovw based

localization on the cat and dog categories of the publicly

available PASCAL VOC 2006 dataset3, see Figure 3 for

examples. The dataset contains 5,304 natural images, which

are split into training and validation parts, on which all

algorithm development is performed, and a test part that is

reserved for the final evaluation. 1,503 images in the set show

at least one cat or dog. Some of the images contain more than

one object, and in total, there are 1,739 object intances.

To represent the images we extract SURF features [29]

from keypoint locations and from a regular grid and quantize

them using a 1000 entry codebook that was created by K-

means clustering a random subset of 50,000 descriptors. As

2If the number of images is so large that we exceed the cache, we may get
counterintuitive run-time performance. In these cases it may be more efficient
to use a parallel branch and bound strategy on multiple nodes [28].

3http://www.pascal-network.org/challenges/VOC/voc2006/

IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE 7

Fig. 3. Example images of cat (top) and dog (bottom) categories of
PASCAL VOC 2006 dataset. Objects occur in different sizes and poses, and
multiple object instances are possible within one image. Objects are also
frequently occluded or truncated.

positive training examples for the SVM we use the ground

truth bounding boxes that are provided with the dataset. As

negative examples we sample 4,500 box regions from images

with negative class label and from locations outside of the

object region in positively labeled images. From this we

trained a support vector machine with linear kernel, using the

validation part of the dataset to select regularization parameter

C ∈ {10−3, . . . , 103}.

1) ESS vs. Sliding Window Localization: As we have seen

in the previous sections, ESS has the advantage over sliding

window methods that it finds a global optimum of the quality

function. Of course, this is only relevant if ESS is also fast

enough to be used in practical application, and if finding

the better maximum translates into better localization per-

formance. Therefore, we first benchmark ESS against sliding

window detectors in terms of these two properties.

In contrast to ESS, sliding window methods require the

specification of several parameters, in particular the set of

window sizes and aspect ratios to search over, and the step

widths of the search grid. By choice of these parameters,

sliding window methods can be made arbitrarily fast or slow.

This is achieved by trading off that less or more candidate

regions in the image are checked. For our experiments we

implemented five representative combinations of parameters

(SW1, . . . , SW5, see Table I). They are similar to what is

used in practical object localization systems [10], [15], [30],

and, in particular, the values are chosen such that the resulting

systems remain computationally tractable.

At first, we compare only the speed of ESS against the

sliding window approaches. To be independent of the hard-

ware and actual implementation of the quality function, we

measure speed by the number of quality function evaluations

performed. Evaluations of the quality bound (4) are counted as

two evaluations of the quality function itself. The total number

of evaluations varies with the image sizes and, in case of ESS,

the image content. To obtain comparable scores, we use the

scale-free ratio of function evaluations nESS/nSWi for each

set of sliding window parameters, i = 1, . . . , 5. Figure 4(a)

shows the results of applying the cat and dog detection to all

test images of the PASCAL VOC 2006 dataset. Blue bars in

the histogram indicate that ESS required fewer evaluation than

SWi, and red bars indicate the opposite.

Next, we compare the value of the quality function found

by both detection methods. It is clear by construction that

ESS will return better quality scores, as it finds the global

maximum of the quality function whereas sliding window

methods most often will not. We therefore use the score

f(yESS) found by ESS as reference value and compare how

close the values f(ySWi) returned by the sliding windows

approaches come to it. Again, we make the values scale

independent by taking ratios f(ySWi)/f(yESS). The results

are plotted in Figure 4(b).

The main quantity that we are interested in when performing

object localization is not the value of the quality function,

but the quality of the box detections. Again we know that

ESS finds the globally best region yESS in the sense of f ,

whereas the regions found by sliding windows ySWi might be

suboptimal. To measure how far both detections differs, we

calculate the area overlap between ESS’s detection and the

regions returned by the sliding window methods:

overlap(y, y′) =
Area(y ∩ y′)

Area(y ∪ y′)
(18)

Figure 4(c) shows the distribution of overlap scores.

Any region-based method for object localization can achieve

only as good results as the quality function used allows. To

ensure that the differences in performance between evaluation

procedures is also present for practical purposes, we compare

the detected regions yESS and ySWi with the ground truth

regions ygt of the dataset. Figure 5(a) shows a scatter plot

of the overlaps and Figure 5(b) shows the distribution of the

differences in the overlap scores. In both plots, the cases where

ESS achieves a higher overlap with the ground truth than the

sliding window approach are drawn in blue, and the opposite

cases in red.

Overall, the Figures 4 and 5 allow us to draw several

conclusions. First, since ESS is globally optimal whereas

sliding window method are not, it is not surprising that ESS

achieves better quality scores. Also, if one makes the sliding

window search to search more and more boxes, the method

naturally becomes slower and slower. However, one would

expect that with more window evaluation, the sliding window

quality scores and the overlap with the optimal rectangles

would approach the ESS results. This does not seem to be

the case. If Figure 4 shows such a trend at all, it would have

to be very weak. This might be due to the fact that any feasible

sliding window technique, even if it performs several times the

number of evaluation that ESS requires, can still only sample

a very small fraction of the full search space of all image

regions, and is therefore far from convergence to ESS’s results.

Figure 5 shows a similar picture. Sliding window methods

with fewer evaluations do not automatically achieve worse

detection results than those with more window evaluations. All

of the sliding window methods return boxes that on average

have significantly lower overlap with the ground truth than

the regions found by ESS. However, the figure also shows

that learning a good quality function is crucial for region-

based object localization. Currently, there is still room for

improvement, as one can see by the fact that the true maximum

of the quality function, as found by ESS, often does not

coincide with the expected ground truth. This aspect has

recently been adressed in [31].

2) ESS vs. other Localization Systems: To compare ESS

with other localization methods from the literature, we evalu-

IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE 8

(a) Histogram of relative number of evaluations nESS

nSWi
(log scale). In the blue region, sliding window required more evaluations than ESS. In the red

region, ESS required more evaluations. The green bar indicates the mean ratio.

(b) Histogram of relative scores
f(ySWi)

f(yESS)
, where yESS = argmaxy∈Y f(y). The green bar indicates the mean ratio.

(c) Histogram of box overlap between regions yESS maximizing the quality function and the regions ySWi found by sliding window search:
Area(yESS∩ySWi)

Area(yESS∪ySWi)
. The green bar indicates the mean ratio.

Fig. 4. Comparison of ESS against sliding window search, detecting classes cat and dog in all test images of PASCAL VOC 2006 (5372 images). From
left to right, sliding window with five different parameter sets (SW1, . . . , SW5, see Table I) are shown.

maximal/minimum window size size-ratio aspect ratios (AR) stepsize x/y

SW1 full image to 32 · (
√

AR × 1√
AR

)
√

2 2l for l ∈ {−2,−1.5, . . . , 2} 1/16 of window width/height

SW2 full image to 32 · (
√

AR × 1√
AR

) 1.10 2l for l ∈ {−2,−1.5, . . . , 2} 1/4 of window width/height

SW3 full image to 16 · (
√

AR × 1√
AR

) 1.05 2l for l ∈ {−2,−1.5, . . . , 2} 1/2 of window width/height

SW4 full image to 20 · (
√

AR × 1√
AR

)
p√

2 2l for l ∈ {−2,−1.75, . . . , 2} 1/8 of window width/height

SW5 full image to 24 · (
√

AR × 1√
AR

) 1.10 2l for l ∈ {−3,−2.75, . . . , 3} 1/8 of window width/height

TABLE I
PARAMETERS OF SLIDING WINDOW SEARCHES FOR FIGURES 4 AND 5. SIZE-RATIO IS THE FACTOR USED FOR MULTI-SCALE DETECTIONS. THE

PARAMETERS ARE CHOSEN SIMILAR TO TYPICAL METHODS FROM THE LITERATURE [10], [15], [30] AND ADAPTED TO ACHIEVE RUNTIMES

COMPARABLE WITH ESS.

tate its absolute localization performance in the standardized

setup of the PASCAL VOC dataset. First, we measure the

system’s performance in a pure localization task by applying

ESS to only the test images that actually contain objects to be

localized (i.e. cats or dogs). For each image we evaluate the

best object location by the usual VOC method of scoring [32]:

a detected bounding box is counted as a correct match if the

area of overlap with the corresponding ground truth box is

at least 50% of the area of their union. To each detection

a confidence score is assigned that we set to the value of

the quality function on the whole image. Figure 6 contains

precision–recall plots of the results. The curves’ rightmost

points correspond to returning exactly one object per image.

At this point of operation, approximately 55% of all cat

bounding boxes returned are correct and 47% of all dog

boxes. At the same time, we correctly localize 50% of all

cats in the dataset and 42% of all dogs. Note that precision

and recall differ, because images can contain more than one

object instance. Moving along the curve to the left, only

objects are included into the evaluation which have higher

confidence scores assigned to them. This generally improves

the localization precision.

As no other results on pure localization on the PASCAL

VOC datasets have been published so far, we also performed

the more common evaluation scenario of combined classifi-

cation and localization. For this, the method is applied to all

images of the test set, no matter if they contain the object

to be searched for or not. It is the task of the algorithm to

avoid false positives e.g. by assigning them a low confidence

score. The performance is measured using the evaluation

IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE 9

(a) Scatter plot of overlaps between detected boxes for ESS yESS and sliding window ySWi with ground truth ygt:
Area(ySWi∩ ygt)

Area(ySWi∪ ygt)
vs.

Area(yESS∩ ygt)

Area(yESS∪ ygt)
.

Boxes that ESS estimates better than SWi are drawn in blue, others in red. ρ is the resulting correlation coefficient.

(b) Histogram of differences in overlap with ground truth:
Area(ySWi∩ ygt)

Area(ySWi∪ ygt)
− Area(yESS∩ ygt)

Area(yESS∪ ygt)
. The bins for which ESS provides a better estimate

than SWi are drawn in blue, the others in red. The green bar indicates the mean difference.

Fig. 5. Comparison of ESS and sliding window search to ground truth, combined for cat and dog test images of PASCAL VOC 2006 (758 detections).
From left to right, sliding window with five different parameter sets (SW1, . . . , SW5, see Table I) are shown. ESS overall achieves higher overlap with
ground truth than any of the sliding window methods.

Fig. 6. Recall–Precision curves of ESS bovw localization for classes cat (left)
and dog (right) of the VOC 2006 dataset. Training was performed either on
VOC 2006 (solid line) or VOC 2007 (dashed).

method \ data set cat dog

ESS w/ bag-of-visual-words kernel 0.223 0.148

Viitaniemi/Laaksonen [33] 0.179 0.131
Shotton/Winn [32] 0.151 0.118

TABLE II
AVERAGE PRECISION (AP) SCORES ON THE PASCAL VOC 2006
DATASET. ESS OUTPERFORMS THE BEST PREVIOUSLY PUBLISHED

RESULTS.

software provided in the PASCAL VOC challenges: from the

precision–recall curves, the average precision (AP) measure

is calculated, which is the average of the maximal precision

within different intervals of recall, see [32] for details. Table II

contains the results, showing that ESS improves over the best

results that have been achieved in the VOC 2006 competition

or in later publications. Note that the AP values in Table II are

not comparable to the ones in Figure 6, since the experiments

use different test sets.

B. PASCAL VOC 2007 challenge

An even larger and more challenging dataset than PASCAL

VOC 2006 is the recent VOC 20074 dataset. It consists of

9,963 images with 24,640 object instances. We trained a

system analogous to the one described above, now using the

2007 training and validation set, and let the system participate

in the PASCAL VOC challenge 2007 on multi-view object

localization. In this challenge, the participants did not have

access to the ground truth of the test data, but had to submit

their localization results, which were then evaluated by the

organizers. This form of evaluation allows the comparison of

different methods on a fair basis, making it less likely that the

algorithms are tuned to the specific dataset.

With AP scores of 0.240 for cats and 0.162 for dogs, ESS

clearly outperformed the other participants on these classes,

with the runner-up scores being 0.132 for cats and 0.126 for

dogs. By adopting a better image-based ranking algorithm, we

were able improve the results to 0.331 and 0.177 respectively.

As an additional experiment, we took the system that had

been trained on the 2007 training and validation data, and

evaluated its performance on the 2006 test set. The results are

included in Figure 6. The combination achieves higher recall

and precision than the one trained on the 2006 data, showing

that ESS with a bag-of-visual-words kernel generalizes well

even across datasets and is able to make positive use of the

larger number of training images available in the 2007 dataset.

VI. APPLICATION II: LOCALIZATION OF RIGID OBJECTS

USING A SPATIAL PYRAMID KERNEL

For rigid and typically man-made object classes like cars or

buildings, more informative representations have been devel-

oped than the bag-of-visual-words used in the previous section.

4http://www.pascal-network.org/challenges/VOC/voc2007/

IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE 10

Fig. 7. Spatial Pyramid Weights. Top row: Example of a training image
with its pyramid sectors for levels 2, 4 and 6. Bottom row: the energy of
corresponding pyramid sector weights as learned by the SVM (normalized per
level). Feature points in brighter regions in general have higher discriminative
power.

In particular hierarchical spatial pyramids of features have

recently proven very successful, e.g. in [16]. However, these

previous approaches were usually limitated to few pyramid

levels (typically 2 or 3) and required heuristic pruning. In this

section, we will show that ESS allows efficient localization

with pyramids as fine-grained as 10 × 10 grid cells without

the risk of missing promising object locations.

A. UIUC Car dataset

As dataset we use the UIUC Car database5, which is an

example of a dataset with rigid object images (cars) from a

single viewpoint. In total there are 1050 training images of

fixed size 100×40 pixels. 550 of these show a car in side-

view, the rest shows other scenes or parts of objects. There

are two test sets of images with varying resolution. The first

consists of 170 images containing 200 cars from a side view

of size 100×40. The other test set consists of 107 images

containing 139 cars in sizes between 89×36 and 212×85. We

use the dataset in its original setup [34] where the task is pure

localization. Ground truth annotation and evaluation software

is provided as part of the dataset.

B. Experiments

From the UIUC Car training images, we extract SURF

descriptors at different scales on a dense pixel grid and

quantize them using a 1000 entry codebook that was generated

from 50,000 randomly sampled descriptors. Since the training

images already either exactly show a car or not at all, we

do not require additional bounding box information and train

the SVM with a hierarchical spatial pyramid kernel on the

full training images. We vary the number of pyramid levels

between L = 1 (i.e. a bovw without pyramid structure) and

L = 10. The most fine-grain pyramid therefore uses all grids

from 1×1 to 10×10, resulting in a total of 385 local histograms.

Figure 7 shows an example image from the training set and

the learned classifier weights from different pyramid levels,

visualized by their total energy over the histogram bins. On

the coarser levels, more weight is assigned to the lower half

of the car region than to the upper half. On the finer pyramid

levels, informative spatial regions are emphasized, e.g. the

wheels become very discriminative whereas the top row and

the bottom corners are almost ignored.

5http://l2r.cs.uiuc.edu/∼cogcomp/Data/Car/

Fig. 8. Results on UIUC Cars Dataset (best viewed in color): 1−precision

vs recall curves for bag-of-features and different size spatial pyramids. The
curves for single-scale detection (left) become nearly identical when the
number of levels increases to 4 × 4 or higher. For the multi scale detection
the curves do not saturate even up to a 10 × 10 grid.

method \data set single scale multi scale

ESS w/ 10 × 10 pyramid 1.5 % 1.4 %
ESS w/ 4 × 4 pyramid 1.5 % 7.9 %
ESS w/ bag-of-visual-words 10.0 % 71.2 %
Agarwal et al. [34] 23.5 % 60.4 %
Fergus et al. [35] 11.5 % —
Leibe et al. [36] 2.5 % 5.0%
Fritz et al. [37] 11.4 % 12.2%
Mutch/Lowe [38] 0.04% 9.4%

TABLE III
ERROR RATES ON UIUC CARS DATASET AT THE POINT OF EQUAL

PRECISION AND RECALL.

At test time, we search for the best three car subimages

in every test image as described in Section IV, and for each

detection we use its quality score as confidence value. As it is

common for the UIUC Car dataset, we evaluate the system’s

performance by a 1− precision vs. recall curve. Figure 8

shows the curves for several different pyramid levels. Table III

contains error rates at the point where precision equals recall,

comparing the results of ESS with the currently best published

results. Note that the same dataset has also been used in many

other setups, e.g. using different training sets or evaluation

methods. Since the results of these are not comparable, we do

not include them.

The table shows that localization with a flat bovw-kernel

works acceptably for the single scale test set but poorly for

multi scale. Using ESS with a finer spatial grid improves the

error rates strongly, up to the level where the method clearly

outperforms all previously published approaches on the multi

scale dataset and all but one on the single scale dataset.

Note that for the single scale test set, a direct sliding

window approach with fixed window size 100× 40, would

be computationally feasible as well. However, there is no

advantage of this over ESS, as the latter requires even fewer

classifier evaluations on average, and at the same time allows

the application of the same learned model to the multi-scale

situation without retraining.

IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE 11

VII. APPLICATION III: IMAGE PART RETRIEVAL USING A

χ2-DISTANCE MEASURE

ESS is applicable to more areas than only object localiza-

tion. In the following, we apply ESS to the problem of image

part retrieval i.e. to find images in a database based on queries

that only have to match a part of the target image. This kind

of search allows one not only to search for objects or persons,

but also e.g. to find trademarked symbols on Internet image

collections or in video archives.

A. χ2-distance for content based image retrieval

We adopt a query-by-example framework similar to [39],

[40], where the query is a region in an image, and we

are interested in all frames or scenes in a video containing

similar regions. For this, we use ESS to do a complete

nearest-neighbor comparison between the query and all boxes

in all database images. In contrast to previously proposed

approaches, ESS allows the system to rely on arbitrary simi-

larity measures between regions, not just on the number of

co-occurring features. In our example, we choose the χ2-

distance that has shown good performance for histogram-based

retrieval and classification tasks [41]. Specifically, we use

the unnormalized variant χ2
u, as this takes into account the

total number of features and thereby the region size, which is

desirable for the task at hand.

At first, we formulate the retrieval problem in an optimiza-

tion framework, by defining the localized similarity between

a query region q with bovw-histogram hq and an image x as

locsim(x, q) = max
y∈Y(x)

−χ2
u(h

q, hy) (19)

where hy is the histogram for the subimage y of x and

χ2
u(h

q, hy) is calculated as

χ2
u(h

q, hy) =

K
∑

k=1

(hq
k − hy

k)2

hq
k + hy

k

. (20)

The retrieval task is now to identify the N images with highest

localized similarity to q as well as the region within each of

them that best matches the query.

Since locsim consists of a maximization over all subregions

in an image, we can use ESS to calculate it. To construct the

required bound, we use the construction for the χ2-distance

in Section III-C2, except that we do not have to normalize

the histograms. In analogy to Equation (16), each summand

in (20) is bounded from below by

(hq
k − hy

k)2

hq
k + hy

k

≥

(hq
k − hy

k)2/(hq
k + hy

k) for hq
k < hy

k,

0 for hy
k ≤ hq

k ≤ h
y

k,

(hq
k − h

y

k)2/(hq
k + h

y

k) for hq
k > h

y

k,

and their negative sum bounds −χ2
u(hq, hy) from above.

B. Experiments

We show the performance of ESS in localized retrieval

by applying it to 10242 keyframes of the full-feature movie

”Ferris Bueller’s Day Off”. Each frame is 880×416 pixels

large. We extract SURF descriptors from keypoint locations,

from a regular grid and from random localization and quantize

them using a 1000 entry codebook. Each keyframe is therefore

represented by 40,000–50,000 codebook entries.

For a given query region, multi-image ESS is used to return

the 100 images containing the most similar regions. Figure 12

shows a query region and the search results. Since keyframes

within the same scene or for repeated shots tend to look

very similar, we show only one image per unique scene.

ESS reliably identifies the Red Wings logo in different scenes

regardless of strong background variations. Within the top 100

retrieval results there are no false positives.

In total, the search required 1.7 · 108 evaluations of the

quality bound, that is approximately 170,000 per detection

and 16,521 per image in the database. On images that were

selected amongst the top 100, on average 57,000 evaluations

were performed whereas on images that were not selected,

only 16,100 evaluations were necessary. This shows that ESS

sucessfully concentrated its effort on the promising images. In

contrast, when running ESS on every keyframe separately, a

total 1.04 · 1011 evaluations were required. While for the top

100 images, the number of evaluations is identical to those for

ESS, the images that were not selected on average required

1.03 · 106 per image, that is more than 600 times as many as

in the case of joint ESS search. In fact, this number would

even be higher, had we not restricted the maximal number of

evaluations to 2 million per image.

Figure 9 shows the number of evaluations required to

find the global maximum in each individual frame against

the maximal score of the quality function (locsim). The 100

images with largest scores are marked in red, others in blue.

As one can see, images with high similarity to the query

require much fewer evaluations of the quality bound. This

is because the quality function has a clear maximum in this

case. The branch-and-bound search quickly identifies a general

region of interest and then concentrates its computation on this

region to find the exact maximum. For images that do not fill

the query well, the quality function is typically rather flat,

and many regions have quality scores similar to the optimal

one. Consequently, many regions have to be checked before

the algorithm can be sure that the global maximum has been

identified.

The shape of the point cloud in Figure 9 allows some further

reasoning. All images with a quality greater than −1750
required few calculations, indicating that the quality function

found a clear maximum. We can therefore assume that all of

these will contain the logo that is used as query.

In fact, checking the detection results of the per-frame

search, the first false positive detection occurs at position 177

with locsim score of −1680, and in the range between −1680
and −1750, 8 more of 23 detections are false positives. In

the range of −1750 and −1800, 37 out of 47 detections are

from images not showing the query logo. With scores below

−1800, the logo occurs only sporadically, and is often strongly

distorted or truncated.

The same effect that good matches are easier to find than

bad ones also has a strong effect on the total runtime when

varying the number of images to return or images in the

IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE 12

Fig. 9. Number of evaluations of the quality bound against the locsim value (Eq. (19)) for each image. Red squares indicate the top 100 images qualifying,
blue diamonds the other images. Images with high locsim score require much fewer evaluations of the quality bound.

Fig. 10. Performance of multi-image ESS search for varying database sizes.
With a larger database, the number of evaluations required to identify the 20
best matching images decreases.

database.

In Figure 10, we plot the total number of evaluations

required to find the top 20 image regions for varying database

sizes. For this, we reduce the database by subsampling it

in regular intervals. Counterintuitively, the runtime decreases

with more images in the database6. The reason for this is that

a larger dataset is more likely to contain more clear matches

to which ESS quickly converges.

Figure 11 shows the number of evaluations required by

ESS with a joint priority queue to return different numbers

of images from the dataset of 10242 keyframes. One can see

that the method scales approximately linearly in the number of

output images. For the first 19 hits, the slope is much smaller

than on average, indicating that the search was especially easy.

A check of the results shows that these detections are in fact

near duplicates of the query region.

VIII. CONCLUSION

We have demonstrated how to perform fast object local-

ization and localized retrieval with results equivalent to an

exhaustive evaluation of a quality function over all rectangular

6Since every image has to be inserted into the search queue, the method
cannot be sublinear in the sense of computation complexity. However, the
observed growth of runtimes is decreasing: the more images the database
contains, the fewer operations are necessary in total to find the top N .

Fig. 11. Performance of multi-image ESS search for varying number
of images to return. After an initial region of “easy” hits, the runtime is
approximately linear in the number of output images.

regions in an image down to single pixel resolution. Sliding

window approaches have the same goal, but in practice they

have to resort to subsampling techniques and approximations

to achieve a reasonable speed. In contrast to this, our method

retains global optimality in its search, which guarantees that

no maxima of the quality function are missed or misplaced.

The gain in speed and robustness allows the use of better

local classifiers (e.g. SVM with spatial pyramid kernel, near-

est neighbor with χ2-distance), for which we demonstrated

excellent results on the UIUC Cars, the PASCAL VOC 2006

dataset and in the VOC 2007 challenge. We also showed how

to integrate additional properties, e.g. shape penalties, and how

to search over large image collections in sublinear time.

In future work, we plan to study the applicability of ESS

to further kernel-based classifiers. We are also working on

extensions to other parametric shapes, like groups of boxes,

circles and ellipses. These are often more desirable in appli-

cations of biological, medical or industrial machine vision,

where high speed and performance guarantees are important

quality factors as well.

Acknowledgments

This work was funded in part by the EU projects CLASS,
IST 027978, and PerAct, EST 504321. We would like to thank
Marcin Marszałek for sharing the confidence scores of his
PASCAL VOC 2007 classifier with us.

IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE 13

(a) Red Wings logo used as query (b) Results of local search with χ2-distance

Fig. 12. Image retrieval using a local χ2 distance: the Red Wings logo (left) is used as a query region. b) shows the top results (one image per scene). The
logo is detected in 9 different scenes. There are no false positives amongst the top 100 detected regions within 10242 keyframes.

REFERENCES

[1] T. M. Breuel, “Fast recognition using adaptive subdivisions of transfor-
mation space,” in CVPR, 1992, pp. 445–451.

[2] D. P. Huttenlocher, G. A. Klanderman, and W. A. Rucklidge, “Com-
paring images using the Hausdorff distance,” IEEE Trans. Pattern Anal.

Mach. Intell., vol. 15, no. 9, pp. 850–863, 1993.

[3] M. Hagedoorn and R. C. Veltkamp, “Reliable and efficient pattern
matching using an affine invariant metric,” IJCV, vol. 31, no. 2-3, pp.
203–225, 1999.

[4] D. M. Mount, N. S. Netanyahu, and J. L. Moigne, “Efficient algorithms
for robust feature matching,” Pattern Recognition, vol. 32, no. 1, pp.
17–38, 1999.

[5] F. Jurie, “Solution of the simultaneous pose and correspondence problem
using gaussian error model,” CVIU, vol. 73, no. 3, pp. 357–373, 1999.

[6] C. F. Olson, “Locating geometric primitives by pruning the parameter
space,” Pattern Recognition, vol. 34, no. 6, pp. 1247–1256, 2001.

[7] C. H. Lampert, M. B. Blaschko, and T. Hofmann, “Beyond sliding
windows: Object localization by efficient subwindow search,” in CVPR,
2008.

[8] P. Viola and M. Jones, “Rapid object detection using a boosted cascade
of simple features,” CVPR, vol. 1, pp. 511–518, 2001.

[9] H. A. Rowley, S. Baluja, and T. Kanade, “Human face detection in visual
scenes,” in NIPS, 1996, pp. 875–881.

[10] N. Dalal and B. Triggs, “Histograms of oriented gradients for human
detection,” in CVPR, 2005, pp. 886–893.

[11] V. Ferrari, L. Fevrier, F. Jurie, and C. Schmid, “Groups of adjacent
contour segments for object detection,” PAMI, vol. 30, pp. 36–51, 2008.

[12] O. Chum and A. Zisserman, “An exemplar model for learning object
classes,” in CVPR, 2007.

[13] E. L. Lawler and D. E. Wood, “Branch-and-bound methods: A survey,”
Operations Research, vol. 14, no. 4, pp. 699–719, 1966.

[14] B. L. Fox, J. K. Lenstra, A. H. G. R. Kan, and L. E. Schrage, “Branching
from the largest upper bound: Folklore and facts,” European Journal of

Operational Research, vol. 2, pp. 191–194, 1978.

[15] P. A. Viola and M. J. Jones, “Robust real-time face detection,” IJCV,
vol. 57, no. 2, pp. 137–154, 2004.

[16] S. Lazebnik, C. Schmid, and J. Ponce, “Beyond bags of features: Spatial
pyramid matching for recognizing natural scene categories,” in CVPR,
2006, pp. 2169–2178.

[17] K. Grauman and T. Darrell, “The pyramid match kernel: Efficient
learning with sets of features,” JMLR, vol. 8, pp. 725–760, Apr. 2007.

[18] F. Schaffalitzky and A. Zisserman, “Viewpoint invariant texture match-
ing and wide baseline stereo,” in ICCV, 2001, pp. 636–643.

[19] S. Boughorbel, J.-P. Tarel, and N. Boujemaa, “Generalized histogram
intersection kernel for image recognition,” in ICIP, 2005, pp. 161–164.

[20] Swain and Ballard, “Color indexing,” IJCV, vol. 7, 1991.

[21] A. Barla, F. Odone, and A. Verri, “Histogram intersection kernel for
image classification,” in ICIP, 2003, pp. 513–516.

[22] F. M. Porikli, “Integral histogram: A fast way to extract histograms in
cartesian spaces,” in CVPR, 2005, pp. 829–836.

[23] S. Maji, A. C. Berg, and J. Malik, “Classification using intersection
kernel support vector machines is efficient,” in CVPR, 2008.

[24] R. E. Moore, Interval Analysis. Englewood Cliffs, NJ: Prentice Hall,
1966.

[25] Hickey, Ju, and V. Emden, “Interval arithmetic: From principles to
implementation,” JACM: Journal of the ACM, vol. 48, 2001.

[26] T. M. Breuel, “On the use of interval arithmetic in geometric branch
and bound algorithms,” Pattern Recognition Letters, vol. 24, no. 9-10,
pp. 1375–1384, Jun. 2003.

[27] T. Yeh and T. Darrell, “Fast concurrent object localization and recogni-
tion,” in CVPR, 2009.

[28] B. Gendron and T. G. Crainic, “Parallel branch-and-bound algorithms:
survey and synthesis,” Operations Research, vol. 42, pp. 1042–1066,
1994.

[29] H. Bay, T. Tuytelaars, and L. J. Van Gool, “SURF: speeded up robust
features,” in ECCV, 2006, pp. 404–417.

[30] I. Laptev, “Improving object detection with boosted histograms,” Image

and Vision Computing, vol. 27, no. 5, pp. 535–544, 2009.
[31] M. B. Blaschko and C. H. Lampert, “Learning to localize objects by

structured output regression,” in ECCV, 2008.
[32] M. Everingham, A. Zisserman, C. Williams, and L. V. Gool, “The

PASCAL visual object classes challenge 2006 (VOC2006) results,”
http://www.pascal-network.org/challenges/VOC/voc2006/results.pdf,
2006.

[33] V. Viitaniemi and J. Laaksonen, “Techniques for still image scene
classification and object detection,” in ICANN (2), vol. 4132, 2006, pp.
35–44.

[34] S. Agarwal, A. Awan, and D. Roth, “Learning to detect objects in images
via a sparse, part-based representation,” PAMI, vol. 26, no. 11, pp. 1475–
1490, 2004.

[35] R. Fergus, P. Perona, and A. Zisserman, “Object class recognition by
unsupervised scale-invariant learning,” in CVPR, 2003, pp. 264–271.

[36] B. Leibe, A. Leonardis, and B. Schiele, “Robust object detection with
interleaved categorization and segmentation,” IJCV, vol. 77, no. 1-3, pp.
259–289, May 2008.

[37] M. Fritz, B. Leibe, B. Caputo, and B. Schiele, “Integrating representative
and discriminative models for object category detection,” in ICCV, 2005,
pp. 1363–1370.

[38] J. Mutch and D. G. Lowe, “Multiclass object recognition with sparse,
localized features,” in CVPR, 2006, pp. 11–18.

[39] N.-S. Chang and K.-S. Fu, “Query-by-pictorial-example,” IEEE Trans-

actions on Software Engineering, vol. 6, no. 6, pp. 519–524, 1980.
[40] J. Sivic and A. Zisserman, “Video Google: A text retrieval approach to

object matching in videos,” in ICCV, 2003, pp. 1470–1477.
[41] B. Schiele and J. L. Crowley, “Object recognition using multidimen-

sional receptive field histograms,” in ECCV, 1996, pp. I:610–619.

