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We present efficient algorithms for image restoration by using the maximum a posteriori (MAP) method. As-
suming Gaussian or Poisson statistics for the noise and either a Gaussian or an entropy prior distribution for
the image, corresponding functionals are formulated and minimized to produce MAP estimations. Efficient
algorithms are presented for finding the minimum of these functionals in the presence of nonnegativity and
support constraints. Performance was tested by using simulated three-dimensional (3-D) imaging with a fluo-
rescence confocal laser scanning microscope. Results are compared with those from two existing algorithms
for superresolution in fluorescence imaging. An example is given of the restoration of a 3-D confocal image of
a biological specimen. © 1997 Optical Society of America [S0740-3232(97)01708-0]

1. INTRODUCTION

It has been recognized for a long time that image restora-
tion techniques can enhance considerably the resolution
of images obtained by microscopy. An extensive litera-
ture exists on image restoration techniques applied in nu-
merous fields including astronomy and microscopy. Our
work was motivated by the need for processing three-
dimensional (3-D) fluorescent images acquired by conven-
tional and confocal microscopy. However, the algorithms
presented here are of general applicability.

The most successful algorithms that have been applied
in fluorescence microscopy are nonlinear in nature and
apply prior knowledge regarding the objects to be restored
and the noise in the image. Prominent examples are the
constrained iterative algorithm of Agard et al.,1 the
expectation-maximization (EM) algorithm,2–4 the regular-
ized algorithm of Carrington,5,6 and the iterative con-
strained Tikhonov–Miller (ICTM) algorithm.7,8 These
algorithms possess superresolution properties, allowing
partial recovery of frequencies that are lost in the imag-
ing process. The observation that superresolution per-
formance can be achieved by using prior knowledge of the
objects has recently raised considerable interest in image
restoration.9,10

In this paper we use a maximum a posteriori (MAP) ap-
proach to solve the restoration problem, deriving func-
tionals that are minimized to produce MAP estimates for
the objects. We propose an efficient iterative approach
for minimizing these functionals, subject to nonnegativity
and support constraints. We discuss the relation of our
work to existing approaches. Simulated 3-D confocal im-
ages have been used to analyze the performance of the
proposed algorithms and to compare them with those of
Holmes and of Carrington. We also present an example
of the restoration of a biological sample imaged with a
confocal fluorescence microscope.

2. DERIVATION OF THE ALGORITHMS

A. Imaging Model
We assume that we can model the imaging process by a
linear system of equations, which for the 3-D case after
sampling is given by

g~x, y, z ! 5 NF (
i, j,k

h~x, y, z, i, j, k !f~i, j, k !

1 b~x, y, z !G , (1)

where g(x, y, z) represents the 3-D blurred image,
f(i, j, k) represents the original 3-D object,
h(x, y, z, i, j, k) represents the blurring function, and
b(x, y, z) represents a distinct known background in the
image. The function N( • ) denotes the application of a
noise process to the image, for which we consider Gauss-
ian or Poisson distributions.

In this paper a matrix notation is used. The image is
converted into a vector by concatenating its rows, leading
to the imaging model

g 5 N~Hf 1 b!, (2)

where the vectors f and g of length M denote the original
object and the blurred image, respectively. The M 3 M

matrix H is the blurring matrix. Note that the images
need not be three dimensional but can have any dimen-
sion.

Solving f from Eq. (2) is an ill-conditioned problem,
since H21 may (in general) not exist. If H denotes a
space-invariant process, then the matrix product can be
evaluated as a convolution with a point-spread function
(PSF), which is equivalent to multiplication in the Fourier
domain. Because of diffraction effects, the Fourier trans-
form of the PSF of an optical microscope falls off rapidly
and vanishes completely after some cutoff frequency. In

1696 J. Opt. Soc. Am. A/Vol. 14, No. 8 /August 1997 P. J. Verveer and T. M. Jovin

0740-3232/97/0801696-11$10.00 © 1997 Optical Society of America



such a case H21 does not exist. The pseudoinverse solu-
tion of Eq. (2) does exist but is unstable in the presence of
noise. These problems have led to the application of
regularization techniques and prior knowledge to obtain a
stable estimate of f.

B. Maximum a Posteriori Image Restoration Approach
Define a prior density p(f ) for the distribution of the in-
tensity of the object and a conditional density p(guf ) for
the measured image. The posterior density p(fug) is
given by Bayes’s rule:

p~f ug! 5 p~guf !p~f !/p~g! . (3)

The MAP solution for f is obtained by maximizing the
right-hand-side of Eq. (3), which is equivalent to maxi-
mizing the numerator. If a uniform distribution is cho-
sen for p(f ), this reduces to the maximum likelihood (ML)
solution. One possible choice for the prior density is the
Gaussian distribution

p~f! 5 C expF 2

1

2t2
iC~f 2 m!i2G , (4)

where i • i2 is the Euclidean norm. In image restoration
C and m are commonly referred to as the regularization
matrix and the model, respectively. Their choice is dis-
cussed in Subsection 2.E. A Gaussian prior may not ap-
ply in general, but we will show that this choice of p(f )
leads to a practical way for regularizing the solution.

It has been argued by Skilling11 that in the absence of
further prior knowledge, the entropy distribution is the
only consistent prior distribution for positive, additive im-
ages. Therefore we use the entropy prior:

p~f ! 5 C exp@rS~ uCf u, uCmu!#, (5)

where S(x, y) is the entropy of x relative to a model y,
given by

S~x, y! 5 (
i51

M

Fx i 2 yi 2 x i lnS x i

yi
D G . (6)

The model y represents prior knowledge of x, since it de-
termines the global maximum of S and therefore the most
likely value of x according to the entropy distribution.
Thus a particular intensity distribution of x can be made
more likely by adjusting the intensity distribution of y ac-
cordingly. In the absence of any prior knowledge, y is
chosen to have a constant intensity. Note that in Eq. (5)
we substituted x 5 uCf u and y 5 uCmu, where the abso-
lute value u•u is applied to each element, corresponding to
the assumption that the absolute values of linear combi-
nations of pixels have an entropy distribution. This fil-
tering allows correlations between pixels to be taken into
account.

The choice of the conditional distribution p(guf ) de-
pends on both the imaging model and the model for the
noise. If we assume spatially uncorrelated additive
Gaussian statistics for the noise, we find the following for
the conditional distribution:

p~guf ! 5 C expF2

1

2s2
iHf 1 b 2 gi2G , (7)

where s2 is the variance of the noise. Note that we can
eliminate the known or estimated background b by sub-
tracting it from g. Therefore we omit b in the equations
for Gaussian noise statistics.

In many situations the assumption of Poisson statistics
is more appropriate than that of Gaussian statistics.
The measured image is described as a photon-counting
process:

p~guf ! 5 )
i51

M
m i

Ni exp~2m i!

N i!
, (8)

where m i 5 b@Hf 1 b# i is the mean, N i 5 bgi is the
number of photons, and b is the reciprocal of the photon-
conversion factor. For fluorescence microscopy the
photon-conversion factor is determined by several physi-
cal parameters, such as integration time and the quan-
tum efficiency of the detector.12 The background b can-
not be incorporated into a term that is independent of f

and needs to be taken into account explicitly.
We substitute Eq. (7) or (8) and Eq. (4) or (5) into Eq.

(3) and take the negative of the logarithm, yielding log-
likelihood functionals that need to be minimized to pro-
duce MAP estimates. Leaving out terms that are inde-
pendent of f leads to four possible functionals C. They
are as follows:

for Gaussian noise statistics and a Gaussian prior:

CG,G 5 iHf 2 gi2
1 giC~f 2 m!i2; (9)

for Poisson noise statistics and a Gaussian prior:

CP,G 5 ( Hf 2 gT ln~Hf 1 b! 1 giC~f 2 m!i2,

(10)

where the sum is over all elements of the vector Hf and
the function ln( • ) is applied to each element of its argu-
ment;

for Gaussian noise statistics and an entropy prior:

CG,E 5 iHf 2 gi2
1 guCf uT lnS uCf u

euCmu D , (11)

where divisions of vectors are done element by element;

for Poisson noise statistics and an entropy prior:

CP,E 5 ( Hf 2 gT ln~Hf 1 b! 1 guCf uT lnS uCf u

euCmu D .

(12)

Equations (9)–(12) are of the general form F 1 gP, in
which F measures the quality of the fit of f to the data
and the penalty function P measures the roughness of f.
Minimizing this type of functional is known in regulariza-
tion theory as the stabilization functional approach.13

The model m incorporates prior knowledge of the shape
of the object. The regularization matrix C is used to ex-
tract those features of the solution that need to be penal-
ized. The regularization parameter g determines the
trade-off between the accuracy of the fit and the amount
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of smoothing. The MAP approach for deriving Eqs. (9)–

(12) yields the following choices of g:

gG,G 5 s2/t 2, (13)

gP,G 5 1/~2bt 2!, (14)

gG,E 5 2s2r, (15)

gP,E 5 r/b. (16)

Under certain circumstances we might wish to choose g
differently and therefore retain an unspecified g in the
further development of the algorithms. The practical
problems associated with the selection of g, C, and m will
be discussed further in Subsection 2.E.

The interpretation of Eqs. (9)–(12) as a regularization
approach gives us a practical reason for specifying a
Gaussian distribution as the prior distribution function of
f. The quadratic choice of P in Eqs. (9) and (10) is com-
monly used to produce stable solutions.13

C. Discussion of Related Work
The functionals that were given in the previous subsec-
tion are the starting point for the development of a num-
ber of restoration algorithms. Before proposing new
strategies, we give a short summary of related work.
The literature in this area is vast, and we restrict our-
selves to some of the more relevant references.

Equation (9) is also known as the Tikhonov–Miller
functional.14,15 The unconstrained minimum of this
functional can be obtained analytically. In the presence
of a non-negativity constraint, two approaches have been
used. Carrington and co-workers applied a transforma-
tion of the functional and unconstrained minimization to
find a nonnegative solution.5,6 The iterative constrained
Tikhonov–Miller algorithm combines a conjugate gradi-
ent minimization with projection.7,8

The EM algorithm2 has been studied extensively to find
a solution that maximizes Eq. (8). In the astronomy com-
munity this algorithm is known as the Richardson–Lucy
method and has been widely used for restoring astronomi-
cal images.16 Holmes applied the algorithm for fluores-
cence microscopy3 and presented a modification to im-
prove the slow convergence rate.4

Snyder et al.17 showed that maximizing the mean value
of the log likelihood of Eq. (8) is equivalent to minimizing
Csiszár’s I divergence. Using a set of axioms of regular-
ity, Csiszár18 argued that the I divergence is the only ap-
propriate distance measure for nonnegative functions.
The I divergence I(x, y) is equal to 2S(x, y), the nega-
tive of the entropy given by Eq. (6). Maximizing Eq. (8)
is indeed equivalent to maximizing the entropy of g rela-
tive to Hf 1 b.

MAP formulations of the image restoration have been
proposed in the literature. Trussell and Hunt formu-
lated a MAP image restoration algorithm for Gaussian
prior and conditional distributions.19 The entropy distri-
bution function has been used as a prior distribution for
the object.20 Hunt9,10 proposed a number of algorithms
for MAP image restoration, one of which solves Eq. (10)
with g 5 1 and C 5 I. Another algorithm involves the

use of the Poisson distribution as a prior density for the
object. This yields the following functional to be mini-
mized:

C 5 ( Hf 2 gT ln~Hf! 2 f T ln m 1 ( ln~f ! !.

(17)

Before derivatives of this equation can be computed, the
factorial in ln(fi!) must be simplified. Stirling’s approxi-
mation gives

ln~fi! ! ' 2fi 1 fi ln fi 1
1
2 ln~2pfi !. (18)

Hunt argues that, for typical imaging conditions,
ln(fi!) ' fi ln fi . Note, however, that the alternative ap-
proximation ln(fi!) ' 2fi 1 fi ln fi yields a functional
that is equal to Eq. (12) with b 5 0, g 5 1, and C 5 I.
Hunt uses algorithms similar to the EM algorithm to find
the MAP solutions.

D. Proposed Algorithms
Equations (9)–(12) must be minimized subject to the con-
straint that f be nonnegative. We implement this con-
straint by making the transformation of variables
fi 5 x i

2 . Unconstrained minimization with respect to x

and backtransformation yield the nonnegative minimum.
Let x2 be given by x i

2 , X be a diagonal matrix with
X ii 5 x i , and S be a diagonal matrix with
Sii 5 sgn@(Cx2) i #. The gradients of the transformed
functionals with respect to x are given by

¹CG,G 5 4X@HT~Hx2
2 g! 1 gCTC~x2

2 m!#, (19)

¹CP,G 5 2XFHTS 1 2

g

Hx2
1 b

D 1 2gCTC~x2
2 m!G ,

(20)

¹CG,E 5 4XH HT~Hx2
2 g!

1

1

2
gCTSF lnS uCx2u

euCmu D 1 1G J , (21)

¹CP,E 5 2XH HTS 1 2

g

Hx2
1 b

D
1 gCTSF lnS uCx2u

euCmu
D 1 1G J , (22)

where divisions of vectors are done element by element.
Setting these derivatives equal to zero and solving for x

yield the square root of the MAP estimate.
Note that all four derivatives are proportional to x.

Thus any element of x that is equal to zero is not changed
by an iterative algorithm based on searches along direc-
tions that are linear combinations of these gradients.
That is, the spatial extent of the solution is limited to
those elements of x that are nonzero in the initial estima-
tion, providing a means for constraining the spatial sup-
port of the solution.

Analytical solutions for the roots of Eqs. (19)–(22) are
not available. Appendix A describes how iterative solu-
tions for f can be obtained by using the conjugate gradient
algorithm. We implemented this approach in the C pro-
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gramming language. In the rest of this paper, we denote
the algorithms that minimize Eqs. (19), (20), (21), and
(22) as MAPGG, MAPPG, MAPGE, and MAPPE, respec-
tively. Using Eqs. (19) and (20) with g 5 0, we formu-
lated ML algorithms for the cases of Gaussian noise and
Poisson noise. We refer to them as MLG and MLP, re-
spectively.

E. Choice of the Regularization Parameter
The choice of the regularization parameter g is critical for
a good restoration result, since it determines the trade-off
between fitting and smoothing the solution. Ideally, the
choice of g should depend on some objective measure on
the restoration result. However, this is difficult without
knowledge of the true object. The problem of the choice
of the regularization parameter for the case of Gaussian
priors and noise statistics in the absence of further con-
straints has been studied extensively,21–23 since the MAP
problem is then linear and the solution is known analyti-
cally. The choice of g is far more complicated for nonlin-
ear MAP problems.

Equations (13)–(16) are the choices that follow from the
MAP formulation of the restoration problem. The vari-
ance s2 and the photon-conversion factor 1/b are physical
parameters that, in principle, could be estimated from the
image. Thus the regularization parameter should be
chosen proportional to the amount of noise in the image
determined by s2 and b.

The choices of t and r are more difficult. If C is the
identity matrix and fi is well described by independent
Gaussian-distributed variables, then an obvious choice
for t is the well-known estimator for the standard devia-
tion of multidimensional uncorrelated Gaussian vari-

ables, i f̂ 2 mi /AM, where f̂ is some estimation of the ob-
ject. With this choice of t, and for the special case
m 5 0, Eq. (13) becomes equivalent to expressions that
are derived with different reasoning by Miller15 and Kat-
saggelos et al.24 In Subsection 2.B we noted that Eq. (9)
can be written as a weighted sum of a fitting term F and
a penalty P. We then see that this choice of t normalizes
P such that it has the same scale as that of F. With this
in mind we propose to normalize the regularization pa-
rameters such that choosing them interactively becomes

more convenient. Setting t } iC( f̂ 2 m)i in Eqs. (13)

and (14) and r } 2S(uCf̂ u, uCmu)21 in Eqs. (15) and (16)
leads to penalty terms with the same scale as that of the
fitting terms. In summary, we choose the regularization
parameters as follows:

gG,G 5 k
Ms2

iC~ f̂ 2 m!i2
, (23)

gP,G 5 k
M

2biC~ f̂ 2 m!i2
, (24)

gG,E 5 2kMs2F uCf̂ uT lnS uCf̂ u

euCmu
D 1 ( uCmuG21

,

(25)

gP,E 5 k
M

b
F uCf̂ uT lnS uCf̂ u

euCmu
D 1 ( uCmuG21

,

(26)

where k is chosen interactively. The factor M normalizes
the regularization parameter with respect to the size of
the image. The remaining problem is the choice of f̂.

We found that f̂ 5 g is satisfactory. Using experience
from restorations of similar images and using visual feed-
back on the result, one can vary k to obtain an optimal
result. An objective means for selecting the regulariza-
tion parameter g is, of course, much more desirable and
remains a topic of future research.

The choice of the regularization matrix C is also prob-
lematical, inasmuch as it determines which features of f

are penalized. In image restoration applications one
usually resorts to a high-pass filter, e.g., the Laplace op-
erator. Note, however, that care must be taken for C in
Eqs. (11) and (12). A Laplace filter in combination with a
flat model m would result in divisions by zero. A better
choice would be a filter that preserves the lowest fre-
quency, the total sum of the intensities. The sum of a
Laplace filter and an identity matrix is one possibility.
In the absence of prior knowledge, we might simply set
C 5 I, also simplifying numerical computations.

The model m can be used to incorporate prior knowl-
edge of the shape of the object. In the absence of such
knowledge, we chose m 5 0 in the Gaussian priors and
m 5 constant (flat model) in the entropy priors, again
simplifying numerical computations.

3. SIMULATIONS AND EXAMPLES

A. Simulated Confocal Imaging
To investigate the properties of our algorithms and com-
pare them with those of existing algorithms, we per-
formed simulations, representative of imaging in a laser
scanning confocal microscope. An object was generated
on a 64 3 64 3 32 sampling lattice, with a sampling in-
terval of 25 nm in the X – Y direction and 75 nm in the
Z direction. The image contained two objects: (1) a hol-
low sphere, centered on the middle of the image, with a
diameter of 1125 nm and a thickness of 37.5 nm; and (2) a
sphere of diameter 375 nm, centered 200 nm to the left of
the middle of the image. The intensity of the large
sphere was renormalized to 200 units. The intensity of
the small sphere was renormalized to 100 units.

The simulated confocal image was obtained by convolv-
ing the object by a calculated PSF25 with the following pa-
rameters: excitation wavelength 488 nm, emission
wavelength 520 nm, NA 1.4, and refractive index 1.515.
The radius of the pinhole, backprojected in the object
plane, was 250 nm. A constant background with inten-
sity 10 was added. Figures 1(a) and 1(b) show the object
and the blurred object, respectively.

Gaussian or Poisson noise with varying variance or
photon-conversion factor was generated in the image.
For Gaussian noise we define the signal-to-noise ratio
(SNR) as

SNR 5

maxi ~Hf !i 2 mini ~Hf !i

s
, (27)

where Hf is the blurred object. Such a simple definition
is not possible in the case of Poisson noise. However, the
Poisson noise is completely characterized by the photon-
conversion factor 1/b. In our experiments the mean of
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the Poisson process is chosen equal to bHf, where b was
varied. As a result, the number of detected photons in-
creases if b increases, yielding higher signals. Thus b
acts as a SNR measure.

The criterion for comparing restoration results depends
on the application. In Ref. 26 different criteria were used
to compare restoration algorithms acquired by confocal
microscopy. In this paper we restrict ourselves to the
mean-square-error criterion defined by

MSE~ f̂,f ! 5

1

M (
i51

M

~ f̂i 2 fi!
2. (28)

In Subsection 2.E we stated the importance of the choice
of the regularization parameter and proposed a normal-
ization method to ease the interactive choice of this regu-
larization parameter. To study the quality of the resto-
ration as a function of the regularization parameter for
our four MAP restoration algorithms, we computed the
mean square error (MSE) for varying values of k. We

generated a test image with Gaussian noise with SNR
5 45 [Fig. 1(c)] and a test image with Poisson noise with
b 5 10 [Fig. 1(d)]. The MAPGG and MAPGE algorithms
were applied to the image with Gaussian noise, and the
MAPPG and MAPPE algorithms were applied to the im-
age with Poisson noise. We used Eqs. (23)–(26) to choose
the regularization parameter for given k. For the esti-
mation f̂ in these equations, the noisy image was used,
precorrected by subtracting the constant background.
This was also the choice for the initial estimation of the
algorithms. We set m 5 0 in the MAPGG and MAPPG
algorithms, m 5 1 in the MAPGE and MAPPE algo-
rithms; and C 5 I. This reflects our lack of knowledge
about the shape of the object and the correlations between
the pixels of the sampled object.

In Fig. 2 the MSE is plotted for the four MAP algo-
rithms as a function of k. Three important observations
can be made from this plot: (1) For the MAPGE and
MAPPE algorithms, the regularization parameter needs
to be at least 1 order of magnitude larger than that for the
MAPGG and MAPPG algorithms. (2) The MAPGE algo-

Fig. 1. Objects that are used in the simulations: (a) test object; (b) test object, blurred by simulated confocal PSF; (c) blurred object
distorted with Gaussian noise with SNR 5 45; (d) blurred object distorted with Poisson noise with b 5 10. A single slice from the
center of each stack is shown.
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rithm yields a lower MSE than the MAPGG algorithm,
and the MAPPE algorithm yields a lower MSE than the
MAPPG algorithm. That is, entropy priors yield lower
errors, measured according to the MSE criterion, than

Gaussian priors. (3) Underestimating the regularization
parameter leads to larger errors than overestimating it by
the same amount. Note that no conclusion should be
drawn from the fact that the MAPPG and MAPPE algo-
rithms produce lower errors than the MAPGG and
MAPGE algorithms, respectively, inasmuch as these re-
sults applied to different images with different types of
noise. The values for k that yielded minimal values in
these plots were used in all further simulations.

Figure 3 shows the center slices of the restoration re-
sults of the simulations described above, with the use of
optimal values of k. From the simulations that we de-
scribe below, we find that the MLG and MLP algorithms
do not converge to a useful solution, since they are not
regularized. The results depend strongly on the number
of iterations. For the MAP algorithms an optimal result
for each algorithm could be ensured by choosing the num-
ber of iterations (500) high enough for convergence to a
fixed point and by choosing an optimal k from Fig. 2. For
this reason we show the results only for the MAP algo-
rithms and do not compare results for the MLG and MLP

Fig. 2. MSE as a function of k for a simulated confocal image.
Poisson noise with b 5 10 has been added for the MAPPG and
MAPPE algorithms. Gaussian noise with SNR 5 45 has been
added for the MAPGG and MAPGE algorithms. For all four al-
gorithms 500 iterations were used to find the MSE for given k.

Fig. 3. Results for the MAP algorithms for the simulated images with use of the optimal k found from Fig. 2: (a) MAPGG result with
k 5 3.723; (b) MAPGE result with k 5 2.922; (c) MAPPG result with k 5 2.523; (d) MAPPE result with k 5 5.622. Results (a) and (b)
are for the image with Gaussian noise, and results (c) and (d) are for the image with Poisson noise. In all four cases 500 iterations were
used. A single slice from the center of each stack is shown.
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algorithms visually. When the Gaussian prior [Figs. 3(a)
and 3(c)] is used, the hollow sphere is too thick and small
artifacts have appeared in the background. When the
entropy prior is used, a much sharper result is obtained
and no artifacts are visible in the background. However,
the smaller sphere is somewhat shrunken compared with
the original object.

To analyze the behavior of the algorithms, we com-
puted the MSE as a function of the number of iterations.
The same images were used as those in the simulations
described above. Figure 4 shows the MSE as a function
of the number of iterations for the MAPGG, MAPGE,
MLG, and Carrington’s algorithms and for the image that
contained Gaussian noise. Carrington’s algorithm aims
to minimize Eq. (9) with C 5 I and m 5 0. The regular-
ization parameter was therefore chosen equal to that
used for the MAPGG algorithm. For a high number of
iterations, the MAPGG, MAPGE, and Carrington’s algo-
rithms converge to a fixed point, and the values of the
MSE also converge. The MLG algorithm is not regular-
ized and does not converge to a fixed point. As a result,
the MSE increases dramatically for a high number of it-
erations. After convergence the MSE for the MAPGG al-
gorithm is larger than that for the MAPGE algorithm.
Note, however, that for a lower number of iterations the
values of the MSE for the MAPGG, MAPGE, and MLG al-
gorithms reach approximately the same minimal value.
Thus, although the MAPGE algorithm yields lower error
at convergence, both the MAPGG and MLG algorithms
can attain a similar low value if the number of iterations
is selected appropriately. Although Carrington’s algo-
rithm aims to do the same as the MAPGG algorithm, it
searches the solution space by using a completely differ-
ent path. As a result, the MSE increases for a low num-
ber of iterations before decreasing again to reach the
same value as that of the MAPGG algorithm. Thus, in
contrast to the MAPGG, MAPGE, and MLG algorithms,
Carrington’s algorithm cannot be terminated safely be-
fore convergence in this example. For different objects
and/or different choices of the regularization parameter,
this behavior is not always present. We observed cases
in which the mean-square-error results were more similar
to those for the MAPGG algorithm.

Figure 5 shows the MSE as a function of the number of
iterations for the MAPPG, MAPPE, and MLP algorithms
and the accelerated EM algorithm of Holmes. The
MAPPG, MAPPE, and MLP algorithms exhibit a qualita-
tive behavior similar to that shown in Fig. 4 for the
MAPGG, MAPGE, and MLG algorithm. The MSE of the
accelerated EM algorithm decreases slowly to the ap-
proximate same minimum value as that from the
MAPPG, MAPPE, and MLP algorithms. For a high num-
ber of iterations, the MSE increases again for the acceler-
ated EM algorithm. Like the MLP algorithm, the accel-
erated EM algorithm finds the ML solution. However,
since the accelerated EM algorithm is much slower, it is
easier to select a number of iterations that yields a good
restoration result.

To investigate the effect of Gaussian or entropy priors
in MAP estimations, we studied the MSE as a function of
the amount of noise in the image. Figure 6 presents the
MSE as a function of the SNR for images with Gaussian

noise for the MAPGG and MAPGE algorithms. The en-
tropy prior yields a consistently lower error than that
from the Gaussian prior. The same behavior can be seen
for the case of Poisson noise in Fig. 7, in which the MSE is
plotted as a function of the reciprocal of the photon-
conversion factor. Note that for increasing SNR or b, the
error decreases. For each algorithm, k was chosen once,
with the use of Fig. 2. For different values of SNR or b,
the regularization parameter was computed by using Eqs.

Fig. 4. MSE as a function of the number of iterations for the
MAPGG, MAPGE, MLG, and Carrington algorithms. A simu-
lated confocal image was used with Gaussian noise with SNR
5 45. The same values for k were used as those given in Fig. 3
for the MAP algorithms. For Carrington’s algorithm the same
regularization parameters were used as those for the MAPGG al-
gorithm.

Fig. 5. MSE as a function of the number of iterations for the
MAPPG, MAPPE, and MLP algorithms and the accelerated EM
algorithm of Holmes. A simulated confocal image was used with
Poisson noise with b 5 10. The same values for k were used as
those given in Fig. 3 for the MAP algorithms.

Fig. 6. MSE as a function of the SNR for the MAPGG and
MAPGE algorithms. A simulated confocal image was used with
Gaussian noise with varying SNR. The values for k were the
same as those given in Fig. 3. The number of iterations was
500.

1702 J. Opt. Soc. Am. A/Vol. 14, No. 8 /August 1997 P. J. Verveer and T. M. Jovin



(23)–(26) with this value of k. The results in Figs. 6 and
7 indicate that these choices for the regularization param-
eter work well.

To determine the computational load of the algorithms,
we measured the average time per iteration derived from
500 iterations for each algorithm. Table 1 lists the aver-
age time per iteration for the MLG, MAPGG, MAPGE,
MLP, MAPPG, MAPPE, accelerated EM, and Car-
rington’s algorithms. The simulated objects were the
same as those used in the first two simulations described
above. The simulations were done on a Transtec work-
station with a 167-MHz UltraSparc processor, running
the Solaris 2.5 operating system. Clearly, the use of the
entropy prior comes at a computational cost. Use of
Gaussian priors in the MAPGG and MAPPG algorithms
adds little or no computation time compared with that
with use of the ML algorithms MLG and MLP. The
MLP, MAPPG, and MAPPE algorithms are slower than
the MLG, MAPGG, and MAPGE algorithms, respectively,
since the former require one matrix multiplication more
than the latter to compute the gradient of the functional.
The MAPGG algorithm requires the same amount of com-
putation time as Carrington’s algorithm, but as we have
seen in the simulations described above, the number of it-
erations required for Carrington’s algorithm might be
much larger. The MLP algorithm requires slightly more
computation time per iteration than the Holmes algo-
rithm to find the ML estimation. However, we conclude
from our simulations that the MLP algorithm converges
in a much smaller number of iterations. In summary,

our approach to finding MAP estimations for image resto-
ration applications seems to be computationally efficient
compared with existing approaches.

B. Application to Confocal Imaging
We applied our algorithms to confocal images of Vero
cells, a monkey kidney tumor cell line, which were ex-
posed to cholera toxin and incubated with an antibody
specific for the A subunit of the toxin and labeled with the
sulfoindocyanine dye Cy5.27 The images were acquired
with a Zeiss LSM10 confocal laser scanning microscope,
with the following parameters: voxel size
160 3 160 3 200 nm, NA 1.4, excitation wavelength 633
nm, emission wavelength 690 nm, and a backprojected
pinhole radius of 338 nm.

We assumed that the noise could be described by a
Poisson process and estimated from flat regions in the im-
age that b ' 10. We also assumed a constant back-
ground and estimated its value at b ' 20. A calculated
PSF25 was used. The MAPPG and MAPPE algorithms
were selected, since these are optimal for the case of Pois-
son noise. The MAPPG algorithm was applied with
k 5 1, and the MAPPE algorithm was applied with
k 5 5. These values were chosen relatively high to en-
sure adequate noise suppression. The value for the
MAPPE algorithm was higher than that for the MAPPG
algorithm, in accordance with the simulations described
above, which indicate that k should be chosen higher for
the entropy algorithms. In both cases 25 iterations were
used. With more than 25 iterations the solutions ceased
to vary appreciably, indicating that the results were close
to the global minimum. Figure 8 shows regions of an op-
tical section from the center of the original stack [part
(a)], the MAPPG result [part (b)], and the MAPPE result
[part (c)]. The MAPPE result is sharper than the
MAPPG result. For 3-D representations and further
analysis of the images, see Bastiaens et al.27

4. DISCUSSION AND CONCLUSIONS

We have presented algorithms for computing MAP image
restorations of images that are blurred and contaminated
by Gaussian or Poisson noise. Our approach for mini-
mizing the MAP functionals is computationally very effi-
cient. Since we were motivated by applications in fluo-
rescence microscopy, we compared our algorithms with
two others in common use.

We developed two types of algorithm, optimized for
Gaussian and Poisson noise statistics, respectively. The
Poisson model is the most appropriate model for fluores-
cence microscopy.28 However, if the number of detected
photons is high, the Poisson density function may be ap-
proximated by a Gaussian curve. Furthermore, it is im-
portant to note that all algorithms incorporate a nonne-
gativity constraint. This rejects physically impossible
negative solutions that may follow from the Gaussian
noise model. Indeed, recent work26,29 indicates that for
higher SNR’s, algorithms assuming Gaussian statistics
and using a nonnegativity constraint may perform almost
as well as algorithms based on Poisson statistics. Con-
sidering that the former are much faster than the latter,
they may provide the more attractive alternative.

Fig. 7. MSE as a function of b, the reciprocal of the photon-
conversion factor of the Poisson noise for the MAPPG and
MAPPE algorithms. A simulated confocal image was used with
Poisson noise with varying b. The values for k were the same as
those given in Fig. 3. The number of iterations was 500.

Table 1. Average Execution Times per Iteration

on a Transtec Workstation with a 167-MHz

UltraSparc Processor, Running the Solaris

2.5 Operating System

Algorithm Average Execution Time (s)

MLG 1.0

MAPGG 1.0

MAPGE 1.7

Carrington 1.0

MLP 1.7

MAPPG 1.8

MAPPE 4.7

Accelerated EM 1.4
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A major issue is the choice of the regularization param-
eter in the MAP algorithms. We propose a normalization
method to ease the choice of the regularization parameter
if the variance of the noise in the image is known. In
practical applications this is usually not the case. It
might then be possible to estimate the noise level from
the image.30 Even then the choice of k must be made in-
teractively, based on experience with previous restoration
on similar images and using visual feedback on the result.
Clearly, further research is necessary to find reliable
methods choosing the regularization parameter. Recent
work29 indicates that methods developed for the linear
Tikhonov filter (which is the unconstrained solution for
the MAP problem with Gaussian statistics and prior)
might be useful for the MAPPG algorithm. Results from
maximum entropy methods31 could possibly be adapted
for use with our methods that use entropy priors. We did
not discuss in depth the choices of the model m and the
regularization matrix C in this paper. Selection of opti-
mal m and C is probably problem dependent and requires
further investigation.

We found in our simulations that although algorithms
using the entropy prior yield the lowest error according to
the criterion of MSE, it is possible to achieve the same low
value with algorithms that use the Gaussian prior or the
ML algorithms by stopping the iterative algorithms at an
early stage. A good method for determining the optimal
number of iterations should be developed.
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APPENDIX A: MINIMIZATION
ALGORITHMS

The nonlinear conjugate gradient algorithm is used to
minimize Eqs. (9)–(12). The algorithm is given at itera-
tion k by

xk11
5 xk

1 akdk, (A1)

where

dk
5 bkdk21

2 ¹C~xk! (A2)

and bk is given by

bk
5 i¹C~xk!i2/i¹C~xk21!i2 . (A3)

The step ak along the search direction dk is found by
minimizing the functional C(x 1 ad) for all values of a.

For a functional of the form C 5 (x2)TAx2

2 2(x2)Tq 1 c, this is equivalent to minimizing a fourth-
order polynomial:

C~x 1 ad! 5 pa4
1 qa3

1 ra2
1 sa 1 t, (A4)

where

p 5 ~d2!TAd2, (A5)

q 5 4~d2!TAXd, (A6)

r 5 4dTXAXd 1 2~d2!T~Ax2
2 q!, (A7)

Fig. 8. Confocal image of a Vero cell, treated with cholera toxin and incubated with Cy5-labeled antibody against the A subunit of the
toxin, and restoration results. (a) original; (b) MAPPG restoration with k 5 1; (c) MAPPE restoration with k 5 5. In both (a) and (b),
25 iterations were used. Part of an optical section from the center of each stack is shown.
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s 5 4dTX~Ax2
2 q!, (A8)

t 5 ~x2!TAx2
2 2~x2!Tq 1 c. (A9)

The extrema of a fourth-order polynomial can be found
analytically.

For the case of Gaussian statistics and a Gaussian
prior, A 5 HTH 1 gCTC, q 5 HTg 1 gCTCm, and
c 5 gTg 1 gmTCTCm.

For the other three functionals, it is not possible to op-
timize ak analytically. However, we can derive the first
and second derivatives of C(x 1 ad) with respect to a.
Newton’s rule can be applied to find the zero crossings of
the derivatives by using the second derivatives. A few it-
erations of Newton’s rule are sufficient. We always use
three iterations. The iterations are computationally not
very expensive if the matrix multiplications are computed
before applying Newton’s rule. For the case of Poisson
statistics with a Gaussian prior, we find

dCP,G

da
5 2~Xd 1 ad2!THTF1 2

g

H~x 1 ad!2
1 b

G
1 g~4pa3

1 3qa2
1 2ra 1 s !, (A10)

d2CP,G

da2
5 2~d2!THTF1 2

g

H~x 1 ad!2
1 b

G
1 4gTF H~Xd 1 ad2!

H~x 1 ad!2
1 b

G2

1 g ~12pa2
1 6qa 1 2r !, (A11)

where p, q, r, and s are given by Eqs. (A5)–(A8), where
A 5 CTC and q 5 CTCm.

For the case of Gaussian statistics with an entropy
prior, we get

dCG,E

da
5 4pa3

1 3qa2
1 2ra 1 s

1 2g~Xd 1 ad2!TCTSH 1 1 lnF uC~x 1 ad!2u

euCmu G J ,

(A12)

d2CG,E

da2
5 12pa2

1 6qa 1 2r 1 2g~d2!TCTS

3 H 1 1 lnF uC~x 1 ad!2u

euCmu
G J

1 4g ~Xd 1 ad2!TCTS
C~Xd 1 ad2!

C~x 1 ad!2
, (A13)

where the diagonal matrix S is given by
Sii 5 sgn(@C(x 1 ad)2# i) and p, q, r, and s are given by
Eqs. (A5)–(A8), with the use of A 5 HTH and q 5 HTg.

For the case of Poisson noise statistics and an entropy
prior, we find

dCP,E

da
5 2~Xd 1 ad2!THTF1 2

g

H~x 1 ad!2
1 b

G
1 2g~Xd 1 ad2!TCTS

3 H 1 1 lnF uC~x 1 ad!2u

euCmu
G J , (A14)

d2CP,E

da2
5 2~d2!THTF1 2

g

H~x 1 ad!2
1 b

G
1 4gTF H~Xd 1 ad2!

H~x 1 ad!2
1 b

G2

1 2g~d2!TCTS

3 H 1 1 lnF uC~x 1 ad!2u

euCmu
G J

1 4g~Xd 1 ad2!TCTS
C~Xd 1 ad2!

C~x 1 ad!2
.

(A15)
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