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1 Introduction 

1.1 DNA ligases 

The joining of breaks in the phosphodiester backbone of the DNA is of great 

importance in maintaining genomic stability in all phases of the cell cycle and is 

carried out by enzymes collectively called DNA ligases. Joining of strand ends 

at the DNA is required during the removal of DNA lesions generated by DNA 

damaging agents, but also of spontaneously generated DNA lesions. Indeed, 

approx. 2 x 105 DNA single-strand breaks are spontaneously generated per 

mammalian cell per day, whereas 1 Gray (Gy) of ionizing radiation only causes 

600-1000 single-strand breaks and 16-40 double-strand breaks (Barnes and 

Lindahl, 2004; Ward, 1988). This form of joining in the phosphodiester 

backbone is of even greater importance during DNA replication, where approx. 

2 x 107 Okazaki fragments are generated by discontinuous lagging strand DNA 

synthesis; ligation of these fragments is crucial for completing DNA replication. 

Furthermore, programmed DNA double-strand breaks are generated in a 

number of cell types such as immune cells undergoing immunoglobulin gene 

rearrangements (Bassing and Alt, 2004; Yao et al., 1996).  

In 1967 the joining of DNA ends was first described in extracts of Escherichia 

coli and 1 year later also in extracts of mammalian cells (Lehman, 1974). The 

required high energy co-factor divides the DNA ligases into 2 sub-families: The 

first family of ligases uses Nicotinamide adenine dinucleotide (NAD+) as a 

cofactor, while the second family of ligases uses adenosine 5’-triphosphate 

(ATP). All known eukaryotic ligases are ATP dependent, whereas in bacteria, 

archea and viruses members of both families have been found (Ellenberger and 

Tomkinson, 2008). As in this thesis the contribution of DNA ligases to 

replication in vertebrates is studied, the following discussion focuses on 

ATP-dependent ligases.  
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1.1.1 Catalytic Activities of DNA ligases 

The 3 step mechanism by which DNA ligases catalyze the formation of the 

phosphodiester bond is shown in Figure 1. The mechanism is universal and 

shared by all DNA ligases and also by RNA ligases (Nandakumar et al., 2006; 

Shuman, 2009). In the first step, an adenosine 5’-monophosphate (AMP) is 

transferred from ATP to a lysine in the active site of the ligase. In the second 

step, the ligase bound AMP is transferred to the 5’ phosphate of the DNA 

substrate. The 5’ AMP activates the 5’ phosphate of the DNA substrate for 

phosphodiester bond formation and during step 3 the 3’ hydroxyl of an adjacent 

DNA strand attacks this end to replace the AMP and covalently joins the DNA 

strands (Ellenberger and Tomkinson, 2008; Tomkinson et al., 2006). As each 

reaction by itself is energetically highly favorable, this process is effectively 

irreversible. Therefore, it is likely that, even in the absence of a suitable 

substrate, ligases in the cell are adenylated. This adenylation also enhances the 

specificity of DNA binding, which is known as nick sensing (Ellenberger and 

Tomkinson, 2008; Sriskanda and Shuman, 1998).  

 

Figure 1: Schematic representation of the enzymatic ligation of DNA (Ellenberger and 
Tomkinson, 2008) 
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1.1.2 Structural features of eukaryotic DNA ligases 

Recent advances in the research of the structure of DNA ligases reveal that all 

ligases except the simplest viral ligases completely encircle the DNA substrate, 

using a multidomain architecture with sufficient flexibility to open and close 

around the DNA. Tomas Lindahl first provided biochemical and immunological 

evidence that there is more than one species of DNA ligases in mammalian 

cells; these species have recently been extensively characterized (Ellenberger 

and Tomkinson, 2008; Lindahl and Barnes, 1992).  

All DNA ligases share a conserved catalytic domain, the catalytic core, 

consisting of the nucleotidyltransferase (NTase) domain flexibly tethered 

through a polypeptide linker to an oligonucleotide/oligosaccharide binding 

(OB)-fold domain. This domain, typically associated with single-strand DNA-

binding proteins, binds double stranded DNA in the minor groove and contacts 

the 3’-OH and 5’-PO4 ends of DNA during the last 2 steps of ligation.  

While the NTase and OB-fold domains are conserved in all known DNA and 

RNA ligases and form the minimal catalytic unit, mammalian ligases are 

endowed with additional N- and C-terminal domains. These domains serve as 

protein-protein and/or protein-DNA-binding domains and are therefore crucial 

for biological activity. One of these domains is shared by all eukaryotic DNA 

ligases: the N-terminal DNA-binding domain (DBD). It interacts with the minor 

groove and contacts the DNA upstream and downstream of the nick. It 

stabilizes the DNA in underwound conformation and makes protein-protein 

interactions with the catalytic core completing a ring shaped structure that 

encircles the DNA (Cotner-Gohara et al., 2008; Pascal et al., 2004). Homologs 

of the DNA ligase 1 (LIG1) and DNA ligase 4 (LIG4) genes appear to be present 

in all eukaryotes. In contrast, the DNA ligase 3 (LIG3) gene appears to be 

restricted to vertebrates. The characteristic features of the DNA ligase 

polypeptides are described below.  
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1.1.3 DNA Ligase 1 

CDC9, the homolog of human LIG1 gene in Saccharomyces cerevisiae 

(S. cerevisiae), is essential for cell survival and its mutation leads to 

hypersensitivity to DNA damage, which links Cdc9 to DNA replication and repair 

(Hartwell, 1974; Johnston, 1979; Johnston and Nasmyth, 1978). There are 2 

translation initiation sites generating 2 forms of Cdc9 (Figure 2).  

 

Figure 2: Schematic representation of nuclear and mitochondrial Cdc9 (Ellenberger and 
Tomkinson, 2008) NLS: nuclear localization signal (yellow), DBD: DNA-binding domain (red), 
OB-fold domains (gray), MLS: Mitochondrial leader sequence (blue) 

 

One is directed to the nucleus, the other one has an N-terminal mitochondrial 

leader sequence which results in mitochondrial localization of the protein to 

maintain the genome in this organelle (Willer et al., 1999). Unlike CDC9, the 

human LIG1 gene does not encode a polypeptide that is targeted to 

mitochondria, as in vertebrates the LIG3 gene encodes the mitochondrial DNA 

ligase (Figure 3).  

 

Figure 3: Schematic representation of vertebrate LIG1. (Arakawa et al., 2012) 

 

The N-terminal region of LIG1 could not be associated with nicked DNA but 

contains sequences required for nuclear localization of LIG1 to replication forks 

and is involved in protein-protein interactions that are discussed in detail below 
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(Cardoso et al., 1997; Montecucco et al., 1998; Montecucco et al., 1995; Pascal 

et al., 2004). Further regulation of the functions of this domain is afforded by 

serine phosphorylations mediated by cyclin dependent kinases and by casein 

kinase II (Ferrari et al., 2003; Montecucco et al., 1998; Rossi et al., 1999; Song 

et al., 2007).  

1.1.3.1 LIG1 and Okazaki fragment maturation 

In eukaryotes, replication of double-stranded DNA is an essential preparatory 

step for cell division and takes place during the S-phase of the cell cycle. The 

genetic material is duplicated with high efficiency and accuracy. DNA replication 

is initiated at multiple origins on each chromosome and proceeds bi-directionally 

from each and every replication origin forming a replication fork. (Zheng and 

Shen, 2011). Due to the 5’ to 3’- directionality of DNA polymerases, replication 

proceeds by continuous synthesis on the leading strand and discontinuous 

synthesis on the lagging strand (Balakrishnan and Bambara, 2011). Both, 

leading and lagging strand synthesis, are progressing with similar speed, which 

is likely due to some sort of coordination between leading and lagging strand 

synthesis (Pandey et al., 2009). As at the leading strand, continuous 

involvement of DNA ligases is not necessary, only the synthesis of the lagging 

strand will be described in more detail.  

Lagging strand synthesis is initiated by RNA primers and continues with the 

formation of DNA segments, the Okazaki fragments, which have a length of 

approx. 100 to 200 nucleotides in eukaryotes and consist of an 8 to 11 

nucleotides long RNA primer followed by a short stretch of DNA (Balakrishnan 

et al., 2010; Okazaki et al., 1968). The first short RNA primer and a short 

portion of DNA are synthesized by the primase, which is a hetero-tetramer of 

RNA polymerase and DNA polymerase α (pol α) and then prolonged by 

polymerase δ (pol δ) (Zheng and Shen, 2011). Pol δ displays both polymerase 

and proofreading function and can therefore correct errors made by pol α 

(Balakrishnan and Bambara, 2011). Replication protein A (RPA) binds to the 

single stranded DNA immediately after unwinding by DNA helicases and thus 

protects the DNA from cellular nucleases. Furthermore, it acts as an assembly 
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point for replication-associated proteins like the primase (Wold, 1997). The 

interaction of replication factor C (RFC) with pol α triggers the switch from 

initiation of replication to elongation with the help of pol δ, and pol α is replaced 

with the former and the proliferating cell nuclear antigen (PCNA) is loaded on 

the DNA (Tsurimoto et al., 1990). When pol δ has filled the gap between 2 

adjacent Okazaki fragments, it cannot remove the RNA segment because it 

does not possess a 5’-3’-exonuclease function. This function is most of the 

times carried out by flap endonuclease 1 (FEN1) binding to the RNA primer, 

cleaving it and leaving only a nick which can be joined by LIG1 (Figure 4) 

(Balakrishnan and Bambara, 2011; Gloor et al., 2010).  

 

Figure 4: Eukaryotic Okazaki fragment maturation. Modified from (Balakrishnan et al., 2010) 

 

Efficient and precise eukaryotic nick translation is a coordinated effort of PCNA, 

pol δ, and FEN1, which is demonstrated by the inability of mutants lacking the 

PCNA binding site of FEN1 to carry out nick translation (Burgers, 2009; Li et al., 

1995). 
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In addition to their function in replication, LIG1 and FEN1 are also involved in 

long patch base excision repair (BER) (correction of a patch of 2-12 nt). In short 

patch repair (correction of a single nucleotide) another endonuclease is involved 

and also another ligase, LIG3 (see below) (Balakrishnan and Bambara, 2011; 

Matsumoto and Kim, 1995). 

1.1.3.2 LIG1 protein partners 

Several LIG1-interacting proteins have been identified by LIG1 affinity 

chromatography, among them PCNA (Levin et al., 1997; Levin et al., 2004; 

Song et al., 2007). The interaction is primarily mediated by a conserved PCNA-

binding motif (PIP) at the N-terminus of LIG1 (Levin et al., 2000; Song et al., 

2007) (Figure 5a).  

 

Figure 5: Model for the interaction of human LIG1 with DNA-linked homotrimeric PCNA. 

a) Docking of LIG1 onto the PCNA ring via an interaction between the N-terminal PIP box and 
the interdomain connector loop of a PCNA monomer. b) Initial docking facilitates an interaction 
between DBD and PCNA c) Interaction of DBD with nicked DNA orchestrates the transition of 
the catalytic region of LIG1 from the extended to a closed ring conformation with each of the 
domains containing the DNA (Ellenberger and Tomkinson, 2008).  
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It is assumed that the region adjacent to the PIP box is flexible and allows the 

catalytic core of the protein to engage both PCNA and DNA (Ellenberger and 

Tomkinson, 2008) (Figure 5c). The PIP box of LIG1 is essential for its 

localization to replication factories. Inactivation of the LIG1 PIP box not only 

abolishes the targeting of LIG1 to replication foci, but also affects the 

complementation of the Okazaki fragment joining and long-patch base excision 

repair defects in the LIG1-deficient human cell line 46BR (Montecucco et al., 

1998; Song et al., 2007) 

PCNA also interacts with the replicative DNA polymerases δ and ε, RFC and 

the FEN-1 nuclease, which makes it likely that PCNA coordinates their activity 

at replication forks (Kelman, 1997; Mossi et al., 1997; Tomkinson et al., 2006).  

In addition to interacting with DNA sliding clamps and clamp loaders, LIG1 also 

interacts with DNA polymerase β within a base excision repair complex that was 

purified from bovine testes (Prasad et al., 1996).  

Although PCNA is of great importance in replication, it also has diverse roles in 

cell cycle control and checkpoint processes (Kelman, 1997). Interestingly, 

PCNA is also known to interact with X-ray cross-complementing protein 1, 

(XRCC1) a known interaction partner of LIG3 (see below) (Fan et al., 2004). 

1.1.3.3 LIG1 deficiency 

As mentioned above, knockout of CDC9 in yeast is a lethal event. There is a 

wealth of evidence confirming that LIG1 is the main ligase involved in joining 

DNA replication intermediates. LIG1 expression and activity correlate closely 

with the rate of cell proliferation; the protein localizes to multiprotein replication 

complexes and functions in lagging-strand DNA replication in vitro (Levin et al., 

2000; Tom et al., 2001; Waga et al., 1994; Waga and Stillman, 1994). The 

inactivation of the vertebrate LIG1 gene was therefore expected to be 

incompatible with survival. Indeed, cell lethality was observed in mouse 

embryonic stem cells upon inactivation of both LIG1 alleles (Petrini et al., 1995). 

Notably, however, mouse embryos harboring homozygous deletions of the 

3’ end of the LIG1 gene without taking out the active site were found to develop 
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normally until midgestation (Bentley et al., 2002; Bentley et al., 1996). Mouse 

embryonic fibroblast (MEF) cell lines generated from such embryos proliferate 

normally, show normal sensitivity to DNA damaging agents, but have a defect in 

Okazaki fragment joining and increased genomic instability, but no elevated 

level of spontaneous sister chromatid exchanges (SCE) (Bentley et al., 2002; 

Bentley et al., 1996). Although in the study of 1996, the 3′ end of the gene was 

removed and neither LIG1 transcripts nor LIG1 protein could be detected in 

mutant embryos, it was suggested that the inactivation of the gene might not 

have been complete, mainly because the active site of the protein had not been 

removed (Mackenney et al., 1997).  

LIG1 deficient cell lines could also be derived from the only known case of a 

human with mutated LIG1 gene, a young woman with growth retardation, sun 

sensitivity and immunodeficiencies, who died aged 19 with lymphoma and 

showed 2 different missense mutations at the LIG1 locus on chromosome 19, 

one in each allele (Barnes et al., 1992; Webster et al., 1992). The SV40 

immortalized cell line 46BR 1N encodes the same mutation in both alleles, a C 

to T transition in the codon for Arg771, which causes this residue to be replaced 

by Trp (Barnes et al., 1992). This mutation, though not decreasing the actual 

amount of protein, diminishes the activity of LIG1 to approx. 10%, without 

completely abolishing it (Barnes et al., 1992). 46BR cells show no obvious 

defects in proliferation, but show a marked defect in Okazaki fragment joining 

and hypersensitivity to UV-light suggesting a function of LIG1 in NER 

(Aboussekhra et al., 1995). In addition, cells are hypersensitive to ionizing 

radiation (IR) as well as to simple alkylating agents owing to a defect in the 

long-patch subpathway of BER (Bentley et al., 2002; Bentley et al., 1996; 

Henderson et al., 1985; Levin et al., 2000; Lönn et al., 1989). They also show 

an increased level of spontaneous SCEs, once again linking SCEs to replication 

and suggesting genomic instability (Painter, 1980; Sonoda et al., 1999; Webster 

et al., 1992; Wolff, 1977).  

Although the above results suggest that in vertebrates another ligase could 

substitute for LIG1 in DNA replication, the identity of this ligase remained 

conjectural before the results presented in the present thesis were generated.  
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1.1.4 DNA Ligase 3 

While almost all eukaryotes have homologs of the LIG1 and LIG4 genes, the 

LIG3 gene is less widespread. Initially, the LIG3 gene was thought to be 

restricted to vertebrates, but with the sequencing of more genomes, it has now 

been found in about 30% of eukaryotes, including members of 4 of the 6 

ancestral eukaryotic groups (Simsek and Jasin, 2011). Unlike the LIG1 and 

LIG4 genes, the LIG3 gene encodes 4 different DNA ligase polypeptides 

(Figure 6).  

 

Figure 6: Schematic representation of the different form of vertebrate LIG3. (Arakawa et 
al., 2012) 

 

Mitochondrial and nuclear versions of LIG3 are generated in all cells by 

alternative translation initiation (Lakshmipathy and Campbell, 1999; Perez-

Jannotti et al., 2001). The LIG3 mRNA open reading frame encodes an 

N-terminal mitochondrial leading sequence that is cleaved off during entry into 

the mitochondria. Thus, the mitochondrial DNA ligation functions are transferred 

from LIG1 in lower eukaryotes to LIG3 in vertebrates. There is no obvious 

nuclear localization signal within the LIG3 polypeptide and it remains unclear 

how the nuclear localization of LIG3 is accomplished. It may be that the 

interaction with its protein partner XRCC1 is crucial for this localization 

(Caldecott, 2003).  

In addition a germ-cell-specific alternative splicing mechanism which replaces 

the terminal 3’-coding exon of LIG3α by a shorter exon lacking the breast 

cancer susceptibility protein (BRCA) 1-related C-terminal (BRCT) domain, 

generates LIG3β (Mackey et al., 1997; Perez-Jannotti et al., 2001). Similar to 
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LIG1, LIG3 adopts a flexible extended conformation in the absence of DNA 

(Figure 7). Though only sharing approx. 21% amino acid identity, the structure 

of the catalytic core of LIG3 bound to DNA still closely resembles the structure 

of the catalytic core of the DNA bound LIG1 (Cotner-Gohara et al., 2010).  

 

Figure 7: Jackknife mechanism of DNA substrate recognition (Cotner-Gohara et al., 2010) 

 

A unique feature of the ligases encoded by LIG3 is an N-terminal zinc finger 

(ZnFn) that is structurally related to the pair of ZnFns at the N-terminus of poly 

(ADP-ribose) polymerase 1 (PARP1) that binds to DNA nicks and gaps and 

serves as a nick sensor (Mackey et al., 1999). This domain is not required for 

DNA nick joining by LIG3, but it significantly broadens the substrate range of the 

enzyme and enables it to join breaks even at high salt concentrations (Mackey 

et al., 1999). The zinc finger and the DBD form a second nick-binding module in 

addition to the one formed by NTase and OB-domain, which tolerates different 

nick structures including gaps, whereas the first module preferentially binds to 

ligatable nicks (Cotner-Gohara et al., 2008). Based on these properties, the 

jackknife model for ligation of intermolecular gaps was proposed (Figure 7) 

(Cotner-Gohara et al., 2010; Cotner-Gohara et al., 2008). This model suggests 

that the ZnFn-DBD-module acts as nick sensor that engages the DNA breaks. If 

the nick is ligatable, it initiates a conformational change, replacing the ZnFn-

DBD-module with the NTase/OB-domain module, then forming the compact 

clamp structure with the DBD around the DNA nick (Figure 7). Among the DNA 

ligases, LIG3 has the most robust intermolecular DNA joining activity (Chen et 

al., 2000). This activity is not solely dependent on the ZnFn, but also requires 

key residues inside the DBD (Cotner-Gohara et al., 2010; Cotner-Gohara et al., 
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2008). A possible scenario is that both modules engage one of the DNA ends 

enabling LIG3 to ligate them (Cotner-Gohara et al., 2010).  

Biochemical and cell biology studies link the nuclear LIG3α and XRCC1 to the 

short patch subpathway of BER and the repair of single strand breaks (Frosina 

et al., 1996; Okano et al., 2003; Okano et al., 2005). Nuclear LIG3α is also a 

key component of a nucleotide excision repair (NER) subpathway that operates 

in dividing cells but is particularly important for the repair of UV lesions in 

non-dividing cells (Moser et al., 2007). There is also evidence that LIG3α is a 

component of an alternative pathway of non-homologous end-joining (NHEJ) 

functioning as a backup (B-NHEJ) to the DNA dependent protein kinase 

(DNA-PK) dependent pathway of NHEJ (D-NHEJ) (Wang et al., 2005). 

1.1.4.1 LIG3 protein partners 

The 77 C-terminal residues that distinguish LIG3α from LIG3β constitute a 

BRCT domain (Bork et al., 1997). The BRCT motif mediates the interaction of 

LIG3 with XRCC1; this interaction stabilizes LIG3 and mediates some of its 

functions (Caldecott et al., 1995; Caldecott et al., 1994; Dulic et al., 2001; 

Mackey et al., 1997; Nash et al., 1997). XRCC1 interacts with several other 

proteins involved in base excision and single strand repair such as PARP1 and 

PCNA (Fan et al., 2004; Okano et al., 2003). LIG3α, as well as XRCC1, 

interacts with PARP1 and is therefore recruited to single strand breaks (Okano 

et al., 2005).  

XRCC1 is absent from mammalian mitochondria which suggests that the 

mitochondrial version of LIG3α has different protein partners in this organelle. 

The mitochondrial DNA polymerase, polymerase γ, has been identified as an 

interaction partner binding not the BRCT domain of LIG3, but the central 

catalytic region. This suggests an interplay of these enzymes during 

mitochondrial DNA replication and repair (De and Campbell, 2007). 
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1.1.4.2 LIG3 deficiency 

Although the confirmed specific functions of the peptides generated by the LIG3 

gene appear restricted to DNA repair, the deletion of LIG3 has consequences 

significantly severer than the deletion of either LIG1 or LIG4 and causes early 

embryonic lethality that cannot be rescued by deletion of p53 (Puebla-Osorio et 

al., 2006). Whereas this result may be explained by the function of LIG3α in 

mitochondria DNA metabolism or in BER and other repair pathways, this 

observation is intriguing and required further in depth investigation 

(Lakshmipathy and Campbell, 1999). One of the main goals of the work 

presented here is to fill this gap of knowledge. 

Interestingly, in non-dividing monocytes LIG3 and also its close interaction 

partner XRCC1 are not detectable at protein level (Bauer et al., 2011; Bauer et 

al., 2012). When these cells mature to dendritic cells or macrophages, the 

expression of these proteins is reestablished and reaches normal levels after 

6 d for dendritic cells and 3 d for macrophage maturation (Bauer et al., 2012). 

However, the mRNA level of LIG3 is not changed during maturation and it is 

therefore likely that some residual protein might be produced that is unstable 

without sufficient levels of XRCC1, which is expressed in a maturation 

dependent manner (Bauer et al., 2011).  

1.1.5 DNA Ligase 4 

The second family of ligases found in all eukaryotes is that of LIG4 and the 

main function attributed to these polypeptides is the ligation step during the 

repair of DNA double strand breaks (DSBs). This function is supported, both in 

yeast and in vertebrates, by a C-terminal extension of the central core with 2 

tandemly arrayed BRCT motifs (Schär et al., 1997; Teo and Jackson, 1997; Wei 

et al., 1995; Wilson et al., 1997) (Figure 8). Through these domains, LIG4 

interacts with XRCC4 and becomes integrated in a pathway of DSB repair 

(D-NHEJ), which in vertebrates also comprises XRCC4-like factor (XLF) and the 

DNA-PK complex consisting of the Ku heterodimer and the catalytic subunit, 

DNA-PKcs (Critchlow et al., 1997; Grawunder et al., 1997). LIG4 is one of the 
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targets of DNA-PK (Wang et al., 2004). Through its domain structure and 

possibly through adaptations in its central core, LIG4 has the unique ability of 

joining DNA ends that are non-complementary ignoring mismatches or short 

gaps (Gu et al., 2007). Unlike LIG1 and the nuclear LIG3α, which participate in 

several DNA repair pathways, LIG4 appears to function only in D-NHEJ, except 

in specialized cells of the immune system, where it also completes variable 

(diversity) joining (V(D)J) recombination (Grawunder et al., 1998a). 

 

Figure 8: Schematic representation of vertebrate LIG4. (Arakawa et al., 2012) 

 

1.1.5.1 LIG4 protein partners 

As mentioned above, LIG4, like LIG3, has a close interaction partner which 

stabilizes the protein: XRCC4. Without XRCC4, LIG4 is unstable and cells 

deficient in XRCC4 are also functionally deficient in LIG4, which emphasizes 

the importance of this interaction (Bryans et al., 1999). The region between the 

BRCT motifs interacts with a region on the coiled-coils of XRCC4 and appears 

to block tetramer formation by XRCC4 which suggests that the LIG4-XRCC4 

complex is composed of one LIG4 molecule and 2 XRCC4 molecules 

(Grawunder et al., 1998b; Sibanda et al., 2001; Tomkinson et al., 2006). There 

are physical and functional interactions between LIG4-XRCC4 and Ku as well 

as between LIG4-XRCC4 and the catalytic subunit of DNA-dependent protein 

kinase (DNA PKcs) in NHEJ (Chen et al., 2000; Hsu et al., 2002; Kysela et al., 

2003; McElhinny et al., 2000).  

1.1.5.2 LIG4 deficiency  

The predominant function of LIG4 in DSB repair is further supported by the 

phenotype of its inactivation in the mouse. Embryonic lethality occurs late, after 

multiple normal DNA replication cycles, and is caused by massive apoptosis in 
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the central nervous system (CNS) (Barnes et al., 1998; Frank et al., 1998; 

Frank et al., 2000). Live births are possible when CNS apoptosis is rescued by 

the concomitant loss of either p53 or Ataxia-telangiectasia-mutated (ATM) 

function, but LIG4-/-/p53-/- MEFs are highly radiosensitive and show defects in 

DSB repair owing to defective D-NHEJ (Frank et al., 2000; Lee et al., 2000; 

Sekiguchi et al., 2001).  

Although LIG4 is firmly linked to D-NHEJ, it remains open whether it can 

substitute for the functions of other ligases.  

1.2 Cell cycle checkpoints 

The maintenance of genomic stability is crucial for every cell. DNA damage or 

incomplete replication jeopardizes this stability and can therefore result in cell 

death or cancer (Aguilera and Gomez-Gonzales, 2008; Branzei and Foiani, 

2008; Friedberg, 2003; Hoeijmakers, 2001). Therefore, when the cell is at risk, it 

activates surveillance mechanisms, which detect problems and co-ordinate a 

global response to maintain genome integrity (Harrison and Haber, 2006; Zhou 

and Elledge, 2000). As some repair processes are slow, the checkpoint triggers 

an arrest in the cell cycle to provide sufficient repair time. Checkpoint deficiency 

causes genomic instability and has also been associated with carcinogenesis in 

studies of cancer-predisposition syndromes (Hartwell and Kastan, 1994; Shiloh, 

2003).  

The checkpoints are designed to prevent cells from going from one cell cycle 

phase to another, if they have residual DNA damage that might jeopardize 

processes of the upcoming cell cycle phase. In contrast to the other checkpoints 

which stop the cells from progressing to the next cell cycle phase, the inter-

S-phase, or DNA replication checkpoint, does not stop ongoing replication, but 

prevents the firing of unreplicated origins – particularly late firing origins 

(Costanzo et al., 2000; Santocanale and Diffley, 1998; Tercero and Diffley, 

2001).  
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Checkpoint response proteins can generally be divided into 4 subgroups: 

Sensors, which recognize the damaged DNA, Mediators, which simultaneously 

associate with damage sensors and signal transducers at certain phases of the 

cell cycle, Signal transducers, namely checkpoint kinase 1 (Chk1) and Chk2, 

and Effectors, which actually give the checkpoints their unique identities 

(Sancar et al., 2004). As in this study we were interested in the induction of the 

checkpoints only, we will focus on the DNA damage sensors. 

Although the G1/S, intra-S, and the G2/M checkpoints are distinct, the damage 

sensor molecules that activate the various checkpoints appear either to be 

shared by all 3 pathways or to play a primary sensor role in one pathway and a 

back-up role in the others. Two important damage sensors for checkpoint 

response are the 2 phosphoinoside 3-kinase-like kinase (PIKK) family 

members, ATM and ATR (ATM and Rad3 related) (Melo and Toczyski, 2002; 

Sancar et al., 2004). Mutations in ATM cause ataxia-telangiectasia (A-T) in 

humans, a condition primarily characterized by cerebellar degeneration, 

immunodeficiency, genome instability, clinical radiosensitivity and cancer 

predisposition (Shiloh and Kastan, 2001). ATR knockout results in embryonic 

lethality and partial loss of activity in humans share features with the phenotype 

of ATM mutations (Brown and Baltimore, 2000; de Klein et al., 2000; O'Driscoll 

et al., 2003). As ATM and ATR are of great importance at very early stages of 

the checkpoint signaling, the inhibition of these proteins results in abrogated or 

greatly reduced checkpoint response. 
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2 Goal of the thesis 

In vertebrates there are 3 different forms of DNA ligases which differ in their 

known functions. LIG1 plays its main role in DNA replication through its 

interaction with PCNA and is seen as the replicative ligase; it also functions in 

the long-patch subpathway of BER. LIG4 has its main known contribution in the 

repair of double strand breaks and V(D)J recombination. LIG3 has its function in 

the short-patch subpathway of BER, the repair of single strand breaks and a 

NER subpathway.  

The knockout of the LIG1 homolog in yeast, CDC9, is lethal for the cells. In 

accordance with this result, the knockout of LIG1 in vertebrates is embryonically 

lethal but there are both mouse and human cell lines with impaired activity of 

LIG1 which grow with similar characteristics as LIG1 proficient cells, despite a 

marked defect in Okazaki fragment joining. Although these mutants have 

residual activity or are incomplete knockouts, these results suggest the 

presence of a backup replicative ligase in vertebrate cells. 

In the present study, the impact of ligase knockout (all 3 families) on cell 

survival and replication functions was investigated. We measured the impact of 

these knockouts on cell growth, replicating potential, the maturation of Okazaki 

fragments and the induction of spontaneous SCEs.  

The observations, gathered with the help of a unique set of DT40 mutants, 

enables us to draw conclusions about an impressive functional flexibility 

between the DNA ligases and allow a deeper understanding of the interplay 

among them. In future work, the mechanistic foundation of this functional 

flexibility should be investigated in more detail. In particular, it will be important 

to characterize the protein domains enabling this flexibility and identify the 

potential interaction partners involved.  
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3 Material and Methods 

3.1 Materials 

Table 1: Laboratory Apparatus. 

Apparatus Provider 

63x/1.4 oil immersion objective Leica Microsystems, Mannheim, 
Germany 

Aluminum filter GE Healthcare, USA 
Cell counter, Multisizer™ 3 and 
Coulter Z2 

Beckman Coulter, Germany 

Centrifuge, AvantiTM J-20 XP Beckman Coulter, Germany 
Centrifugal elutriation rotor, JE-6 Beckman Coulter, Germany 
Centrifugal rotor, JA 25.50 Beckman Coulter, Germany 
Centrifuge, Rotana 460 R Hettich, Germany 
Dry Block Heater/Cooler HLC, Oehmen, Germany 
Electrophoresis chambers, Horizon 
11•14 and 20•25 

Life TechnologiesTM, USA 

Electrophoresis chamber, Mupid-One Advance Co. Ltd., Japan 
FalconTM ExpressTM Pipet-Aid® BD Biosciences, Germany 
Flow cytometer, Epics XL and Gallios Beckman Coulter, Germany 
FluorImager, Typhoon 9400 Molecular Dynamics, Germany 
iBlot® Dry Blotting System Invitrogen, Life Technologies, 

Germany 
Inverted phase contrast microscope Olympus, Germany 
Laminar flow hood, HeraSafe Heraeus, Thermo Scientific, Germany 
LC Carousel Centrifuge 2.0 Roche Diagnostics, Germany 
LightCyler 2.0 Roche Diagnostics, Germany 
Magnetic stirrer, MR Hei-Standard Heidolph, Germany 
MCO-18 O2/CO2 incubators Sanyo, Germany 
Metafer Slide Scanning Platform MetaSystems, Germany 
Micro Centrifuge, IR Carl Roth, Germany 
NanoDropTM 2000 Thermo Scientific, Germany 
Nucleofector® 2b Device Amaxa, Lonza, Germany 
Odyssey® infrared imaging system LI-COR Biosciences, Germany 
pH-Meter, FE20 – FiveEasy™ pH Mettler Toledo, Germany 
Pipettes, Pipet-LiteTM Mettler Toledo, Germany 
Power supply, PowerPacTM Basic Bio-Rad, Germany 
PTB dosimeter Physikalisch-Technische 

Bundesanstalt, Germany 
Pump drive, MCP Standard Ismatec®, Idex Health & Science, 

Germany 
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Pumphead, Easy-Load® II Ismatec®, Idex Health & Science, 
Germany 

SDS-PAGE apparatus Bio-Rad, Germany 
SDS-PAGE mini gels, Mini 
PROTEAN 

Bio-Rad, Germany 

Seifert Isovolt 320 HS X-ray tube Seifert, GE Measurement & Control, 
USA 

Rocky shaker Oehmen, Germany 
Tabletop centrifuge, Biofuge fresco  Heraeus, Thermo Scientific, Germany 
Thermo-mixer Eppendorf, Germany 
Ultracentrifuge, Optima Max Beckman Coulter, Germany 
Ultracentrifuge rotor, MLN80 Beckman Coulter, Germany 
UV spectrophotometer Shimadzu, Germany 
Vacuum gas pump VWR, Germany 
Vortexer, IKA MS 3 basic IKA, Germany 
Water bath GFL, Germany 
Weighing balance, 572-43 Kern, Germany 
Weighing balance, VWR-124 Sartorius, Germany 
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Table 2: Disposable Products and Commercial Kits. 

Disposable Product /  

Commercial Kit 

Provider 

0.5, 1.5 and 2 ml reaction tubes Greiner, Germany 
2, 5, 10, 25 ml pipette Greiner, Germany 
3 mm diameter glass tubes CM Scientific Ltd., UK 
15 and 50 ml tubes Greiner, Germany 
20 mm glass cover slips Invitrogen, Life Technologies, 

Germany 
60, 100 mm bacteria and cell culture 
dishes 

Greiner, Germany 

150 mm culture dishes TPP, Switzerland 
Click-iT® EdU Alexa Fluor® 647 
Imaging Kit 

Invitrogen, Life Technologies, 
Germany 

Cuvettes, Q-VETTES Halbmikro Ratiolab®, Germany 
Filter tips Greiner, Germany 
fluorescence microscope, AxioImager 
Z2 

Zeiss, Germany 

Glass flasks, beakers and cylinders Schott Duran, Germany 
High pure RNA isolation kit Roche Diagnostics, Germany 
Maxima First strand cDNA Synthesis 
Kit 

Fermentas, Thermo Scientific, 
Germany 

Microscope Slides, H872 Carl Roth, Germany 
Minisart®, 0.45 µm sterile filter Sartorius, Germany 
NucleoBond Xtra Midi/Maxi Plus EF 
purification kit 

Macherey-Nagel, Germany 

NucleoSpin Tissue Kit Macherey-Nagel, Germany 
Peha-soft® nitrile FINO gloves Hartmann, Germany 
Phase Lock Gel, 1.5 ml Heavy Eppendorf, Germany 
Pipettes Greiner, Germany 
Pipette tips Greiner, Germany 
LightCycler® capillaries Roche Diagnostics, Germany 
LightCycler® FastStart DNA 
MasterPLUS SYBR Green I Kit 

Roche Diagnostics, Germany 

iBlot® blotting stacks, Nitrocellulose 
and PVDF 

Invitrogen, Life Technologies, 
Germany 
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Table 3: Chemical Reagents 

Chemical Provider 

1,4 Dithiothreitol Carl Roth, Germany 
Acetic acid Carl Roth, Germany 
Agarose, LE Lonza, Germany 
Ampicillin Carl Roth, Germany 
β-Mercaptoethanol Sigma-Aldrich, Germany 
Blasticidin S InvivoGen, Germany 
Boric acid Carl Roth, Germany 
Bovine serum albumin fraction IV Carl Roth, Germany 
Bromophenol blue Sigma-Aldrich, Steinheim, Germany 
Caspase Inhibitor III, BOC-D-FMK Calbiochem®, Merck Millipore, 

Germany 
Chicken serum Gibco®, Life Technologies, Germany 
Chloramphenicol Carl Roth, Germany 
Chloroform Sigma-Aldrich, Germany 
Colcemid Biochrom, Germany 
Coomassie brilliant blue R 250 SERVA, Germany 
CsCl Crescent Chemical, USA 
DAPI Sigma-Aldrich, Germany 
Dimethyl sulfoxide Sigma-Aldrich, Germany 
Dulbecco's Modified Eagle Medium Gibco®, Life Technologies, Germany 
Dulbecco's Modified Eagle Medium: 
Nutrient Mixture F-12 

Gibco®, Life Technologies, Germany 

EDTA Roth, Germany 
Entellan Merck, Heidelberg, Germany 
Ethanol Sigma-Aldrich, Germany 
Ethidium bromide Roth, Germany 
Fetal bovine serum Biochrom, Germany; 

PAA, Coelbe, Germany; 
Gibco®, Life Technologies, Germany 

G418 InvivoGen, Germany 
Gelatine Calbiochem®, Merck Millipore, 

Germany 
GeneRulerTM 1 kb DNA Ladder Fermentas, Thermo Scientific, 

Germany 
GeneRulerTM 100 bp Plus DNA 
Ladder 

Fermentas, Thermo Scientific, 
Germany 

Giemsa stain Carl Roth, Germany 
Glycerol Carl Roth, Germany 
HCl Carl Roth, Germany 
HEPES Carl Roth, Germany 
LB agar USB ®, Affymetrix ®, USA 
LB medium USB ®, Affymetrix ®, USA 
KCl Carl Roth, Germany 
KH2PO4 Carl Roth, Germany 
KOH Carl Roth, Germany 
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Ku55933 Calbiochem®, Merck Millipore, 
Germany 

Mc Coy’s 5A medium Sigma-Aldrich, Steinheim, Germany 
Methanol Sigma-Aldrich, Germany 
Methylcellulose Sigma-Aldrich, Germany 
MgCl2 Merck, Darmstadt, Germany 
Minimum Essential Medium Gibco®, Life Technologies, Germany 
NaCl Carl Roth, Germany 
NaF Carl Roth, Germany 
NaHCO3 Carl Roth, Germany 
NaH2PO4 Merck Millipore, Germany 
Na2HPO4 Carl Roth, Germany 
NLS Merck, Heidelberg, Germany 
Non-fat dry milk Carl Roth, Germany 
NotI Fermentas, Thermo Scientific, 

Germany 
NU7441, KU-57788 Tocris Bioscience, USA 
Orange G Carl Roth, Germany 
Paraformaldehyde Carl Roth, Germany 
Phenol Carl Roth, Germany 
Phosphoric acid Carl Roth, Germany 
Phenylmethylsulfonyl fluoride Carl Roth, Germany y 
Poly-L-lysine Biochrom AG, Berlin, Germany 
Primer Invitrogen, Germany 
ProLong® Gold antifade reagent Invitrogen, Germany 
Protease inhibitor cocktail Sigma-Aldrich, Germany 
Propidium iodide Sigma-Aldrich, Germany 
Puromycin InvivoGen, Germany 
RIPA buffer Thermo Scientific, Germany 
RNase A Sigma-Aldrich, Germany 
Rotiphorese® Gel 30 (37.5:1) Carl Roth, Germany 
Page Ruler, Prestained Protein 
Ladder 

Fermentas, Thermo Scientific, 
Germany 

Sodium dodecyl sulfate Carl Roth, Germany 
Sorenson’s buffer Gibco®, Life Technologies, Germany 
Streptomycin Calbiochem®, Merck Millipore, 

Germany 
Sucrose Sigma-Aldrich, Germany 
SYBR Gold Molecular Probes, Life Technologies, 

Germany 
Tetramethylethylenediamine (TeMeD) Sigma-Aldrich, Germany 
Tris base Carl Roth, Germany 
Triton X-100 Sigma-Aldrich, Germany 
Trypsin Biochrom, Germany 
Tween 20 Carl Roth, Germany 
VE-821 Haoyuan Chemexpress Co., China 
Xylene Cyanol Sigma-Aldrich, Germany 
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Table 4: Antibodies 

Antibody Provider 

Alexa Fluor 488 (mPAb, rPAb) Invitrogen, Germany 
GAPDH (mMAb) Millipore, Germany 
GFP (mMAb) ab1218 Abcam, UK 
IRDye 680 (mPAb, rPAb) LI-COR Biosciences, Germany 
IRDye 800 (mPAb, rPAb) LI-COR Biosciences, Germany 

LIG1 (mMAb) 10H5 GeneTex, USA 

LIG3 (mMAb) 1F3 GeneTex, USA 
PCNA (mMAb) PC10 Dako, Germany 
PCNA (rMAb) EPR3821 GeneTex, USA 
XRCC1 (mMAb) 33-2-5 Abcam, UK 
XRCC1 (rPAb) GeneTex, USA 

3.2 Methods 

3.2.1 Cell lines 

3.2.1.1 DT40 Parental cell line and generation of mutants 

The DT40 mutants used here were designed by Dr. Hiroshi Arakawa 

(exceptions are mentioned explicitly) and were derived from the DT40-Cre1 cell 

line that conditionally expresses Cre recombinase to allow genome editing and 

v-myb to enhance gene conversion (Arakawa et al., 2002; Arakawa et al., 

2001). Cre recombinase is expressed from a human -actin promoter as a 

chimera, MerCreMer, of 2 mutated estrogen receptors (Mer), only responding to 

tamoxifen or 4-hydroxytamoxifen (4HT), and Cre recombinase (Arakawa et al., 

2002; Arakawa et al., 2001; Zhang et al., 1996). In the absence of 4HT, 

MerCreMer is efficiently sequestered by heat shock proteins in the cytoplasm. 

This interaction is rapidly disrupted upon administration of 4HT and causes the 

translocation of the protein to the nucleus, where Cre exerts recombination 

activity at loxP sites (Arakawa et al., 2012). The targeting strategies used have 

been extensively described in Arakawa et al 2012. Briefly, the different ligases 

within the chicken genome were identified by Blast search, and large portions of 
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the functional domains including the active site which is highly conserved 

among the species were taken out. The deletions after knockout are depicted in 

Figure 9. Some of the mutants had to be made inducible as the knockout was 

lethal. For this purpose we applied a conditional targeting system, taking 

advantage of the loxP system. The mutants were designed in such a way that 

the portion of gene, which was to be deleted was flanked by 2 loxP-sites which 

enables the induction of the knockout upon addition of 20 nM 4HT, as described 

earlier (Arakawa et al., 2012). 

 

Figure 9 Schematic comparison between the 3 DNA ligases in vertebrates and the part 

deleted after knockout Nc: nuclear; mt: mitochondrial. Red bars indicate regions deleted in the 
mutants generated. The β form of LIG3 is inferred, as the corresponding exon could not be 
identified (Arakawa et al., 2012). 

 

The generation of mutants which lack the nuclear form of LIG3, but are left with 

the mitochondrial version, was achieved by inactivation of the M2 translation 

initiation site in one allele of the LIG3 gene, while the other one was flanked by 

flanked by loxP sites (LIG32loxP/M2I) to induce the knockout or taken out 

completely (LIG3-/M2I), depending on the mutant (Arakawa et al., 2012; Paul et 

al., 2013). 

All knockouts were checked at the DNA level by polymerase chain reaction 

(PCR) and at the RNA level with real-time-PCR (RT-PCR). 
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In addition to the knockouts, we also designed mutants stably overexpressing 

certain genes. These constructs were integrated into the DT40 genome with the 

help of a vector which targets a defined intergenic locus on chromosome 8, 

without destroying or grossly disturbing nearby genes. The vector included a 

Rous sarcoma virus (RSV) promoter, which is followed by an internal ribosome 

binding site (IRES), the blasticidin (bsr) selection marker and the Simian virus 

(SV40) polyA signal.  

Table 5: Summary of DT40 mutants used (Arakawa et al., 2012; Paul et al., 2013) 

Cell line Description 

LIG4-/-  LIG4 knockout 

LIG12loxP/-  LIG1 conditional knockout 

LIG1-/-  LIG1 knockout 

LIG32loxP/- * LIG3 conditional knockout 

LIG32loxP/M2I  conditional nuclear LIG3 knockout 

LIG3-/M2I  nuclear LIG3 knockout 

LIG32loxP/-cdc9  
LIG3 conditional knockout overexpressing 
CDC9 (LIG1 homolog in yeast) 

LIG3-/-cdc9  
LIG3 knockout overexpressing CDC9 (LIG1 
homolog in yeast) 

LIG1-/-LIG4-/-  LIG1 knockout; LIG4 knockout 

LIG32loxP/-LIG1-/-  LIG3 conditional knockout; LIG4 knockout 

LIG3-/M2ILIG12loxP/-  
nuclear LIG3 knockout; LIG1 conditional 
knockout 

LIG3-/2loxPLIG4-/-mts-hLIG1 + 
LIG3 conditional knockout; LIG4 knockout 
overexpressing human mitochondrial LIG1 

LIG3-/-LIG4-/-mts-hLIG1 + 
LIG3 knockout; LIG4 knockout 
overexpressing human mitochondrial LIG1 

LIG3-/M2ILIG12loxP/-hLIG3β * nuclear LIG3 knockout; LIG1 conditional 
knockout overexpressing human LIG3β 

LIG3-/M2ILIG12loxP/-

hLIG3α-ZnFn Cl1 * 

nuclear LIG3 knockout; LIG1 conditional 
knockout overexpressing human LIG3α 
without Zinc Finger domain, Clone 1 

LIG3-/M2ILIG12loxP/-

hLIG3α-ZnFn Cl2 * 

nuclear LIG3 knockout; LIG1 conditional 
knockout overexpressing human LIG3α 
without Zinc Finger domain, Clone 2 

 Mutants generated by H. Arakawa. 
+ Mutants generated by K. Paul. 
* Mutants generated by T. Bednar. 
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The yeast LIG1 homolog, CDC9, human LIG1 with a mitochondrial leader 

sequence (mts-hLIG1), the human LIG3α and its truncated mutants were cloned 

into this vector and knocked into DT40 chromosome 8 (Arakawa et al., 2012; 

Paul et al., 2013). The mutants used are summarized in Table 5. 

3.2.1.2 46BR 1N, 46BR PBAHL and MRC5 SV cell lines 

The 46BR 1N cell line is a human cell line mutated in the LIG1 gene. The effect 

of this mutation on the patient the cells were derived from, are described in 

1.1.3.3.  

46BR PBAHL cells have been generated by transfecting the LIG1 deficient 

46BR cells with a LIG1 expressing vector carrying the neo gene as selection 

marker.  

MRC5 SV cells serve as control as they are an SV40-transformed normal 

fibroblast cell line (Huschtscha and Holliday, 1983).  

3.2.1.3 PF20 and PFL13 cell lines 

PF20 (wild type) and LIG1-deficient immortalized mouse cell line (PFL13) are 

spontaneously immortalized mouse fibroblasts. They were derived from normal 

or LIG1 deficient mice (Bentley et al., 2002). Although defined as LIG1 deficient 

there have been some doubts about the reliability of these mutants, as only 

exons 23 to 27 were knocked out, which do not include the active core of LIG1 

(Bentley et al., 2002). 

3.2.1.4 EM9 cells 

EM9 cells were produced during a screening for DNA repair-deficient mutants of 

CHO cells (Thompson et al., 1980). An XRCC1 expressing plasmid was found 

to give an approx. 80% correction of EM9 (Thompson et al., 1990). 
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3.2.2 Cell culture  

All cells were routinely maintained in the logarithmic phase of growth and 

incubated in a humidified incubator supplemented with 5% CO2. 

3.2.2.1 DT40 cell culture 

DT40 cells were grown at 41ºC in a mixture of Dulbecco's Modified Eagle 

Medium (DMEM)/F12 growth medium supplemented with 10% fetal bovine 

serum, 1% chicken serum and 50 µM β-mercaptoethanol. 

Stable transfectants were selected in 15 µg/ml of blasticidin S, 1 µg/ml 

mycophenolic acid, or 1 µg/ml of puromycin, as appropriate. Targeted clones 

were screened by PCR according to Arakawa et al. (Arakawa et al., 2002). 

3.2.2.2 Culturing 46BR 1N, 46BR 1N and MRC5 SV cells 

46BR 1N, 46BR PBAHL and MRC5 SV1 cells were grown in Minimum Essential 

Medium (MEM) supplemented with 10% fetal bovine serum at 37°C. 

3.2.2.3 PF20 and PFL13 cell lines 

PF20 and PFL13 were cultured in DMEM supplemented with 10% fetal bovine 

serum and non-essential amino acids at 37°C. 

3.2.2.4 EM9 cells 

EM9 cells were cultured in McCoy’s 5A medium supplemented with 10% fetal 

bovine serum at 37°C. 
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3.2.3 Drug treatments and irradiation 

Irradiations of cells were carried out at room temperature (RT) using an X-ray 

machine (General Electric-Pantak), operated at a maximum energy of 320 keV. 

Controls were mock irradiated. 

All inhibitors used in this work were dissolved in dimethyl sulfoxide (DMSO) and 

added to the studied cells 1 h before irradiation or start of surveillance. 

Inhibitors used are summarized with the concentrations  used in Table 6.  

Table 6: Summary of inhibitors used 

Inhibitor Mode of action Working-concentration 

Caspase Inhibitor III 
(BOC-D-FMK) 

Inhibits activity of caspase 
family proteases and blocks 
apoptosis 

50 µM 

ATR inhibitor  
(VE-821) 

Potent and selective ATP 
competitive inhibitor of ATR 

5 µM 
 

ATM inhibitor 
(Ku55933) 

Potent, selective and 
competitive ATM kinase 
inhibitor 

10 µM 

3.2.4 Electroporation 

3.2.4.1 Electroporation of DT40 cells 

For knock-in of the truncated LIG3 genes in DT40, 1-10x106 cells were 

electroporated with 5 to 10 µg linearized plasmid DNA, with program B23 using 

commercially available equipment and protocols (Amaxa). 

3.2.4.2 Electroporation of 46BR 1N, MRC5 SV and EM9 

cells 

For transient transfection with pDsRed-LIG1, pTagBFP-PCNA and pEGFP-

XRCC1 plasmids, 1.2 to 2 million cells were transfected with 1 µg plasmid DNA 

of each plasmid. 46BR 1N and MRC5 SV were electroporated with program 

P22, EM9 cells were electroporated with program U23 using commercially 

available equipment and protocols (Amaxa). 
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3.2.5 Analysis of DNA replication by BrdU 

incorporation and analysis of cell cycle 

distribution by flow cytometry 

Exponentially growing cells were incubated with 10 µM 5-Brom-2-desoxyuridine 

(BrdU) for 1 h and fixed in 70% ethanol. After washing with 0.9% NaCl, the cell 

pellet was incubated for 10 min at 37°C in a pepsin-HCl solution (0.5 g pepsin, 

55 mM HCl ad 100 ml). Subsequently, cells were then incubated in 2 M HCl for 

20 min at RT and washed in 1x phosphate-buffered saline (PBS; 137 mM NaCl, 

2.7 mM KCl, 7.4 mM Na2HPO4, 1.5 mM KH2PO4, pH 7.4) supplemented with 

0.05% Tween20 (PBS-T) before incubation for 30 min at 4°C with an anti-BrdU 

antibody (1:50 dilution, Becton Dickinson) in the same solution. After washing 

with PBS-T-BSA (1%), a fluorescein isothiocyanate (FITC) conjugated 

secondary antibody (1:100 dilution, Sigma) was applied for 30 min at 4°C in the 

same solution. Finally, cells were stained with propidium iodide (PI) and 

analyzed by flow cytometry (Arakawa et al., 2012).  

For all other flow cytometric analyses cells were also fixed in pre-chilled 70 % 

ethanol or stained directly in 100 mM Tris pH 7.0, 100 mM NaCl, 5 mM MgCl2, 

0.05% Triton X-100 containing 40 µg/ml PI and 62 µg/ml RNase A at RT for at 

least 10 min. If fixed with ethanol, cells were collected by centrifugation and 

resuspended in PBS containing 40 µg/ml PI and 62 µg/ml RNase A. Samples 

were incubated at 37ºC for 20 min and 20,000 cells were measured. The 

fraction of cells in the different phases of the cell cycle was calculated using the 

Wincycle® software. 

3.2.6 Cell fractionation in G1 or G2 phase of the cell 

cycle by centrifugal elutriation 

To get a clean population for studying sister chromatid exchanges (SCE), cells 

were enriched in G2 by centrifugal elutriation, which separates cells on the 

basis of their size. For cell cycle progression measurement, cells were enriched 

in G1 phase of the cell cycle and further cultivated for experiments. The method 
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is based on 2 opposite forces applied in a conical separation chamber, 

containing a non-synchronized cell population: the continuous flow rate of the 

medium is directed against the centrifugal force.  

DT40 cells were grown for 24h to a cell concentration of 1.5 x 106 cells per ml. 

2-3 x 108 cells were elutriated at 4°C in a Beckman J2-21M high speed 

centrifuge and a Beckman JE-6 elutriation rotor (Beckman-Coulter, Krefeld, 

Germany). During the separation process, the cells in G1-phase are firstly 

elutriated (cells of smaller size), followed by fractions of S- and G2-

subpopulations (larger cells). After cell cycle analysis by FACS, depending on 

the experiment, G1 or G2 subpopulations were further cultivated for 

experiments. 

3.2.7 Sister chromatid exchanges 

G2 enriched cells were cultivated for 2 generations with medium containing 

20 µM BrdU and with 0,05 µg/ml colcemid during the last 2 h of cultivation. Cells 

were collected by centrifugation at 1200 rpm for 7 min at 4°C, supernatant was 

removed and cells were resuspended in hypotonic solution (0.075 M potassium 

chloride (KCl)), incubated for 10 min at RT and centrifuged again. Cell pellets 

were fixed in 3 parts methanol and 1 part acetic acid, and fixed cells were 

dropped on a clean glass slide. The slide was air dried in the dark overnight, 

stained with 5 µg/ml Hoechst 33258 in Sorensen buffer (10582-013, Gibco, 

Invitrogen) and covered with a coverslip. The slides were placed on a slide 

warmer at 55°C and exposed to a black light fluorescent lamp (Radium 

SupraBlack HBT 125-281) at a distance of 2 cm for 10 min. After removing the 

coverslip, the slides were stained in 2.5 ml of ready to use Giemsa stain (Carl 

Roth GmbH & Co.) diluted in 50 ml of Sorenson’s buffer (10582-013, Gibco, 

Invitrogen) for 20 min. SCE pictures were taken using a 40x objective in an 

automated analysis station equipped with a bright field microscope (AxioImager 

Z2, Zeiss) and controlled by Metafer software (MetaSystems). The images were 

analyzed using the Ikaros software (MetaSystems). For each cell line, at least 2 

independent experiments were performed, counting 100 metaphases in each. 
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The sister chromatid which has incorporated BrdU is stained more lightly, which 

enables us to tell the sister chromatids from one another, and to visualize 

potential exchanges between sister chromatids. The SCEs in the representative 

pictures are marked with red arrows for better visualization. 

3.2.8 Reverse transcription reaction and real-time PCR 

The RNA was prepared according to the protocol of the High Pure RNA 

Isolation Kit (Roche) with the exception that 3 million cells were used for total 

RNA isolation. RNA concentration was determined with a spectrophotometer 

(NanoDrop; Thermo Scientific). cDNA was prepared from 1 µg total RNA by 

reverse transcription using the “Transcriptor First Strand cDNA Synthesis Kit” 

(Roche) according to the manufacturer’s instructions. This cDNA was used as 

input in real-time PCR reactions according to the protocol suggested in the 

LightCycler® FastStart DNA MasterPLUS SYBR Green I kit (Roche). Briefly, 1 µl 

of cDNA, 0.5 µl of sense and antisense primer solution, 2 µl of LightCycler® 

FastStart DNA MasterPLUS SYBR Green I Master Mix and 6 µl H2O were mixed 

together in a 10 µl reaction mixture in a LightCycler® Capillary. Capillaries were 

placed in the sample carousel of the LightCycler® (Roche).  

Table 7: Protocol for Real-time PCR 

Temperature Time Cycles PCR step 

95°C 10 min 1 Denaturation 

95°C 10 s 

45 

Denaturation 

62°C 5 s Annealing 

72°C 10 s Amplification 

65°C – 95°C 0.1°C/s  Melting Curve 

37°C 1 min  Cooling 
 

The settings for the thermal cycles are summarized in table 7, the primer used 

for DNA ligase expression analysis can be looked up in table 8. TATA-binding 

protein 1 (TBP1) is the housekeeping gene used as reference. 
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Table 8: Primer sequences used in DT40 for Real time PCR 

Oligo nucleotide Sequence 

Chk LIG1-F7 CATCTGCAAGATAGGCACTG 

Chk LIG1-R7 CCCAAATCGTCACCAAACAG 

Chk LIG3-F GATGACCCCAGTTCAGCCTA 

Chk LIG3-R GTGGGCTACTTTGTGGGGAA 

Chk LIG4-F CCCCATTAACAGGCAGGATA 

Chk LIG4-R CCACGTTTGTCAGGCTTGTA 

Chk TBP1-F CAGCACCAACAGTCTGTCCA 

Chk TBP1-R GGGGCTGTGGTAAGAGTCTG 
 

3.2.9 Extract preparation and immunoprecipitation 

reactions 

Whole cell extracts (WCE) for immunoprecipitation were prepared with 

ready-to-use RIPA buffer (Pierce) according to the manufacturer’s protocol, and 

the protein concentration was determined using the colorimetric Bradford assay 

with BSA as standard. For immunoprecipitation reactions, we used mouse and 

rabbit TrueBlot IgG agarose beads. 50 μl beads were incubated with 300 µg 

WCE and 5 µg of antibody for at least 2 h on a shaker at 4°C. Non-specific 

bound proteins were removed by washing the beads 3 times with 500 μl of IP 

buffer (50 mM Tris HCl pH 8.0, 150 mM NaCl, 1% NP-40 (Igepal CA-630)). 

Bound proteins were denatured by adding 60 μl 2xLaemmli buffer (Tris-HCl 

126 mM, glycerol 20%, SDS 4%, bromophenol blue 0,02%, pH 6,8, 0,2% 

2-mercaptoethanol) to each tube, heated to 95°C for 5 min and run on a 10% 

SDS polyacrylamide gel, before blotting onto a nitrocellulose membrane.  

3.2.10 SDS-PAGE and Western blotting 

Protein gel electrophoresis under denaturing conditions was carried out using 

10% polyacrylamide gels. For further analysis, the proteins were blotted onto a 

0.2 m nitrocellulose membrane using an iBlot dry-transfer system (Invitrogen). 

To ensure equal loading of protein, the concentration was determined using the 
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colorimetric Bradford assay with BSA as standard and detection of GAPDH as 

loading control where possible. After transfer, membranes were incubated in 

blocking buffer (5% non-fat dry milk in 0.05% Tween-20, 150 mM NaCl, 25 mM 

Tris-HCl, pH 7.6) for 2 h at RT. Subsequently, membranes were incubated 

overnight at 4˚C with primary antibody appropriately diluted (anti-LIG3 1:500, 

anti-PCNA 1:1000, anti-XRCC1 1:1000, anti-LIG1 1:1000, GAPDH 1:10,000) in 

blocking buffer. After 3 washes for 10 min with PBS-T (PBS, supplemented with 

0.05% Tween-20), membranes were incubated for 1 h with secondary antibody 

(IRDye680 or IRDye800 (Li-COR) 1:10,000) diluted in PBS-T and washed again 

3 times. After immunoblotting, membranes were visualized using Odyssey 

Infrared Imaging System (LI-COR Biosciences GmbH, Bad Homburg, Germany) 

according to the manufacturer’s instructions. 

3.2.11 Assay for DNA replication intermediates 

The assay for analyzing the DNA replication intermediates was conducted as 

described in Bentley et al., 2002 with only slight modifications (Bentley et al., 

2002). Briefly, exponentially growing human and mouse fibroblasts were 

cultured in 30 mm dishes and were rinsed twice with warm serum-free medium. 

Human and mouse cells were incubated at 37°C for 10 min in serum-free 

medium containing 2 µCi of [methyl-3H]- thymidine (25 Ci/mol) per ml. The 

medium containing radioactive thymidine was removed and 2 ml of warm 

supplemented medium containing 2 mM thymidine was added and incubated at 

37°C for the required chase period (2, 5, 10, 15 or 30 min). After chasing time, 

the cells were scraped, covered with 1 ml ice cold PBS, pelleted by brief 

centrifugation and resuspended in 20 µl buffer A (10 mM Tris-HCl (pH 8.0), 

50 mM NaCl, 0.1 M EDTA). 60 µl of molten 1.5% low-melting point agarose was 

added to the suspension, mixed and left to set on ice for 5 min. DT40 cells were 

handled in a similar way, but scraping was not required; instead, they were 

collected by centrifugation and incubated at 41°C. The plugs were incubated for 

18 h at 50°C in 1 ml lysis buffer supplemented with 2% (w/v) N-laurylsarcosine 

and 0.2 mg/ml proteinase K. Subsequently, plugs were transferred to 5 ml 

buffer A for 1 h. The nascent DNA was separated on a 1% agarose gel as 
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described ((Sambrook et al., 1989). The electrophoresis was carried out at 

2 V/cm for 6 h at RT. After electrophoresis, the gel was soaked in neutralization 

buffer (1 M Tris-HCl (pH 7.6), 1.5 M NaCl) for 1 h and sliced into 1 cm fractions, 

ranging from <0.2 to >23 kb using size markers as a guide. Agarose pieces 

corresponding to the different sizes were soaked in 0.1 M HCl for 1 h, melted by 

heating in a microwave oven and the [3H] present was counted in a scintillation 

counter. The results were plotted as the percentage of cpms measured in 

agarose sections comprising DNA smaller than 2 kbp, which was compared to 

the total cpms in the corresponding lane. 

3.2.12 Immunofluorescence microscopy 

Three coverslips were put in 1 60 mm cell culture dish. 5 ml poly-L-lysine was 

added and incubated for at least 30 min. Directly after electroporation, cells 

were transferred to pretreated dishes and left to attach for at least 8 h. After 

initial incubation, cells were washed twice with pre-warmed PBS and fresh pre-

warmed growth medium was added. 24 h after electroporation, 10 µM 

5-ethynyl-2’-deoxyuridine (EdU) was added to the growth medium for 20 min to 

1 h at 37°C, dependent on the cell line used. Cells were fixed for 20 min in 2% 

paraformaldehyde in PBS. After washing 3 times with PBS, cells were 

permeabilized for 5 min in P-solution (0.5% Triton X-100 in 100 mM Tris, 50 mM 

EDTA), washed again as indicated and blocked in PBG solution (PBS, 0.5 % 

BSA, 0.2 % gelatine) overnight at 4°C. 

For visualization of GFP, coverslips were incubated for 90 min at RT with an 

anti-GFP mouse monoclonal antibody (ab1218, Abcam) diluted 1:500 in PBG 

solution. Coverslips were washed once in PBS and an anti-mouse IgG antibody, 

conjugated with AlexaFluor488 (Invitrogen), was added for 60 min at RT in 

1:400 dilution in PBG solution. For visualization of EdU, the Click iT®-EdU 

Imaging system (Invitrogen) was used after antibody staining. 50 µl of Click iT® 

reaction cocktail was added to each coverslip for 30 min. Coverslips were 

washed once with PBS and were mounted on slides using Prolong-Gold 

Antifade (Invitrogen). BFP and dsRed signals could be rescued after fixation 

without any additional antibody staining. After solidification of the mounting 
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media at RT, 3D-images were captured in a Leica confocal microscope TCS 

SP5 (Leica Microsystems GmbH, Wetzlar, Germany) using the Leica 

Application Suite Advanced Fluorescence (LAS-AF) software. 

3.2.13 Plasmid preparation and digestion 

Chemically competent bacteria were transformed with the desired plasmid with 

heat-shock transformation and plated onto a 10 cm LB agar plate containing the 

appropriate antibiotic and incubated overnight at 37°C. Mini-cultures containing 

3 ml of LB- medium with antibiotics were inoculated with 1 colony from the agar 

plate and incubated on an orbital shaker at 37°C for 8 h. 200 ml of LB-medium 

with antibiotics were inoculated with 200 µl pre-culture and incubated for 16 h 

on an orbital shaker at 37°C. The bacteria were collected after incubation and 

the bacteria pellets were processed using a NucleoBond Xtra Midi/Maxi Plus EF 

purification kit (Macherey-Nagel) following the instruction manual of the 

manufacturer. 

For linearization of plasmid DNA for transfection of DT40, plasmids were 

digested with NotI (Fermentas) following the manufacturer’s manual. Agarose 

gel electrophoresis was applied to test the completeness of digestion. The 

completely digested plasmid was purified with phenol/chloroform extraction 

precipitated with isopropanol, and the precipitate was washed with 70% ethanol. 

The air-dried plasmid was dissolved in 1 x TE buffer (10 mM Tris, 1 mM EDTA, 

pH 7.5) to a final concentration of 1 µg/µl. Plasmid concentration was 

determined using a NanoDrop spectrophotometer (Thermo Scientific). 

3.2.14 Measurement of apoptotic index 

To determine the apoptotic index of a cell population, cells were collected by 

centrifugation and fixed in 70% ethanol. Ethanol fixed cells were resuspended in 

4',6-diamidino-2-phenylindole (DAPI) staining solution (0.1 M Tris, pH 7.0, 0.1 M 

NaCl, 5 mM MgCl2, 0.05% Triton X-100 and 2 µg/ml DAPI) and incubated at RT 
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for 5 min. After staining, cells were analyzed under a fluorescent microscope by 

counting the fraction of pycnotic and fragmented nuclei in 1000 cells. 
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4 Results 

There are hints in the literature that LIG1 might not be the only replicative DNA 

ligase in vertebrates. In support of this, it has been reported that a human cell 

line derived from a patient with a mutation in LIG1 gene could effectively 

undergo DNA replication despite an evident defect in Okazaki fragment 

maturation (Barnes et al., 1992; Webster et al., 1992). Moreover, a genetic 

approach using mouse embryos with a knockout of LIG1 showed that although 

the knockout resulted in no viable mouse embryos, the fibroblasts generated 

from these embryos were viable and had growth kinetics similar to that of wild 

type (wt) cells (Bentley et al., 1996).  

Nevertheless, there were some limitations with the above models so that a 

complete lack of LIG1 could not be unequivocally ensured in neither 

experimental approaches, a complete elimination of the LIG1 activity could not 

be demonstrated. In fact, in the human cell line, residual LIG1 activity was 

documented, and in the mouse system the gene fragment encoding the 

catalytic core of LIG1 was not completely disrupted. As a result, the assertion 

that some derivative products retaining LIG1 activity could not be ruled out 

(Barnes et al., 1992; Mackenney et al., 1997).  

4.1 LIG3 but not LIG1 or LIG4 are essential for cell 

survival 

4.1.1 LIG4 is dispensable for replication 

Although the knockout of LIG4 is embryonically lethal, there are several cell 

lines that are viable in the absence of functional LIG4, particularly when the p53 

gene is additionally inactivated. Moreover, there is no single report suggesting 

that LIG4 deficiency compromises DNA replication (Barnes et al., 1998; Frank 

et al., 1998; Frank et al., 2000). To confirm the above findings, LIG4 was 
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knocked out first and the DT40 mutants were checked for their growth 

characteristics and their DNA replication activity (Figure 10).  

 

Figure 10: Schematic representation of the active ligases in LIG4
-/-

 cells. Deleted ligase is 
depicted in grey, expressed ligases are shown in color (modified from (Arakawa et al., 2012)). 

 

As expected, LIG4 knockout cells in DT40 (LIG4-/-) were viable and showed no 

shifts in the cell cycle distribution; only a slightly slower growth rate in 

comparison to the wt cell line was observed (Figure 11).  

 

Figure 11: LIG4 knockout does not change the growth kinetics of LIG4
-/-

 cells. Cells were 
diluted daily in fresh growth medium to maintain exponential growth. The cell numbers are 
normalized to the initial number of cells seeded. 

 

For a more in depth analysis of actively replicating cells, DNA replication was 

measured using a 2-parametric flow-cytometry approach. In this protocol, DNA 

content was analyzed by PI staining and the fraction of actively replicating cells 

was determined by BrdU incorporation. This analysis is particularly useful 

because, in addition to the total fraction of cells in S-phase as estimated by 

DNA content (PI-signal), it also provides the fraction of cells actually engaged in 
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semi-conservative DNA replication (BrdU-positive). For quantitation, we defined 

the parameter “Fraction of active S-phase cells,” which is calculated by dividing 

the number of BrdU positive cells by the total number of cells within the PI limits 

shown in Figure 12. By convention, the gating for this analysis was set between 

the end of the G1 and the beginning of the G2 peaks. Similar to the growth 

kinetics, there was no obvious difference between the wt and the LIG4 mutants 

in the percentage of actively replicating S-phase cells (Figure 12).  

 

Figure 12: BrdU incorporation of LIG4
-/-

 and wt DT40 cells. Left: Representative dot plot of 
BrdU-labeled LIG4

-/-
 cells showing the gates applied to calculate the active S-phase fraction. 

Right: Calculated fraction of actively replicating cells. 

 

As the induction of SCEs is intimately associated with DNA replication, we 

investigated whether the knockout of LIG4 changes the frequency of SCEs – 

which might indicate alterations in homologous recombination repair activity for 

example through replication stress (Painter, 1980; Sonoda et al., 1999; Wolff, 

1977). The frequency of SCEs in LIG4 deficient cells was slightly higher than 

that of the wt cell line. However, this difference is quite small and not statistically 

significant (p value of 0.25 after Wilcoxon Signed Rank Test) (Figure 13). These 

results, in aggregate, support the notion that there are no severe consequences 

on DNA replication associated with LIG4 deficiency. Therefore, it was 

concluded that LIG4 knockout has no effect on replication in DT40. 
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Figure 13: Spontaneously induced SCE in LIG4
-/-

 and wt DT40 cells. Left: Representative 
image of LIG4

-/-
 metaphase incubated for two cell cycles with BrdU and stained with a Giemsa 

protocol allowing the detection of SCE (see under “Material and Methods”). The red arrow 
points to SCE in this exemplary metaphase. Right: Calculation of SCE frequency per 
metaphase. Error bars represent standard error of the mean. 

 

4.1.2 LIG1 knockout has no measurable impact on 

DNA replication 

As it was likely that the LIG1 knockout would be lethal, we applied a conditional 

genetic system to eliminate the LIG1 activity as described under “Material and 

Methods” (3.2.1.1.). Briefly, one allele of the LIG1 gene was excised from the 

genome while the other one was flanked by 2 loxP sites, which are recognized 

by the Cre recombinase. In our DT40 cells, the sequences encoding a chimera 

between Cre recombinase and the mutated estrogen receptor (MER) are 

integrated into the genome. This ensures continuous expression of MerCreMer 

protein under the control of the human β-actin promoter (Arakawa et al., 2012; 

Arakawa et al., 2002; Arakawa et al., 2001; Zhang et al., 1996). In the absence 

of 4-hydroxytamoxifen (4HT), MerCreMer is efficiently sequestered by heat 

shock proteins in the cytoplasm. This interaction is rapidly disrupted upon 

administration of 4HT resulting in translocation of the protein to the nucleus, 

where Cre exerts recombination activity at loxP sites (Arakawa et al., 2012). 
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Figure 14: Schematic representation of the active ligases in LIG1
-/-

 cells. Deleted ligase is 
depicted in grey, expressed ligases are shown in color (modified from (Arakawa et al., 2012)). 

 

After administration of 4HT to the above cell line, the LIG1 mRNA amount drops 

to undetectable levels in a timeframe of 8 to 12 h (Figure 15). Unfortunately, it 

was not possible to correlate the LIG1 mRNA level with the disappearance of 

the LIG1 protein as antibodies recognizing the chicken form of LIG1 could not 

be found (data not shown).  

 

Figure 15: LIG1 mRNA level in 4HT treated LIG1
2loxP/-

cells. LIG1 mRNA level in LIG1
2loxP/- 

cells as a function of time after induction of the total knockout by incubation with 4HT, measured 
by RT-PCR. 

 

In further experiments, the growth kinetics of LIG12loxP/- cells were followed after 

induction of LIG1 knockout by 4HT treatment, and the fraction of actively 

replicating S-phase cells was also monitored over time (Figure 16A, B). It turned 

out that knockout of LIG1 to generate LIG1-/- does not significantly change the 

growth kinetics and the fraction of active S-phase cells over time 

(Figure 16A, B).  
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Figure 16: LIG1 knockout has no influence on growth or the fraction of active S-phase 

cells A) Growth kinetics and distribution throughout the cell cycle of LIG1
2loxP/- treated with 4HT 

and of wt cells as reference. Cells were daily diluted with fresh growth medium to maintain 
exponential growth. Growth is shown normalized to the initial number of cells seeded. B) Left: 
Representative dot plot of BrdU-labeled LIG1

2loxP/- cells, and gates applied to calculate the active 
S-phase fraction Right: Fraction of actively replicating cells as a function of the treatment time. 

 

DNA replication can also be analyzed by following the progression of G1-phase 

cells into S-phase. This method complements the results acquired with the 2 

parametric flow cytometry as it is not affected by the fluctuations in dNTP pools 

and also eliminates the false negative signals, which may result from the cells 

undergoing apoptosis. For this purpose, a clean population of G1 DT40 cells 

was prepared by centrifugal elutriation. Centrifugal elutriation separates cells 

according to their size and allows the generation of fractions highly enriched in 

specific phases of the cell cycle. A G1 cell fraction was allowed to progress into 

the cell cycle and cells were retrieved and analyzed at different times thereafter. 

The resulting histograms allow estimation of cell cycle progression by 

comparing the initial G1 peak with the median of the progressing fraction of 

cells. In accordance with the above mentioned results, the LIG1-/- cells progress 

through the cell cycle with kinetics indistinguishable from that of wt cells 
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(Figure 17). Thus, even this assay could not detect any measurable effect of 

LIG1 knockout on cell proliferation (Figure 17).  

 

Figure 17: LIG1 knockout has no influence on the progression through the cell cycle. 

Left: Representative flow-cytometric histograms of centrifugal elutriation G1 enriched LIG1
-/- 

cells incubated to progress through the cell cycle. The horizontal bar shows the subpopulation 
used to estimate progression through the cycle for the population median. Right: Progression 
through S-phase calculated by following the relative increase in DNA content for the median of 
the population described in the left panel. 

 

As already discussed, human and mouse cells carrying mutations in LIG1 gene 

show a severe defect in Okazaki fragment joining. Therefore, it was tested 

whether in the DT40 system used, such a phenotype could also be observed 

(Bentley et al., 1996). This assay was consequently modified to accommodate 

the requirements of suspension cells, such as the DT40, and the acquired 

results were compared with the results obtained in parallel using 4 cell lines with 

different LIG1 genetic background that have already been tested for this 

endpoint by others (Figure 18) (Bentley et al., 1996). No measurable defect in 

joining of Okazaki fragments could be detected in DT40 cells after knockout of 

LIG1 (Figure 18). However, as these cells show no growth defect at all, this was 

not surprising.  
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Figure 18: LIG1 knockout has no influence on the maturation of Okazaki fragments. 

Accumulation of Okazaki fragments in LIG1-deficient human and mouse cells, as well as of 
LIG1

-/- DT40 cells. The graph shows the percentage of total radioactivity present in single-
stranded DNA fragments <2.0 kb for each cell line. 

 

Also, the generation of spontaneous SCEs in the LIG1 deficient cell line was 

followed (Figure 19). Notably, at this endpoint the knockout of LIG1 did not 

seem to have any negative impact either. Thus, the conclusion to be drawn is 

that LIG1 knockout has no measurable effect on DNA replication in DT40 cells.  

 

Figure 19: LIG1 knockout has no influence on the induction of spontaneous SCEs. Left: 
Representative image of LIG1

-/-
 DT40 metaphase incubated for two cell cycles with BrdU and 

stained afterwards with a Giemsa protocol allowing the differential visualization of sister 
chromatids. The red arrow points to a SCE in this exemplary metaphase. Right: Calculation of 
SCE frequency per metaphase. Each bar is calculated from 3 independent experiments, with 
100 metaphases each. Error bars represent standard error of the mean. 
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4.1.3 LIG3 knockout is lethal due to its requirement for 

mitochondrial function 

 

Figure 20: Schematic representation of the active ligases in 4HT treated LIG3
2loxP/-

 cells. 

Deleted ligases are depicted in grey, expressed ligases are shown in color (modified from 
(Arakawa et al., 2012)). 

 

Following experiments with LIG1 described above, the effects of a knockout of 

the evolutionarily newer LIG3 were studied. Here, the Cre/loxP conditional 

knockout system described above was also applied to see the impact of LIG3 

knockout on cell survival. Similar to previous results with LIG12loxP/- cells, the 

targeted allele is quickly disrupted – within 12 h after treatment with 4HT 

(Arakawa et al., 2012).  

 

Figure 21: LIG3 knockout does not cause compensatory overexpression of LIG1 or LIG4. 

Measurement of LIG1, LIG3 and LIG4 mRNA levels in LIG3
2loxP/- cells as a function of time after 

induction of the complete knockout measured by RT-PCR  

 

The same was true for the levels of mRNA measured. The mRNA of LIG3 

dropped down to undetectable levels within 12 h (Figure 21). To examine 
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whether LIG3 knockout causes compensatory overexpression of the remaining 

ligases, the mRNA levels of LIG1 and LIG4 were measured. No significant 

decrease or increase of the mRNA levels of either ligase was noted (Figure 21). 

Although the cells expressing LIG3 from only one allele (LIG32loxP/-) grow like 

the wt cells, the addition of 4HT in these cells resulted in complete elimination of 

LIG3 from the cells and had a dramatic effect on cell survival. Within 4 d after 

treatment the proliferation activity of the mutant decreased dramatically. This is 

most probably due to the inception of cell death by apoptosis (Figure 22).  

 

Figure 22: LIG3 knockout has severe effects on cell survival. Growth kinetics and cell cycle 
distribution of LIG3

2loxP/- cells with and without treatment with 4HT vis-à-vis the growth kinetics of 
wt cells. Cells were daily diluted with fresh growth medium to maintain exponential growth. 
Growth is shown normalized to the initial number of cells seeded. 

 

We also followed LIG3 protein decay by western blotting. Surprisingly, we found 

that the protein concentration level remains unchanged over a period of 2 d 

after induction of the knockout. There was also only a slight reduction in protein 

level after 3 d and the corresponding protein band did not disappear completely 

in the measured timeframe of 5 d (Arakawa et al., 2012). This result raised the 

question whether the antibody is really specific and whether it recognizes 

another protein of the same or a comparable molecular weight as LIG3. To 

address these questions we introduced alternative assays to measure LIG3 

activity. Indeed, for further information on the level of knockdown, we utilized an 

end joining assay, which preferentially measures the activity of LIG3. The 

results from these experiments have shown that after 3 d of treatment with 4HT, 

the end joining activity in whole cell extracts (WCE) prepared from these cells 
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was decreased to barely detectable levels. This result suggests that while the 

protein persists in the treated cells, it loses its catalytic activity within the first or 

second day of treatment (Paul et al., 2013).  

Next the fraction of actively replicating cells in this mutant was measured. Here 

again, a decrease at day 4 after treatment was observed. This was to be 

expected as, at this point, the cells already started to die (Figure 23).  

 

Figure 23: LIG3 knockout leads to rapid decrease in replication activity. Left: 
Representative dot plots of 4HT treated BrdU-labeled LIG3

2loxP/- cells and the gates applied to 
calculate the active S-phase fraction. Right: Fraction of actively replicating cells as a function of 
the treatment time. 

 

As further support for the state of this mutant after treatment with 4HT (84 or 

96 h), the progression of G1 enriched (by centrifugal elutriation) cells through 

the S-phase was measured. It is evident from the results obtained that 

untreated cells progress through the S-phase with kinetics similar to the wt cells 

while 4HT-treated cells significantly slowed down their progression through the 

cycle (Figure 24). This could be explained either by an essential function of 

LIG3 in DNA replication or by a secondary effect causing apoptosis. More 

advanced genetic systems were required to conclusively address this question 

and are described next. 
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Figure 24: Induction of LIG3 knockout leads to measurable delay in cell cycle 

progression. Left: Representative flow-cytometric histograms of G1 enriched LIG3
2loxP/-  cells 

with and without treatment with 4HT as they are allowed to progress through the cell cycle. The 
horizontal bar shows the subpopulation used to estimate progression through the cycle of the 
population median. Right: Progression through S-phase calculated by following the relative 
increase in DNA content for the median of the population described before. 

 

To investigate whether LIG3 exerts an essential function in the cell nucleus, a 

mutant was constructed in which the M2 translation initiation site was 

inactivated and therefore only the mitochondria version of LIG3 (LIG32loxP/M2I) 

was expressed (Figure 25). 

 

Figure 25: Schematic representation of the active ligases in 4HT treated LIG3
2loxP/-

 cells. 

Deleted ligases are depicted in grey, expressed ligases are shown in color (modified from 
(Arakawa et al., 2012)). 

 

During investigation of the growth characteristics of this mutant, we observed 

that treatment with 4HT to delete the conditional LIG3 allele did not affect the 

growth characteristics of the cells (Figure 26).  
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Figure 26: Treatment of LIG3
2loxP/M2I 

cells with 4HT does not affect the growth 

characteristics of the cells. Growth kinetics and cell cycle distribution of LIG3
2loxP/M2I with and 

without treatment with 4HT vis-à-vis the growth kinetics of wt cells as reference. Cells were daily 
diluted with fresh growth medium to maintain exponential growth. Growth is calculated 
normalized to the initial number of seeded cells 

 

Yet, upon treatment with 4HT the amount of LIG3 mRNA dropped down to the 

expected 50%, but cell growth remained stable and no cell killing was observed 

(Figure 26, 27). These observations suggest that the mitochondrial form of LIG3 

together with LIG1 and LIG4 (LIG3-/M2I) can fully support proliferation in DT40 

cells.  

 

Figure 27: mRNA level of LIG3
2loxP/M2I

 and LIG3
-/M2I 

cells. Measurement of LIG3 mRNA levels 
in wt, LIG3

2loxP/M2I
 and LIG3

-/M2I cells normalized to wt mRNA level. 

 

The fraction of actively replicating cells was slightly reduced from 90% in the 

parental cell line to 80%, which might point to slight defects in replication due to 

the lack of nuclear LIG3 (Figure 28).  
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Figure 28: The fraction of actively replicating cells, decreases slightly upon induction of 

the knockout in LIG3
-/M2I 

cells. Left: Representative dot plot of BrdU-labeled LIG3
2loxPM2I- cells 

and the gates applied to calculate the active S-phase fraction. Right: Fraction of actively 
replicating cells as a function of the treatment time. 

 

To confirm the above results, we attempted to rescue the lethal phenotype of 

LIG3 knockout with another ligase containing a mitochondrial leader sequence. 

For this purpose, the yeast homolog of LIG1, CDC9, which also carries a 

mitochondrial leader sequence, was chosen. The gene was stably integrated in 

the genome of LIG32loxP/- cells (LIG32loxP/-cdc9) and was associated with its own 

promoter to ensure stable expression (Arakawa et al., 2012).  

 

Figure 29: Expression of Cdc9 rescues the lethal phenotype observed upon LIG3 

knockout. A) Growth kinetics of LIG3
2loxP/-

cdc9
 with and without treatment with 4HT together 

with the growth kinetics of wt cells as reference. Cells were daily diluted with fresh growth 
medium to maintain exponential growth. Growth is calculated normalized to the initial number of 
seeded cells. B) Fraction of actively replicating cells before and after treatment with 4HT. 



    Results 
 

65 

The induction of the LIG3 knockout did not change the growth kinetics of this 

mutant and also had only a marginal effect on the fraction of actively replicating 

cells (Figure 29A, B). 

Collectively, these results clearly demonstrate that the lethality of the LIG3 

knockout is not due to an essential function of LIG3 in DNA replication, but 

rather to its unique function in the mitochondria. Notably, this function could be 

fully supported by another ligase carrying a mitochondrial leader sequence from 

an organism evolutionarily as remote as the budding yeast. Thus, any single 

ligase knockout has no measurable effect on DNA replication in DT40 cells. 

This observation raises the possibility that both LIG1 and LIG3 support 

replication with similar efficiency. This aspect is investigated in greater depth in 

the following set of experiments.  

4.1.4 Mono-ligase systems reveal that LIG1 and LIG3 

support all replication functions, while LIG4 is 

unable to do so 

The experiments with the single knockouts did not conclusively show the 

function of LIG3 in DNA replication. Therefore, a set of double ligase knockout 

mutants together with knock-in cell lines which resulted in functional 

mono-ligase systems was designed and tested (Arakawa et al., 2012; Paul et 

al., 2013).  

 

Figure 30: Schematic representation of the active ligases in LIG3
-/M2I

 cells. Deleted ligase 
is depicted in grey, expressed ligases are shown in color (modified from (Arakawa et al., 2012)). 
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First, LIG4 was knocked out in a LIG1 deficient genetic background to generate 

the LIG1-/-LIG4-/- double mutant (Figure 30). These cells were found to grow 

with slightly slower kinetics than the wt and also a bit slower than the LIG4 

single mutant (Figure 31). Nevertheless, these effects were relatively minor and 

demonstrated that LIG3 as a single ligase can support all ligation function of 

DT40 cells.  

 

Figure 31: LIG1 and LIG4 knockout cells show only slightly slower growth kinetics. 

Growth kinetics and cell cycle distributions of LIG1
-/-

LIG4
-/- cells vis-à-vis the growth kinetics of 

wt cells as reference. Cells were daily diluted with fresh growth medium to maintain exponential 
growth. Growth is calculated normalized to the initial number of seeded cells. 

 

The fraction of actively replicating cells was determined in this mutant and found 

to be at the same level as the LIG1 knockout (Figure 32).  

 

Figure 32: Knockout of LIG4 on LIG1 deficient background does not change fraction of 

actively replicating cells. Left: Representative dot plot of BrdU-labeled LIG1
-/-

LIG4
-/- cells and 

the gates applied to calculate the active S-phase fraction. Right: Fraction of actively replicating 
cells. 
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The effect of double knockout on the progression of cells throughout the cell 

cycle was also investigated by measuring the progression of elutriated 

LIG1-/-LIG4-/- G1 cells into S-phase. This mutant also showed no defect in this 

assay and moved through the cell cycle with kinetics undistinguishable from the 

wt cells or the LIG1-/- cells (Figure 33). 

 

Figure 33: Knockout of LIG4 on LIG1 deficient background does not result in a 

measurable delay in cell cycle progression. Left: Representative flow-cytometric histograms 
of G1 enriched LIG1

-/-
LIG4

-/- cells as they progress through the cell cycle. The horizontal bar 
shows the subpopulation used to estimate progression through the cycle of the population 
median. Right: Progression through S-phase calculated by following the relative increase in 
DNA content for the median of the population described in the left panel. 

 

The joining of Okazaki fragments was also tested in these cells and found to be 

no different from any of the other mutants tested (Figure 34).  

 

Figure 34: LIG1 and LIG4 knockouts have no influence on the maturation of Okazaki 

fragments Accumulation of Okazaki fragments in LIG1-deficient human and mouse cells as 
well as the indicated LIG1

-/-
LIG4

-/- DT40 cells. The graph shows the percentage of total 
radioactivity present in single-stranded DNA fragments <2.0 kb for each cell line. 
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As this mutant also represents a robust system devoid of problems associated 

with apoptosis, the frequency of SCEs was measured (Figure 35). It is 

interesting that this mutant showed a slightly higher frequency of SCEs than the 

wt. However, the level of SCE measured was comparable to that measured in 

the LIG4-/- mutant. These results conclusively show that LIG3 efficiently 

supports all DNA replication activities normally assigned to LIG1. 

 

Figure 35: LIG1 and LIG4 knockout have no influence on the induction of spontaneous 

SCEs. Left: Representative image of a LIG1
-/-

LIG4
-/- metaphase incubated for two cell cycles 

with BrdU and stained with a Giemsa protocol allowing differential staining of the sister 
chromatids. The red arrows point to SCEs in this exemplary metaphase. Right: Calculation of 
SCE frequency per metaphase. Error bars represent standard error of the mean. 

 

The next question that needed to be addressed was whether LIG4 can also 

support DNA replication in the absence of LIG3 and LIG1. It was not surprising 

that the cells lacking LIG1 and carrying only one conditional allele of LIG3 did 

not survive 4HT treatment which generates a mutant only expressing LIG4 

(Figure 36). Interestingly, the mutant displayed far larger sensitivity to 4HT 

treatment than any of the mutants tested before with lethality manifest 1 d after 

treatment.  
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Figure 36: LIG3
2loxP/-

LIG1
-/- 

cells are more sensitive to 4HT treatment than any other cell 

line tested. A) Schematic representation of the ligases expressed in the generated mutant. 
Deleted ligases are depicted in grey, expressed ligases are shown in color (modified from 
(Arakawa et al., 2012)). B) Growth kinetics and cell cycle distribution of LIG3

2loxP/-
LIG1

-/- cells 
with and without treatment with 4HT vis-à-vis the growth kinetics of wt cells as reference. Cells 
were daily diluted with fresh growth medium to maintain exponential growth. Growth is 
calculated normalized to the initial number of seeded cells. 

 

In line with this result, the fraction of actively replicating cells which shows a 

30% lower starting point drops massively on day 1 (Figure 37).  

 

Figure 37: Impact of LIG1 and LIG3 knockout on DNA replication in DT40 cells. Left: 
Representative dot plot of BrdU-labeled LIG3

2loxP/-
LIG1

-/- cells as a function of the treatment time 
and the gates applied to calculate the active S-phase fraction Right: Fraction of actively 
replicating cells as a function of the treatment time. 
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This suggests that in the absence of LIG1 even slight reductions of LIG3 have 

severe consequences for the cells. 

As already discussed, the mitochondrial function of LIG3 is essential for cell 

survival. This is why a mutant was designed which expresses the mitochondrial 

version of LIG3, but lacks the nuclear form, and, in addition, has one allele of 

LIG1 flanked by 2 loxP sites to allow the conditional elimination of LIG1 

(Figure 38).  

 

Figure 38: Schematic representation of the active ligases in 4HT treated LIG3
-/M2I

LIG1
2loxP/- 

cells. Deleted ligases are depicted in grey, expressed ligases are shown in color (modified from 
(Arakawa et al., 2012)). 

 

Despite its greater sensitivity to 4HT in comparison to the single LIG3 mutant, 

this mutant did survive longer compared to the LIG32loxP/-LIG1-/- mutant 

(Figure 39).  

 

Figure 39: LIG1 knockout on a LIG3
-/M2I

 background has severe effects on cell survival. 

Growth kinetics and cell cycle distribution of LIG3
-/M2I

LIG1
2loxP/- cells with and without treatment 

with 4HT vis-à-vis the growth kinetics of wt cells as reference. Cells were daily diluted with fresh 
growth medium to maintain exponential growth. Growth is calculated normalized to the initial 
number of seeded cells. 
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Also, the initial fraction of active S-phase cells was significantly lower than that 

of the wt cells (Figure 40). These findings allow the conclusion that LIG4 is not 

able to support DNA replication, and that either LIG1 or LIG3 must be present in 

the nucleus to ensure cell survival.  

 

Figure 40: Impact of LIG1 and nuclear LIG3 knockout on DNA replication in DT40 cells. 

Left: Representative dot plot of BrdU-labeled LIG3
-/M2I

LIG1
2loxP/- cells as a function of treatment 

time and the gates applied to calculate the active S-phase fraction Right: Fraction of actively 
replicating cells as a function of treatment time. 

 

To generate a cell line which only expresses LIG1, we constructed a knock-in 

system with the human LIG1 to which a mitochondrial leader sequence was 

added. To get the mono-LIG1 system, we chose a mutant where LIG4 was 

knocked out with a conditional LIG3 knockout capability (LIG32loxP/-LIG4-/-) as 

background (Figure 41) (Paul et al., 2013). 

 

Figure 41: Schematic representation of the active ligases in LIG3
2loxP/-

LIG4
-/-

mts-hLIG1 

cells. Deleted ligases is depicted in grey, expressed ligases are shown in color (modified from 
(Arakawa et al., 2012)). 
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Although the targeted knock-in was not achieved, the clones were checked for 

protein expression by western blotting and all of the clones checked expressed 

the human LIG1, which could easily be distinguished from the endogenous 

chicken LIG1, as the latter is not recognized by the antibody used (Figure 42). 

 

Figure 42: hLIG1 expression in LIG3
2loxP/-

LIG4
-/-

mts-hLIG1 cells. Western blot analysis of 
LIG1 protein level in clones 1, 3 and 7 of the LIG3

−/2loxP
LIG4

−/−
mts-hLIG1 mutant, of the 

LIG3
−/2loxP

LIG4
−/− mutant, and of HeLa cells. A mouse monoclonal antibody (10H5 GeneTex) 

recognizing human but not chicken LIG1 was used. GAPDH is used as loading control. 

 

After knocking out LIG3 from this mutant we observed that cells growth was not 

impaired. Indeed cells grew with similar kinetics as the non-induced cells 

(Figure 43). 

 

Figure 43: Knockout of both LIG3 and LIG4 do not change growth kinetics of mts hLIG1 

expressing DT40 cells. Growth kinetics of different clones of LIG3
2loxP/-

LIG4
-/-

mts-hLIG1 cells 
after treatment with 4HT and growth kinetics of treated and untreated parental cell lines as 
reference. Cells were daily diluted with fresh growth medium to maintain exponential growth. 
Growth is calculated normalized to the initial number of seeded cells. 
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The fraction of actively replicating cells was as high as in the wt cells, 

irrespective of the induced elimination of LIG3 (Figure 44A). In this clean 

knockout system the frequency of SCEs was also measured. There was no 

increase in this frequency compared to the wt (Figure 44B). 

 

Figure 44: Knockout of both LIG3 and LIG4 do not change fraction of actively replicating 

cells or induction of spontaneous SCEs in mts hLIG1 expressing DT40 cells. A) Left: 
Representative dot plot of BrdU-labeled LIG3

2loxP/-
LIG4

-/-
mts-hLIG1 cells and the gates applied 

to calculate the active S-phase fraction Right: Fraction of actively replicating cells as a function 
of the treatment time. B) Left: Representative image of LIG3

2loxP/-
LIG4

-/-
mts-hLIG1 metaphase 

incubated for two cell cycles with BrdU and afterwards stained with Giemsa to detect SCE. The 
red arrows point to SCEs in this exemplary metaphase. Right: Calculation of SCE frequency per 
metaphase. Error bars represent standard error of the mean. 

 

In aggregate, the results presented in this section show that LIG3 can 

effectively substitute for LIG1 in semi-conservative DNA replication. However, 
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LIG3 is not required for replication in the presence of LIG1. Indeed, LIG1 and 

LIG3 seem to support DNA replication with similar efficiency. 

4.2 LIG3 supports DNA replication through its 

interaction with XRCC1, but not with PCNA 

4.2.1 LIG3 does not co-immunoprecipitate with PCNA 

The above results show that there is a functional overlap between LIG1 and 

LIG3 in functions associated with DNA replication. However, the mechanism by 

which LIG3 supports DNA replication remains to be elucidated. There are data 

showing an essential interaction between LIG3 and XRCC1 in functions 

associated with BER (Frosina et al., 1996; Okano et al., 2003; Okano et al., 

2005). This functional interaction partner of LIG3, also interacts with PCNA, the 

interaction partner of LIG1 during replication and the interaction that is thought 

to recruit LIG1 to the DNA replication forks. Therefore, we hypothesized that the 

recruitment of LIG3 to DNA replication sites is mediated through the interaction 

of XRCC1 with PCNA. To address this possibility, immunoprecipitation (IP) 

experiments were performed with WCEs of LIG1 proficient (HeLa) and LIG1 

deficient (46BR 1N) human cells (Figure 45).  

 

Figure 45: LIG3 and PCNA do not co-immunoprecipitate. 1 IP reactions with 46BR 1N WCE, 
2 IP reactions with HeLa WCE A) IP reactions were performed with a monoclonal rabbit PCNA 
Ab (EPR3821 GeneTex). The membrane was probed with mouse anti-LIG3 (1F3 GeneTex), 
mouse anti-XRCC1 (33-2-5 Abcam) and mouse anti-PCNA (PC10). B) IP reactions were 
performed with a monoclonal mouse LIG3 Ab (1F3 GeneTex). The membrane was probed with 
mouse anti-LIG3 (1F3 GeneTex), rabbit anti-XRCC1 (GeneTex) and rabbit anti-PCNA 
(EPR3821 GeneTex) Ab. 
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The IP was performed with a monoclonal antibody (Ab) against LIG3, clone 

(1F3), and also with an Ab against PCNA, clone (EPR3821). In the IP reaction 

with the PCNA Ab, XRCC1 did co-immunoprecipitate with PCNA as expected, 

serving as a positive control for the IP reaction. In this reaction, there was no 

detectable signal for LIG3 (Figure 45A). In the IP reaction with the LIG3 Ab, 

XRCC1 was also co-immunoprecipitated, again, as expected, serving as 

positive control for the reaction. However, here again PCNA did not co-

immunoprecipitate with LIG3 (Figure 45B). Surprisingly, there was no visible 

difference in the efficiency of co-IP between the cell lines tested either. This led 

to the hypothesis that LIG3 makes use of other proteins to function in DNA 

replication or that the replication functions of LIG3 do not require an interaction 

partner and are supported by the ZnFn domain instead. 

4.2.2 The replication functions of LIG3 are dependent 

on both the BRCT and the ZnFn domains 

The IP experiments did not allow conclusions about the mechanisms by which 

LIG3 substitutes for LIG1 functions during DNA replication. Therefore, we opted 

to identify the domains of LIG3 which are crucial for this function. For the 

purpose of these experiments, LIG3-/M2LIG12loxP/- cells were transfected with 

different constructs expressing the human LIG3α without the ZnFn (-ZnFn), and 

LIG3β in which the BRCT domain is missing anyway. The clones were selected 

for stable integration of the constructs and were tested for support of DNA 

replication by incubation of the cells with 4HT. Transfection with the LIG3β 

construct gave only one clone, while transfection with the construct encoding 

ZnFn free LIG3 gave 2 clones. PCR showed that none of these clones harbored 

a chromosome 8 targeted integration (data not shown). These clones were 

examined for expression of the corresponding protein by western blotting 

(Figure 46A). The results show that 2 of the clones showed 2 bands reacting 

with the anti-LIG3 Ab (Figure 46A). The lower bands probably represent the 

endogenous chicken LIG3α, which is also present in the wt and the parental cell 

lines. The upper bands in lanes 3 and 4 probably correspond to the 

overexpressed human LIG3β as their size matches the size of the purified 
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LIG3β protein, which was loaded as a control in lane 6. In lane 5, no additional 

band is detectable apart from the endogenous LIG3 band (Figure 46A).  

 

 

Figure 46: Characterization of LIG3
-/M2

LIG1
2loxP/-

 hLIG3α –ZnFn and of LIG3
-/M2

LIG1
2loxP/-

 

hLIG3β clones. A) Western blot analysis of blasticidin resistant clones. The membrane was 
probed with a monoclonal mouse anti-LIG3 antibody (1F3) and a monoclonal mouse GAPDH 
antibody as loading control. 1. 27 µg WCE from wt DT40 cells. 2. 27 µg WCE from 
LIG3

-/M2
LIG1

2loxP/-cells. 3. 27 µg WCE from LIG3
-/M2

LIG1
2loxP/-

 hLIG3β.Cl1 cells. 4. 27 µg WCE 
from LIG3

-/M2
LIG1

2loxP/-
 hLIG3α-ZnFn.Cl1 cells. 5. 27 µg WCE from LIG3

-/M2
LIG1

2loxP/-
 

hLIG3α-ZnFn.Cl2 cells. 6. 24 ng purified human LIG3β. B) Growth kinetics of LIG3
-/M2

LIG1
2loxP/- 

cells with and without 4HT treatment and clones expressing the different truncated versions of 
LIG3 after incubation with 4HT. Cells were daily diluted with fresh growth medium to keep them 
in the exponential growth phase. Growth is calculated normalized to the initial number of 
seeded cells. 

 

The generated mutants were subsequently examined for sustained growth after 

treatment with 4HT to delete LIG1. Although the clone LIG3-/M2LIG12loxP/- 

hLIG3α –ZnFn.Cl2 did not express the truncated human LIG3α, it was included 

in the growth experiments to examine differences in the growth among clones 

following incubation with 4HT (Figure 46B). The results show that all mutants 
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had similar growth kinetics as the parental cell line (data not shown) and that all 

mutants did not survive incubation with 4HT just like the parental cell line 

(Figure 46B). Therefore, we conclude that LIG3 needs both the BRCT and the 

Zinc finger domains for its function in DNA replication. As XRCC1 interacts with 

the BRCT domain of LIG3 and is the only known interaction partner that uses 

this domain, the results essentiality suggest that XRCC1 might be involved in 

the replication function of LIG3, but not through an interaction with PCNA.  

4.2.3 LIG3 is recruited to DNA replication sites when 

LIG1 is deleted 

As there was no difference in the IP reactions between LIG1 wt and LIG1 

mutated cell lines, we examined differences in protein localization and more 

specifically whether LIG3 and XRCC1 localization to replication sites changes in 

the presence of LIG1. Therefore, replication sites were visualized by pulse-

labeling with 5-ethynyl-2'-deoxyuridine (EdU) and detected by 

Immunofluorescence (IF) together with LIG3, XRCC1 and PCNA. Unfortunately, 

this approach did not generate useful quantitative data due to the low signal to 

noise ratio for all Abs used, with the exception of PCNA antibody (data not 

shown). 

To circumvent this problem live-cell imaging was introduced. For this purpose 

experiments were carried out with 46BR 1N cells transfected with plasmids 

expressing forms of LIG1, PCNA and XRCC1 tagged with different fluorescent 

proteins (LIG1-dsRed, PCNA-BFP and XRCC1-GFP). Before inception of 

imaging (24 h after transfection), the cells were also pulse-labeled with EdU for 

1 h. Shorter pulses of EdU were also tried (20 min, 40 min) but did not yield 

satisfactory results in the 46BR 1N cells (data not shown). This might be due to 

the long generation time and the problems these cells have in the S-phase, as a 

20 min pulse with EdU was sufficient for the control cell lines MRC5 SV and 

EM9.  
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The EdU labeled cells were subsequently stained with antibodies against EdU 

and GFP as the signal for GFP in contrast to BFP and dsRed was lost after 

fixation for unknown reasons.  

Cells were either transfected with all 3 plasmids or only with the PCNA-BFP and 

the XRCC1-GFP plasmids to study the localization in a LIG1 mutant 

background as well as in the LIG1 corrected background. As expected, in the 

corrected background PCNA and LIG1 accumulate at sites of DNA replication 

marked by EdU. XRCC1 seems to be distributed throughout the nucleus with 

60% co-localizing with the EdU signal (Figure 47A, C). While in the corrected 

cells, 67% of PCNA was found to co-localize with EdU, only 50% of total signal 

remained co-localized with EdU in 46BR 1N cells (Figure 47B, C). In the LIG1 

mutated cells, however, a quite different distribution pattern was detected for 

XRCC1. The percentage of XRCC1 protein co-localizing with the EdU signal 

increases to 88% (Figure 47B, C). The MRC5 SV cell line and the EM9 cell line 

were also tested as a wt controls to examine whether the specific genetic 

background of the 46BR 1N cell line is the source of this interesting effect. We 

found that both cell lines showed a similar response (data not shown). It has to 

be mentioned, however, that only a small population of cells (approx. 5 per 

experiment, in 2 independent experiments) could be analyzed, as the cells had 

to express at least 2 of the fluorescent protein- tagged proteins in an analyzable 

amount and only S-phase cells could be used. Therefore it is necessary to 

increase the number of analyzed cells to get data which is statistically reliable.  

 



    Results 
 

79 

 

 

Figure 47: The localization of PCNA and XRCC1 changes depending on LIG1 

functionality. A) Live cell imaging of PCNA-BFP, XRCC1-GFP and EdU in LIG1 corrected 
46BR 1N cells. Twenty-four hours after transfection the cells were allowed to incorporate EdU 
for 1 h, fixed and stained for EdU and GFP. B) Localization of PCNA-BFP, XRCC1-GFP and 
EdU in 46BR 1N cells. Twenty-four hours after transfection the cells were allowed to incorporate 
EdU for 1 h, fixed and stained for EdU and GFP. C) Percentage of PCNA-BFP and 
XRCC1-GFP co-localizing with EdU in 46BR 1N cells and 46BR 1N cells transfected with a 
LIG1-dsRed expressing plasmid (corrected). Scale bar represents 10 µm. 

 

Nevertheless, these results indicate that in a LIG1 mutated background, XRCC1 

is recruited to the DNA replication sites, while the abundance of PCNA is 

reduced. Thus, interactions between ZnFn of LIG3 and an interaction with 

XRCC1 may co-operate to support DNA replication in LIG1 mutants. 
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4.3 Effects of DNA ligase knockout on DNA 

damage-induced cell cycle checkpoints in DT40 

cells 

4.3.1 Detection of S-phase checkpoint in DT40 cells  

To further characterize the generated DT40 mutants we examined the impact of 

the various DNA ligase-knockouts on DNA damage-induced cell cycle 

checkpoints. To study the S-phase checkpoint, exponentially growing DT40 

cells were exposed to different doses of ionizing radiation and were pulsed-

labeled (15 min) with tritiated thymidine ([methyl-3H]- thymidine) at different 

times thereafter. The degree of label incorporation reflects the DNA replication 

activity of the cell population at that time. To prevent DT40 cells to initiate 

apoptosis, a strong apoptosis inhibitor BOC-D-FMK was given 1h before 

irradiation. As the cells showed a pronounced accumulation in G2, the tritiated 

thymidine cpms were normalized to the percentage of S-phase cells 

(Figure 48A). We observed that after 10Gy of irradiation the replication activity 

of the tested cells dropped to 40% of the controls while cells exposed to 15Gy 

showed 80% reduction in replication activity 30 min later and did not show signs 

of recovery up to 8 h later (Figure 48 C). To examine whether this effect 

reflected a true checkpoint response 2 small molecule specific inhibitors of the 

major checkpoint kinases, ATR (VE-821) and ATM (Ku55933) were used. We 

reasoned that if the reduction in replication observed reflected the activation of 

the S-phase checkpoint, treatment with these inhibitors should cause a nearly 

complete recovery. 
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Figure 48: Study of the S-phase checkpoint in DT40 cells. A) Representative histograms of 
unirradiated and irradiated wt cells treated only with 50 µM BOC-F-CMK as a function of time. 
B) Representative cell cycle distribution of unirradiated and irradiated wt cells treated with 
50 µM BOC-F-CMK and 5 µM VE-821 as a function of time. C) Incorporation of radioactive 
[methyl-3H]-thymidine into DNA of wt cells during a 15 min pulse following the indicated 
treatments. All cells were treated with 50 µM BOC-F-CMK. The counts per minute (cpm) are 
plotted normalized to the 0Gy control at the same time point and with the same treatment.  
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The results obtained show that there was no significant effect from these 

inhibitors on the inhibition of DNA replication and accumulation of cells in G2 

(Figure 48B, C). We concluded therefore that in DT40 cells a function S-phase 

checkpoint cannot be detected by the assays used. We postulate, though, that 

this observation does not reflect the absence of checkpoint response, but rather 

the difficulty to measure it as a result of the highly pro-apoptotic nature of DT40 

cells that cause quick death in cells exposed to radiation – particularly the 

relatively high doses of radiation required to detect the S-phase checkpoint. The 

results obtained with the different ligase mutants did not differ much. The results 

with the LIG1-/-, LIG4-/-, LIG1-/-LIG4-/- and LIG32loxP/-LIG4-/-mts-hLIG1 cells did 

show the same response. The replication activity drops to values between 40 

and 20% dependent on the dose, but independent of the knockout and the cell 

lines tested all showed no recovery in the detected timeframe of 8 h (data not 

shown). 

4.3.2 Knockout of various ligases does not have an 

effect on the G2-Checkpoint. 

To further investigate the effects of DNA ligases knockout on DNA damage-

induced cell cycle checkpoints, the induction of G2 checkpoint was investigated. 

For that purpose exponentially growing DT40 cells were exposed to different 

doses of irradiation and the cell cycle distribution was measured at different 

times thereafter. As with the results for the S-phase checkpoint, we observed 

that cells accumulated in G2. This accumulation could already be observed 

after 0.5Gy of ionizing radiation and after an exposure to 2Gy there was a 

higher percentage of G2 cells a few hours after irradiation in all cell lines tested.  
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Figure 49: The development of the G2 checkpoint in DT40 cells is independent of ligase 

knockout. A) Representative histograms of DT40 wt cells with and without irradiation and with 
and without treatment with the ATR inhibitor VE-821 at different times after irradiation. B) Plot of 
G2 fraction of indicated mutants with and without treatment with VE-821 

 

As it could not be excluded that cells arresting in G2 after radiation were in the 

process of undergoing apoptosis, which did not manifest due to the presence of 

the inhibitor, the effect of VE-821 was also tested (Figure 49). The results show 

that at these low doses of radiation the G2 checkpoint was indeed activated 

with similar kinetics in all cell lines tested (Figure 49B). This is demonstrated by 

the fact that the VE-821 inhibitor was, as expected in this case, able to abrogate 
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completely the associated accumulation of cells in the G2 phase of the cell 

cycle. Under these conditions, the fraction of G2 cells increased only approx. 

10% as compared to the unirradiated controls. On the other hand, irradiated 

cells incubated without the inhibitor showed an increase in the G2 fraction by 

50% at 8 h.  

The slight increase in the G2 fraction observed in the presence of the ATR 

inhibitor might be due to dying cells, which accumulate with G2-like DNA 

content but are unable to further progress into mitosis (Figure 49). To test this, 

the percentage of apoptotic cells was analyzed by staining with DAPI and 

examining nuclear morphology (nuclear fragmentation) under a fluorescence 

microscope. Surprisingly, nearly all cells exposed to 2Gy of irradiation were 

observed to be apoptotic 24h later. This observation explains the incomplete 

abrogation of the G2 checkpoint with the ATR inhibitor and possibly also the 

defective recovery from this checkpoint. Interestingly, the LIG1-/-, LIG4-/-, 

LIG1-/-LIG4-/- and LIG32loxP/-LIG4-/-mts-hLIG1 cells show a G2-checkpoint similar 

to that of the parental cell line. Although there seems to be a small effect with 

the LIG1-/-LIG4-/- and LIG32loxP/-LIG4-/-mts-hLIG1 cells, this was not reproducible 

and in the 2 experiments there was no tendency for any cell line to show a 

stronger or weaker induction of the G2 checkpoint. 

In aggregate, the above results suggest that the DT40 cells used in our study 

have a strong G2 checkpoint that is detectable after exposure to even low 

radiation doses. The knockout of one or more ligases does not seem to have a 

significant impact on this checkpoint. 
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5 Discussion 

5.1 LIG3 supports DNA replication through its 

interaction with XRCC1, but not with PCNA 

The importance of DNA ligases for the maintenance of the DNA metabolism has 

long been recognized and their contribution to replication, repair and 

recombination is documented and crucial for every organism. In spite of a large 

volume of information revealing the functions of these enzymes, it is clear that 

some of the family members are only partially characterized and their functions 

only incompletely understood.  

Thus, in eukaryotes, the individual ligases may have overlapping activities and 

be not as functionally restricted as DNA ligases are in prokaryotes. In most 

prokaryotes and also in yeast the respective homolog of LIG1 is essential for 

cell survival and therefore its knockout is lethal. In higher eukaryotes on the 

other hand, there are clues that LIG1 can be substituted by another ligase. The 

identity of this ligase, however, was unknown. 

There have also been reports that LIG3 can assume work of LIG4 in double 

strand break repair, through a backup pathway of NHEJ, which was the first 

evidence that there is functional flexibility between eukaryotic ligases (Audebert 

et al., 2004; Cotner-Gohara et al., 2010; Liang et al., 2008; Rosidi et al., 2008; 

Wang et al., 2005; Wang et al., 2006). However, it should be emphasized that in 

the latter function LIG3 is integrated in completely different enzymatic 

machinery – it does not replace LIG4 in the enzymatic machinery of D-NHEJ. 

Very recent results have also demonstrated, that LIG1, the ligase mainly 

associated with DNA replication, is capable of sealing double strand breaks in 

the absence of LIG4 and LIG3 (Paul et al., 2013). These findings further 

emphasize the unexpected functional overlap between the 3 eukaryotic ligases 

(Paul et al., 2013).  
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The present thesis shows, with the help of a unique set of DT40 mutants, that 

the flexibility of the ligases is not limited to function in repair but also extends to 

DNA replication. A focus of the work was to also investigate the mechanism 

underpinnings of this flexibility.  

Although the knockout of LIG4 is lethal in the late embryonic stages, LIG4 

deficient mice have been generated by also deleting the p53 gene, which 

prevents massive p53-dependent neuronal apoptosis. Cell lines derived from 

such animals are growing well in vitro and have generation times similar to 

those of wt cells (Barnes et al., 1998; Frank et al., 1998; Frank et al., 2000; Gao 

et al., 2000; Gao et al., 1998; van Gent et al., 2001). In line with these results it 

could be shown that also in the DT40 system the knockout of LIG4 is not lethal. 

As expected, the replication functions of these mutants are not impaired and the 

maturation of Okazaki fragments remains intact. Surprisingly, the formation of 

SCEs is not significantly elevated in these mutants; a high number of SCEs is 

frequently considered as a marker for chromosomal instability (Carrano et al., 

1978; Ellenberger and Tomkinson, 2008; Hoeijmakers, 2001). Certainly, it is 

possible that there are species specific differences in the induction of SCEs. 

Nevertheless, these results show that LIG4 deficient DT40 cells do not show 

signs of replication stress. 

The knockout of LIG1, on the other hand, is potentially more directly associated 

with complications. Although there are human and mouse cell lines with 

impaired LIG1 activity, the complete knockout of LIG1 could still have lethal 

consequences. In human cells there is a severe defect in Okazaki fragment 

ligation and the rate of spontaneous SCEs is also elevated 2.4 fold compared to 

the wt control (Bentley et al., 1996). Although in mouse cells the effect of LIG1 

deficiency on Okazaki fragment maturation is significantly smaller, these cells 

show a defect in DNA replication. However, the level of SCEs remains 

unchanged upon the LIG1 knockout (Bentley et al., 1996). Surprisingly, LIG1 

knockout in DT40 cells does not have consequences on any of the DNA 

replication related endpoints examined. The conditionally deficient cells showed 

no growth defect after induction of the knockout. Also, there was no change in 

the percentage of replicating cells and no effect on the maturation of Okazaki 
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fragments or the induction of SCEs. It cannot be ruled out of course that this 

lack of effect reflects a response of the DT40 cell system, particularly because 

effects are observed in the mouse and human systems (see above). However, 

there are also critical differences regarding the knockout strategy of the mouse, 

human and DT40 LIG1 mutant cell lines. Whereas in the DT40 system, the 

active site and also the whole catalytic core are completely removed, in both the 

mouse and the human systems there are only slight changes of those regions 

which lead to a functional LIG1 deficiency. In the mouse cells only the 3′ end of 

the gene was removed and although neither LIG1 transcripts nor LIG1 protein 

could be detected in mutant embryos, it was suggested that the inactivation of 

the gene might not have been complete, mainly because the active site of the 

protein was not removed (Mackenney et al., 1997). The human cell line has a 

point mutation in both alleles of the LIG1 gene, a C to T transition in the codon 

for Arg771, which causes this residue to be replaced by Trp (Barnes et al., 

1992). This mutation does not decrease LIG1 expression, but the LIG1 activity 

is decreased to about 10% control, but is certainly not completely eliminated 

(Barnes et al., 1992). It is, therefore, possible that the effect in these mutants is 

not due to the knockout of LIG1 per se, but to a dominant negative effect of the 

mutated version of LIG1 on other ligases, like for example LIG3, that assumed 

the function of LIG1 when its activity is lost. It is possible that differences in the 

expression of such competing forms of LIG1 cause the differences in the 

magnitude of the defect, observed between mouse and human cells. Such 

complications are not likely with the DT40 cell system on the basis of the 

knockout strategy adopted. We consider therefore likely that we could show for 

the first time, in a genetically clean system that the knockout of LIG1 has no 

measurable effect on cell survival and replication in higher eukaryotes.  

As the knockouts of LIG1 and LIG4 had no impact on DNA replication, the 

possibility arose that LIG3 has clear replicative functions in higher eukaryotes. 

However, the lethality observed upon knockout of this ligase hampered these 

investigations. It was therefore very important to demonstrate that this lethality 

is due to the mitochondrial functions of LIG3 and the cells could be rescued by 

just the mitochondrial version of this ligase or any other ligase which carries a 

mitochondrial leader sequence. In this way, it could be demonstrated that in the 
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presence of LIG1 the lethality observed upon LIG3 knockout was not due to any 

required and exclusive function of LIG3 in the cell nucleus. These results are in 

accordance with results obtained recently in the mouse system, where it was 

also shown that even ligases from viruses and bacteria can reverse the lethal 

LIG3 deficient phenotype (Gao et al., 2011; Simsek et al., 2011).  

In other systems, however, cell survival is possible for several generations 

before the cells die, which could not be seen in the DT40 system where the 

cells undergo apoptosis directly following a decrease in LIG3 level (Gao et al., 

2011). It can be speculated that this effect is due to the apoptosis-prone nature 

of the DT40 cell system, which tolerates far less stress than other cell systems 

before undergoing apoptosis. How a reduction in LIG3 levels initiates apoptosis 

remains to be elucidated. 

Interestingly, in resting cells, LIG3 does not seem to be essential for maintaining 

the mitochondria, as monocytes have no detectable protein level of LIG3 and 

still intact mitochondria. It cannot be ruled out, however, that these cells have 

low levels of LIG3, as they have normal mRNA levels (Bauer et al., 2011; Bauer 

et al., 2012). These low levels of LIG3 might be sufficient for maintaining the 

mitochondrial genome as even low levels of LIG3 are able to support end-

joining in vivo (Windhofer et al., 2007). 

The direct lethality of DT40 upon LIG3 knockout, presumably due to 

mitochondria dysfunction is also questioned by the fact that cells without 

mitochondria can be generated by long-term treatment with low levels of 

ethidium bromide. It could also be shown that some cells tolerate the acute 

destruction of a fraction or even all of their mitochondria quite well (Alexeyev et 

al., 2013; Leibowitz, 1971). Therefore, we propose that additional mechanisms 

that remain to be elucidated underpin the fast lethality observed upon LIG3 

knockout in DT40 cells. 

Altogether, the results presented in this thesis show in a genetically “clean” 

manner that knockout of any of the 3 DNA ligases can be tolerated in higher 

eukaryotes and that single ligase depleted cells retain nearly normal DNA 

replication activity. Thus, there is a hitherto unexpected functional flexibility 
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between LIG1 and LIG3 in supporting DNA replication. Moreover, all 3 DNA 

ligases seem to be capable in supporting the diverse DNA repair functions of 

the cells.  

With the help of double mutants and also with the mono-ligase systems the 

functional flexibility of the ligases could be evaluated in more detail. For the first 

time it could be shown that LIG4 is not capable to compensate for LIG1 in 

replication and that cells left with solely LIG4 as nuclear ligase are not viable 

although the mitochondria are rescued. The cells with mitochondrial LIG3 and 

an inducible knockout for LIG1 die sooner than the single knockout of LIG3, 

which suggests that optimal DNA replication requires a relatively high level of 

one replicative DNA ligase. 

The knock-in of human LIG1 with a mitochondrial leader sequence created a 

system with only LIG1 left to maintain both the replication functions and the 

mitochondrial integrity (Paul et al., 2013). This mutant clearly showed that LIG3 

has no essential function in the nucleus in the presence of LIG1. The cells 

proliferate even faster than the parental cell line and the fraction of actively 

replicating cells is also higher. Although LIG3 has been implicated in the 

maintenance of genomic stability, no elevated level of SCEs in the DT40 LIG3 

knockout cells was found (McVey and Lee, 2008; Nussenzweig and 

Nussenzweig, 2007). These results in the DT40 system are in line with other 

studies in the mouse system, where similar observations were made (Simsek et 

al., 2011). 

The double knockout of LIG1 and LIG4 resulted in viable clones with growth 

kinetics similar to the wt. The replication functions of these mutants were not 

changed significantly and the rate of spontaneously induced SCEs was 

comparable to those with only LIG4 knockout. It was also astonishing that these 

cells showed no defect in Okazaki fragment maturation. The results obtained 

with these mutants show clearly the remarkable ability of LIG3 to cope with all 

replication functions of LIG1, even independently of LIG4. This functional 

flexibility is not unexpected, as in DNA-bound state, LIG1 and LIG3 share a 

similar structure, forming a ring that encircles the DNA (Ellenberger and 

Tomkinson, 2008; Pascal et al., 2004). Also, the functional overlap in NER, the 



    Discussion 
 

90 

 

great flexibility in the substrate choice and its unique ZnFn domain make LIG3 

the obvious and ideal backup-candidate for LIG1 (Cotner-Gohara et al., 2010; 

Ellenberger and Tomkinson, 2008; Tomkinson and Mackey, 1998). 

It is well known that LIG1 becomes integrated into DNA replication centers 

through interaction with PCNA (Cardoso et al., 1997; Montecucco et al., 1998; 

Montecucco et al., 1995). However, it remains open how LIG3 is incorporated in 

replication centers, but the known interaction of its closest interaction partner, 

XRCC1, with PCNA offers testable possibilities (Fan et al., 2004). In our 

experiments, there was no interaction to be seen between PCNA and LIG3 as 

detected by immunoprecipitation. These results confirmed the expected 

interaction between both PCNA and LIG3 with XRCC1 but fail to reveal any 

interaction whether direct or indirect with each other. Nevertheless, it is possible 

that PCNA and LIG3 interact indirectly with each other through XRCC1, as they 

do not share the same binding site, but that the sensitivity of the co-

immunoprecipitation is not sufficient to detect this interaction - which is likely to 

occur only in S-phase. Interestingly, there was no difference between LIG1 

mutated and LIG1 wt cells in signal strength for these immunoprecipitations. 

Overall, these results make it unlikely that there is a direct interaction between 

PCNA and LIG3.  

The unique ZnFn domain of LIG3 makes it possible that, as proposed in the 

jack-knife model, LIG3 is able to do even intermolecular ligation without the help 

of an interaction partner (Cotner-Gohara et al., 2010). It was, therefore, worth 

investigating if the replication functions of LIG3 can be accomplished without 

the protein-protein interaction BRCT domain, or without the ZnFn domain. The 

experiments revealed that both the ZnFn and the BRCT domains are essential 

for the DNA replication functions of LIG3 in DT40. The same truncated mutants 

were used in the mouse system to rescue the mitochondrial functions of LIG3. 

However, these mutants could maintain the mitochondrial integrity, which was 

not unexpected, as even viral and bacterial ligases are able to rescue the 

mitochondria function (Simsek et al., 2011). These results show that the unique 

ZnFn domain of LIG3 is essential for DNA replication and that presumably the 

interaction with XRCC1 is also crucial for that function. Apart from giving a 
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deeper understanding of the functional principles underpinning the replication 

functions of LIG3, these results also give clues as to why LIG4 is not able to 

support DNA replication: it lacks the ZnFn domain.  

The colocalization studies in both LIG1 mutated and LIG1 proficient cells 

revealed quite interesting phenomena. In LIG1 proficient cells, the distribution of 

the proteins studied is as expected: LIG1 and PCNA form foci at sites of 

ongoing replication that are marked by EdU, while XRCC1 is distributed 

throughout the nucleus. The distribution pattern of XRCC1 changes when LIG1 

is mutated. In this case 88% of the XRCC1 protein colocalizes with EdU, which 

is 28% more than in the control cell lines. The fraction of PCNA colocalizing with 

EdU drops down by 18% to 50%. This shows that XRCC1 and with it most likely 

LIG3 as well, is recruited to replication sites more intensively in the absence of 

LIG1.  

It is still possible that this recruitment is mediated by PCNA, but as the 

colocalization of PCNA with replication centers decreases in the absence of 

LIG1 it is unlikely that the replication center in which LIG3 is involved will be 

identical to the replication centers forming in the presence of LIG1. However, it 

is also possible that our observations reflect quantitative rather than qualitative 

differences, i.e. PCNA is still present at all DNA replication centers but at lower 

amounts in the absence of LIG1 that reduce its detectability by IF and live cell 

imaging. 

The results presented here show clearly that, in the absence of LIG1, LIG3 is 

recruited to sites of replication due to its interaction with XRCC1. Therefore this 

interaction is crucial for maintaining the replication functions of LIG3. It would be 

interesting to examine whether other replication factors normally involved in the 

maturation of Okazaki fragments, like FEN1 or pol δ, are involved in this 

process in the absence of LIG1.  
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5.2 Influence of ligase knockout on DNA damage-

induced cell cycle checkpoints in DT40 cells. 

To further characterize the ligase mutants generated as part of this work, we 

studied the effect of a specific DNA ligase knockout on the activation of DNA 

damage-induced cell cycle checkpoints. Surprisingly, while DNA replication was 

promptly reduced in irradiated DT40 and their ligase deficient mutants, signs of 

recovery were not visible up to 8 h later. However, since this response could not 

be abrogated by an ATR or an ATM inhibitor, we conclude that it does not 

reflect the activation of the DNA damage checkpoint, but rather the irreversible 

entrance of the cell into a program of apoptosis. This is because either inhibitor 

should, if not completely abolish, at least diminish the effect of a checkpoint.  

To study a possible role of apoptosis in the response, the above experiment 

was also performed without the caspase inhibitor to exclude side effects of the 

inhibitor on the endpoint measured. Although the results obtained were similar 

in that they showed the drop down in replication activity and no recovery, the 

cells started to die in this case 4 h postirradiation. Indeed, the FACS histograms 

could not be analyzed starting from the early time points due to an abnormal 

DNA content distribution and a high sub-G1 fraction, which made the 

normalization to the fraction of S-phase cells impossible. This observation also 

explains why in these cells the development of a normal S-phase checkpoint 

could not be studied. At the high doses used in these experiments, programmed 

cell death is induced soon after irradiation, and either prevents the development 

of a checkpoint response, or compromises our ability to detect it. Indeed, 

staining of nuclei 24 h after irradiation with only 2Gy revealed only fragmented 

nuclei. This response is ingrained in the nature of DT40 cells, which are B cell 

lymphocytes. Undergoing programmed cell death is an important physiological 

characteristic of this cell type, as B cell lymphocytes are regularly exchanged 

and repair of DNA damage may not be as crucial. 

Interestingly however, cells in the G1 phase of the cell cycle seem to be able to 

enter S-phase as the G1 peak is significantly lower after 4h and absent after 

8 h. It is not obvious, however, what the fate of the G1 population is. There is no 
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peak at the beginning of the S-phase suggesting G1 cells leaving G1 and 

entering S are unable to proceed beyond a certain point in the S-phase. 

Notably, elutriated G1 cells irradiated with 10Gy do not leave G1 phase for at 

least 6 h.  

The G2 checkpoint could be detected at lower doses of radiation and was found 

to be functional in DT40 cells and their DNA ligase mutant derivatives. The cells 

accumulated in G2 phase as expected. Surprisingly, even a dose of 0.5Gy was 

sufficient to induce the checkpoint. In contrast to the S-phase checkpoint, the 

G2 checkpoint could be abrogated with the ATR inhibitor VE-821, which shows 

that the response in this case is really checkpoint related. The remaining 10% 

increase is most likely due to cells undergoing apoptosis as explained under 

Results. An effect of any of the DNA ligase knockout on the accumulation of 

cells in G2 phase could not be found. It could have been suspected that LIG4 

knockout cells might show some differences as the repair deficiency in this case 

is quite pronounced (Paul et al., 2013). It is possible, however, that this defect 

will not affect the initiation of the checkpoint response measured here, but 

rather its duration.  

In summary, our observation show that DT40 cells are not are not suitable for 

studying the intra S-phase checkpoint, but could be a useful tool for studying G2 

checkpoint response on various genetic backgrounds. 
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6 Summary 

The results show a remarkable and hitherto unexpected functional flexibility in 

DNA replication of LIG1 and LIG3 in vertebrates.  

While the lethality of the LIG3 knockout is solely due to the mitochondrial 

function and not due to an essential function in the nucleus, it was conclusively 

shown that LIG3 can backup replication in the absence of LIG1 and that LIG4 is 

not capable to do so.  

The results in this thesis conclusively show that the ZnFn domain of LIG3 is 

essential for the DNA replication function of LIG3, although it is not essential for 

maintaining mitochondrial integrity. Furthermore, the BRCT domain with which 

LIG3 interacts with XRCC1 is also essential for the replication function of LIG3. 

 In colocalization experiments it could be shown that LIG3 is recruited to DNA 

replication sites when LIG1 activity is impaired, and that the recruitment of 

PCNA is weakened. The results, therefore, point to a different recruitment 

system of LIG3 to replication factories compared to the one required for LIG1 

recruitment.  

Furthermore the mutants used were characterized with regard to their ability to 

activate checkpoint responses after induction of DNA damage. Apoptosis 

complicates analysis of the S-phase checkpoint which requires high doses of 

radiation for reliable quantification. On the other hand, DT40 cells display a 

normal G2 checkpoint that remains unaffected by ligase deletion. 
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