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Abstract—Accurate and reliable localization and mapping is a
fundamental building block for most autonomous robots. For
this purpose, we propose a novel, dense approach to laser-
based mapping that operates on three-dimensional point clouds
obtained from rotating laser sensors. We construct a surfel-based
map and estimate the changes in the robot’s pose by exploiting
the projective data association between the current scan and
a rendered model view from that surfel map. For detection and
verification of a loop closure, we leverage the map representation
to compose a virtual view of the map before a potential loop
closure, which enables a more robust detection even with low
overlap between the scan and the already mapped areas. Our
approach is efficient and enables real-time capable registration.
At the same time, it is able to detect loop closures and to perform
map updates in an online fashion. Our experiments show that
we are able to estimate globally consistent maps in large scale
environments solely based on point cloud data.

I. INTRODUCTION

Most autonomous robots, including self-driving cars, must

be able to reliably localize themselves, ideally by using only

their own sensors without relying on external information

such as GPS or other additional infrastructure placed in the

environment. There has been significant advances in vision-

based [6, 7] and RGB-D-based [18, 33, 3] SLAM systems over

the past few years. Most of these approaches use (semi-)dense

reconstructions of the environment and exploit them for frame-

to-model tracking, either by jointly optimizing the map and

pose estimates or by alternating pose estimation and map

building [21]. Dense approaches have a prospective advantage

over feature-based and sparse approaches as they use all

available information and thus do not depend on reliable

feature extraction or availability of such features.

In contrast to these developments, current 3D laser-based

mapping systems mainly accomplish the estimation relying on

feature-based solutions [34, 35], reduced map representations

[14, 13], voxel grid-based methods [16], or point sub-sampling

[30], which all effectively reduce the data used for alignment.

Compared to most indoor applications using RGB-D sensors,

we have to tackle additional challenges in outdoor applications

using 3D laser sensors, i.e., (1) fast sensor movement resulting

in large displacements between scans, (2) comparably sparse

point clouds, and (3) large-scale environments.

In this paper, we present a dense mapping approach called

Surfel-based Mapping (SuMa), which builds globally con-

sistent maps by tracking the pose, so-called odometry, and

closing loops using a pose graph as illustrated in Figure 1.

To this end, we employ a surfel map to efficiently generate

synthetic views for projective data association and additional
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Fig. 1. Mapping result of our approach on sequence 00 of the KITTI
Vision Benchmark. Shown is the complete trajectory color encoded with the
timestamp of the scan ranging from purple to yellow. Also shown are some
loop closures (A)-(D) found by our approach after pose graph optimization.

loop closure detection with a verification step afterwards.

Furthermore, the surfel representation enables us to efficiently

represent large environments. We are able to update the map

on loop closures by exploiting a pose graph optimization

integrating odometry and loop closure constraints.

The key contributions of our work are as follows:

• We present a SLAM system for efficient mapping of

three-dimensional laser range data resulting in globally

consistent maps.

• We propose a novel map-based criterion for loop closure



detection that is able to detect loop closures even in

situations with small overlap between scans.

Our approach is inspired by recent work in RGB-D

SLAM [12, 33], but is designed to operate in setups with

fast moving vehicles in comparably large outdoor environ-

ments. Our experimental evaluation on the KITTI Odometry

Benchmark shows that our approach is on par with other

laser-based approaches [34, 35], while performing 3D point

cloud registration, map update, and loop closure detection

including loop verification at 20Hz on average. To the best

of our knowledge, this is the first approach for 3D laser-based

mapping using surfels for mapping with loop closures that

produces globally consistent maps and operates at that speed.

We furthermore release our implementation of the approach.1

II. RELATED WORK

Odometry estimation and Simultaneous Localization and

Mapping (SLAM), especially with (stereo) cameras and 2D

laser range scanners, is a classical topic in robotics and in the

computer vision community. We acknowledge the large body

of work in this field, but concentrate here on approaches based

on 3D laser range data and closely related work using RGB-D

sensors. For a more detailed recent overview, we refer to the

article by Cadena et al. [1] and the references therein.

Laser-based Mapping. Laser-based odometry and map-

ping systems often reduce the 3D point cloud data by rely-

ing on features [34], subsampled clouds [16, 30], or voxel-

based [34] as well as NDT-based map representations [27,

23, 4]. In contrast to that, we operate on all laser points and

perform a registration to a surfel map at every step of the algo-

rithm. While the approach by Moosmann and Stiller [16] also

uses depth images to accelerate the computation of normals, it

uses nearest neighbors in a grid-based map representation to

estimate correspondences. Thus, it is inevitable to use subsam-

pling to accelerate the processing and only 1, 500 points are

retained. The Lidar Odometry and Mapping (LOAM) [34, 35]

by Zhang and Singh extracts distinct features corresponding

to surfaces and corners, which are then used to determine

point-to-plane and point-to-line distances to a voxel grid-based

map representation. To enable real-time operation, LOAM

switches between frame-to-frame at 10Hz and frame-to-model

operation at 1Hz update frequency. Like the approach by

Stückler et al. [28], we also use surfels, but we exploit the

representation to render synthetic views allowing fast data

association and furthermore perform loop closure detection.

In contrast to the mentioned approaches, our method uses

projective data association to estimate dense correspondences

for each projected point and therefore is more robust to miss-

ing features or missing data. Unlike other approaches, it can

perform frame-to-model tracking in every iteration and updates

the map representation at the same time. Lastly, none of the

mentioned approaches integrates loop closures in an online

fashion to obtain globally consistent maps. Very recently, Park

1See our project website for additional information, results, and videos:
https://jbehley.github.io/projects/surfel_mapping/

et al. [20] proposed a surfel-based mapping approach based on

ElasticFusion by Whelan et al. [33] that allows optimization of

continuous-time trajectories for a rotating 2D laser scanner. In

contrast to this work, we use projective data association to find

correspondences between the current scan and rendered model

views, which is computationally more efficient than relying on

nearest neighbor search.

RGB-D-based Mapping. In recent years, there has been

considerable progress in the field of RGB-D-based SLAM.

KinectFusion, the seminal system by Newcombe et al. [18],

largely impacted the development in the subsequent years.

In line with Newcombe et al.’s approach, the approach of

Keller et al. [12] for RGB-D SLAM uses projective data

association in a dense model, but relies on a surfel-based

map [31] for tracking. The surfel-based representation allows

to model comparably large environments without a compro-

mise in terms of reduced reconstruction fidelity due to reduced

grid resolution or a more complex implementation [32, 19].

Other recent RGB-D approaches use the surfels to extract

planar surfaces [24] or perform online loop closure integration

by deforming the surfel representation [33, 31].

While our method borrows some ideas for frame-to-model

registration from Keller et al. and Whelan et al., we specifi-

cally designed our approach to work with rotating laser range

scanners in highly dynamic environments, like busy inner-city

traffic, and furthermore perform loop closure detection and

verification using a map-based criterion, which enables a more

reliable detection of loop closures using 3D laser range data.

Laser-based Loop Closure Detection. For loop closure

detection using three-dimensional laser-range data, mainly

feature-based approaches [25, 26, 22] were investigated. These

approaches either use specific interest points [25, 26] to

aggregate features or generally generate a global feature

representation [15, 22] of a point cloud, which is then used

to compute a distance between two point clouds. Often, a

simple thresholding is used to identify potential loop closure

candidates, which then must be verified. Only recently, the

SegMatch approach by Dubé et al. [5] investigated an ap-

proach that matches segments extracted from a scan to find

loop closures via segment-based features. A geometric test via

RANSAC is used to verify a potential loop closure identified

by the matching procedure.

In contrast to the aforementioned approaches, we directly

determine the compatibility of the current laser scan and

nearby poses using ICP. For this purpose, we propose to use a

criterion based on a rendered view of the map to determine if

a loop closure leads to a consistent map given the current scan.

We verify this multiple times after the first detection before

we actually integrate the scan into the map. Hess et al. [10]

propose a similar strategy for 2D laser range data, as they

also search in nearby submaps for loop closure candidates

based on the current pose estimate. However, they use an

exhaustive branch-and-bound search on the occupancy grid

maps, which is not possible for 3D laser range data due to

runtime constraints.
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Fig. 2. Our approach. Starting with a point cloud P , (1) a vertex map
VD and normal map ND are generated, which are used for frame-to-model
alignment (3) to our model vertex map VM and normal map NM rendered
from Mactive (2). The transformation TWCt

is then used to update the surfel
map Mactive (4). Using the inactive map Minactive, we try to find a loop
closure candidate (5), which then needs to be verified (6) in subsequent scans.
Verified loop closures are then integrated into a pose graph and used for
optimization (7) in a separate thread. The optimized poses are then used to
modify the surfel map yielding a globally consistent map.

III. APPROACH

Notation. In the following, we denote the transformation of

a point pA in coordinate frame A to a point pB in coordinate

frame B by TBA ∈ R
4×4, such that pB = TBApA. Let

RBA ∈ SO(3) and tBA ∈ R
3 denote the corresponding

rotational and translational part of transformation TBA.

We distinguish between the observed data in the coordinate

frame Ct at timestep t and a rendered representation, called

model, which corresponds to our map representation at a given

coordinate frame Ck, k ∈ {0, . . . , t}. Each data coordinate

frame Ct is associated to the world frame W by a pose

TWCt
∈ R

4×4, transforming the observed point cloud into

the world coordinate frame. Our aim is to determine this

transformation for each point cloud via pose changes TCk−1Ck

given the rendered model at TWCk−1
, i.e.,

TWCt
= TWC0

TC0C1
· · ·TCt−1Ct

, (1)

assuming TWC0
to be the identity Id ∈ R

4×4 or the extrinsic

calibration of the laser in respect to a fixed reference frame.

Overview. Before we explain our approach in detail, we

provide a brief overview of the processing steps, shown in

Figure 2. For each point cloud P = {p ∈ R
3}, we estimate

the pose TWCt
at timestep t by performing the following

steps, also indicated by corresponding numbers in Figure 2:

1) First, we use a projection function Π : R
3 7→ R

2 to

generate a vertex map VD : R2 7→ R
3 mapping a two-

dimensional image coordinate (u, v)T ∈ R
2 to a point

(x, y, z)T ∈ R
3. We generate a corresponding normal

map ND : R2 7→ R
3 exploiting the vertex map VD.2

2Note that we convert points p ∈ R
3 and normals n ∈ R

3 to corresponding
homogeneous coordinates before application of the affine transformation, i.e.,
ṗ = (x, y, z, 1) and ṅ = (x, y, z, 0), but will not include this operation
explicitly in the following derivations.

Fig. 3. Preprocessing of a point cloud generated by a rotating laser
range scanner. (a) A point cloud from the KITTI Vision Benchmark, (b) the
corresponding vertex map VD , and (c) the corresponding normal map ND .
In the vertex map VD , colors ranging from purple to yellow, correspond to
the distance of the point in the given pixel. Colors in the visualization of
the normal map ND correspond to the direction of the normal, i.e., blue are
normals pointing in the direction of the z-axis (upward). Also shown are the
coordinate systems and the correspondence between the point cloud and the
vertex/normal map indicated by a dashed line.

2) Next, we render a vertex map VM and a normal map

NM at the last pose estimate TWCt−1
from the current

active surfel map Mactive, which contains the last ∆active

point clouds up to timestep t− 1.

3) Using both the vertex map and normal map, we estimate

the odometry, i.e., the transformation TCt−1Ct
. We use

ICP to align the points in VD with the points of VM ,

where we exploit projective data association. This so-

called frame-to-model ICP yields TCt−1Ct
, which is

used to update the global pose TWCt
via Equation 1.

4) With the current pose TWCt
, we update the surfel

map Mactive by initializing surfels for previously unseen

areas, but also refining surfels of already covered areas.

5) Next, we search for a potential loop closure in the so-

called inactive map Minactive and try to align the current

measurements with the map.

6) If we have found a loop closure candidate at timestep t,

we try to verify it in the subsequent timesteps

t+ 1, . . . , t+∆verification, which ensures that we only

add consistent loop closures to the pose graph.

7) In a separate thread, a pose graph is optimized consisting

of the relative poses of the odometry and the loop

closures. The optimized poses are then used for updating

the surfel map.

We will now describe these steps in more detail.

A. Preprocessing

For projective data association, we first project the point

cloud P to the vertex map VD : R
2 7→ R

3, where each



pixel contains the nearest 3D point. Each point pi = (x, y, z)
is converted via the function Π : R

3 7→ R
2 to spherical

coordinates and finally to image coordinates (u, v), i.e.,

(
u

v

)

=

(
1
2

[
1− arctan(y, x) · π−1

]
· w

[
1−

(
arcsin(z · r−1) + fup

)
f−1
]
· h

)

, (2)

where r = ||p||2 is the range, f = fup + fdown is the vertical

field-of-view of the sensor, and w, h are the width and height

of the resulting vertex map VD. This projection function is

then also used to find the correspondence between the current

scan and the rendered model view.

This projective data association is the key to enable highly

efficient, dense mapping with laser range data, since we avoid

to explicitly search for nearest neighbors.

Figure 3 shows an example point cloud with corresponding

vertex and normal map, where we also included the corre-

sponding coordinate systems.

Given the vertex map VD, we compute for each coordinate

(u, v) a corresponding normal in ND using cross products

over forward differences, i.e.,

ND((u, v)) = (VD((u+ 1, v))− VD((u, v)))

× (VD((u, v + 1))− VD((u, v))) . (3)

We only store normals if the vertex map contains valid

points for all coordinates and wrap image coordinates in the

x-direction, i.e., VD((u, v)) = VD((0, v)) if u ≥ w and

VD((u, v)) = VD((w − 1, v)) if u < 0. While this normal

estimation can be affected by noisy measurements, we found

that the accuracy of the normal estimates did not influence

the performance of the frame-to-model ICP significantly. We

furthermore did not see any benefit from a bilateral filtering

of the vertex map before the computation of normal estimates

that is usually applied with RGB-D data [18].

B. Map Representation

We employ a surfel-based map [31, 12, 24, 33], since

it allows us to represent even large-scale environments and

maintain dense, detailed geometric information of the point

clouds at the same time (see Figure 4 for an example). Surfels

are furthermore relatively fast to render and therefore well

suited for our application. A surfel map M is an unordered

set of surfels s, where each surfel is defined by a position

vs ∈ R
3, a normal ns ∈ R

3, a radius rs ∈ R. Each surfel

additionally carries two timestamps: the creation timestamp tc
and the timestamp tu of its last update by a measurement.

Furthermore, a stability log odds ratio ls is maintained using

a binary Bayes Filter [29] to determine if a surfel is considered

stable or unstable. For rendering of the model view using

the map, only stable surfels are considered and rendered. We

update ls as follows:

l(t)s = l(t−1)
s + odds

(

pstable · exp
(

−α2

σ2
α

)

exp

(

− d2

σ2
d

))

− odds(pprior), (4)

Fig. 4. Surfel map aggregated over multiple scans.

where odds(p) = log(p · (1 − p)−1) and pstable and pprior
are probabilities for a stable surfel given a compatible mea-

surement and the prior probability, respectively. The terms

exp(−x2σ−2) are used to account for noisy measurements,

where α is the angle between the surfel’s normal ns and

the normal of the measurement to be integrated and d is the

distance of the measurement in respect to the associated surfel.

The measurement normal is taken from ND and the correspon-

dences from the frame-to-model ICP, see Section III-C.

In contrast to approaches using a deformation graph [31,

33], we let the poses directly manipulate the map by linking

surfels to a pose via the creation timestamp tc. Thus, the

surfel’s position vs and normal ns are local coordinates in

the coordinate frame Ctc , which allows us to modify the

surfel map by a simple modification of the corresponding

pose TWCtc
at time tc. Thus, we are able to modify the map

after a loop closure without the need to rebuild the map by

reintegrating the past laser scans.

In line with Whelan et al. [33], we distinguish the active

parts Mactive and inactive map parts Minactive at timestep t,

comprised of all recently updated surfels, i.e., tu ≥ t−∆active,

and not recently created surfels, i.e., tc < t−∆active, respec-

tively. The odometry is only estimated using Mactive and the

loop closures are only searched in Minactive.

C. Odometry Estimation

The observerd point cloud is aligned to a rendered repre-

sentation VM and NM of the model in coordinate frame Ct−1,

i.e., we apply T−1
WCt−1

before rendering all surfels, resulting

in a local view of the already mapped world at timestmap t−1.

We incrementally minimize the point-to-plane error given by

E(VD,VM ,NM ) =
∑

u∈VD

n⊤
u ·
(

T
(k)
Ct−1Ct

u− vu

)2

︸ ︷︷ ︸

ru

, (5)

where each vertex u ∈ VD is projectively associated to a

reference vertex vu ∈ VM and its normal nu ∈ NM via

vu = VM

(

Π
(

T
(k)
Ct−1Ct

u

))

, (6)

nu = NM

(

Π
(

T
(k)
Ct−1Ct

u

))

. (7)



Here, T
(k)
Ct−1Ct

corresponds to the current pose estimate of

the so-called frame-to-model ICP at iteration k. If Π(u) maps

to outside of the vertex map or the corresponding vertex or

normal are undefined, we ignore the error term. For outlier

rejection, we filter out correspondences exceeding a distance

of δICP or having an angle difference larger than θICP between

nu and the corresponding normal of u in ND. We initialize the

ICP pose T
(0)
Ct−1Ct

= TCt−2Ct−1
with the last pose increment

to warm start the optimization.

For solving the non-linear least squares problem, we rep-

resent the linearized pose increments by Lie-algebra elements

δ ∈ se(3), which we simply write as vectors δ ∈ R
6 and

use the Rodrigues’ formula to compute the exponential map

exp(·) : se(3) 7→ SE(3) to update the current pose estimate

T
(k)
Ct−1Ct

, i.e., T
(k)
Ct−1Ct

= exp(δ) ·T(k−1)
Ct−1Ct

.

We minimize the objective of Equation 5 using Gauss-

Newton and determine increments δ by iteratively solving

δ =
(
J⊤WJ

)−1
J⊤Wr, (8)

where W ∈ R
n×n is a diagonal matrix containing weights wu

for each residual ru, r ∈ R
n is the stacked residual vector, and

J ∈ R
n×6 the Jacobian of r with respect to the increment δ.

For a single residual ru of vertex u, it follows (see e.g. [18, 9])

that a row of the Jacobian J is given by

Ju =
[
n⊤
u (nu × vu)

⊤
]
. (9)

We use a Huber weighting [11] to weaken the influence of

outliers that could not be removed by our outlier rejection.

D. Map Update

Given the current pose TWCt
of the frame-to-model ICP,

we integrate the points inside VD into the surfel map. For

this purpose, we have to decide which already existing surfels

must be updated and which measurements must be used to

initialize a new surfel in the surfel map.

For this decision, we start by computing the radius rs of

potential new surfel s for each vs ∈ VD and corresponding

normal ns ∈ ND with the aim to cover roughly the corre-

sponding pixel of the vertex map:

rs =

√
2 ‖vs‖2 · p

clamp(−v⊤
s ns · ||vs||−1

2 , 0.5, 1.0)
, (10)

where p = max(w · f−1
horiz, h · f−1

vert) corresponds to the pixel

size and clamp(x, u, l) = min(u,max(x, l)) to the clamping

operation. In contrast to prior approaches [31, 12, 33], we

found this restriction needed in outdoor environments to avoid

overly large surfels at long ranges. The radius is proportional

to the accuracy of the measurement, since a small radius

corresponds to a close distance measurement on surfaces with

a normal pointing in the direction of the laser beam.

Then, we render VM , NM and an index map IM containing

the indices of the nearest surfels in respect to the sensor origin

with the final estimated pose TWCt
to determine visible model

surfels and their indices for updating. Each measurement

point vs is projected to IM using Equation 2 to find the

corresponding model surfel s′.

For updating the surfel map, we first determine if the data

surfel s is compatible with the associated surfel s′, i.e., it holds

|n⊤
s′(vs −vs′)| < δM and ||ns × ns′ || < sin(θM ). Depending

on the compatibility, we now distinguish the following cases

for a data surfel s and its associated model surfel s′:

1) If the data surfel is compatible, we increase the stability

of the associated model surfel. If the measurement is

more precise, i.e., rs < rs′ , we also update the model

surfel using an exponential moving average:

v
(t)
s′ = (1− γ) · vs + γ · v(t−1)

s′ , (11)

n
(t)
s′ = (1− γ) · ns + γ · n(t−1)

s′ (12)

r
(t)
s′ = rs (13)

Thus, we only refine surfels to avoid losing information

we gathered from closer ranges [12].

2) Otherwise, we decrease the stability of the associated

model surfel s′ and initialize a new surfel. If a mea-

surement cannot be assigned to any existing surfel, we

initialize a new surfel.

After updating the map, we remove all unstable surfels

which have a too low stability value, ls < τD, and are at

the same time already too old, t− tc > τO. By this means, we

are able to remove unstable surfels mainly caused by dynamic

objects, but also irrelevant surfels that are caused by clutter.

E. Loop Closures

For loop closure detection, we exploit the surfel map to

render views from Minactive. Analogous to the odometry,

we now use this rendered view to register the current point

cloud. A loop closure is only considered if a composed

virtual map view built from this alignment fits to the current

measurements. We try to verify a potential loop closure by

tracking the pose in the active and the inactive map at the

same time. Only after successful verification, we include a

loop closure constraint in the pose graph.

Detection. For loop closure detection, we first try to find a

possible loop closure candidate in the inactive map Minactive.

From all poses, TWC0
, . . . ,TWCt−∆active

, we consider only

one candidate in a radius δloop of the current pose estimate,

i.e., j∗ = argminj∈0,...,t−∆active
||tWCt

− tWCj
||. Note that

the orientation of the candidate does not matter and therefore

even candidates with small overlap between scans and different

viewpoints are considered.

For candidate j∗, we try to align the current point cloud

to the rendered view at the corresponding pose TWCj∗
using

the frame-to-model ICP. Since ICP heavily depends on the

initialization, we check multiple initializations T
(0)
Cj∗Ct

with

respect to the old pose to compensate for rotational and trans-

lational drift. We compose the initial pose from the rotational

difference RCj∗Ct
between the current pose estimate and the

candidate’s rotation and the translational difference tCj∗Ct
,

i.e.,

RCj∗Ct
= R−1

WCj∗
RWCt

(14)

tCj∗Ct
= R−1

WCj∗
(tWCt

− tWCj∗
) (15)
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Fig. 5. Shown are two scans A (blue) and B (orange) from different sides of
a street from KITTI sequence 06 from a birds eye view. From both sides, the
other side’s street is not visible and therefore hard to distinguish the correct
from the incorrect loop closure just by means of residual of an alignment.
Shown below is the residual along the arrow, i.e., at every position on the
arrow we compute the residual from A to B if B would exactly lie at that
position. Shown is the residual (red) of B to A and the map residual (green)
of scan B to the composed virtual view .

We then compose the initialization T
(0)
Cj∗Ct

using RCj∗Ct
as

rotation and λtCj∗Ct
, with λ = {0.0, 0.5, 1.0}, as translation.

Due to these multiple initializations, it is crucial to decide

which of the ICP’s results is the best and most consistent

with the current measurements. As we also have to consider

situations with low overlap between individual scans due

to occlusions, we cannot simply evaluate the residual (see

Equation 5), outlier count, or inlier count, of the current

measurement with respect to the rendered inactive map.

Figure 5 shows such a situation for an example of the KITTI

Vision Benchmark. Here, two point clouds (blue and orange)

are shown which partially overlap and where we would like to

find a loop closure. Below the correctly aligned scans, we show

the resulting residuals for different points on a line between the

ground truth poses, here x = {0.0, 0.5, 1.0} correspond to the

three initializations used for loop closure detection. The lowest

residual (depicted as red dashed line) is reached between −0.2
and 0.0, while the residual at the correct location, x = 1.0,

is by far larger than the wrong alignments. Thus, we would

reject the correct alignment since its residual is simply larger

than an incorrect alignment.

For solving such cases with small overlap between scans, we

render a virtual view of the map after a potential loop closure

using the transformations from the odometry estimation and

aforementioned candidates. The virtual view is a composition

TABLE I
PARAMETERS OF OUR APPROACH

Parameter value description

w × h 900× 64 dimensions of vertex/normal map
θICP 30.0◦ outlier threshold (angle)
δICP 2m outlier threshold (distance)
δM 0.2m map outlier threshold (distance)
θM 30◦ map outlier threshold (angle)
k 0.5 Huber factor
fup, fdown 3.0◦, 25◦ vertical field-of-view
pstable 0.6 stability
pprior 0.5 prior stability
told 100 surfel age threshold
σα, σd 1.0 stability scaling
τD odds(1− pstable) stability threshold
τO 3 max. unstable age
γ 0.9 exponential weight
G 9 number of submap grid cells
e 10m size of a submap
∆active 100 time horizon for active map
∆verification 5 number of verifications needed
δloop 50 max. distance of loop closure
ǫresidual 1.15 acceptance threshold

of the rendered model view of Minactive and the current point

cloud and this composition should only fit to the current scan

if the composition agrees with the current point cloud data.

Given the transformation between the current point cloud

and the potential loop closure, we can now transform both into

a common coordinate frame and generate a composed vertex

map VC and normal map NC . First, the vertex and normal

maps are filled by rendering the inactive map at the candidate

position. From the current vertex VD and normal map VD, we

add entries to the composed maps if the point in VD is closer

than the existing point in VC .

We compute now E(VD,VC ,NC), which we call map

residual Emap, in respect to the current scan, but now with the

composed vertex map VC and NC . Only if this composed view

is consistent with our current measurements, we consider the

candidate as a valid loop closure candidate. A possible align-

ment is consistent if the relative error between the residuals

of that composed map Emap and the residual in respect to the

active map Eodom is small, i.e., Emap < ǫresidual · Eodom, and

if there are enough inliers and valid points in the rendered

composed view. As can be seen from Figure 5, the map

residual is minimal for the correct pose at x = 1.0 and

therefore makes it possible to distinguish valid and invalid

loop closure candidates.

Verification. Even though we try to rule out wrong loop

closures by the rendering of a virtual map, this criterion can

still lead to invalid loop closures. Thus, we aim to verify the

loop closure by tracking the position in the active and inactive

map. At each timestep t+1, . . . , t+∆verification after a detected

loop closure at timestep t, we estimate the odometry increment

and apply this to the pose in the active and inactive part of the

map. We render a virtual view of the map with these poses and

check again for consistency with the current measurements,

as described for the detection. Only if the consistency check

succeeds for at least ∆verification timesteps, we consider the

loop closure valid and verified.



TABLE II
RESULTS ON KITTI ODOMETRY (TRAINING)

Sequence

Approach 00* 01 02* 03 04 05* 06* 07* 08* 09* 10 Average

Frame-to-Frame 0.9/2.1 1.2/4.0 0.8/2.3 0.7/1.4 1.1/11.9 0.8/1.5 0.6/1.0 1.2/1.8 1.0/2.5 0.8/1.9 1.0/1.8 0.9/2.9

Frame-to-Model 0.3/0.7 0.5/1.7 0.4/1.1 0.5/0.7 0.3/0.4 0.2/0.5 0.2/0.4 0.3/0.4 0.4/1.0 0.3/0.5 0.3/0.7 0.3/0.7

Frame-to-Model 0.2/0.7 0.5/1.7 0.4/1.2 0.5/0.7 0.3/0.4 0.2/0.4 0.3/0.5 0.6/0.7 0.4/1.2 0.2/0.6 0.3/0.7 0.3/0.8
with loop closure

LOAM [35] -/0.8 -/1.4 -/0.9 -/0.9 -/0.7 -/0.6 -/0.7 -/0.6 -/1.1 -/0.8 -/0.8 -/0.8

S-LSD [6] 0.3/0.6 0.3/2.4 0.2/0.8 0.3/1.0 0.3/0.4 0.2/0.7 0.2/0.7 0.3/0.6 0.3/1.1 0.3/1.1 0.3/0.7 0.3/0.9

SOFT-SLAM [2] 0.2/0.7 0.2/1.0 0.2/1.4 0.2/0.7 0.2/0.5 0.2/0.4 0.1/0.4 0.2/0.4 0.2/0.8 0.2/0.6 0.3/0.7 0.2/0.7

Relative errors averaged over trajectories of 100 to 800m length: relative rotational error in degrees per 100m / relative translational error in %,

Sequences marked with an asterisk contain loop closures. Bold numbers indicate top performance for laser-based approaches.
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00
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Fig. 6. Trajectories of the training set. The dashed black trajectory correspond to the GPS-based ground truth, blue to our approach without loop closure
and green to our approach with loop closure. Sequence 01, 03, 10 have been rotated to save space. (Best viewed in color)

Pose graph optimization. As soon as a verified loop

closure is found, we add loop closure constraints to a pose

graph, which is then used for optimization. The poses are

always initialized with the currently estimated poses.

In line with Hess et al. [10], we also perform the actual pose

graph optimization in a separate thread. When the pose graph

optimization is finished, we integrate the optimized poses in

the map and update the current pose estimates accordingly.

F. Implementation Details

We implemented our approach using OpenGL 4.0 and

we represented most of the data structures via textures or

transform feedbacks and manipulate the values via vertex,

geometry and fragment shaders. We furthermore leverage the

rendering pipeline to generate vertex and normal maps by

rendering small disks for each front-facing surfel.

To allow real-time capable processing even in ever growing

maps, we employ a submapping approach to offload parts

of the map from the GPU memory to the main memory.

To this end, we implemented a two-dimensional rolling grid

data structure of size G with extent e for each submap,

which is used to determine which parts are obsolete and

can be downloaded from the GPU. However, if parts of the

environment are revisited, the corresponding surfels can also

be uploaded again. The position of the rolling grid is updated

according to the currently estimate sensor pose.

To avoid large peaks in the runtime, we implemented a de-

layed downloading procedure which only downloads a single

grid cell in each update iteration. This effectively amortizes the

time for downloading larger parts and spreads it over multiple

map updates.

For pose graph optimization, we employ gtsam3 and opti-

mize the pose graph using Levenberg Marquardt with a max-

imum of 100 iterations. As the optimized poses are directly

integrated into the map, we initialize the pose estimates with

the last optimized poses and the current odometry estimates.

Usually, the pose graph optimization terminates in less than

10 iterations.

IV. EXPERIMENTAL EVALUATION

We evaluate our approach on the odometry datasets of the

KITTI Vision Benchmark [8], where we use the provided

point clouds from the Velodyne HDL-64E S2 recorded at

a rate of 10Hz. The dataset contains data from different

street environments ranging from inner city to highway traffic.

Especially, the highway datasets are a major challenge, since

the sensor moves at high speed, other fast moving dynamic

objects are present, and the environment has only very few

distinct structures which can be used. Here, most of the laser

returns correspond to the flat street and only few correspond to

traffic signs or some sparse trees or bushed along the highway.

The parameters of our approach, which we experimentally

selected for the training data, are summarized in Table I. We

use an Intel i7-6700@3.4 GHz with 16 GB RAM, and an

Nvidia GeForce GTX 960 with 4 GB RAM.

Ablation study. Using the training data of the KITTI Vision

Benchmark, we show the influence of the different design

decisions of our approach.

Table II shows our approach without using the map (frame-

to-frame), using the map (frame-to-model), and the map-based

3Version 4.0, available at https://bitbucket.org/gtborg/gtsam.



approach with loop closures for all sequences in detail.

Starting from a ‘frame-to-frame ICP’, which simply projec-

tively associates points based on the last point cloud, we now

discuss the influence of different design decisions.

Adding then the surfel map to aggregate past information

helps to reduce drift, since it also adds information in areas

which are currently sparsely covered. The stability estimation

of a surfel ensures that only static objects remain in the

surfel map. Therefore dynamic objects cannot cause false

correspondences and consequently lead to inferior pose es-

timation performance. However, since we are not integrating

loop closures, we cannot correct accumulated drift if we revisit

already mapped areas.

Finally, adding loop closures and the pose graph optimiza-

tion does lead to globally consistent maps. Adding the ability

to close loops does only marginally improve the performance

with respect to the KITTI metrics as the performance is

average over short parts (up to 800m) of the trajectory. While

the numbers do not properly convey the improvement, the

plots of the trajectories (see Figure 6) shows a more globally

consistent trajectory. Please see also Figure 1 for a qualitative

assessment of the global consistency of the trajectory for

sequence 00.

Comparison with state-of-the-art. We included here for

comparison the reported results of LOAM [35], a laser-based

odometry approach, and for indirect comparison with state-

of-the-art vision approaches, Stereo LSD-SLAM [6], a stereo

vision-based complete SLAM system with pose graph opti-

mization, and the currently best performing approach SOFT

SLAM [2], also a stereo vision-based approach.

We perform generally on par with the state-of-the-art in

laser-based odometry and often achieve better results in terms

of translational error. However, the actual improvement of the

ability to close loops is hard to evaluate using the KITTI Vision

Benchmark, since it only provides ground truth trajectories

generated with an GPS-based inertial navigation system. In the

training data, we observed some inconsistencies in the height

of the recorded GPS-based trajectory. For indoor datasets, it is

possible to record highly precise motion capture data, which

also enables to evaluate the absolute trajectory error in respect

to the ‘perfect’ drift free motion capture trajectory.

Finally, we estimated the poses of the testset using the

aforementioned parameters. Overall, we achieved an average

rotational error of 0.0032 deg/m and an average translational

error of 1.4% compared to 0.0017 deg/m and 0.7% transla-

tional error of LOAM on KITTI.

From visual inspection, we found that our method cannot

correctly estimate the motion of the vehicle in sequences with

very few structured objects, like highways. Due to the lack of

structure to distinguish static and moving objects, the method

sometimes fails to distinguish which objects move, especially

if multiple objects are moving consistently, like cars in a traffic

jam. In particular, dynamic objects can corrupt the map by

spurious wrongly integrated surfels. Often two different cars

can lead to consistent surfels in consecutive laser scans and

therefore get wrongly integrated. In these ambiguous cases,
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Fig. 7. Processing time needed to map sequence 00 from the KITTI Vision
Benchmark. See Figure 1 for the finally registered complete point cloud.

integration of inertial measurements could help to get more

consistent and accurate estimation results.

Runtime. Figure 7 shows the processing time needed to

process sequence 00 from the KITTI Vision Benchmark (see

also Figure 1 for a visual impression of the complexity). We

selected this sequence where parts of the environment are

revisited and therefore often parts have to be down-, but also

uploaded to the GPU, but also loop closure must be detected

and subsequently verified. The odometry with the update of

the map can be done with 31ms on average and needs at

most 71ms. Together with the loop closure detection and

verification, we need at most 189ms. After few detection steps,

where we have to check multiple candidates (peaks in the

runtime plot), we then only have to verify a detected loop

closure. Overall, our approach runs at 48ms on average and

therefore is able to process a scan at 20Hz on average.

V. CONCLUSION

We presented a dense approach for laser-based odometry

and mapping that is capable of performing all computations

online and produces globally consistent maps. Our approach

leverages a surfel-based map representation and performs pro-

jective data association of the current scan to the surfel maps

at each iteration. As our experimental evaluation illustrates,

this yields accurate registration results and globally consistent

maps that are on par with the state-of-the-art.

A natural next step would be the integration of color

information to improve the selection of correspondences while

the projective data association [33, 20]. We furthermore plan

to integrate a global loop closure search, which would also

enable to find loops closures if the odometry estimate drifts to

much. Also, a detection and tracking of dynamic objects such

as the one by Moosmann and Stiller [17] has the potential to

increase the robustness and quality of the registration results,

since it would enable to reliably remove dynamic objects.
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