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Abstract. The sequential minimal optimization algorithm (SMO) has been shown to be an effective method for
training support vector machines (SVMs) on classification tasks defined on sparse data sets. SMO differs from
most SVM algorithms in that it does not require a quadratic programming solver. In this work, we generalize SMO
so that it can handle regression problems. However, one problem with SMO is that its rate of convergence slows
down dramatically when data is non-sparse and when there are many support vectors in the solution—as is often
the case in regression—because kernel function evaluations tend to dominate the runtime in this case. Moreover,
caching kernel function outputs can easily degrade SMO’s performance even more because SMO tends to access
kernel function outputs in an unstructured manner. We address these problems with several modifications that
enable caching to be effectively used with SMO. For regression problems, our modifications improve convergence
time by over an order of magnitude.
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1. Introduction

A support vector machine (SVM) is a type of model that is optimized so that prediction
error and model complexity are simultaneously minimized (Vapnik, 1995). Despite having
many admirable qualities, research into the area of SVMs has been hindered by the fact that
quadratic programming (QP) solvers provided the only known training algorithm for years.

In 1997, Osuna, Freund, and Girosi (1997) showed that SVMs can be optimized by
decomposing a large QP problem into a series of smaller QP subproblems. Optimizing each
subproblem minimizes the original QP problem in such a way that once no further progress
can be made with all of the smaller subproblems, the original QP problem is solved. Since
each subproblem can have fixed size, optimizing via decomposition can be done with a
constant size or linear memory footprint. Moreover, many experimental results indicate
that decomposition can be much faster than QP. More recently, the sequential minimal
optimization algorithm (SMO) was introduced (Platt, 1998, 1999b) as an extreme example

*Source code availability: The source code used in this work is part of NODEIib, the Neural Optimization and
Development library. NODElIib is freely available under a “copyleft” licensing agreement, and can be downloaded
from:http://www.neci.nj.nec.com/homepages/flake/nodelib.tgz.
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of decomposition. Because SMO uses a subproblem of size two, each subproblem has an
analytical solution. Thus, for the first time, SVMs could be optimized without a QP solver.

In addition to SMO, other new methods (Friess, Cristianini, & Campbell, 1998; Joachims,
1999; Mangasarian & Musicant, 1999) have been proposed for optimizing SVMs online
without a QP solver. While these other online methods hold great promise, SMO is the only
online SVM optimizer that explicitly exploits the quadratic form of the objective function
and simultaneously uses the analytical solution of the size two case.

While SMO has been shown to be effective on sparse data sets and especially fast for
linear SVMs, the algorithm can be extremely slow on non-sparse data sets and on problems
that have many support vectors. Regression problems are especially prone to these issues
because the inputs are usually non-sparse real numbers (as opposed to binary inputs) with
solutions that have many support vectors. Because of these constraints, there have been few
reports of SMO being successfully used on regression problems.

In this work, we derive a generalization of SMO to handle regression problems and
address the runtime issues of SMO by modifying the heuristics and underlying algorithm
so that kernel outputs can be effectively cached. Conservative results indicate that for high-
dimensional, non-sparse data (and especially regression problems), the convergence rate of
SMO can be improved by an order of magnitude or more.

This paper is divided into six additional sections. Section 2 contains a basic overview of
SVMs and provides a minimal framework on which the later sections build. In Section 3,
we generalize SMO to handle regression problems. This simplest implementation of SMO
for regression can optimize SVMs on regression problems but with very poor convergence
rates. In Section 4, we introduce several modifications to SMO that allow kernel function
outputs to be efficiently cached. Section 5 contains numerical results that show that our
modifications produce an order of magnitude improvement in convergence speed. Finally,
Section 6 summarizes our work and addresses future research in this area.

2. Introduction to SVMs

Consider a set of data points, {(x1, y1), ..., (X¢, y¢)}, such thatx; € R” is an input, y; is a
target output, and £ is the total number of exemplars. An SVM is a model that is calculated
as a weighted sum of kernel function outputs. The kernel function can be an inner product,
Gaussian basis function, polynomial, or any other function that obeys Mercer’s condition.
Thus, the output of an SVM is either a linear function of the inputs, or a linear function of
the kernel outputs.

Because of the generality of SVMs, they can take forms that are identical to nonlinear
regression, radial basis function networks, and multilayer perceptrons. The difference be-
tween SVMs and these other methods lies in the objective functions that they are optimized
with respect to and the optimization procedures that one uses to minimize these objective
functions.

In the linear, noise-free case for classification, with y; € {—1, 1}, the output of an SVM
is written as f(x,w, b) = x - w + b, and the optimization task is defined as:

1
minimize §||w||2, subject to y; (x - w 4+ b) > 1 Vi. (D
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Intuitively, this objective function expresses the notion that one should find the simplest
model that explains the data. This basic SVM framework has been generalized to include
slack variables for miss-classifications, nonlinear kernel functions, regression, as well as
other extensions for other problem domains. It is beyond the scope of this paper to describe
the derivation of all of these extensions to the basic SVM framework. Instead, we refer
the reader to the excellent tutorials by Burges (1998) and Smola and Scholkopf (1998)
for introductions to SVMs for classification and regression, respectively. We delve into the
derivation of the specific objective functions only as far as necessary to set the framework
from which we present our own work.

In general, one can easily construct objective functions similar to Eq. (1) that include
slack variables for misclassification and nonlinear kernels. These objective functions can
also be modified for the special case of performing regression, i.e., with y; € R instead
of y; € {—1, 1}. Such objective functions will always have a component that should be
minimized and linear constraints that must be obeyed. To optimize the primal objective
function, one converts it into the dual form which contains the minimization terms minus
the linear constraints multiplied by Lagrange multipliers. Since the dual objective function
is quadratic in the Lagrange multipliers—which are the only free parameters—the obvious
way to optimize the model is to express it as a quadratic programming problem with linear
constraints.

Our contribution in this paper uses a variant of Platt’s sequential minimal optimization
method that is generalized for regression and is modified for further efficiencies. SMO
solves the underlying QP problem by breaking it down into a sequence of smaller optimiza-
tion subproblems with two unknowns. With only two unknowns, the parameters have an
analytical solution, thus avoiding the use of a QP solver. Even though SMO does not use
a QP solver, it still makes reference to the dual objective functions. Thus, we now define
the output function of nonlinear SVMs for classification and regression, as well as the dual
objective functions that they are optimized with respect to.

In the case of classification, with y; € {—1, 1}, the output of an SVM is defined as:

5
f@& o b) =" yioiK(xi,x) +b, )

i=I

where K (x;, x) is the underlying kernel function. The dual objective function (which should
be minimized) is:

| Lot ¢
W(a) = Ezzyi)’jaiajK(xiaxj)_ Z(Xn 3)
i1 j=1 izl

subject to the constraints 0 < o; < C,V; and Zle yia; = 0. C is a user-defined constant
that represents a balance between the model complexity and the approximation error.
Regression for SVMs minimize functionals of the form:

1 4
L= Yt fesw bt Il @
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where |-|, is an e-insensitive error function defined as:

0 if |x] <e
lx]e = ,
|x] — e otherwise

and the output of the SVM now takes the form of:

4
fx,at, a,b) = Z(a,* — a7 )K(xi,%) +b. (5)

i=1

Intuitively, ozl.+ and o; are “positive” and “negative” Lagrange multipliers (i.e., a single
weight) that obey 0 < ozi+, a; ,V;and a?’ai_ =0,V,.
The dual form of Eq. (4) is written as

4
Wt a)=e) @ +o7) =Y yile; —a))
i=1 i=1
(6)

14
D (o —a) ) — o)) K@i, x)),
=1 j=1

4

+

N =

1

where one should minimize the objective function with respect to a™ and o™, subject to
the constraints:

[4
Y —e)=0, 0<eof, o <C, V. (7)
i=1

The parameter C is the same user-defined constant that represents a balance between the
model complexity and the approximation error.

In later sections, we will make extensive use of the two dual objective functions in Egs. (3)
and (6), and the SVM output functions in Egs. (2) and (5).

3. SMO and regression

As mentioned earlier, SMO is a relatively new algorithm for training SVMs. SMO repeat-
edly finds two Lagrange multipliers that can be optimized with respect to each other and
analytically computes the optimal step for the two Lagrange multipliers. When no two
Lagrange multipliers can be optimized, the original QP problem is solved. SMO actually
consists of two parts: (1) a set of heuristics for efficiently choosing pairs of Lagrange multi-
pliers to work on, and (2) the analytical solution to a QP problem of size two. It is beyond the
scope of this paper to give a complete description of SMQO’s heuristics. More information
can be found in Platt’s papers (1998, 1999b).

Since SMO was originally designed (like SVMs) to only be applicable to classification
problems, the analytical solution to the size two QP problem must be generalized in order for
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SMO to work on regression problems. The bulk of this section will be devoted to deriving
this solution. While others (Smola & Scholkopf, 1998; Mattera, Palmieri, & Haykin, 1999;
Shevade et al., 2000) have generalized SMO to regression, we believe that ours is one of
the simplest and most complete derivations. As such, this section concludes with a brief
sampling of related derivations.

3.1. Step size derivation

We begin by transforming Egs. (5-7) by substituting 1; = o;" — o;, and |A;| = o] + o} .
Thus, the new unknowns will obey the box constraint —C < A; < C, V;. We will also use the
shorthand k;; = K (x;, x;) and always assume that k;; = kj;. The model output and objective
function can now be written as:

4
A Db) = MK (x;,x)+b, and (8)
i=1
4 I4

14 4
TGRS SV SERTRILS 3 SR ©
i=1 i=1

i=1 j=1

with the linear constraint Zle A; = 0. Our goal is to analytically express the minimum of
Eq. (9) as a function of two parameters. Let these two parameters have indices u and v so
that A, and A, are the two unknowns. We can rewrite Eq. (9) as

1 1
Wk, Ay) = € |Ayl +€[hy] — )\uYu - )"vyu + E)\ikuu + E)\%kvv
(10)
+ Aurokuy + )LuZ; + )\-UZ;'}< + W,
where W, is a term that is strictly constant with respect to A, and X,, and z* is defined as:

4
= Z Nk = [ — hykui — Mpkyi — b (11)

JF#u,v

with f* = f(x;, A", b). Note that a superscript * is used above to explicitly indicate that
values are computed with the old parameter values. This means that these portions of the
expression will not be a function of the new parameters (which simplifies the derivation).

If we assume that the constraint, Zf:] A; = 0, is true prior to any change to A, and X,
then in order for the constraint to be true after a step in parameter space, the sum of 1, and
Ay must be held fixed. With this in mind, let s* = A, + A, = A + A}. We can now rewrite
Eq. (10) as a function of a single Lagrange multiplier by substituting s* — A, = A,,:

1 *
W) = els” = Ml + e lhul = (" = h)yu = hoyu + (5" = 2o) K
| (12)
+E)¥%kvv + (S* — Ap)Aykyy + (S* - )“U)Z: + )“UZ: + We.
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To solve Eq. (12), we need to compute its partial derivative with respect to X,; however,
Eq. (12) is not strictly differentiable because of the absolute value function. Nevertheless,
if we take d|x|/dx = sgn(x), the resulting derivative is algebraically consistent:

= e(sgn(A,) — Sgn(S* —A) + Y — o
0Ay (13)
+ (Ao = 5 kyu + Aokyy + (s* =20k — 2, + 2,

Now, setting Eq. (13) to zero yields:

Ao (kyy + ki — 2kiw) = Yo — yu + £(sgn(hy) — sgn(ry)) + 8™ (ku — kuw) + 25 — 25
= Yo — Yu+ ff = f +elsgn(h,) — sgn(ry)) + Ak
— A’;kuv + Ajjkuu — A’;kuv — Ajkuu — /\jkul, — b* (14)
+ Mpkuw + Akoy + b = yo — yu + f = [
+e(sgn(hy) — sgn(Ay)) + Ak + Kuu — 2k,

From Eq. (14), we can write a recursive update rule for A, in terms of its old value:
* 1 * *
Ay =2y + E(yv —Yut fi — [y +elsgn(h,) —sgn(iy))), (15)

where n = (kyy + kyu — 2kyy). While Eq. (15) is recursive because of the two sgn(-)
functions, it still has a single solution that can be found quickly, as will be shown in the
next subsection.

3.2.  Finding solutions

We note, anecdotally, that a common mistake made in other implementations of SMO with
regression is to treat the (sgn(,) —sgn(X,)) termin Eq. (15) asifit were (sgn(A)) —sgn(A})),
i.e., a function of the old parameter values. This is incorrect and will usually yield a step
that ascends the objective function.

Figure 1 illustrates the behavior of the partial derivative (Eq. (13)) of the objective
function with respect to A,. If the kernel function of the SVM obeys Mercer’s condi-
tion (as all common ones do), then we are guaranteed that n = ky, + kuy — 2k = 0
is true. If n is strictly positive, then Eq. (13) will always be increasing. Moreover, if
s* is not zero, then it will be piecewise linear with two discrete jumps, as illustrated in
figure 1.

Putting these facts together means that we only have to consider five possible solutions for
Eq. (13). Three possible solutions correspond to using Eq. (15) with (sgn(i,) —sgn(},)) set
to —2, 0, and 2. The other two candidates correspond to setting A, to one of the transitions in
figure 1: 1, = 0 or s*. The update rules for A, and 1, must also insure that both parameters
take values within + C.
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SE/OA,

Ao |
Ay <0< Ay sgn{Ay) = sgn(Ay) Au <0< Ay
L H
0 (if s* > 0) s* (if 5" > 0)
s* (if " < 0) 0 (if s* < 0)

Figure 1. The derivative as a function of A,: If the kernel function obeys Mercer’s condition, then the derivative
(Eq. (13)) will always be strictly increasing.

Table 1 shows pseudo-code that implements a single step for SMO with regression.
Basically, lines 4 and 5 set the Lagrange multipliers to values appropriate if the two have
the same sign. If the two multipliers differ in sign, then line 8 adjusts the multipliers by
2¢/n if the adjustment can be made without affecting the sign of either multiplier. If such
an adjustment can not be made, the only solution is for the two multipliers to take the values
of s* and 0. Lines 12 and 13 calculate boundaries that keep both multipliers within & C.
Finally, lines 14 and 15 enforces the constraints.

3.3.  KKT and convergence conditions

The step described in this section will only minimize the global objective function if one
or both of the two parameters violates a Karush-Kuhn-Tucker (KKT) condition. The KKT
conditions for regression are:

hi=0lyi— fil <e¢
—C<li#0<C=|yi— fil=¢ (16)
|Ail = C = |y — fil > .

These KKT conditions also yield a test for convergence. When no parameter violates any
KKT condition, then the global minimum has been reached.

Also note, a step should only be taken if it is greater in size than some threshold. In
our experience, we found that a threshold equal to the square root of the machine epsilon
consistently gave stable results, but that a smaller threshold could introduce numerical
instabilities. We also found that our update rule (as well as the update rules proposed by
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Table 1. Pseudo-code for the analytical step for SMO generalized for regression.

1. s* = Ar A%

2. N = kyy + kuu — 2kyn;

3. A =2¢/n;

4 M= Loyt S = D
5. Au =8 — Ay

6. if (Ay - Ay < 0) {

7. if (Al = A A Ay > A)

8. Ay =2y —sgn(ry) - A;

9. else
10. Ay = step(|Av] — [Aul) - 5™
11. }
12. L = max(s* — C, —C);
13. H = min(C, s* + C);
14. Ay = min(max(A,, L), H);
15. Ay = 8% — Ay

others (Mattera, Palmieri, and Haykin, 1999)) were more numerically stable if A, > A,,
which can be easily enforced by selectively swapping the roles of the two multipliers.

3.4. Updating the threshold

To update the SVM threshold, we calculate two candidate updates. The first update, if used
along with the new parameters, forces the SVM to have f, = y,. The second forces f, = y,.
If neither update for the other two parameters hits a constraint, then the two candidate updates
for the threshold will be identical. Otherwise, we average the candidate updates.

b = Yu — fu* + ()‘Z - )\u)kuu + ()V: - )\v)kuv + b* (17)
b’ =y, — fF + A — Mkuy + (A — A)kyy + b (18)

These update rules are nearly identical to Platt’s original derivation.

3.5. Related work

While there are at least three other earlier works that derive regression rules for SMO, all
differ in some respects from this work and from each other. In this subsection we briefly
sample these related works.

Smola and Scholkopf (1998) derived regression rules for SMO that use four separate
Lagrange multipliers, where one pair of multipliers forms a single composite parameter.
This formulation is consistent with the earliest derivations of SVM regression in that it keeps
all Lagrange multipliers strictly positive. Properly handling all special cases for the four
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Lagrange multipliers is somewhat difficult as demonstrated by the two pages of pseudo-code
required to describe the update rule in Smola and Scholkopf (1998).

Mattera, Palmieri, and Haykin (1999) compress two Lagrange multipliers into a sin-
gle parameter, as is done in our derivation. We believe that their update rule is analyti-
cally identical to ours and have numerically observed this to be the case within machine
epsilon; however, the update rule described in Mattera, Palmieri, and Haykin (1999) looks
very different from ours. We believe that our derivation is simpler to implement and to
understand.

Finally, Shevade et al. (2000) extended the derivation contained in Smola and Scholkopf
(1998) to correct for an inefficiency in how SMO updates the threshold. While the ineffi-
ciency was first identified for the case of classification (Keerthi et al., 1999), it is applicable
to most implementations of SMO, including ours. Future work may combine the improve-
ments of Shevade et al. (2000) with our derivation.

4. Building a better SMO

As described in Section 2, SMO repeatedly finds two Lagrange multipliers that can be
optimized with respect to each other and analytically computes the optimal step for the two
Lagrange multipliers. Section 2 was concerned with the analytical portion of the algorithm.
In this section, we concentrate on the remainder of SMO which consists of several heuristics
that are used to pick pairs of Lagrange multipliers to optimize. While it is beyond the scope
of this paper to give a complete description of SMO, Table 2 gives basic pseudo-code for
the algorithm. For more information, consult one of Platt’s papers (Platt, 1998, 1999b).

Referring to Table 2, notice that the first Lagrange multiplier to work on is chosen at line 3
and that its counterpart is chosen at lines 3.1, 3.2, or 3.3. SMO attempts to concentrate its
effort where it is most needed by maintaining a working set of non-bounded Lagrange
multipliers. The idea is that Lagrange multipliers that are at bounds (either 0 or C for
classification, or 0 or & C for regression) are mostly irrelevant to the optimization problem
and will tend to keep their bounded values.

Table 2. Basic pseudo-code for SMO.

While further progress can be made:

1. If this is the first iteration, or if the previous iteration made no progress, then
let the working set be all data points.

2. Otherwise, let the working set consist only of data points with non-bounded
Lagrange multipliers.

3. For all data points in the working set, try to optimize the corresponding
Lagrange multiplier. To find the second Lagrange multiplier:

3.1 Try the best one (found from looping over the non-bounded multipliers)
according to Platt’s heuristic, or

3.2 Try all among the working set, or

3.3 Try to find one among the entire set of Lagrange multipliers.

4. If no progress was made and the working set was all data points, then done.
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At best, each optimization step will take time proportional to the number of Lagrange
multipliers in the working set and, at worst, will take time proportional to the size of the
entire data set. However, the runtime is actually much slower than this analysis implies
because each candidate for the second Lagrange multiplier requires three kernel functions
to be evaluated. If the input dimensionality is large, then the kernel evaluations may be a
significant factor in the time complexity. All told, we can express the runtime of a single
SMOstepas ® (p- W -n—+ (1 — p) - £ - n), where p is the probability that the second La-
grange multiplier is in the working set, W is the size of the working set, and # is the input
dimensionality.

The goal of this section is to reduce the runtime complexity for a single SMO
step down to O(p'- W + (1 — p’) - £ -n), with p’ > p. Additionally, a method for reduc-
ing the total number of required SMO steps is also introduced, so we also reduce the
cost of the outer most loop of SMO as well. Over the next five subsections, several im-
provements to SMO will be described. The most fundamental change is to cache the ker-
nel function outputs. However, a naive caching policy actually slows down SMO since
the original algorithm tends to randomly access kernel outputs with high frequency.
Other changes are designed either to improve the probability that a cached kernel
output can be used again or to exploit the fact that kernel outputs have been pre-
computed.

4.1. Caching kernel outputs

A cache is typically understood to be a small portion of memory that is faster than normal
memory. In this work, we use cache to refer to a table of precomputed kernel outputs. The
idea here is that frequently accessed kernel outputs should be stored and reused to avoid
the cost of recomputation.

Our cache data structure contains an inverse index, /, with M entries such that /; refers
to the index (in the main data set) of the ith cached item. We maintain a two-dimensional
M x M array to store the cached values. Thus, forany 1 <i, j < M witha=1; and b= 1I;,
we either have the precomputed value of &, stored in the cache or we have space allocated
for that value and a flag set to indicate that the kernel output needs to be computed and
saved.

The cache can have any of the following operations applied to it:

query (a, b)—returns one of three values to indicate that k,;, is either (1) not in the
cache, (2) allocated for the cache but not present, or (3) in the cache.

— insert (a, b)—compute k,;, and force it into the cache, if it is not present already. The
least recently used indices in [ are replaced by a and b.

access (a, b)—return k,;, by the fastest method available.

tickle (a,b)—mark indices a and b as the most recently used elements.

We use a least recently used policy for updating the cache as would be expected but with
the following exceptions:
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— For all i, k; is maintained in its own separate space since it is accessed so frequently.

— If SMO’s working set is all Lagrange multipliers (as determined in step 1 of Table 2),
then all accesses to the cache are done without tickles and without inserts.

— If the working set is a proper subset and both requested indices are not in the working
set, then the access is done with neither a tickle nor an insert.

Without the above modifications, caching kernel outputs in SMO usually degrades the
runtime because of the frequency of cache misses and the extra overhead incurred. Our
modified caching policy makes caching beneficial; however, the next set of heuristics can
improve the effectiveness of caching even more.

4.2.  Eliminating thrashing

As shown in lines 3.1, 3.2, and 3.3 of Table 2, SMO uses a hierarchy of selection methods
in order to find a second multiplier to optimize along with the first. It first tries to find a
very good one with a heuristic. If that fails, it settles for anything in the working set. But if
that fails, SMO then starts searching through the entire training set.

Line 3.3 causes problems in SMO for two reasons. First, it entails an extreme amount
of work that results in only two multipliers changing. Second, if caching is used, line 3.3
could interfere with the update policies of the cache.

To avoid these problems, we use a heuristic which entails a modification to SMO such
that line 3.3 is executed only if the working set is the entire data set. We must execute it, in
this case, to be sure that convergence is achieved. Platt (1999a) has proposed a modification
with a similar goal in mind.

In our example source code (which can be accessed via the URL given at the beginning
of this paper) this heuristic corresponds to using the command line option -1azy, which is
short for “lazy loops.”

4.3.  Optimal steps

The next modification to SMO takes advantage of the fact that cached kernel outputs can
be accessed in constant time. Line 3.1 of Table 2 searches over the entire working set
and finds the multiplier that approximately yields the largest step size. However, if ker-
nel outputs for two multipliers are cached, then computing the change to the objective
function that results from optimizing the two multipliers takes constant time to calculate.
Thus, by exploiting the cached kernel outputs, we can greedily take the step that yields
the most improvement, among all analytical steps possible that use only cached kernel
values.

Let A, be the first multiplier selected in line 3 of Table 2. For all u such that k,,,, is cached,
we can calculate new values for the two multipliers analytically and in constant time. Let
the old values for multipliers use * superscripts, as in A and A%. Moreover, let f; and f;*
be shorthand for the new and old values for the SVM output.!
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The change to the classification objective function (Eq. (3)) that results from accepting
the new multipliers is:

1 1
AW = )\uyu (fu - Eyu)\ukuu - b) - )\zyu (fu* - Eyu)\zkuu - b*>

1 1
+)"va <fv - Eyu)\ukvv - b) - )‘:yv <f: - Eyv)‘:kvv - b*> (19)

+kuv(yuyv)"u)"v - yuyv)":)\:) - )‘u - )"v + )\: + )‘j

Equation (19) is derived by substituting A for « in Eq. (3), and rewriting the equation so that
all terms are trivially dependent or independent of A, and/or A,. Afterwards, the difference
between two choices for the two multipliers can be calculated without any summations
because the independent terms cancel.

The change to the regression objective function (Eq. (9)) can be similarly calculated with:

1 1
AW = )"u (fu - Yu — Ekukuu - b) - )"z: (fu* —Yu — Ekzkuu - b*>

1 1,
+ Al fo— o — E)\vkvv —-b) - )\ﬁ f: —Yv — E)‘vkvv —-b* (20)
+ ki Ay — M) + (A | — A5 + [ho| = IATD).

Thus, we modify SMO by replacing line 3.1 in Table 2 with code that looks for the best
second multiplier via Eq. (19) or (20) for all u such that k,, is cached.

In our example source code, this heuristic corresponds to using the command line option
-best, which is short for “best step.”

4.4.  On demand incremental SVM outputs

The next modification to SMO is a method to calculate SVM outputs more rapidly. Without
loss of generality, assume we have an SVM that is used for classification and that the output
of the SVM is determined from Eq. (2) (but with A substituted for o). There are at least
three different ways to calculate the SVM outputs after a single Lagrange multiplier, A ;,
has changed:

— Use Eq. (2), which is extremely slow.
— Change Eq. (2) so that the summation is only over the nonzero Lagrange multipliers.
— Incrementally update the new value with f; = f* + (A; — A7)y ;k;;.

Clearly, the last method is the fastest. SMO, in its original form, uses the third method to
update the outputs whose multipliers are non-bounded (which are needed often) and the
second method when an output is needed that has not been incrementally updated.

We can improve on this method by only updating outputs when they are needed, and
by computing which of the second or third method above is more efficient. To do this, we
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need two queues with maximum sizes equal to the number of Lagrange multipliers and a
third array to store a time stamp for when a particular output was last updated. Whenever a
Lagrange multiplier changes value, we store the change to the multiplier and the change to
b in the queues, overwriting the oldest value.

When a particular output is required, if the number of time steps that have elapsed since
the output was last updated is less than the number of nonzero Lagrange multipliers, we can
calculate the output from its last known value and from the changed values in the queues.
However, if there are fewer nonzero Lagrange multipliers, it is more efficient to update the
output using the second method.

Since the outputs are updated on demand, if the SVM outputs are accessed in a nonuniform
manner, then this update method will exploit those statistical irregularities. In our example
source code, this heuristic corresponds to using the command line option -clever, which
is short for “clever outputs.”

4.5. SMO with decomposition

Using SMO with caching along with all of the proposed heuristics yields a significant
runtime improvement as long as the cache size is nearly as large as the number of support
vectors in the solution. When the cache size is too small to fit all of the kernel outputs
for each support vector pair, accesses to the cache will fail and runtime will be increased.
This particular problem can be addressed by combining Osuna’s decomposition algorithm
(Osuna, Freund, & Girosi, 1997) with SMO.

The basic idea is to iteratively build an M x M subproblem with 2 < M < £, solve the
subproblem, and then iterate with a new subproblem until the entire optimization problem
is solved. However, instead of using a QP solver to solve the subproblem, we use SMO and
choose M to be as large as the cache.

The benefits of this combination are two-fold. First, much evidence indicates that
decomposition can often be faster than using a QP solver. Since the combination of SMO
and decomposition is functionally identical to standard decomposition with SMO as the
QP solver, we should expect the same benefit. Second, using a subproblem that is the same
size as the cache guarantees that all of the kernel outputs required will be available at every
SMO iteration except for the first for each subproblem.

However, we note that our implementation of decomposition is very naive in the
way it constructs subproblems, since it essentially works on the first M randomly
selected data points that violate a KKT condition. In our example source code, this
heuristic corresponds to using the command line option -ssz M, which is short for
“subset size.”

5. Experimental results
To evaluate the effectiveness of our modifications to SMO we chose the Mackey-Glass

system (Mackey & Glass, 1977) as a test case because it is highly chaotic (making it a
challenging regression problem) and well-studied. The Mackey-Glass system is described
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by the delay-differential equation:

dx A-x(t —1)

@d_ ATD b,
i 1+x9¢—1) *(®

For all experiments, we used the parameter settings T = 17, A = 0.2, B =0.1,and At = 1
(for numerical integration), which yields a very chaotic time series with an embedding
dimension of 4.

To perform forecasting, we use a time-delay embedding (Takens, 1980) to approximate
the map:

x(t+T) < {x@),x(t—A),....,x(t—(n—1A)},

with 7 =85, A =6, and n equal to 4, 6, or 8. Thus, we are predicting 85 time steps into the
future with an SVM with 4, 6, or 8 inputs.

The purpose of this work is not to evaluate the prediction accuracy of SVMs on chaotic
time series as has been done before (Miiller et al., 1997; Mukherjee, Osuna, & Girosi, 1997).
Our focus is on the amount of time required to optimize a support vector machine. Since
the objective function for optimizing SVMs is quadratic with linear constraints, all SVMs
will have either a single global minimum or a collection of minima that are identical in
the objective function valuation. Hence, excepting minor numerical differences between
implementations, all SVM optimization routines essentially find the same solution; they
only differ in how they find the solution, how long it takes to get there, and how much
memory is required.

Figure 2 shows plots from two training runs that illustrate the Mackey-Glass time series
and phase-space. The time series plots show predictions for the two values of ¢, and the
phase-space plots show the location of the support vectors in a two dimensional slice of the
time-delay embedding.

The first part of our experimental results are summarized in Tables 3 and 4. In these
experiments, the time series consisted of 500 data points which, depending on the values
of n, A, and T, yield a number of exemplars less than 500. The major blocks (three in each
table) summarize a specific problem instance which has a unique set of values for ¢ and n.
Within each block, we performed all combinations of using SMO with and without caching,
with and without decomposition, and with and without all three heuristics.

Each block in the tables also contains results from using the Royal Holloway/AT&T/
GMD FIRST SV Machine code (RAGSVM) (Saunders et al., 1998). RAGSVM can work
with three different optimization packages, but only one optimizer is freely available for
research that can be used on regression problems: BOTTOU, an implementation of the
conjugate gradient method. Entries in the blocks labelled as “QP” use RAGSVM with
BOTTOU without the chunking option. Entries labelled as “Chunk’ use “sporty chunking”
which uses the decomposition method with the specified subset size and the QP solver on
the subproblem.
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Figure 2. The Mackey-Glass system: actual and predicted time series for (a) ¢ = 0.1, and (b) ¢ = 0.025;
two-dimensional phase space plots to show the location of support vectors for (c) ¢ = 0.1, and (d) & = 0.025.
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Table 3. Experimental results (part 1/2): all SMO results are averaged over ten trials.

Train alg.  Sub. size Cache size SMO options  Objective value  Num. of SVs  CPU time  Std. dev.

Problem instance: n = 4, & = 0.1

SMO 0 0 none —15.9206 70.1 104.17 14.14
SMO 0 0 all —15.9266 68.3 9.87 1.37
SMO 0 100 none —15.9206 70.1 32.88 4.28
SMO 0 100 all —15.9266 68.3 6.10 0.82
SMO 100 0 none —15.9198 70.5 136.83 24.35
SMO 100 0 all —15.9247 67.9 12.65 1.73
SMO 100 100 none —15.9198 70.5 42.72 7.53
SMO 100 100 all —15.9247 67.9 7.64 1.04
QP - - - —15.9002 63 85.22 -

Chunk 100 - - —15.8809 59 20.24 -

Problem instance: n = 6, ¢ = 0.1

SMO 0 0 none —5.4613 62.7 149.72 36.91
SMO 0 0 all —5.4649 62.9 11.82 1.60
SMO 0 100 none —5.4613 62.7 35.49 8.25
SMO 0 100 all —5.4649 62.9 6.26 0.80
SMO 100 0 none —5.4620 63.2 153.61 27.71
SMO 100 0 all —5.4636 62.7 11.89 1.93
SMO 100 100 none —5.4620 63.2 35.70 6.25
SMO 100 100 all —5.4636 62.7 6.06 0.93
QP - - - —5.4698 59 62.86 -

Chunk 100 - - —5.4619 55 16.43 -

Problem instance: n = 8, ¢ = 0.1

SMO 0 0 none —2.3008 54.5 63.75 12.56
SMO 0 0 all —2.3027 52.8 6.33 1.27
SMO 0 100 none —2.3008 54.5 13.90 2.38
SMO 0 100 all —2.3027 52.8 3.43 0.59
SMO 100 0 none —2.3005 55.4 67.73 19.18
SMO 100 0 all —2.3031 53 7.21 1.42
SMO 100 100 none —2.3005 554 13.65 3.80
SMO 100 100 all —2.3031 53 3.45 0.59
QP - - - —2.2950 51 40.86 -

Chunk 100 - - —2.2899 38 6.30 -

Entries where heuristics have the value of “all” indicate that “lazy loops” (from Section 4.2), “best step” (Section
4.3), and “clever outputs” (Section 4.4) are all used. The entries for the subset size indicate the size for decompo-
sition (with “0” meaning no decomposition). All times are in CPU seconds on a 500 MHz Pentium III machine
running Linux.
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Table 4. Experimental results (part 2/2): all SMO results are averaged over ten trials.
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Train alg.  Sub.size Cachesize SMO options Objective value  Num. of SVs  CPU time  Std. dev.
Problem instance: n = 4, ¢ = 0.025
SMO 0 0 none —84.0185 195.7 316.70 36.10
SMO 0 0 all —84.0367 194.9 25.79 2.51
SMO 0 100 none —84.0185 195.7 98.04 12.63
SMO 0 100 all —84.0367 194.9 16.69 1.47
SMO 100 0 none —84.0284 196.8 554.69 73.18
SMO 100 0 all —83.8655 195.3 58.33 6.54
SMO 100 100 none —84.0284 196.8 184.12 22.32
SMO 100 100 all —83.8655 195.3 40.60 5.69
QP - - - —84.0401 194 186.63 -
Chunk 100 - - —84.0290 188 316.54 -
Problem instance: n = 6, ¢ = 0.025
SMO 0 0 none —48.1057 170.1 724.51 103.24
SMO 0 0 all —48.1256 169.8 48.17 4.17
SMO 0 100 none —48.1057 170.1 157.97 21.10
SMO 0 100 all —48.1256 169.8 2543 2.15
SMO 100 0 none —48.1120 170.5 1149.43 127.18
SMO 100 0 all —48.1283 169 124.63 17.65
SMO 100 100 none —48.1120 170.5 278.76 31.27
SMO 100 100 all —48.1283 169 75.09 14.38
QP - - - —48.1430 159 245.67 -
Chunk 100 - - —48.1505 164 310.21 -
Problem instance: n = 8, ¢ = 0.025
SMO 0 0 none —27.8433 159.6 9717.78 146.42
SMO 0 0 all —27.8588 155.1 67.20 10.57
SMO 0 100 none —27.8433 159.6 261.98 87.75
SMO 0 100 all —27.8588 155.1 34.48 431
SMO 100 0 none —27.8421 164.9 1338.15 133.58
SMO 100 0 all —27.8663 159.8 141.33 19.54
SMO 100 100 none —27.8421 164.9 289.26 29.13
SMO 100 100 all —27.8663 159.8 76.66 12.69
QP - - - —27.8958 149 257.40 -
Chunk 100 - - —27.8941 144 32991 -

Entries where heuristics have the value of “all” indicate that “lazy loops” (from Section 4.2), “best step” (Section
4.3),and “clever outputs” (Section 4.4) are all used. The entries for the subset size indicate the size for decomposition
(with “0” meaning no decomposition). All times are in CPU seconds on a 500 MHz Pentium III machine running
Linux.
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Table 5. Experimental results for problem instance d = 4, ¢ = 0.1, with 10,000 data points in the time series.

Train alg.  Sub.size Cachesize SMO options  Objective value  Num. of SVs  CPU time  Std. dev.

SMO 0 500 all —93.9007 396.60 1047.29 45.13
SMO 500 500 all —93.8975 393.25 625.45 295.85
Chunk 500 - - —87.2486 287 9314.89 -

SMO statistics are over four trials. All times are in CPU seconds on a 500 MHz Pentium III machine running
Linux.

In general, the training runs were configured as similarly as possible, each using Gaussian
kernels of the form:

K (x,, x,) = exp(—|x, —x,[*/0?)

with o = %, and C =10. SMO in all configurations produces results nearly identical to

RAGSVM with respect to the value of the objective function found. However, the run times
are dramatically different for the two implementations. For these sets of experiments, SMO
with caching and the heuristics consistently gave the fastest run times, often performing
orders of magnitude faster than regular SMO, QP, and decomposition. The speed improve-
ments for SMO ranged from a factor of 3 to as much as 25.

Interestingly, on these experiments, SMO with decomposition consistently yielded in-
ferior run times compared to SMO without decomposition, regardless of other runtime
options. Our motivation for combining SMO with decomposition was to make caching
effective on problems with many data points. Since the first set of experiments only used
500 data points, we used the same Mackey-Glass parameters to generate a time series with
10,000 data points for further experimentation.

Table 5 summarizes the second set of experiments. For these experiments, we chose
to only vary whether SMO was used with or without decomposition. As can be seen in
the table, SMO without decomposition gives nearly an order of magnitude improvement in
runtime compared to RAGSVM while SMO with decomposition yields even faster run times.
However, SMO with decomposition yields a very high standard deviation with the fastest
and slowest run times being 391 and 1123 seconds, respectively. We suspect that the high
standard deviation is a result of our naive implementation of decomposition. Nevertheless,
the worst case for SMO with decomposition is nearly as good as the best for SMO without
decomposition. Moreover, on this problem set, SMO with decomposition can be nearly 25
times faster than decomposition with a QP solver. In fact, the solutions found by SMO in all
experiments from Table 5 are superior to the RAGSVM solutions in that the final objective
function values are significantly larger in magnitude in the SMO runs.

But why does SMO with decomposition help on large data sets? For a caching policy to be
effective, the cached elements must have a relatively high probability of being reused before
they are replaced. On large data sets, this goal is far more difficult to achieve. Moreover,
SMO must periodically loop over all exemplars in order to check for convergence. Using
SMO with decomposition makes caching much easier to implement effectively because we
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can make the subset size for decomposition the same size as the cache, thus guaranteeing
that cached elements can be reused with high probability.

6. Conclusions

This work has shown that SMO can be generalized to handle regression and that the run-
time of SMO can be greatly improved for datasets dense with support vectors. Our main
improvement to SMO has been to implement caching along with heuristics that assist the
caching policy. In general, the heuristics are designed to either improve the probability that
cached kernel outputs will be used or exploit the fact that cached kernel outputs can be used
in helpful ways that are inefficient for non-cached kernel outputs. Our numerical results
show that our modifications to SMO yield dramatic runtime improvements. Moreover, our
implementation of SMO can outperform state-of-the-art SVM optimization packages that
use a conjugate gradient QP solver and decomposition.

Because kernel evaluations are more expensive the higher the input dimensionality, we
believe, but have not shown, that our modifications to SMO will be even more valuable
on larger datasets with high input dimensionality. Preliminary results indicate that these
changes can greatly improve the performance of SMO on classification tasks that involve
large, high-dimensional, and non-sparse data sets.

Future work will concentrate on incremental methods that gradually increase numerical
accuracy. We also believe that the improvements to SMO described in Keerthi et al. (1999),
Shevade et al. (2000) can be adapted to our implementation as well. Moreover, altering
our decomposition scheme to better mimic the heuristics in Joachims (1999) should yield
further improvements.
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Note

1. Note that in this section, we refer to all Lagrange multipliers by A and not «. We do this to maintain consistency
with earlier sections, even though this notation conflicts with Egs. (3) and (6).
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