
Efficient Symbolic Differentiation for Graphics Applications

Brian Guenter
Microsoft Research

Abstract

Functions with densely interconnected expression graphs, which
arise in computer graphics applications such as dynamics, space-
time optimization, and PRT, can be difficult to efficiently differenti-
ate using existing symbolic or automatic differentiation techniques.
Our new algorithm, D*, computes efficient symbolic derivatives for
these functions by symbolically executing the expression graph at
compile time to eliminate common subexpressions and by exploit-
ing the special nature of the graph that represents the derivative of
a function. This graph has a sum of products form; the new algo-
rithm computes a factorization of this derivative graph along with
an efficient grouping of product terms into subexpressions. For the
problems in our test suite D* generates symbolic derivatives which
are up to 4.6×103 times faster than those computed by the symbolic
math program Mathematica and up to 2.2×105 times faster than the
non-symbolic automatic differentiation program CppAD. In some
cases the D* derivatives rival the best manually derived solutions.

Keywords: Symbolic differentiation

1 Introduction

Derivatives are essential in many computer graphics applications:
optimization applied to global illumination and dynamics prob-
lems, computing surface normals and curvature, etc. Derivatives
can be computed manually or by a variety of automatic techniques,
such as finite differencing, automatic differentiation, or symbolic
differentiation. Manual differentiation is tedious and error-prone;
automatic techniques are desirable for all but the simplest func-
tions. However, functions whose expression graphs are densely
interconnected, such as recursively defined functions or functions
that involve sequences of matrix transformations, are difficult to
efficiently differentiate using existing techniques. These types of
expressions occur in a number of important graphics applications.

For example, spherical harmonics, as used in PRT, have a natural re-
cursive form whose expression graph has many common subexpres-
sions. Optimization of the spherical harmonics coefficients [Sloan
et al. 2005] can be made more efficient if a gradient can be com-
puted but the recursive spherical harmonics equations are difficult
to differentiate directly.

Another example is the dynamics equations of articulated figures.
These have sequences of matrix transformations that have to be dif-
ferentiated to solve the inverse dynamics and space-time optimiza-
tion problems. This has proven remarkably difficult. More than

60 research papers1 have been published on the topic of solving
the inverse dymamics problem for robot manipulators. More than a
decade elapsed before the first O(n) solution was found and almost
two decades passed before truly efficient O(n) solutions were de-
veloped [Featherstone and Orin 2000]. Computing the gradient of
the function to be minimized in space-time optimization for robot
manipulators is also quite difficult: efficient, though complex, solu-
tions have only recently been published [Martin and Bobrow 1997;
Lee et al. 2005].

1.1 Related work

Up to now, there have been three basic ways of computing deriv-
atives: finite differencing, automatic differentiation, and symbolic
differentiation.

The finite difference method is both inaccurate and much less ef-
ficient, in general, than other techniques so it won’t be discussed
further.

Forward and reverse automatic differentiation are non-symbolic
techniques independently developed by several groups in the 60s
and 70s respectively [Griewank 2000; Rall 1981]. In the forward
method derivatives and function values are computed together in a
forward sweep through the expression graph. In the reverse method
function values and partial derivatives at each node are computed
in a forward sweep and then the final derivative is computed in a
reverse sweep. Users generally must choose which of the two tech-
niques to use on the entire expression graph, or whether to apply
forward to some subgraphs and reverse to others. Some tools such
as ADIFOR [Bischof et al. 1996] and ADIC [Bischof et al. 1997]
automatically apply reverse at the statement level and then forward
at the global level. Forward and reverse are the most widely used
of all automatic differentiation algorithms.

The forward method is efficient for R
1 → R

n functions but may do
n times as much work as necessary for R

n → R
1 functions. Con-

versely, the reverse method is efficient for f : R
n →R

1 but may do n
times as much work as necessary for f : R

1 →R
n. For f : R

n →R
m

both methods may do more work than necessary.

Efficient differentiation can also be cast as the problem of com-
puting an efficient elimination order for a sparse matrix [Griewank
2000; Griewank 2003] using heuristics which minimize fill in.
However, as of the time of [Griewank 2003] good elimination
heuristics that worked well on a wide range of problems remained
to be developed. More recently, [Tadjouddine 2007] proposed an al-
gorithm which used the Markowitz elimination heuristic (as noted

1See [Balafoutis and Patel 1991] chapter 5 for an extensive bibliography.



in [Griewank 2003] this heuristic can give results worse than either
forward or reverse for some graphs) followed by graph partioning
to perform interface contraction through the use of vertex separa-
tors. The algorithm for partitioning the graph remained to be im-
plemented as future work, but the authors claim that, in the form
described in the paper, it is limited to computational graphs with
a few hundred nodes, roughly 2 orders of magnitude smaller than
the largest problems we solve in our test suite. They suggested po-
tential alternative algorithms which might address this problem but
did not implement them. No test results appear in this paper so it
is difficult to say how well it would perform in comparison to our
new algorithm.

An extensive list of downloadable automatic differentiation soft-
ware packages can be found at http://www.autodiff.org.

Symbolic differentiation has traditionally been the domain of ex-
pensive, proprietary symbolic math systems such as Mathematica.
These systems work well for simple expressions but computation
time and space grow rapidly, often exponentially, as a function of
expression size, in practice frequently exceeding available memory
or acceptable computation time.

1.2 Contributions

D* combines some of the best features of current automatic and
symbolic differentiation methods. Like automatic differentiation
D* can be applied to relatively large, complex problems but in-
stead of generating exclusively a numerical derivative, as automatic
differentiation does, D* generates a true symbolic derivative ex-
pression; consequently any order of derivative can be easily com-
puted by applying D* successively. Unlike forward and reverse
techniques the user does not have to make any choices about which
algorithm to apply - the symbolic derivative expression is gener-
ated completely automatically with no user intervention. D* ex-
ploits the special nature of the sum of products graph that represents
the derivative of a function; our primary contributions are two new
greedy algorithms: the first computes a factorization of the deriv-
ative graph and the second computes a grouping of common prod-
uct terms into subexpressions. While not guaranteed to be optimal
in practice these two algorithms together produce extremely effi-
cient derivatives. Secondary contributions include symbolically ex-
ecuting the expression graph at compile time to eliminate common
subexpressions and embedding the D* algorithm in a conventional
programming language2 which is very beneficial from a software
engineering perspective.

1.3 Limitations of the current implementation

The current implementation of D* inlines all functions and unrolls
all loops at expression analysis time. Inlining is not required for the
factorization algorithm to work; it is a software engineering choice
analogous to the inlining trade-offs made in conventional compil-
ers. This approach exposes maximum opportunities for optimiza-
tion, and it simplifies the embedding of D* in C#. A side effect
of this design choice is that the compiled derivative functions may
be larger than desired for some applications. It also requires loop
iteration bounds to be known at compile time. For our initial set
of applications this design trade-off worked quite well but future
implementations may perform less inlining to allow for a broader
range of application of the algorithm.

The time to compute the symbolic derivative is guaranteed to be
polynomial in the size of the expression graph. For an expression

2D* is currently embedded in C# but can easily be embedded in other
languages, such as C++, which support operator overloading.

graph f : R
n → R

m with v nodes the worst-case time to compute
the symbolic derivative is O(nmv3). We have never observed this
worst-case running time for any of the examples we have tested,
although we have seen cubic running times. We believe that an
incremental version of the algorithm currently under development
will significantly improve on this worst-case time. More details
are provided in sections 4.1 and 6.3. In practice, the current algo-
rithm is fast enough to compute the symbolic derivative of expres-
sion graphs with hundreds to thousands of nodes in a few seconds
and tens of thousands of nodes in an hour or less.

2 Implementation in C#

D* is embedded in C# by overloading all the standard C# arithmetic
operators, and by providing special definitions for all the standard
mathematical functions, such as sin, cos, etc. The language embed-
ding and differentiation algorithm together total 2800 lines of C#
code.

Every D* program is a function from R
n → R

m. Executing a D*
program creates an expression graph representing the function. The
graph is made up of nodes, which are instances of classes, and
edges, which connect nodes to their children. Creating the graph
and its manipulation and simplification is handled by the F class.
Variables are instances of the class V. The following snippet of code
creates an expression graph for a function, g, which computes a∗b

V a = new V(”a”), b = new V(”b”);
F g;

g = a∗b;

Multidimensional functions are created with the F constructor

g = new F(a∗b,F.sin(a));

Individual range elements can be accessed using an indexer. For the
function g in the previous example g[0] is a∗b and g[1] is sin(a).

Every F node has a domain. The domain of a node, n, is the set of
V’s at the leaves of the expression graph rooted at n.

The derivative of a function is computed in two steps. First, the
overloaded D function

Function D(F a, int rangeIndex, params V[] vars)
Function[,] D(F[,] a, params V[] vars)

creates a Derivative node which contains a specification of the
derivative to be computed. Derivative nodes can be used as argu-
ments to other functions or they can be the root of an expression
graph. For example if g = new F(a∗b,F.sin(a)) then D(g,0,a) speci-

fies ∂g[0]
a and D(g,0,a,b) specifies ∂ 2g[0]

∂ 2ab .

After all derivatives are specified the evalDeriv function is called.
The arguments to evalDeriv are the roots of the expression graph.
evalDeriv creates a list, leafDerivatives, of all Derivative nodes
which do not have Derivative nodes below them in the graph. The
leafDerivatives list is passed to the global derivative analysis algo-
rithm of section 4.1 and the derivatives are computed. Each Deriva-
tive node in leafDerivatives is replaced with its full functional form.
This repeats until no unevaluated Derivative nodes are left in the
graph.

The derivative of an expression is a new expression whose single
range element is the derivative term. Composite derivative entities,
such as the Jacobian and Hessian, are created by invoking D() mul-
tiple times with the appropriate range and domain terms.



2.1 Expression optimization

Before an expression is created its hash code is used to see if it
already exists. If it does the existing value is used, otherwise a new
expression is created. Commutative operators, such as + and ∗ test
both orderings of their arguments.

The V arguments to the Derivative constructor are sorted by their
unique identifier before computing the hash code. This eliminates
redundant computation for derivatives that differ only in the order

in which the derivatives are taken so that ∂ 2g
∂ 2ab and ∂ 2g

∂ 2ba will hash to
the same value.

Algebraic simplification happens only at node construction time
which reduces implementation complexity and increases efficiency
since the graph is never rewritten. This is much less powerful then
the algebraic simplification performed by a program like Mathe-
matica but powerful enough for these important common cases:

a∗1 → a a∗−1 → −a
a∗0 → 0 a±0 → a
a/a → 1 a/−1 → −a
a−a → 0 f (c0) → Constant( f (c0))
c0 ∗ c1 → Constant(c0 ∗ c1) c0 ± c1 → Constant(c0 ± c1)
c0/c1 → Constant(c0/c1)

Functions can be interpretively evaluated but this is very slow so
D* has an expression compiler which generates either C# or C++
source and then compiles the source to executable code.

3 Graph structure of the chain rule

In the first stage of the new differentiation algorithm the derivative
expression is factored. To understand the factorization step we must
examine the special structure of the graph which results from dif-
ferentiating a function, the derivative graph, and how this relates
to the chain rule of differentiation. The conventional form of the
chain rule is not very convenient for this purpose so we derive an
equivalent form of the chain rule in Appendix A and show how this
relates to the derivative graph. This will lead to a simple derivative
algorithm which takes worst case time exponential in the number
of edges, e, in the original graph. In section 4 we will present a new
algorithm which reduces this to polynomial time.

Before we can begin we have to introduce some notation which
will minimize clutter in the illustrations. We will use the following
notation for derivatives: for f : R

n → R
m, f i

j is the derivative of the
ith range element with respect to the jth domain element. Range
and domain indices start at 0. Higher order derivatives are indicated
by additional subscript indices. For example

f i
jk =

∂ 2 f i

∂ f j∂ fk
(1)

The chain rule can be graphically expressed in a derivative graph.
The derivative graph of an expression graph has the same struc-
ture as the expression graph but the meaning of nodes and edges
is different. In a conventional expression graph nodes represent
functions and edges represent function composition. In a derivative
graph an edge represents the partial derivative of the parent node
function with respect to the child node argument. Nodes have no
operational function; they serve only to connect edges.

As a simple first example Fig.1 shows the graph representing the
function f = ab and its corresponding derivative graph. The edge
connecting the ∗ and a symbols in the original function graph corre-
sponds to the edge representing the partial ∂ab

∂a = b in the derivative

Figure 1: The derivative graph of multiplication. The derivative
graph has the same structure as its corresponding expression graph
but the meaning of edges and nodes is different: edges represent
partial derivatives and nodes have no operational function.

graph. Similarly, the ∗,b edge in the original graph corresponds to
the edge ∂ab

∂b = a in the derivative graph.

The derivative graph for a more complicated function, f =
sin(cos(x))∗ cos(cos(x)), is shown in Fig.2. The nodes in the orig-
inal function graph have been given labels vi to minimize clutter in
the derivative graph:

v0 = cos(x)
v1 = sin(cos(x)) = sin(v0)
v2 = cos(cos(x)) = cos(v0)

sin cos

*

cos

f

x

Figure 2: The derivative graph of an expression

Given some f : R
n → R

m we can use the derivative graph of f to
compute the derivative f i

j as follows. Find all paths from node i
to node j. For each path compute the product of all the partial
derivatives that occur along that path; f i

j is equal to the sum of
these path products. This is precisely equivalent to the alternative
form of the chain rule derived in Appendix A. In the worst case,
the number of paths is exponential in the number of edges in the
graph so this algorithm takes exponential time, and produces an
expression whose size is exponential in the number of edges in the
graph.

If we apply this differentiation algorithm to compute f 0
0 we get the

result shown in Fig.3. For each path from the root we compute
the product of all the edge terms along the path, then sum the path
products:

f 0
0 = v2cos(v0)(-sin(x))+v1(-sin(v0))(-sin(x))

= cos(cos(x))cos(cos(x))(-sin(x))+ sin(cos(x))(-sin(cos(x)))(-sin(x))

For f : R
n →R

m the path product sum may have redundant compu-
tations of two forms: common factors and common product subse-
quences. Both will be discussed in more detail in section 4 but we
can get an intuitive grasp of common factor redundancy by looking
at the simple example of Fig.4. Each branching of the graph, either
upward or downward, corresponds to a factorization of the expres-
sion. All product paths that pass through the node marked B will



0
0f

2

0

1

0

Figure 3: The sum of all path products equals the derivative

Figure 4: Each branching in the derivative graph corresponds to a
factorization of the derivative. There is a branch at node A and at
node B.

include −sin(x) as a factor. If we collapse the two product paths
into a single edge that groups the terms which share −sin(x) as a
factor then we get the graph of Fig.5. This is mathematically the
same as summing the product paths of the graph of Fig.3 but now
there is a single product path where there used to be two.

0
0f

Figure 5: Factoring out the terms which share −sin(x) reduces the
number of paths in the graph of Fig.3 from two to one.

4 Factoring the derivative graph

Since the derivative of f : R
n → R

m is just the derivative of each
of its nm R

1 → R
1 constituent functions we’ll begin by developing

an algorithm for factoring the derivative of R
1 → R

1 functions, and
then generalize to the more complicated case of f : R

n → R
m in

section 4.1.

The derivative graph, f 0
0 , of an R

1 → R
1 function has one root and

one leaf; there is a potential factorizaton of f 0
0 when two or more

paths must pass through the same node on the way to the root or to
the leaf. As an example, in Fig. 6 all paths from c to the leaf must
pass through node b and therefore must include the common factor
d0.

Factoring is closely related to a graph property called dominance.
If a node b is on every path from node c to the root then b domi-
nates c (b dom c). If b is on every path from c to the leaf then b
postdominates c (b pdom c). Looking again at Fig. 6 we can see
that node b postdominates node c and so all paths from c to the leaf
must include the common term d0, which can be factored out.

A slightly more complicated example is shown in Fig.7. Here node
0 postdominates nodes 1, 2 and 3 (0 pdom {1,2,3}) but node 2
does not dominate node 0. Node 3 dominates nodes 0,1, and 2
(3 dom {0,1,2}).

An efficient, simple algorithm (roughly 40 lines of code) for finding

0
0f

1

0

2

3 4

1

0

2

3 4

0 2 3 0 1 4 0 2 3 1 4
0

0f

Figure 6: Relationship between factoring and dominance. Node b
postdominates node c so all paths from c to the leaf must include
the common factor d0.

Figure 7: Dominance and post dominance relationships. Node
0 postdominates nodes 1, 2 and 3 (0 pdom {1,2,3}) but node 2
does not dominate 0 or 1. Node 3 dominates nodes 0,1, and 2,
(3 dom {0,1,2}) but node 1 does not postdominate 3 or 2.

the dominators or postdominators of a graph is described in [Cooper
et al. 2001]. For a DAG (directed acyclic graph) this takes worst
case time O(n2) where n is the number of nodes in the graph. Linear
time algorithms exist but in practice these algorithms are slower
until n becomes quite large.

Factorable subgraphs are defined by a dominator or postdominator
node at a branch in the graph. If a dominator node b has more than
one child, or if a post-dominator node b has more than one parent,
then b is a factor node. If c is dominated by a factor node b and
has more than one parent, or c is postdominated by b and has more
than one child, then c is a factor base of b. A factor subgraph, [b,c]
consists of a factor node b, a factor base c of b, and those nodes on
any path from b to c.

For example, the factor nodes in Fig.7 are 0 and 3. The factor sub-
graphs of node 3, highlighted in blue in Fig.8, are [3,1], [3,0]. Node
2 is not a factor node because the sole node dominated by 2 has only
one parent and no node is postdominated by 2. Node 1 is not a fac-
tor node because no nodes are dominated or postdominated by 1.

The factor subgraphs of node 0 are [0,2], [0,3]. Notice that [3,0] and
[0,3] are the same graph. This is true in general, i.e., [a,b] = [b,a] if
both exist. However, you can see that [1,3] is not a factor subgraph
even though [3,1] is. This is because 1 does not postdominate 3 in
the graph of Fig.7. In general, the existence of [a,b] does not imply
the existence of [b,a].

We can factor the graph by using the factor subgraphs and the dom-
inance relations for the graph. We’ll assume that the graph has been
DFS numbered from the root, so the parents of node b will always
have a higher number than b. Each edge, e, in the graph has nodes
e.1,e.2 with the node number of e.2 greater than the node number
of e.1, i.e., e.2 will always be higher in the graph. The following
algorithm computes which edges to delete from the original graph
and which edges to add to a new factored edge:

given: a list L of factor subgraphs [X,Y]
and a graph G



Figure 8: Factor subgraphs of the graph of Fig.7.

S = empty subgraph edge
for each factor subgraph [A,B] in L{

E = all edges which lie on a path from B to A

for each edge e in E{
if(isDominator(A){ //dominatorTest

if(B pdom e.1){
delete e from G
}

}
else{ //postDominatorTest

if(B dom e.2){
delete e from G

}
}
add e to S

}
add subgraph edge S to G, connecting node A to node B
if any [X,Y] in L no longer exists delete [X,Y] from L

}

The subgraph edges that are added to the original graph are edges
which themselves contain subgraphs. The subgraphs contained in
subgraph edges are completely isolated from the rest of the original
graph, and from the point of view of further edge processing behave
as though they were a single edge3.

The correctness of this algorithm is easily verified for a dom b;
the proof for b pdom a is similar. There are two classes of paths:
those which pass through both a and b: root · · ·a · · ·b · · · lea f and
those which pass through a but not b: root · · ·a · · · lea f 4. Starting
with the first class: if we remove all edges e ∈ [a,b] from the orig-
inal graph and replace them by a single edge whose value is the
sum of all path products from a to b, then the value of the sum of
all path products over the paths root · · ·a · · ·b · · · lea f will be un-
changed. Computation will be reduced because of the factorization
but algebraically the two sums will be identical. For example, in
Fig.9 the factor subgraph [3,1] has been replaced by a single edge
from node 3 to node 1 and the paths which precede a and follow b
in root · · ·a · · ·b · · · lea f have been factored out.

Edges e ∈ [a,b] which belong to the second class of paths,
root · · ·a · · · lea f , cannot be deleted because this would change the
sum of products over all paths. In Fig.9 if edge d1 is removed then
the product d0d1d5d6 will be destroyed. All such e have the prop-
erty that b pdom e.1 is not true, i.e., there is a path through e to
lea f which does not pass through b. In Fig.9 b pdom d3.1 so edge
d3 can be removed from the graph but b pdom d1.1 is not true so
edge d1 cannot be removed from the graph.

Factorization does not change the value of the sum of products ex-
pression which represents the derivative so factor subgraphs can be

3Except for the final evaluation step when the edge subgraphs are recur-
sively visited to find the value of the factored derivative graph.

4Paths which pass through b but not a cannot occur because a dom b.

factored in any order 5.

6

4

5
3

2
1

5 1 3 2 4

1

0 1 5 6 0 1 3 7 0 2 4 7

0 0

7 6 7

0 1 5 6 0 1 3 2 4 7

Figure 9: The factorization rule does not change the value of the
sum of products over all paths.

In Fig. 10 the factoring algorithm is applied to a postdominator
case. Factor node 0 is a postdominator node; the red edge labeled
d4 does not satisfy the postDominatorTest so it is not deleted from
the original graph. The three blue edges labeled d3,d5,d6 satisfy
the test so they are deleted. Since factor subgraph [3,1] no longer
exists in the graph, it is deleted from the list of factor subgraphs and
not considered further.

6 4

5

7

4

3

6

5

4

3

7 7

7

Figure 10: Factor subgraph [0,2], highlighted in blue and red in
the leftmost graph, is factored out of the graph and replaced with
an equivalent subgraph edge d7.

The factor subgraphs for the new graph, shown in Fig.11 on the left
hand side, are [3,0], [0,3]. We choose [0,3] arbitrarily. All edges
satisfy the postDominatorTest so the final graph, in Fig.11 on the
far right hand side, has the single subgraph edge d8.

8

8

4

7

0

2

1

4

7

0

2

1

8

8

Figure 11: Factor subgraph [0,3], highlighted in blue in the left-
most graph, is factored out of the graph and replaced with an equiv-
alent subgraph edge d8.

Alternatively we could have factored [3,1] first as shown in Fig.12.
Factor node 3 is a dominator node; the red edge labeled d1 does

5However, for f : R
n → R

m different orders may lead to solutions with
very different computational efficiency.



not satisfy the dominatorTest so it is not deleted from the original
graph. The three blue edges labeled d0,d2,d3 satisfy the test so
they are deleted. Since factor subgraph [0,2] no longer exists in
the graph, it is deleted from the list of factor subgraphs and not
considered further.

7

7

7

7

0

3
2

1

0

3
2

1

1

Figure 12: Factor subgraph [3,1] is factored out of the graph and
replaced with an equivalent subgraph edge d7.

The factor subgraphs for this new graph are [3,0], [0,3]. We choose
[3,0] arbitrarily. All edges satisfy the dominatorTest so we get the
result of Fig.13.

8

7

1

6

5

4

8

8

7

1

6

5

4

8

Figure 13: Factor subgraph [3,0], highlighted in blue in the left-
most graph, is factored out of the graph and replaced with an equiv-
alent subgraph edge d8.

To evaluate the factored derivative we compute the sum of products
along all product paths, recursively substituting in subgraphs when
necessary. For the factorization of Figs.10, 11 we get

f 0
0 = d8 (2)

= d1d7 +d0d2d4 (3)

= d1(d5d6 +d3d4)+d0d2d4 (4)

and for the factorization of Figs.12, 13 we get

f 0
0 = d8 (5)

= d1d5d6 +d7d4 (6)

= d1d5d6 +(d1d3 +d0d2)d4 (7)

The two factorizations of eq.4 and eq.7 are trivially different; they
have the same operations count.

For f : R
1 → R

1 this algorithm is all we need. For f : R
n → R

m we
will need the more sophisticated algorithm of section 4.1.

4.1 Factoring R
n → R

m functions

Two complications arise in factoring f : R
n → R

m which did not
arise in the f : R

1 → R
1 case. The first is that the order in which

the factor subgraphs are factored can make an enormous difference

in computational efficiency. The second is that after factorization
different derivatives may share partial product subsequences so it is
desirable to find product subsequences that are most widely shared.
The order of factorization will be dealt with in this section and the
product subsequence issue will be dealt with in the next.

The derivative of f is just the derivative of each of its nm R
1 → R

1

constituent functions. These nm R
1 → R

1 derivative graphs will, in
general, have a non empty intersection which represents redundant
computation. An example of this is shown in Fig.14. Here the

0
1f

0
0f

0
1

0
0 ff

Figure 14: The derivatives f 0
0 and f 0

1 intersect only in the red high-
lighted subgraph.

derivatives f 0
0 and f 0

1 intersect in the red highlighted region, which
is a common factor subgraph of f 0

0 and f 0
1 . If we choose to factor

[0,3] from f 0
0 then we get Fig.15 where f 0

0 ∩ f 0
1 does not contain a

factor subgraph of either derivative. If instead we factor [4,2] from

0
1f

0
0f

0
1

0
0 ff

Figure 15: Factor [0,3] from f 0
0 . f 0

0 ∩ f 0
1 , highlighted in red, does

not contain a factor subgraph of either derivative.

both f 0
0 and f 0

1 then we get Fig.16. f 0
0 ∩ f 0

1 contains the common
subgraph edge 4,2.

0
1f

0
0f

0
1

0
0 ff

Figure 16: Factor [4,2] from both f 0
0 and f 0

1 . f 0
0 ∩ f 0

1 contains the
common subgraph edge 4,2.

The computation required for f 0
0 is independent of whether [0,3] or

[4,2] is factored first. But the computation required to compute both
f 0
0 and f 0

1 is significantly less if [4,2] is factored first because we



can reuse the [4,2] factor subgraph expression in the factorization
of f 0

1 .

The solution to the problem of common factor subgraphs is to count
the number of times each factor subgraph [i, j] appears in the nm
derivative graphs. The factor subgraph which appears most of-
ten is factored first. If factor subgraph [k, l] disappears in some
derivative graphs as a result of factorization then the count of [k, l]
is decremented. To determine if factorization has eliminated [k, l]
from some derivative graph f i

j it is only necessary to count the chil-
dren of a dominator node or the parents of a postdominator node.
If either is one the factor subgraph no longer exists. The counts of
the [k, l] are efficiently updated during factorization by observing if
either node of a deleted edge is either a factor or factor base node.
Ranking of the [k, l] can be done efficiently with a priority queue.
The complete factorization algorithm is:

factorSubgraphs(function F){
hash table Counts: counts of [k,l]
list Altered: [k,l] whose counts have changed due

to factorization
priority queue Largest: sorted by factor subgraph count

foreach(derivative graph Fij in F){
compute factor subgraphs of Fij;

foreach(factor subgraph [k,l] in Fij){
if(Counts[[k,l]] == null){

Counts[[k,l]] = [k,l];
}

else{Counts[[k,l]].count += 1;
}
foreach([k,l] in Counts){Largest.insert([k,l]);}

}

while(Largest not empty){
maxSubgraph = Largest.max
foreach(Fij in which maxSubgraph occurs){

Altered.Add(Fij.factor(maxSubgraph))
compute factor subgraphs of Fij;

}
foreach([k,l] in Altered){Largest.delete([k,l])}
foreach([k,l] in Altered){Largest.insert([k,l])}

}
}

For f : R
n → R

m with v nodes there are nm Fi j each of which can
have at most v factor subgraphs. At most v iterations will be re-
quired to factor all of these subgraphs. Re-computing the factor
subgraphs takes worst-case time O(v2); this is done at each itera-
tion. Multiplying these terms together gives a worst-case time of
O(nmv3). We have never observed this worst-case running time for
any of the examples we have tested and in practice the algorithm
is fast enough to differentiate expression graphs with tens of thou-
sands of nodes.

In the current algorithm any time a factor subgraph is factored all
of the factor subgraphs of the Fi j are recomputed which requires
running the dominator algorithm on all the nodes in Fi j. This is
very wasteful since the vast majority of the dominance relationships
will remain unchanged after factoring any given factor subgraph. It
would be far more efficient to incrementally update just those domi-
nance relations which might have been changed by the factorization
step - we are currently implementing such an algorithm. We discuss
the consequences of this inefficiency further in section 6.3.

4.2 Computing Common Subproducts

After the graph has been completely factored there is no branching,
i.e., for each Fi j there is a single path from node i to node j. Fig.17

shows the derivative graph of an R
3 →R

2 function. Each of the nm
derivative functions is completely factored giving six path products:

f 0
0 = d1d2d4, f 0

1 = d1d2d5, f 0
2 = d1d2d3

f 1
0 = d0d2d4, f 1

1 = d0d2d5, f 1
2 = d0d2d3

The subproducts d1d2 and d0d2 can each be used in 3 path products,
whereas the subproducts d2d4, d2d5, and d2d3 can each only be
used in 2 path products. If we compute and reuse the subroducts
d1d2 and d0d2 we can compute all six path products with only 2+
2 ∗ 3 = 8 multiplies. If we compute and reuse the products d2d4,
d2d5, and d2d3 it will take 3 + 3 ∗ 2 = 9 multiplies. In this simple
example it’s easy to determine the best choice but it becomes quite
difficult for more complex graphs.

2

5

4 3

01

5

4 3

0

2

1 1

2

0

0f 1f

0f
1f

2f

1 2 3

1 2 4

1 2 5

0 2 3

0 2 4

0 2 5

5

3

1 2 4

0 2 4

4

2

5

4 3

1 0

23: RRf

Figure 17: The R
3 → R

2 function on the left has 6 derivatives; all
of the derivatives are completely factored. What is the best way to
form the path products? The subproducts d1d2 and d0d2 can each
be used in 3 path products. The subproducts d2d4,d2d5, and d2d3
can each only be used in 2 path products.

The solution to the problem of common subproducts is to compute
the number of product paths that pass through each subproduct and
then form the subproduct with the highest path count. This is per-
formed in two stages. First the path counts of pairs of edges which
occur in sequence along the path are computed. Then the highest
count pair is merged into an EdgePair which is inserted into all
paths of all f i

j derivative graphs which have the pair. The counts
of existing edge pairs are updated. This takes time O(1) per edge
pair that is updated. This process is continued until all paths in all
f i
j are one edge long. Each edge pair may itself contain an edge

pair and edges may contain subgraphs so the final evaluation of the
derivative requires recursively expanding each of these data types
as it is encountered.

The following pseudocode assumes that each f i
j is stored as a linked

list of edges and that a hashtable or similar data structure is em-
ployed so that any edge can be found in O(1) time. To simplify
the presentation all the (many) tests for special cases such as null
values, no previous or next edges, etc. have been eliminated. When
the program terminates every f i

j will consist of a set of paths each
of which will be a sequence which will contain one, and only one,
of the following types: edges, edge subgraphs, and edge pairs.

optimumSubproducts(graph G){
//count of paths edge e occurs on
hash table Counts
priority queue Largest: sorted by edge path count
foreach(derivative graph Fij in G){

foreach(edge eSub in Fij){
if(eSub.isEdgeSubgraph){

foreach(edge e, e.next in eSub){
temp = new EdgePair(ei, e.next)



Counts[temp].pathCount += 1
}

}
else{

temp = new EdgePair(ei, e.next)
Counts[temp].pathCount += 1

}
}

}

foreach(EdgePair e in Counts){Largest.insert(e)}

while(Largest not empty){
maxProduct = Largest.max
foreach(Fij which has maxProduct){

ei = Fij.find(maxProduct.edge1)
eiNext = ei.next
eiPrev = ei.previous
eiNext2 = eiNext.next
Fij.delete(ei)
Fij.delete(eiNext)
oldPair = new EdgePair(ei,eiNext)
eiPrev.insertNext(oldPair)
prevPair = new EdgePair(eiPrev,ei)
nextPair = new EdgePair(eiNext,eiNext2)
updateCounts(oldPair, prevPair,nextPair)

}
}

}

updateCounts(oldPair, prevPair, nextPair){
Counts.delete(oldPair)
Largest.delete(oldPair)
Counts[prevPair] −= 1
Counts[nextPair] −= 1
Largest.delete(prevPair)
Largest.delete(nextPair)
Largest.insert(prevPair)
Largest.insert(nextPair)

}

5 Examples

For our test set we have chosen problems which arise in many areas
of graphics. For two of the examples, inverse dynamics and space
time optimization, it has taken years to find efficient derivatives.

The functions and their representation in D* are described in this
section. In section 6 the speed and operation count of the solutions
generated by D* are compared with those from the automatic differ-
entiation program CppAD and the symbolic math program Mathe-
matica, respectively.

5.1 Spherical harmonics

Spherical harmonics are used in many algorithms to approximate
global illumination functions. For example, in the PRT algorithm
[Sloan et al. 2005] the smallest possible set of basis functions is
sought which approximates a given illumination function. A gradi-
ent based optimization routine is used to minimize the number of
spherical harmonic coefficients. Computing the gradient is com-
plicated by the fact that the spherical harmonics are most easily de-
fined in a recursive fashion and it is not obvious how to differentiate
these recursive equations directly.

The spherical harmonic functions are defined by the following set
of 4 recursive equations: Legendre polynomials, P, divided by

√
(1− z2)m,0 ≤ l < n,m ≤ l, functions of z

P(0,0) = 1
P(m,m) = (1−2m)P(m−1,m−1)
P(m+1,m) = (2m+1)zP(m,m)
P(l,m) = (2l−1)zP(l−1,m)−(l+m−1)P(l−2,m)

(l−m)

sin/cos, written S,C, multiplied by
√

(1− z2)m,0 ≤ m < n, func-
tions of x,y

S(0) = 0
C(0) = 1
S(m) = xC(m−1)− yS(m−1)
C(m) = xS(m−1)+ yC(m−1)

constants, N, 0 ≤ l < n,m ≤ l

N(l,m) =
√

(2l +1)/(4π)m = 0

N(l,m) =
√

(2l+1)
(2π)

(l−|m|)!
(l+|m|)! m > 0

and the spherical harmonic basis functions, Y , 0 ≤ l < n, |m| ≤ l

Y (l,m) = N(l, |m|)P(l, |m|)S(|m|)m < 0
Y (l,m) = N(l, |m|)P(l, |m|)C(|m|)m ≥ 0

The order of the spherical harmonic function is specified by the first
argument, l, to the function Y (l,m). At each order n there are 2n+1
basis functions. The total number of basis functions up to order n is

n

∑
i=1

2i+1 = n2 (8)

Y (l,m) is an R
3 → R

n2
function so there are 3n2 derivative terms

in the gradient of Y .

The D* functions are essentially identical to the recursive mathe-
matical equations and require only 28 lines of code including the
code necessary to specify the derivatives to be computed.

F SHDerivatives(int maxL, double x, double y, double z){
List harmonics = new List();

for (int l = 0; l < maxL; l++) {
for (int m = −l; m <= l; m++) { harmonics.Add(Y(l,m,x,y,z)); }

}
F[] dY = new F[harmonics.Count ∗ 3];
for (int i = 0; i < dY.GetLength(0) / 3; i++) {

dY[i ∗ 3] = D((F)harmonics[i],0,x);
dY[i ∗ 3 + 1] = D((F)harmonics[i],0,y);
dY[i ∗ 3 + 2] = D((F)harmonics[i],0,z);

}

return evalDeriv(dY);
}

F P(int l, int m, Var z){
if(l==0 && m==0){return 1.0;}
if(l==m){return (1−2∗m)∗P(m−1,m−1,z);}
if(l==m+1){return (2∗m + 1)∗z∗P(m,m,z);}
return(((2∗l −1)/(l−m))∗z∗P(l−1,m,z) − ((l+m−1)/(l−m))∗P(l−2,m,z));

}

F S(int m, Var x, Var y){
if(m==0){return 0;}
else{return x∗C(m−1,x,y) − y∗S(m−1,x,y);}

}

F C(int m, Var x, Var y){
if(m==0){return 1;}



else{return x∗S(m−1,x,y) + y∗C(m−1,x,y);}
}

F N(int l, int m){
int absM = Math.Abs(m);
if(m==0){return Math.Sqrt((2∗l+1)/(4∗Math.PI));}
else{return Math.Sqrt((2∗l+1)/(2∗Math.PI)∗(factorial(l−absM)/factorial(l+absM)))

;}
}

F Y(int l, int m, Var x, Var y, Var z){
int absM = Math.Abs(m);
if(m<0){return N(l,absM)∗P(l,absM,z)∗S(absM,x,y);}
else{return N(l,absM)∗P(l,absM,z)∗C(absM,x,y);}

}

5.2 Inverse Dynamics

Inverse dynamics is the problem of solving for the forces and
torques needed to move a mechanism in a specified way. The in-
verse dynamics problem itself is not of much interest for graphics
applications but it is an integral part of many space-time optimiza-
tion algorithms, which will be discussed in section 5.3.

This example is restricted to the class of mechanisms with a single
linear sequence of connected links with rotary actuators. The ex-
tension to tree structured manipulators with both rotary and linear
actuators is not difficult.

Each link, li, in the manipulator has an associated 4x4 homogenous
transformation matrix, Ai, which is a function of the joint angle, qi.
Ai relates the li coordinate frame to the coordinate frame preceding
it in the chain. The transformation from li coordinates to the global
coordinate frame is Wi:

Wi = A0A1 . . .Ai = Wi−1Ai (9)

In the Langrangian formulation the torque for a given joint, τi, is
given by

τi =
d
dt

∂L
∂ q̇i

− ∂L
∂qi

(10)

where L is the Langrangian

L = Φ−P (11)

and Φ is the kinetic and P the potential energy of the system. Φ is

Φ =
1
2

n

∑
i=1

n

∑
j=1

n

∑
k=1

tr

[
∂Wi

∂q j
Ji

∂WT
i

∂qk
q̇ jq̇k

]
(12)

where tr is the matrix trace operator (the sum of the diagonal ele-
ments), and Ji is the 4x4 Euler inertia tensor for link i. The potential
energy, P, is

P = constant−
n

∑
j=1

mjgT W jr j (13)

where mj is the mass of link j, gT is the gravity vector, and r j is
the vector from the origin of the jth coordinate frame to the center
of mass of link j.

Waters [Waters 1979] noticed that eq.10 could be written in the
following form:

τi =
n

∑
j=i

[
tr

(
∂W j

∂qi
J jẄT

j

)
−mjgT ∂W j

∂qi
r j

]
, i = 1, · · · ,n (14)

We can rewrite the triple matrix product of eq.14 as

n

∑
j=i

tr

(
∂W j

∂qi
J jẄT

j

)
=

n

∑
j=i

tr

(
Wi−1

∂Ai

∂qi
Ai+1Ai+2 + . . .A jJ jẄT

j

)
(15)

= tr

[
Wi−1

∂Ai

∂qi

(
JiẄT

i +Ai+1(Ji+1ẄT
i+1 +Ai+2(Ji+2ẄT

i+2 . . .AnJnẄT
n ))

)]
(16)

Note that this does not change the number of operations required.

The D* program for solving the inverse dynamics problem is shown
below6.

F computeTorque(F[][,] A, F[][] r, F[] q){
F[] torque = new F[numLinks];
F[][,] W = new F[numLinks][4,4];

for (int i = 0; i < numLinks; i++) {
DAi qi[i] = D(A[i],q[i]);
Wdd[i] = J∗transpose(D(W[i],t,t));

}

for (int i = 1; i < numLinks; i++) {W[i] = W[i − 1]∗A[i];}

torque[0] = trace(DAi qi[0]∗sumProd(0,A,Wdd))
− m ∗ dot(g,DAi qi[0]∗sumProd(0,A,r));

for (int i = 1; i <numLinks; i++) {
torque[i] = trace(W[i − 1]∗DAi qi[i]∗sumProd(i,A,Wdd))

− m ∗ dot(g,W[i − 1]∗DAi qi[i]∗sumProd(i,A,r));
}
return evalDeriv(torque);

}

F[,] sumProd(int start,F[][,] A,F[][,] b) {
F[,] sum = b[b.GetLength(0) − 1]; //set sum to last entry in b

for (int i = A.GetLength(0) − 1; i >= start + 1; i−−) {
sum = b[i − 1] + A[i]∗sum;
}
return sum;

}

5.3 Space Time Optimization

Space time optimization is a sophisticated technique for automat-
ically generating animations of complex articulated figures. For a
representative, but by no means complete, sampling of these types
of algorithms see [van de Panne et al. 2000; Witkin and Kass 1988;
Liu et al. 1994; Fang and Pollard 2003; Liu et al. 2005].

In space-time optimization the animation problem is cast as an op-
timization problem with an objective function

F =
∫ t f

0
f (q0(t),q1(t), . . . ,qn(t)) (17)

to be minimized, where the qi are the generalized coordinates of the
system, and a set of constraints

c(q0(t),q1(t), . . . ,qn(t)) = 0 (18)

to be satisfied. The qi(t) are defined in terms of basis functions
which have enough degrees of freedom to contain the desired mo-
tion but which allow for tractable numerical solutions. Piecewise
polynomial splines and multiresolution splines, among others, have
been used with considerable success.

6For technical reasons which don’t concern us here it is not possible in
C# to overload the + and × operators for array multiplication; however, we
have used this notation to make the code more readable.



To avoid unnecessary complexity in the example we will assume
that our physical system is an n degree of freedom manipulator with
rotary joints, that each qi is defined by a single cubic polynomial

qi(t) = ai,0t3 +ai,1t2 +ai,2t +ai,3 (19)

and that we wish to minimize the sum of the joint torques:

f (t) = ∑
i

τ2
i (t) (20)

The integral of eq.17 is typically evaluated with numerical quadra-
ture

F̃ = ∑
i

wi f (ti) ≈
∫ t f

0
f (q0(t),q1(t), . . . ,qn(t)) (21)

Gradient based optimization is frequently used to compute a local
minimum of F̃ : this requires computing the derivative of f with
respect to the free parameters of the basis functions

D( f ) =
(

∂ f
∂a0,0

,
∂ f

∂a0,1
,

∂ f
∂a0,2

,
∂ f

∂a0,3
, . . . ,

∂ f
∂an,0

,
∂ f

∂an,1
,

∂ f
∂an,2

,
∂ f

∂an,3

)

(22)

Computing the gradient of the space-time objective function is
straightforward using D*. Assuming that the array tau[] contains
the torques, τi, computed with eqs.(14,16), and that indVars is an
array containing the variables we wish to differentiate with respect
to, we can compute the gradient with the following code:

F f = 0;
for(int i=0;i<tau.rangeDim;i++) {f += tau[i]∗tau[i]}
F Df = gradient(f,indVars);

where the gradient function is:

F gradient(F f, F[] indVars){
int n = indVars.GetLength(0);
F[] derivs = new F[n];

for (int i = 0; i < n; i++) {derivs[i] = D(f,0,indVars[i]);}
return evalDeriv(derivs);

}

6 Results

D* was tested against Mathematica and the automatic differentia-
tion program CppAD. Mathematica was chosen because it is the
most widely used symbolic math program and its performance can
be expected to be competitive with that of similar programs. Cp-
pAD was chosen because it has a relatively straightforward API, it
supports C++, the language most graphics applications are written
in, and CppAD benchmark results are competitive with other C++
automatic differentiation programs .

For comparison with Mathematica we compute the ratio of the num-
ber of operations in the Mathematica derivative expression to the
number of operations in the D* derivative. To simplify the Math-
ematica expressions we used the most effective of FullSimplify or
Simplify if this took less than one hour to complete; otherwise we
used no simplification.

For comparison with CppAD we compute the ratio of the number
of D* derivative evaluations per second to that of CppAD. Whether
comparing to Mathematica or CppAD ratios greater than one indi-
cate that the D* derivative is faster. All timings were performed on
a 3.4 GHz Pentium 4 processor with 3 GB of RAM. The D* and
CppAD C++ derivative evaluation programs were compiled with
Microsoft Visual C++ 2005 with compiler flag /O2.

Reasonable, but not extraordinary, efforts were made to manually
optimize both the Mathematica and CppAD results. For Mathemat-
ica we applied substitution rules for easily spotted common subex-
pressions. For CppAD we chose the forward or reverse method,
whichever was the most efficient, and we wrote a special implemen-
tation of the trace operator which evaluated only the diagonal terms
of the triple matrix product of eq.16 which reduced the number of
operations by a factor of four7. No effort was made to optimize the
D* programs or the results of the D* symbolic differentiation.

6.1 Spherical harmonics

Derivatives of spherical harmonics (sec.5.1) with values of L from
5 to 20 were computed. Table 1 shows the results for D* versus
CppAD. For the smallest problem size, L = 5, D* is 243 times
faster while for L = 20 D* is more than 222,000 times faster. This
enormous difference in efficiency results from the fact that CppAD
continually reevaluates redundant parts of the recursive expression,
which is unavoidable using automatic differentiation techniques.

order, L 5 10 15 20

D* 6,622,516 1,117,318 468,384 222,024

CppAD 27,239 886 29 1

ratio 243 1261 16,151 222,024

D* symbolic time (secs.) .02 .55 4.9 53

Table 1: Spherical harmonics: CppAD vs. D*. Number of deriva-
tive evaluations per second. Ratio is the number of D* evaluations
per second divided by the number of CppAD evaluations per sec-
ond. The last line in the table shows the amount of time D* took to
compute the symbolic derivative.

Table 2 summarizes the results for D* versus Mathematica. We can
see that even for the smallest problem size D* generates derivatives
which are more efficient; the Mathematica derivative size is clearly
growing nonlinearly and becomes relatively larger as L increases.
For L = 20 Mathematica ran out of memory and failed to compute
a solution.

order, L 5 15 19 20 5 15 19 20

operation ± ± ± ± × × × ×
D* 57 412 642 707 139 1714 2820 3139

Mathematica 60 2730 11,576 * 179 5351 21,694 *

ratio 1.3 5.6 18 NA 1.29 3.12 7.7 NA

Table 2: Spherical harmonics: Mathematica vs. D*. Ratio is
the Mathematica operation count divided by the corresponding D*
value. For L=20 Mathematica ran out of memory and failed to
compute the derivative.

6.2 Inverse Dynamics

For the inverse dynamics problem (sec.5.2) the CppAD derivative
evaluation function took approximately 80 times as long as the D*
derivative evaluation function (table 3).

For this problem the Mathematica FullSimplify function was un-
reasonably slow, even for n = 2, so the Simplify function was used
instead for n = 2,3,4. For n = 5 Simplify failed to complete within
one hour so no simplification was used. Mathematica could not
compute the derivative for n = 6 because it ran out of memory. As
shown in table(5) Mathematica symbolic computation time is in-
creasing extremely rapidly.

7The D* implementation, by contrast, computes all n2 entries in the ma-
trix product and then applies the trace operator to the result.



D* CppAD ratio

1,158,748 14,410 80

Table 3: Inverse dynamics, n = 6: CppAD vs. D*. Number of
derivative evaluations per second. Ratio is the number of D* eval-
uations per second divided by the number of CppAD evaluations
per second.

number of links, n 2 3 4 5 6

D* 147 302 479 664 849

Mathematica 241 3127 46,496 797,134 *

ratio 1.6 10 97 1200 NA

D* symbolic time (secs.) .19 .25 .35 .55 .82

Table 4: Inverse dynamics: Mathematica vs. D*. Number of mul-
tiply adds in derivative expression. For n = 2,3,4 the Mathematica
Simplify function was used. For n = 5 Simplify did not finish within
one hour so no simplification was used. For n = 6 Mathematica ran
out of memory and could not compute the derivative. The last line
in the table is the amount of time D* took to compute the symbolic
derivative.

number of links, n 2 3 4

D* .19 .25 .35

Mathematica 2.7 51 2309

ratio 14 206 6597

Table 5: Time, in secs., to compute the symbolic derivative of in-
verse dynamic function, D* vs. Mathematica.

operation ± × Sin Cos

D* parallel axes 416 433 6 6

Balafoutis parallel axes 386 450 6 6

ratio .93 1.04 1 1

D* perpendicular axes 369 362 6 6

Balafoutis perpendicular axes 386 450 6 6

ratio 1.05 1.25 1 1

Table 6: Recursive inverse dynamics vs. D*, n = 6: For all joint
axes parallel D* has essentially the same operation count as the
O(n) Balafoutis algorithm (see text), which is among the most effi-
cient manually derived recursive inverse dynamics algorithms. For
all axes perpendicular D* is 14% faster.

Comparing the D* derivative to one of the best published linear
recursive inverse dynamics algorithms [Balafoutis and Patel 1991]
(table 6) we see the D* derivative has only 1.5% more computation
when all joint axes are parallel. For all axes perpendicular D* is
14% faster8. Real robot manipulators will be somewhere between
these two extremes.

This is a surprisingly good result because directly evaluating eq.16
has computational complexity O(n4), where n is the number of
links in the manipulator. For a 6 degree of freedom manipulator
this formulation requires roughly 120,000 multiply/adds[Balafoutis
and Patel 1991]. D* has eliminated virtually all of the redundant
computation in spite of the fact that the D* program uses 4x4 ho-
mogeneous transformations which is an inefficient, but simple, way
to represent rotation. By contrast, the best inverse dynamics algo-
rithms use more complex specialized representations for transfor-

8If we assume multiplication and addition take the same number of clock
cycles; on most architectures multiplication is slightly slower than addition
which would bias the results more heavily in favor of D*.

mation matrices9.

6.3 Space-Time Optimization

number of links, n D* CppAD ratio D* symbolic time (secs.)

6 332,225 7,613 44 7

12 172,830 2945 59 53

18 109,589 1561 70 199

40 41,000 380 108 3660

Table 7: Space-time optimization: CppAD vs. D*. Number of
derivative evaluations per second. CppAD is relatively slower as n
increases. The last column in the table shows the amount of time
D* took to compute the symbolic derivative.

D* derivatives are 44 times faster than CppAD for n = 6 (table 7).
Derivative evaluations per second for the compiled D* derivative is
changing almost perfectly linearly as a function of n, while CppAD
is not. D* appears to be taking time cubic in the number of links to
compute the symbolic derivative. As mentioned in section 4.1 this
is because we run the dominator algorithm on the entire graph af-
ter every subgraph factorization. The algorithm can be made much
more efficient by incrementally updating just those dominance rela-
tions which can possibly change. We are implementing this incre-
mental algorithm, which should significantly improve the asymp-
totic running time, and will report on the results in a future paper.
However, even in its current form the algorithm is fast enough to be
used for space-time optimization of relatively complex articulated
figures such as human beings.

The Mathematica Simplify function did not finish within one hour
even on the smallest problem size, n = 2, so no simplification was
used (table 8). For n = 4 Mathematica ran out of memory.

number of links, n 2 3 4 40

D* 419 881 1409 22739

Mathematica 145,950 4,076,910 * *

ratio 358 4630 NA NA

D* symbolic time (secs.) .3 .84 1.9 3660

Table 8: Space-time optimization: Mathematica vs. D*. Number
of multiply adds in derivative expression. For n = 2,3 the Mathe-
matica function Simplify did not finish within one hour so no simpli-
fication was used. For n = 4 Mathematica ran out of memory and
could not compute the derivative. The final line in the table shows
the amount of time D* required to compute the symbolic derivative.

It is not possible to precisely compare D* to the best manually de-
rived recursive formulas because no operation counts are given in
[Lee et al. 2005], and important details are left to the reader to fill
in. For example, the authors of [Lee et al. 2005] state

“It should be noted that many of the computations em-
bedded in the forward and backward recursions above
need only be evaluated once, thereby reducing the com-
putational burden.”

without giving details as to precisely which computations are re-
dundant; as a result it would be difficult, if not impossible, to pre-
cisely reproduce their implementation.

However, we can compare the D* derivative to the best results that
might be achieved. The lower bound for the gradient is certainly

9The Balafoutis algorithm, for example, uses a Cartesian tensor repre-
sentation for which the author provides 80 pages of background mathemat-
ics.



no less than the amount of computation required for the space-time
objective function, f . For n = 6 f has 501 ±, 537 ×, 6 cosine and 6
sin operations. The D* derivative of f has 1226 ±, 1419 ×, 6 cosine
and 6 sin operations, which is less than 2.8 times the operations of
f . Clearly the D* derivative is close to the lower bound.

7 Conclusion and future work

The D* symbolic differentiation algorithm generates extremely ef-
ficient symbolic derivatives. In some cases the D* derivatives rival
the best manually derived solutions. For the problems in our test set
D* outperformed Mathematica by up to 4.6×103, and CppAD by
up to 2.2×105 times. D* computed efficient symbolic derivatives
for all the problems while Mathematica failed to compute deriva-
tives for three problems because it ran out of memory.

There is considerable scope for reducing the amount of time re-
quired to compute the symbolic derivatives by incrementally up-
dating the dominator information for the function subgraphs. This
will be the focus of future work.

Acknowledgements

I would like to thank Bradley Bell, the author of CppAD, and Niru-
pama Chandrasekaran for helping me implement the CppAD exam-
ples.

References

BALAFOUTIS, C. A., AND PATEL, R. V. 1991. Dynamic Analysis
of Robot Manipulators: A Cartesion Tensor Approach. Kluwer
Academic Publishers.

BAUER, F. L. 1974. Computational graphs and rounding error.
SIAM J. Numer. Anal. 11, 1, 87–96.

BISCHOF, C. H., CARLE, A., KHADEMI, P., AND MAUER, A.
1996. ADIFOR 2.0: Automatic differentiation of Fortran 77 pro-
grams. IEEE Computational Science & Engineering 3, 3, 18–32.

BISCHOF, C. H., ROH, L., AND MAUER, A. 1997. ADIC — An
extensible automatic differentiation tool for ANSI-C. Software–
Practice and Experience 27, 12, 1427–1456.

COOPER, K., HARVEY, T., AND KENNEDY, K. 2001. A simple,
fast dominance algorithm. Software Practice and Experience.

FANG, A. C., AND POLLARD, N. S. 2003. Efficient synthesis of
physically valid human motion. ACM Transactions on Graphics
22, 3 (July),, 417–426.

FEATHERSTONE, R., AND ORIN, D. 2000. Robot dynamics:
Equations and algorithms. Proc. IEEE Int. Conf. Robotics &
Automation.

GRIEWANK, A. 2000. Evaluating Derivatives: Principles and
Techniques of Algorithmic Differentiation. Lecture Notes in
Computer Science 120.

GRIEWANK, A. 2003. A mathematical view of automatic differen-
tiation. In Acta Numerica, vol. 12. Cambridge University Press,
321–398.

LEE, S.-H., KIM, J., PARK, F., KIM, M., AND BOBROW, J. E.
2005. Newton-type algorithms for dynamics-based robot move-
ment optimization. IEEE Trans. on robotics 21, 4, 657–667.

LIU, Z., GORTLER, S. J., AND COHEN, M. F. 1994. Hierar-
chical spacetime control. Computer Graphics (SIGGRAPH 94
Proceedings), 35–42.

LIU, C. K., HERTZMANN, A., AND POPOVIC, Z. 2005. Learn-
ing physics-based motion style with inverse optimization. ACM
Transactions on Graphics (SIGGRAPH 2005).

MARTIN, B., AND BOBROW, J. 1997. Minimum effort motions
for open chain manipulators with task dependent end-effector
constraints.

RALL, L. B. 1981. Automatic Differentiation: Techniques and
Applications. Springer Verlag.

SLOAN, P.-P., LUNA, B., AND SNYDER, J. 2005. Local, de-
formable precomputed radiance transfer. Computer Graphics
Proceedings, Annual Conference Series, 1216–1224.

TADJOUDDINE, E. M. 2007. Vertex ordering algorithms for jaco-
bian computations using automatic differentiation. Submitted to
the Computer Journal, Oxford University Press, March 2007.

VAN DE PANNE, M., LAZLO, J., AND FIUME, E. L. 2000. Interac-
tive control for physically-based animation. Computer Graphics
(SIGGRAPH 2000 Proceedings), 201–208.

WATERS, R. C. 1979. Mechanical arm control. MIT Artificial
Intelligence Lab Memo 549.

WITKIN, A., AND KASS, M. 1988. Spacetime constraints. Com-
puter Graphics (SIGGRAPH 88 Proceedings) 22, 159–168.

A Alternative form of the chain rule

The conventional recursive form of the chain rule is:

D( f (g1(h1, . . . ,hm), . . . ,gn(. . .)) =
n

∑
i=1

∂ f
∂gi

D(gi) (23)

where the gi(. . .) are themselves functions of some h j and so on. Expanding one level
of this recursion for g1 we get:

∂ f
∂g1

D(g1) =
∂ f
∂g1

m

∑
j=1

∂g1

∂h j
D(h j) (24)

=
∂ f
∂g1

∂g1

∂h1
D(h1)+

∂ f
∂g1

∂g1

∂h2
D(h2)+ . . .

∂ f
∂g1

∂g1

∂hm
D(hm) (25)

If we expand all levels of the recursion this way we see that the derivative, D( f ), is
simply a sum of products. This form of the chain rule undoes the factorization implicit
in eq.(23). Undoubtedly this has been noted many times; the earliest instance we are
aware of is [Bauer 1974].

We can write a simple recursive function to evaluate the derivative in this way. The
function takes two arguments: the first argument is the product of the partials up to
this level of recursion and the second argument is a list which contains all of the partial
products in the derivative sum.

expD(double product, List sum){
if(this.isLeaf){sum.Append(product);}
else{

foreach(child ci){
ci.D(product∗partialWRTChild(ci), sum)

}
}

}

The expD function is initially called on the root node with product set to one and with
sum set to the empty list. The function partialWRTChild(ci) returns the partial of the
current node with respect to child ci. After execution is finished each entry in sum
corresponds to the product of all the partial derivatives on one path from the root to the
leaf. Summing all the entries in sum gives the derivative.


